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1. Introduction

P. Billingsley has proved the following theorem (c.f. [1]): Let v be a
Borel probability measure on [0, 1). Assume that M = [0, 1) is a Borel set
satisfying the conditions

y(M)>0 and Mc {we[o, 1): lim inf — log v(u,(@)) 5}

nlogr
then the Hausdorff dimension H-dim (M) of M is bounded from below as
H-dim (M) > 9,

where u,(w) is the element containing w, of the special covering of M in the
form of [j/r,j+1/r)j=0,1,---,r"— 1.

On the other hand, L. S. Young has proved the following theorem (c.f. [8]):
Let v be a Borel probability measure on RN and suppose that there exists § > 0
such that

lim lo_nga

for v-a.e. weK
r=+0 log r

then
H-dim (K) > 6,

where B(w, r) denotes the closed ball of radius r with center at w. In this
paper, we consider applying Billingsley’s theorem to Euclidian space (see
THEOREM 3.3). And then we intend to construct a useful method for
calculating the Hausdorff dimension (see THEOREM 3.4 and THEOREM 3.5).

In Section 2, we will introduce a NET £ for a given bounded subset K
of RN and a v-NET £ for K, which is associated with a finite Borel measure
von RY. Then we will define the Billingsley measure £-M? and the Billingsley
dimension Hg,-dim, which are induced from v and #£. In Section 3 main
results will be presented. We will study some relations between those and
the Hausdorff measure, the Hausdorff dimension. And we construct a useful
method for calculating the Hausdorff dimension. Furthermore in Section 4,
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we will show some strict results under a strict condition of #. In Section 5,
we introduce two examples.

2. Definition

In this paper, H* and Ay denote the «-dimensional Hausdorff measure
and the N-dimensional Lebesgue measure, respectively (xR, NeN). And |E|
denotes the diameter of E.

For an arbitrary family # of bounded Borel subsets of R¥ with a positive
diameter and a constant A(> 1), we can classify the elements of # as

AP ={ReR: A""<|R| <A™V}, nel.

DErINITION 2.1. For a given bounded set K = R", a family # of bounded
Borel subsets of RY is called @ NET for K if # satisfies the following
conditions:

(1) If Ry, R,eZ then R; = R,, R, = R, or Ay(R;NR,) =0 holds.
(2) There exists a positive constant C such that

In(R)=>C-|R|¥  for any ReZ.

(3) For any weK and n > N, there exists Re 2y with weR, furthermore
for any R with weR, there exist R e 27" and R"e Z7 ™V (if n > Ng) such
that we R’ < R = R”, for suitably fixed A > 1 and N4eZ.

Let # be a NET for K, and let Q4 be the volume of the unit ball in
RN. For any R, e 2" and R,e#{" with n < m, the inclusion R, 2 R, holds
if and only if 4y(R;NR,)>0. For any ReZY, CA~"*VN < J (R) < Q™™
holds. These simple remarks are useful. We have a suitable sub-NET # for
K of &, that is, # < # and # is a NET for K, as follows.

PROPOSITION 2.2.  For a given NET & for K = RN, there exists a sub-NET
R for K of R, which has the Jfollowing properties
(1) RP={Redk: A™"<|R| <A™} consists of finite members.
() If Ry, R,e R, then either Ry = R, or Ay(R,NR,) =0 holds.
(3) For any weK and any ReRY with weR, there exist R e A"V, R"e
A9V (n> Ng) such that weR < R < R”.
(4) For any weK, there exists a sequence {E,(w)eRP} N, Such that
weE,,  (w) < E(w) for n > Ng.

