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1. Introduction

P. Billingsley has proved the following theorem (c.f. [1]): Let v be a

Borel probability measure on [0, 1). Assume that M c [0, 1) is a Borel set

satisfying the conditions

v(M) > 0 and M c j ω e [ 0 , 1): lim inf - l θ g v ( " " (

nlogr

then the Hausdorff dimension //-dim (M) of M is bounded from below as

H-dim (M) > δ,

where un(ω) is the element containing ω, of the special covering of M in the

form of lj/rnj + l/rn) j = 0, l,.. ,r" - 1.

On the other hand, L. S. Young has proved the following theorem (c.f. [8]):

Let v be a Borel probability measure on UN and suppose that there exists δ > 0

such that

lQgv(B(ω,r))
lim = δ for v-a.e. ωeK

r- + o i o g r

then

H-dim (K) > δ9

where B(ω, r) denotes the closed ball of radius r with center at ω. In this

paper, we consider applying Billingsley's theorem to Euclidian space (see

THEOREM 3.3). And then we intend to construct a useful method for

calculating the Hausdorff dimension (see THEOREM 3.4 and THEOREM 3.5).

In Section 2, we will introduce a NET & for a given bounded subset K

of UN and a v-NET 01 for K, which is associated with a finite Borel measure

v on UN. Then we will define the Billingsley measure f -MJ and the Billingsley

dimension H^-dimv which are induced from v and 0t. In Section 3 main

results will be presented. We will study some relations between those and

the Hausdorff measure, the Hausdorff dimension. And we construct a useful

method for calculating the Hausdorff dimension. Furthermore in Section 4,
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we will show some strict results under a strict condition of 01. In Section 5,

we introduce two examples.

2. Definition

In this paper, Hα and λN denote the α-dimensional Hausdorff measure

and the Λ/-dimensional Lebesgue measure, respectively (αeR, NeN). And \E\

denotes the diameter of E.

For an arbitrary family & of bounded Borel subsets of UN with a positive

diameter and a constant λ(> 1), we can classify the elements of 01 as

9tp = {Re0ί\ λ~n < \R\ < ;Γ(M~υ}, neZ.

DEFINITION 2.1. For a given bounded set K a |RN, a family 0t of bounded

Borel subsets of UN is called a NET for K if 0t satisfies the following

conditions:

(1) If Rl9 R2e0ί then Rx c R2ί R2 c Rί or λN(R1 f]R2) = 0 holds.

(2) There exists a positive constant C such that

λN{R) > C \R\N for any Re®.

(3) For any ωeK and n> N^, there exists Re®{"} with ωei?, furthermore

for any K with ωeΛ, there exist Rfe^+i) and ,R//G^ίΓ"1) (if n> N%) such

that ωeR' a R^ R\ for suitably fixed /I > 1 and N&eZ.

Let 0ί be a NET for K, and let β^ be the volume of the unit ball in

UN. For any Rγe0t^ and R2e@iZι) with n < m, the inclusion Rί 3 K2 holds

if and only if λN(Rι f]R2) > 0. For any Re&£\ Cλ~{n + 1)N < λN(R) < ΩNλ~nN

holds. These simple remarks are useful. We have a suitable sub-NET U for

K of m, that is, J c ^ and J is a NET for X, as follows.

PROPOSITION 2.2. For a given NET @ for K c (RN, //zβre exw/j « sub-NET

J? /or X o/ ^ , which has the following properties:

(1) <kp = {Ke J>: A" Π < |R| < λ~n + 1} consists of finite members.

(2) // Ru R2e&{!\ then either Rγ = R2 or λN{R1nR2) = 0 holds.

(3) For any ωeK and any ReM^ with ωeR, there exist R'e J (

λ

π " υ , R'e

3(ΐ + 1)(n > NΛ) such that ωeR' c R c R".

(4) For any ωeK, there exists a sequence {£n(ω)G^(/I)}^°=Jv^ such that

ωeEn + 1(ω) c En{ω) for n > NΛ.

