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I. Introduction

Recently there has been a growing interest towards qualitative analysis

of partial differential equations with or without deviating arguments. In

particular, the oscillatory behaviour of the solutions of the elliptic equations

and hyperbolic equations has been investigated in [1-6].

It seems that the nonexistence of positive solutions of nonlinear second

order differential inequality

(1.1) (q(t)(p(t)y(t))J + Ht9y(t))^r(t)

plays an important role in the above subject [see 2, 3, 4]. Uup to now,

Kusano and Naito's result [2] on the nonexistence of positive solutions of

(1.1) is the only one in the literature.

In this short note, we try to obtain some new criteria for the nonexistence

of positive solution of (1.1). Then we apply these results to the perturbed

Schrodinger equations and obtain some new results.

II. Nonexistence of positive solutions

The following conditions for (1.1) are always assumed to hold:

(a) p,qeC(R + 9R+\{0}), reC(R+,R), R+ = [0, oo).

(b) heC(R + x R+ \{0}, R+ \{0}) and is nondecreasing in the second

variable.

Now we consider two possible cases for q.

^ , f°° *
Case 1: = oo.

THEOREM 2.1. Assume that

(i) There exists a function δeC2([a, oo), R) such that

(2-1) (q(t)(p(t)δ(t)Y)' = r(t)
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and δ(t) is of alternate sign.

P dx
(ii) Set Q(t, s) = — , t > se[α, oo)

J ()
1 f<

(2.2) lim inf-——- β(t, s)(r(s) - Λ(s, δ + (s)))ds = - oo
'->«> β(ί, T ) J Γ

/or α// sufficiently large T>a, where δ + (s) = max (<5(s), 0). ΓAew inequality

(1.1) λαs «<9 solution which is positive on [ ί 0 , oo) /or #«y ί0 > α.

PROOF. If not, let y(ί) be a positive solution of (1.1) on [ί 0 , oo). Then

); - q(t)(p(t)δ(t))J < 0,

which implies that either (p(t)y(t) - p(t)δ(t))' < 0 or (p(t)y(t) - p(t)δ(t))' > 0

eventually. Thus there are two possible cases: either p(t)y(t) — p(t)δ(t) > 0 or

p(t)y(t) — p(t)δ(t) < 0 eventually. Since δ(t) is oscillatory and y(t) is positive,

we should have

(2.3) y(t)>δ+(t).

In view of condition (b), we have

(2.4) h(t,y{t))>h(t,

Substituting (2.4) into (1.1) we have

(2.6) p(t)y(t) <c, + c2Q(t, t0) + Q{t, s)(r(s) - h(s, δ + (s)))ds.
J to

Using (2.2), from (2.6) we have

H m i n f P 0 W 0
t~°° β(ί,ίo)

a contradiction. The proof is complete.

REMARK 2.1. Condition (2.2) improves condition (9) of Theorem 2 in [2].

EXAMPLE 2.1. Consider the inequality

(2.7) y"(t) + ty(t) < sin t.

In our notations, r(ί) = sin t, δ(t) = — sin ί, p(t) = q(t) = 1. It is easy to see

that

lim inf Q(ί, s)r(s)ds = lim inf (t — s) sin sds > — oo,
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and

liminf p(t)δ(t) = - 1.
ί-+oo

Therefore Theorems 2 and 3 in [1] can not be applied to (2.7). But

lim inf Q(t, s)(r(s) — h(s, δ + (s)))ds
'-*00 Q{U T) J τ

1 f<
= lim inf (t — s)(sin 5 — s(— sin s)+)ds = — 00.

Therefore (2.7) has no positive solution on [α, 00) according to Theorem 2.1.

Case 2: < oo.

Jα (0
THEOREM 2.2. In addition to (i) of Theorem 2.1, further assume that

ί = 00 for all c> 0

- Γwhere λ(t) = . 77ze« inequality (1.1) /*#£ «o positive solution on [ ί 0 , 00)
Jί <?(s)

/br β«jμ ί0 > <z.

PROOF. If not, let 3; be a positive solution of (1.1). Set Z(ί) = y(ί) — <5(ί),

then

(2.9) fa(ί)(p(ί)Z(ί))T < " h(t, y(t)) < 0 for t > T.

Thus

(2.10) q(t){p(t)Z(t)Y < q(h){p(h)Z(tx)Y for t > tx > T.

Dividing (2.10) by q(t) and integrating it we have

p(t)Z(t) - pitJZitJ < qitJipitJZitJ)' Γ 4*7, ί > ίi >

This implies that p(t)Z(t) is bounded above and

(2.11) pίίOZίίJ > - qihMtiWtJYλitJ for ίx > T,

since, by the same reason as the roof in Theorem 2.1, we must have Z(t) > 0

eventually.

There are two ossible cases:
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First we consider the case that (p(ί)Z(ί))' > 0 for t > T2, which with (2.9)

implies that

Γ h(t,.
Jτ2

(2.12) h(t, y{t))dt < oo.
iτ2

Since

p(t)Z(t) > p(T2)Z(T2) = c> 0 for Γ2,

we get

and

(2.13)

Substituting (2.13) into (2.12) we have

< oo.

Since λ(t)^O as t-*oo. (2.14) contradicts condition (2.8).

Now we consider the second case that (p(ί)Z(ί))' < 0 eventually. In view

of (2.9) and (2.11) we have

p(t)Z(t) > - q(t)(p(t)Z(t))'λ(t) > ίλ(t),

where ί is a positive constant. Therefore

and

(2.15) y(t) = Z(t) + δ(t) > ( ^ + δ(t)
\ Pit)

Substituting (2.15) into (2.12) we get a contradiction. The proof of this theorem

is complete.