PROOF. Put Vn = URnK^ReM<n)R. Then by (3) of DEFINITION 2.1,

Vn+1 c vn holds for any n > NΛ. Let Rί9 R2,',Rmin) be a family of elements

of m{p such that
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KnRiΦ 0, λN(Ri Π Rj) = 0 for i Φ j , 1 < i, j < m(ή),

and there does not exist Re 01^ with RnK Φ 0 and / ^ ( ^ n t f ) = 0 for any i,

1 <ί<m(n). We see that the volume of U»^z *s bounded by a constant

depending on n, λ9 N9\K\9 and that the number m is also bounded by a

constant depending n, λ9 N, |X|, C in (2) of DEFINITION 2.1. Now suppose

that there exists ω'e Vn+ι \ UΓi"ί^i τ h e n there exists R'e@{£+1) such that

ω ' e ^ with K Γ ) K ' / 0 . Then K' is not included in UΓi"i)jRί L e t ω be in

Λ ' n K By (3) of DEFINITION 2.1, there exists an Re^} with R' cz R. By

λN(R Π #,-) > 0 for some , Rj a R holds, otherwise K ' c K c Rj implies a

contradiction. The set R may include some of K/s. Thus we have a new

family {#/: 1 < i < m'(ή)} which consists of R and Rt\ which are not included

in R with m'(n)<m(n). Then λN(\JiRfi > /lN(Ui^i) + λN(R'). This shows

that the procedure of the replacement of the family {Rj} can be performed

at most finitely many times. In the last stage we have {RW}™!"} CZ 01 for

n > N@ such that

f Φ0, ^ ( ^ ! " } n R ^ ) = o (i = 7).

Set J = {£f°: 1 < i < m(n), π > N&}. The second assertion (2) is obvious by

the construction and (1) of DEFINITION 2.1. Now we show (3). Let us suppose

that Re0t^(n > Nm) and ωeKf]R. Since R c Vn c U i ^ " " υ

? λ^RoR^'1^ >

0 with some j . Then R a Rf'^ = R". On the other hand, we can find

R"'e^ + 2) such that ωe/Γ ' c= R. Then just as above, there exists Re J>(

A"+1)

such that R'"c:R'. Since ^( t fnt f ' ) > λ N (/O > 0, K' c R holds. Thus we

get (3). This implies that 01 is a NET.

For ω e X and n = JVΛ + 1, let £π(ω) be the first member of R^,

1 < i < m(n), containing ω and ENgt(ω) be the first member of i?W,

1 < i < m(ΛΓ )̂, including En(ω). By (3) we can find a desired sequence in this

way. •

Now we introduce a v-NET for K, which is more loosely defined

associated with a positive finite Borel measure v on UN.

DEFINITION 2.3. Suppose that K c UN is a bounded set, 01 is a family

of bounded Borel subsets of IRN and v is a positive finite Borel measure on

UN without atoms. Define a set Kv by

Kv = Kf] Π U R\ U Λ
/ = Nc% Remψ Re@, v(R) = 0

The family 01 is called a v-TVΈΓ /or X, if 01 is a NET for Xv.
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In whole paper, C, NΛ, 01^ and J(/° mean the same meanings as in this

section. If 01 is a v-NET for K a UN, then for α > 0, p > 0, E c Kv

and

p j O V ' P

are defined. Then ^ - M " has similar properties to Hausdorff measure. There

exists De[0, 1] such that

if α>D.

Therefore /Ae Bίllingsley dimension H<%-dimv for E referring to v and $ is

defined by

(£) = sup {α: «-M?(£) = oo}

= inf{α:^-MΪ(£) = 0}.

Furthermore, we can easily check the following facts.

PROPOSITION 2.4. Suppose that @ is a v-NET for K a [RN, E = U. £i ^ κ

then we have the following properties:

(1) f -MJ is a metric outer measure.

(2) 0 < H^-dirn, (E) < 1 holds. Especially if v(£) > 0 /Â « H®-dimv (£) = 1

(3) H<%-dimv (E) = sup f Hm-dimv (Et) holds.

3. Main results

In this section, we study the relation between the Billingsley dimension

and the Hausdorff dimension and the relation between the Billingsley measure

and the Hausdorff measure. First we will show that if 01 is a NET for K

then we only have to refer to 0t substituting for an arbitrary covering of M

in calculating the Hausdorff dimension of M c K.

LEMMA 3.1. For a given M c K cz UN, define

00 00

Λ-H"P(M) = inf { X 117,1-: £7,eΛ, M = U Uh |17,| < p}
ί = l i = l
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Then

λ-*Lχlλχ®-H'{M) < Ha(M) < &-

where LN λ χ = (2λ)NΩNC~1 and ΩN = πjN/Γ(N/2 + 1) is the volume of a unit

ball in UΉ]

PROOF. Let {Ui]fl1 be an arbitrary p-covering of K for some sufficiently

small p > 0, then we can find n( e M for every Ui such that

λ~nί < \Ui\ ^λ-^-v.

By Proposition 2.2, for every Ut and ωt e Ut

RczB(ωh 2λ" ( Λ ί " 1 ) )
RnUiΦ0

holds. By λN(B(ωh r)) = ΩNrN and (2) of Definition 2.1, we have the estimate

for any i. Therefore there exists {K^l^i; 2:./^ such that

7 = 1

Since | C7£| > λ~Hi > λ'1 |Λf}>|,

oo 1 oo 1 m ,

ΣW^Σ-ΣWΓ
i = l Λ ί = i Wlf j = l

This implies that

C(2 i VA i V + αί2Λ Γ)-1^-Hα(M) < Hα(M).

The estimate

Hα(M) < ^-H α (M)

is clear from the definition. •

From now on, we restrict the Lebesgue measure on a sufficiently large

ball VczUN such that

R c v for any Reόlψ"* with KnK ^ 0.
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Then λN is a finite measure.

LEMMA 3.2. Suppose that 01 is a NET for K a UN. Then for any Boreί

set M £ X,

H-dίm (M) = N HM-dimλN (M)

holds.

PROOF. Since R is included in a ball with radius \R\, we have

C\R\N < λN(R) < ΩN\R\N for all Re® (3.1)

by (2) of DEFINITION 2.1. Therefore we have

£ Σ Σ
i = 1 i = 1 ί = 1

where {Λ{e«},?°=1 satisfies | ^ | < p , Λ f c y ^ ^ . . This implies

Together with LEMMA 3.1, we have

H-dim (M) = N- H^-dim^ (M).

Next theorem is an extension of Billίngsley's theorem.

THEOREM 3.3. Suppose that ® is a v-NET and also a μ-NET for

K cz UN. If M satisfies the following condition

-liminf inf l og v W >
n-oo ωeRe^ \og μ(R)

then

H^-dimμ (M) > δ Hm-dimv (M).

PROOF. We may assume (5 > 0. Set

M p ? ε = { ω e M : μ(K) > p o r v(#) < μδ~ε(R) for any Λ e J such that ωei?}.

Then for any ε > 0 and ωeM, there exists ΛΓ(ω, ε) such that

v(fl) <//- ε (K) for any ReM^ with ω e K

for any n > N(ω9 ε). Therefore if we take

p = inϊ{μδ-ε(R): ωeRe^{ω^ε))} >inί{μδ-ε(R): ωeRe<%(

λ

N{ω>ε) + 1)} > 0



On the Billingsley dimension on RN 129

then we see that ω e M p > ε . That is to say, for any ε > 0,

M p ? ε t M as p i 0.

Since MPtE^M, for any given ( p > ) p ' > 0 , y > 0 and / > 0, there exists

i}^L1 satisfying the following conditions:

< p\ Mp,z c \J Rh R£n MP t β # 0

and

Σ A*4'(«ι) < v.
i = 1

where

Therefore we have

i = 1 i = 1

By letting p' 10, we have @-Mδ

χ-
ε{Mp ε) < y. Therefore Hm-dimv (M ε) <

δ — ε
Since Mp^M as p JO, by (3) in PROPOSITION 2.4, we have

δ — ε

Since ε > 0 and y' > 0 are arbitrary, we have the conclusion. •

By LEMMA 3.2 and THEOREM 3.3, we have the following main result.

THEOREM 3.4. Suppose that & is a v-NET for a bounded set K a UN.

(a) If M satisfies the condition

inf logV^R) >δ\, (3.3)
eJteΛSf) log | K | j V '

then

H-dim (M)>δ HM-dimv (M).