EXAMPLE 2.2. Consider the differential inequality

(2.16) (t2yj + y < It cos t - t2 sin ί.
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In our notations, q{t) = t2, p(t) = 1, h(t, y) = y, r{t) = It cos t — t2 sin ί, δ(t) =

sinί and λ{t) = 1/r. It is clear that the results in [2] can not be applied to

(2.16). But

) * - I " (£
+ J J τ \ t

Therefore (2.16) has no positive solution on [ί 0, oo) according to Theorem 2.2.

REMARK 2.2. In Theorem 2 in [2], the criterion does not include the

term h. Thus it loses much information. In Theorem 3 in [2], the condition

liminf[p(ί)<5(t)] = 0
t~> 00

and the condition that the unperturbed inequality (10) has no positive solution

are required. In our results these are not necessary.

III. Perturbed Schrόdinger equations

Consider the second order perturbed Schrόdinger equation of the form

(3.1) Au + C(x, u)=f{x), xeE

where A is the Laplace operator in ^-dimensional Euclidean space R", E is

an exterior domain in JR", and C: E x R^> R and f\E-+R are continuous.

A function V: E -* R is called oscillatory in E if V(x) has arbitrarily large

zeros, that is, the set {xeE: V(x) = 0} is unbounded.

The following Lemma is taken from [2].

LEMMA 3.1. Assume that

(i) C(x, — u) = — C(x, u) for xeE and u > 0

(ii) C(x, M) > H(\x\)φ(u), for xeE and u > 0

where HeC(R + , R+\{0}), φ: (0, oo)—•((), oo) is continuous and convex.

Let F(t) be the spherical mean of f(x) over St = {xeRn; \x\ = ί}, i.e.

F(t) = —i^T ί f(x)dS, t > 0,

where σn is the surface area of the unit sphere in Rn.

Then equation (3.1) is oscillatory in E if the ordinary differential inequalities

(3.2) (ί"" 1/)' + tn-ιH{t)φ(y) < tn~ιF{t)

and



212 Ming-Po CHEN and B. G. ZHANG

(3.3) ( ί " " 1 / ) ' + tn-ιH{t)φ(y) < - tn~ιF{t)

are oscillatory at t = oo in the sense that neither (3.2) nor (3.3) has a solution

which is positive on [ ί 0 , oo) for any t0 > 0.

It was shown in [2], (3.2) and (3.3) are equivalent to the following

inequalities

(3.4) (r3-"(ί"-2307 + tH(t)φ(y) < tF(t)

and

(3.5) (ί3-"(ί"-2y)7 + tH(t)φ(y) < - tF(t).

Using Theorem 2.1 to (3.1) we have the following result.

THEOREM 3.1. Suppose that C(x, u) satisfies the conditions in Lemma 3.1,

and further assume that there exists a function feC2 such that

(3.6)

and f is oscillatory. Set

ί(t) = tF(t)-tH(t)φ(f+(t))

G2{t) = -tF(t)-tH(t)φ(f.(t))
and

Γ / loesλ
lim inf 1 — G^sjds = - oo

3 8 ) Γ / 1 \ for n = 2,

lim inf ( 1 - - ^ )G2(s)ds = - oo
^°° Jτ\ log ί/

= - oo

lim inf 1 - - G2(s)ds = - oo
*-"> Jτ\ \tj )

for all large T. Then equation (3.1) is oscillatory in E.

REMARK 3.1. Condition (3.8) and (3.9) improve conditions (20)-(23)

respectively in [2] by withdrawing the information from the second term of

(3.1).

PROOF OF THEOREM 3.1. Use Theorem 2.1 to (3.4) and (3.5) with

= t3~n, h(t,y) = tH(t)φ(y)9 r(t) = tF(t) [or - ίF(ί)] and note that

ds
= oo and

T q(s)I
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log t — log s, n = 2

- 2

Conditions (3.8) and (3.9) follow from (2.2) in Theorem 2.1.

In view of Theorem 2.2 we can study (3.2) and (3.3) directly. In (3.2)

and (3.3), q(t) = tn~\ p(t) = 1. For n > 3

Γ0 0 ds Γ0 0 ds 1 / χ Γ0 0 rfs ί 2 " "

JT ί(s) Jr S " - 1 Jf ^(5) n - 2

The following result follows from Theorem 2.2.

THEOREM 3.2. Suppose n>3 and there exists a δeC2 such that

{tn-ιδ'{t))' = tn~ιF{t)

and δ(t) is oscillatory and

• = o o

(3.11)

"~Λ " / x ' " °~^ + δ{i))_)dt = oo.

Then the equation (3.1) is oscillatory in E.

EXAMPLE 3.1. Consider the equation

2 1

(3.12) Δu H u = — cos |x | — sin |x|
I Y I I Y I
I A | | Λ |

in E = {xeR3: |x | > 1}. In view of Lemma 3.1, equation (3.12) is oscillatory if

2y<t2F(t)

are oscillatory at t = oo, where

(3.14) F(t) = - cos t — sin t.

Theorem 5 in [2] is not applicable to (3.12). In our notation, δ(t) = sin t for

(3.14). Condition (3.11) becomes
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ί H ( t ) φ ( ( c t 2 - " + δ ( t ) ) + ) d t = f ( - + s i n f ) dt = o o

(3.i5) \ yx
Ltf(ί)<?H(cί2~" + δ{t))_)dt = I I - + sin t) dt = oo.

00 ' c

JT

According to Theorem 3.2, equation (3.12) is oscillatory in E.

REMARK 3.2. Using our results Theorems 2.1 and 2.2, some results in

[3, 4] can be improved immediately.
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