(b) If M satisfies the condition

M ^ L e K v : α < l i m i n f inf ^ ^ < lim sup supe K v : α l i m i n f inf lim sup sup
I π-α. ωeRem<£) \og\R\ »-"» ωSRε®^ \og\R\

(3-4)
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then

a Hgz-dim, (M) < H-dim {M)<b Hm-dimv (M).

Especially, if v(M) > 0 then

a < H-dim (M) < b.

PROOF. Let μ be λN. Then we can apply THEOREM 3.3 and see

H^-dimλN (M) > A . HΛ-dimv (M).
N

Since 01 is a NET for Xv, by LEMMA 3.2 we have (a) in the theorem. By

interchanging v and μ in THEOREM 3.3, we have (b) in the same way. The

last part is seen by (2) of Proposition 2.4. •

Readers will find that this Theorem is similar to the result of L. S. Young

(cited in Section 1). The following formulation which is due to Billingsley is

more useful in calculation.

THEOREM 3.5. Suppose that 0t is a v-NET for K a UN. If 01 is a

countable family and M satisfies the conditions

M-ίωeKv:liminf inf 1 ° ^ = lim sup sup l-^^ = δ
[ H-oo ωeΛeΛS ) l o g | f l | »-* ωeRe®^ lθg\R\

H-dim (Kf\R)<δ- Hm-dim, (M) (3.5)

for any Re@ with v(R) = 0, and

H-dim (K\ U R)<δΉ^-dimv(M) (3.6)

for any n > N&, then

H-dim (M U (K \ Kv)) = δ H#-dimx (M) = H-dim (M).

COROLLARY. Especially, if M = Kv satisfies the conditions (3.4)', (3.5) and

(3.6), then we have

H-dim (K) = δ Hm-dimx (Kv).

PROOF OF THEOREM 3.5. Since 0ί is a countable family and the equality

H-dim ( U At) = sup H-dim (^) (3.7)
i= 1
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holds, by (3.5) we see that

H-dim (K n U R)<δ H^-dim (M),

and by (3.6) we see that for all n > Nm

H-dim ((K\ U R)ϋ(Kί) [j R)) < δ H^-dim (M).

Since

K\KV= [J {K\ U R)[) U (KOR),

again by (3.7) we have

H-dim (K\Kv) < H-dim ( \J (K\ [j R){j(Kf\ (J K

Together with THEOREM 3.4 (b), we have

H-dim (K\Kv)<δ> H^-dim (M) = H-dim (M).

This means

H-dim (MU(X\K v)) = H-dim (M) = δ H^-dim (M). Π

An application of THEOREM 3.5 will appear in EXAMPLE 5.2 of Section 5.

LEMMA 3.6. Suppose that & is a v-NET for K cz UN. If M satisfies

M c \ωeKv\ a < l im inf inf — 4 < Hm s u p s u p — l < b > , (3.8)

< R-Hδ{M) < a-χm-M

PROOF. If a = 0 then the lefthand side inequality is clear, so we assume

a > 0. For p > 0, ε > 0, set

Mp, ε = {ωeM:(a-ε)\R\δ < v(R) <(b + ε)\R\δ or v(K) > p

for any R e f such that ωsR).

By (3.8), for any ε > 0 and ω e M , there exists N(ω9 ε) > N<% such that
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(a-ε)\R\δ<v(R)<(b

for any n>N(ω,ε) and any Re^} with ωeR. Similarly to the proof of

Theorem 3.3, we can see Mp ε ] M as p [ 0.

Firstly we prove the lefthand side inequality. For any sufficiently small

p" > 0 there exists 0 < p' < p such that

v(R)<p" if \R\<p'. (3.9)

And for any y > 0 there exists {^J^i satisfying the conditions:

; € ^ , |Λ,| < p , Mp > ε s U R,, λN(R^Rj) = 0 (i
i = l

^ 0, 0 < f |Λ,| - Λ-HJ-(MP,J <

By (3.9) and the definition of M p ε, we have

(α - ε)\Ri\δ < v(Rd <(b + ε)\Ri\
δ (3.10)

for any i. Therefore we have the following estimate

By letting //', y | 0 , we have

(b + fiJ-^-MjίAfpJ < @-

Since ^-MJ is an outer measure, «-M;(M p > e )T*-M;iM) as p | 0 (see

P. Halmos [4] p. 47). Therefore

(b + ε)" 1 ^-M v

1 (M) < @-Hδ(M).

Since ε > 0 is arbitrary, we have the lefthand side inequality.

Secondly we prove the righthand side inequality. For any 0 < p' < p

there exists p" > 0 such that

\R\ <p' if v(R)<p". (3.11)

And for any γ > 0 there exists {Ri\Γ=i satisfying the conditions:

Rtea, v(Rt) < p\ Mp, ε £ U Ri, λN(Rt(]Rj) = 0 (i Φj),
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p.. # 0, 0 < f v(Rt) - Λ-M,1,,.<(**,.,) < y.
i = l

Therefore together with (3.10)

Λ-MJ (M) > ^-Mv\p,,(Mp,ε) > f v(Rd - γ
i=ί

>(a-ε)Σ\Ri\
δ-y

>(α-ε)Λ-Hj,(ΛfP i β)-y.

By letting p', y J,0, we have

Therefore we have the righthand side inequality similarly to the lefthand side

inequality. •

LEMMA 3.7. Suppose that $ is a v-NET for K, E ^ Kv then we have the

inequalities

v*(E)<®-Ml(E)<LN,λιCv(MN),

where v* means the outer measure which is induced from measure v. Especially,

the condition

v(RinRi/) = 0 if A N ( ^ n ^ ) = 0 RhRjE@ (3.12)

is satisfied then

PROOF.

v*(E) < Λ-MJ (E) < Λ-MJ (£)

is clear from definition. Therefore we have only to show that

Put Vn = \JRnKb*<i>tRe&f>R t h e n Kj-Vι for any n > Nm. That is to say, Kv

is covered by the elements of J?(

λ

π) for any fixed n > N@. By PROPOSITION

2.2, there exists {#JΓ=i s u c n t n a t

Rt GΛf^, E c= U Λ., ^ ( Λ , Π K,) = 0 (i #7) .

For any fixed ωe[JI[ι

=1Ri, the number of R/s containing ω is bounded by

LN,X,C- Therefore
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m m

Λ-Mί(£) < Σ v(Rι) Z L*,A,cv( U Rt) < LN,λ,cv(UN).
1 = 1 i = 1

The last part is clear from the measurability of 0ί. •

By Lemma 3.1, Lemma 3.6 and Lemma 3.7, we have the following.

THEOREM 3.8. Suppose that @ is a v-NET for K cz RN.

(a) If M satisfies (3.8) then we have the inequalities

Hδ(M) < a-^N^cviU").

(b) If M satisfies (3.8) and & satisfies condition (3.12) then

b-^-3Lu\3Cv*(M) < Hδ(M) < α"1v*(M).

COROLLARY. If & is a countable family and there exists δf < δ such that

H-dim (Kf]R)<δf- H^-dim, (M), (3.5)'

for any Re@ with v(R) = 0, and

H-dim (K\ U R)<δ' Ha-dimv(M), (3.6)'

for any n > N&, then

b-'λ^L'^cV^M) < Hδ(M) = Hδ(M[)(K\Kv)) < a-'L^^v^).

Furthermore, if 01 satisfies the condition (3.12) then

b-χλ-δL^λχ^{M) < Hδ(M) = Hδ(Mϋ(K\Kv)) < a~ιv*{M).

Especially, if M = Kv then

b-'λ-'L-^cV*^) < Hδ(Kv) = Hδ(K) < α-S ίX,).

4. Strict NET

In this section, we introduce some additional results which hold under

stronger conditions than in Section 3.

DEFINITION 4.1. For a given bounded set K a MN, a family 0ί of bounded

Borel subsets of UN is called an sNET for K (a NET in strict sense) if 01

satisfies the following conditions:

(1) If Rl9 R2e0ί then Rγ c R29 R2 c Rχ or R1nR2 = 0 holds.

(2) There exists a positive constant C such that
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λN(R) > C \R\N for any Re0ί.

(3) There exist two constants λ>ί9 NmeZ satisfying the condition: There

exists Re0^ with ωeR for any n > NM and any ωeK.

Similarly to the proof of PROPOSITION 2.2, we can prove PROPOSITION 4.2.

PROPOSITION 4.2. If @ is an sNET for KczRN, then it is a NET for

K and there exist a constant λ > 1 and a sequence {En(ω)e&}™=N^ for any

ωeK such that

n(ω),En(ω)^En + ί(ω) and En

and that if ω φ ωf then

£ » = £>') or £n(ω)n£B(ω') = 0

holds for any n > N@. Moreover, for ωeK and Re01^ with ωeR, En+1 (ω) a

R cz £„_!(<£>) holds for any n > N<% + 1.

DEFINITION 4.3. Suppose that K cz UN is a bounded set, 0t is a family

of bounded Borel subsets of RN and v is a positive finite Borel measure on

UN without atoms. Then the family 0t is calle a v-sNET for K, if m is an

sNET for Xv.

Through out this section, {En{ώ)e0t)^=ι means the same meaning in

PROPOSITION 4.2 for a given NET for K. By PROPOSITION 4.2 and by definition

of Kv, if & is an sNET for X, then we have

κv= π U RnK.

LEMMA 4.4. Suppose that 0t is a v-sNET and also a μ-sNET for

CZ H . IJ

for all ωeKvf]K then

lim l θ g v ( £ - ( ω ) ) = 1 (4.1)
"-oo lOgv(£π(ω))

. logv(£B(ω)) logv(Λ) . log v(R)
lim inf = hm inf inf — = lim inf sup . (4.2)

w °̂° logμ(EH(ω)) π^°° ^ ^ ^ log μ(R) "-*00 ωeΛeΛf) log μ(R)

PROOF. By PROPOSITION 4.2, for ωeKvV\Kμ and Re^("} with ωeR

£ π + 1 ( ω ) c = J R c £ π _ 1 (

holds for any n > Nm + 1. Therefore we have
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logv(fl) < logv(EH+1(ω))

logμ(En + 1{ω))

for any Re^] with ωeK. Together with (4.1), we have (4.2). •

By using LEMMA 4.4, we can rewrite the results in Section 3.

LEMMA 4.5. Suppose that $ is a v-sNET and also a μ-sNET for

K cz UN. If $ satisfies the condition (4.1) and M satisfies

μ »-» lOgμ(EH(ω))

then

Hm-dimμ (M)>δ- H<%-dimv (M)

holds.

It is easy to check that λN satisfies the condition (4.1). Therefore we have

THEOREM 4.6. Suppose that 01 is a v-sNET for K <^MN. If M satisfies

the following condition

M S LeKv: lim inf l o i l ί M ^ > δ\, ( 4.3 )

1 v —> log|£n(ω)| ~ J ' l ^

H-dim (M) > δ H^-dimv (M).

COROLLARY. 7/1 we change the condition (4.3) for the following condition

M £ L 6 Xv: a < lim inf l θ g V ( £ > ) ) < lim sup l θ g V ( £ " M ) < fcj,
1 »-« log|£M(ω)| »-»F l o g | £ ( ) | J

then

a H^-dimv (M) < H-rf//w (M) < ft H^-dim, (M).

Especially, if v(M) > 0 //ίe«

α < H-dim (M) < b.

THEOREM 4.7. Suppose that 01 is a v-sNET for K a UN. If 01 is a

countable family and M satisfies the conditions (3.5), (3.6) (or (3.5)', (3.6)') and

log|£n(ω)|
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then

H-dim (M U (X \ Kv)) = δ HM-dίmv (M) = H-dim (M).

THEOREM 4.8. Suppose that 01 is a v-sNET for K aUN. If M satisfies

(4.4)
\En(ω)\S -<** \Em{ω)\>

then

< H\M) < α~1

COROLLARY. Suppose that 01 is a v-sNET for K aUN. If & is a

countable family and M satisfies the conditions (3.5)', (3.6)' and (4.4) then

. < Hδ(M) = Hδ(Ml)(K\Kv)) < a~ιv*

Especially, if M = Kv then

Ό A Lift χ Q V (χvvj <; n yr^y) = n \r±) S; a V ^ivvj.

5. Examples

In this section, we will introduce two examples. The first example
K(PU P2, P3) is not a compact set. In case of (P l 5 P 2 , P3) = (1/3, 1/3, 1/3),
we know that the Hausdorff measure is positive and finite by using Theorem
3.8. But in the other case, we don't know whether the Hausdorff measure
is finite or not. In this example, we will calculate only the Hausdorff
dimension of K (P1 ? P 2 , P3).

EXAMPLE 5.1. (Sierpiήski Gasket) Let us define contraction maps

φx:(x9y)l
2 2 2

1 1 1
φ2'>(χ,y)

^ * + I ' 2

and let X be the regular triangle:

X = {(x, y)e U2 :y>0,y< ^βx + \ y < - Jlx + 3} .
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The Sierpiήski gasket K is defined by

DΊ» *2> Λ ] = ψiX ° (pi2 ° ° <

κ= n υ [ii.i^ j j .
« = 1 ( i i , i 2 , , in)e{ l ,2,3}»

We define a surjection map φ from {1, 2, 3}^ to iC by

00

ω = ( ω 1 , ω 2 , . )e{ l ,2,3} N > Π l > i , ω 2 , , ω j .

l s P 2, P3) = L(ω) : ^ W) — • P ; as n —» ool,

Define

where

Ni(ω, n) = *{/c: k<n,ωk = ή for ω = (ω,, ω 2 , , )e{l, 2,

Σ Pi = 1, 0 < P ( < 1.

Then

H-dim (K(PX, P 2 , P3)) = - Σ ί = 1

l o ^ ' 2

O g P ί (5.1)

PROOF OF (5.1). Let us define

& = {Uu i2,~ >i*}'Λh> h,' , i je{ l , 2, 3}n, n = 1, 2 , - } .

It is easy to check that ^ is a NET for K. Let μ be the ( i \ , P 2 , P3)-Bernoulli

measure on {1, 2, 3}N, that is to say

μ({ω = (ωl9 ω2, ) e { l , 2, 3}^; ωx = il9 ω2 = i2, , ωn = ίn}) = PhPi2 Pin.

Then μ has no atoms. We can introduced a probability measure v on U2

from the probability measure μ by

v(B) = μ(φ'1(B(]K)) for any Borel set B of R2.

Since [fl5 ι'2>•">*«] a n < ^ D i ^ ^ r ' - J m ] have the property that one includes the
other or their intersection consists of at most one point. Therefore we see that

and that
v(D"i, i2>'~,

if their intersection consists of at most one point. Therefore 01 is a v-NET

for K. Furthermore for any ωeφ~1(K(P1, P2, P^))
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> ' *' > ω J ) _ Σf= 1 ̂ i ( ω ' n) l°g Λ

I o g | [ ω 1 , ω 2 , ,ω w ] | Xf=1 ΛΓf(ω, w) log 2 " 1 * log 2
By (5.2), THEOREM 3.4 (b) and v(K(Pu P 2 , P3)) = 1, we have
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(5.2)

H-dim (K(PU P 2 , P3)) = - Σ,= i Λ l o
log 2

imv (K(Pl9 P 2 , P3))

- D
log 2

The second example is an application of Theorem 4.7 and Theorem

4.8. In this example, we can calculate Hausdorff dimension of K without

constructing any complete covering of K.

EXAMPLE 5.2. Let us define contraction maps φ^. U2 -• [R2, i = 1, 2, 3, 4,

ψi - (χ> y) —

- (x, y)

- (^? y)

: (x, y) -

x 1 1 y 1 1

7 + 2 + 2 ^ V + 2 + 2 ^

x 1 1 y 1 1 \
J I _ι I

r 2 2 rV 2 2rV'
x 1

7~ 2" rH 2 2r f

where

x 1 1 y 1 1

7 + 2 +2^V~ 2 ~2^y

0 < H < 1, 2<rH. (5.3)

it
ft

1H

1H

1

s

H f_J Jt

tHtπ

tin ήή
Figure 1. (r = 2.5, H = .757)

Figure 2. (r = 5, H = .8)
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Put

= \(x,y)eU2:y= ± 1 , - ^ < x < ^ U

Ux, y)eU2: x= ± - , < y < -

and Γ 2 2 ' ~ 2
00

K = the closure o f ( I U IJ U Ψix ° Ψi2 ° ••• ° ΦinPO)

Then we have the following fact.

PROPOSITION 5.3. If 2 < rH < 2 H + 1 then

« = H-dim (JC) = ( 1 + / / ) l θ g 2 , 0 < H-(JC) < oo.
Hlogr

If 2 H + 1 < rH then H-dim (X) = 1 and

[ positive finite if 4 < rH.

PROOF. Suppose that 2 <rH. Denote

E* = the closed convex hull of £,

[0] = K\ [ O M 2 - U = (φiχ o φi2 o •» o Φifi(X)) (5.5)

and π x and πy be the projections onto x-coordinate and ̂ -coordinate, respec-

tively. Then {L0i1i2"-Q} are rectangles. F o r any (il9 i2,-'Jn), Ui>J2>'~Jm),

one of

[ 0 U 2 - i J £ [Oj iΛ- jJ , [O7J2-JJ ^ [0ΐii2 y or

[Oi1i2.»iπ]n[O;1j2. j J = 0 (5.6)

holds. And their diameters are evaluated as

Set

L([0ii iJ)

S([0i1i2 iJ) = ( U i ) * (5-7)
LeL([0iii2...in])
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T h e n { S d Ό i Ί i V i J ) } a r e r e c t a n g l e s s u c h t h a t f o r a n y ( i l 9 ί2,•••>*«)> 0 Ί > . / 2 > >

j n ) , o n e o f

or

holds and that

(5.9)

Now we put

* = { S t f O M r - i J ) : (il9 ι29'"9Qe{ί9 2, 3, 4}", n = 1, 2 , - } .

Since [OiΊ^ i J is compact and

and

4

ϊ Ί ^ iJ => U [0iiϊ2 U] for any [OΪΊ^ Ϊ J ,

there exists a probability measure v on U2 such that

v([0i1i2 . ίJ) = 4-» for any [Oi^-Q

We can easily see that 0t is an sNET for

κv = κn n U s([0M2».ij).
« = 1 (fi,/2,...,iπ)e{l,2,3,4}"

Since vίSίCOϊΊ^ iJ)) = 2-(Λ + I"H]), we have

logvC^CO^^-ΐJ)) ^ _ ( l + / f ) l o g 2

for any (0, iί9 i2, ,iM, )e{l, 2, 3, 4}N. If rH < 2H + 1 then α > 1. Therefore

together with (5.8), (5.9), 3t is a v-sNET for X and ^ satisfies the condition

(3.6)'. Since v(R) > 0 for any Re$, condition (3.5)' holds obviously. Therefore

by using THEOREM 4.7, we have

()
if log r

And
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where

r _ l 7 \r

H-l

that is to say

v(S{[0i1i2' 'il))
dγ

 a < < 2d2

 α for any

Therefore by using THEOREM 4£, we have 0 < W(K) < oo for 2 < rH < 2H+ x .

On the other hand, if 2H+1<rH then α < 1. Since H-dim (K) > 1

obviously, (5.10) implies that H-dim (K) = 1. Therefore evaluation of W(K)

is clear. •

Acknowledgements

I am much indebted to Professor I. Kubo and Dr. M. Nakamura for

their invaluable advices and hearty encouragements. And give thanks to

Mr. Nakata for his attention to my work and drawing the figure of EXAMPLE

5.2.

References

[ 1 ] P. Billingsley, Ergodic theory and information. John Willy and Sons, Inc., New York,

London, Sydney (1965).

[ 2 ] P. Billingsley, The singular function of bold play. Am. Sci., 71 (1983), 392-397.

[ 3 ] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, (1985).

[ 4 ] P. Halmos, Measure Theory. Springer-Verlag, New York, Heidelberg, Berlin (1974).

[ 5 ] C. McMullen, The Hausdorff dimension of general Sierpiήski carpets, Nagoya Math. J.,

96 (1984), 1-9.

[ 6 ] S. J. Taylor and C. Toricot, Packing measure and its evaluation for a Brownian path.

Trans. Amer. Math. Soc, 288 (1985), 679-699.

[ 7 ] M. Urbaήski, The Hausdorff dimension of the graphs of continuous self-affine function.

Proc. Amer. Math. Soc, 108 (1990), 921-930.

[ 8 ] L. S. Young, Dimension, entropy and Lyapunov exponents. Ergodic Theory Dyn. Syst.,

2 (1982), 109-124.

Information Engineering

Graduate School of Engineering

Hiroshima University

Higashi-Hiroshima, 724 Japan