Proor. Put ¥ = Ugnk=oreaw R Then by (3) of DermiTION 2.1,
Vi+1 S ¥, holds for any n > N4. Let Ry, R,,--+,R,,, be a family of elements
of #% such that
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and there does not exist Re 2" with RnK # @ and iy(R;nR) =0 for any i,
1 <i<m(n). We see that the volume of (J;R; is bounded by a constant
depending on n, 4, N, |[K|, and that the number m is also bounded by a
constant depending n, 4, N, |[K|, C in (2) of DEFINITION 2.1. Now suppose
that there exists w' €V, ;\U"™R,. Then there exists R'e Z"* 1 such that
w'eR with KNR' #@. Then R’ is not included in Y™ R;. Let w be in
R'nK. By (3) of DeFINITION 2.1, there exists an Re#{’ with R' = R. By
N(RNRj) >0 for some j, R;= R holds, otherwise R'< R < R; implies a
contradiction. The set R may include some of R;’s. Thus we have a new
family {R{: 1 <i < m'(n)} which consists of R and R;’s which are not included
in R with m'(n) <m(n). Then Ay(U;R}) = Ax(U;R)) + Ay(R’). This shows
that the procedure of the replacement of the family {R;} can be performed
at most finitely many times. In the last stage we have {R"}"" c % for
n > Ng such that

Kekc URPSY, KnRP#£0, InRPnRP) =0 (i=)).

Set #={R™:1<i<m(n),n=>N,}. The second assertion (2) is obvious by
the construction and (1) of DerFINITION 2.1. Now we show (3). Let us suppose
that Re 2y’ (n > Ng) and we KNR. Since R < ¥, < [J;R" ™Y, A,(RNRY~1) >
0 with some j. Then R c ﬁ}"‘” = R”. On the other hand, we can find
R"e#"*? such that we R” = R. Then just as above, there exists R'e Z0"+V
such that R” = R’. Since Ay(RNR')> Ay(R")>0, R' = R holds. Thus we
get (3). This implies that # is a NET.

For weK and n=N,+ 1, let E (w) be the first member of R,
1 <i<m(n), containing w and Ey,(w) be the first member of R™,
1 <i <m(Ny), including E,(w). By (3) we can find a desired sequence in this
way. [

Now we introduce a v-NET for K, which is more loosely defined
associated with a positive finite Borel measure v on RM.

DEerFINITION 2.3. Suppose that K = RY is a bounded set, #Z is a family
of bounded Borel subsets of RV and v is a positive finite Borel measure on
RY without atoms. Define a set K, by

Kv=Knﬁ U R\ U R.

I=N, ReR{ Re®,v(R)=0

The family £ is called a v-NET for K, if #Z is a NET for K,.
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In whole paper, C, N, 2% and #{" mean the same meanings as in this
section. If # is a v-NET for K = RV, then for « >0, p >0, ES K,

v(R): RieR, E< U R;, v(R) < p}

1 i=1

M8

R-M?,(E) = inf {

i

and
2-M}(E) = lim #-M; ,(E)
pl0 g

are defined. Then %£-M: has similar properties to Hausdorff measure. There
exists De[0, 1] such that

00 if o« <D,

A-M; (E) = { )
0 if o> D.

Therefore the Billingsley dimension H g4-dim, for E referring to v and R is
defined by

Hg4-dim, (E) = sup {a: #-M3(E) = o0}
= inf {a: #-MJ(E) = 0}.
Furthermore, we can easily check the following facts.

PROPOSITION 2.4. Suppose that R is a v-NET for K< RY, E = |);E; = K
then we have the following properties:
(1) R-M? is a metric outer measure.
(2) 0< Hg-dim,(E) <1 holds. Especially if v(E)>0 then Hg-dim,(E)=1
holds.
(3) Hg-dim, (E) = sup; H4-dim, (E;) holds.

3. Main results

In this section, we study the relation between the Billingsley dimension
and the Hausdorff dimension and the relation between the Billingsley measure
and the Hausdorff measure. First we will show that if # is a NET for K
then we only have to refer to # substituting for an arbitrary covering of M
in calculating the Hausdorff dimension of M < K.

LeMMA 3.1. For a given M < K = RN, define

13

R-Hi (M) =inf{ ) |Uj|*: U;je®R M <
i=1

12

Ui’ |U1| Sp}
=1

and
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R-H*(M) = lim #-H%(M).
plO

Then
AT*LyY c #-H*(M) < H*(M) < #-H*(M),
1
where Ly ; c = QAN QyC™! and Qy = 72" [T(N/2 + 1) is the volume of a unit
ball in RN.

Proor. Let {U;}}2, be an arbitrary p-covering of K for some sufficiently
small p > 0, then we can find n;eN for every U; such that

A7m < | U < A D),

By Proposition 2.2, for every U; and w;e U,

KnU; < U R c B(w;, 24~ ™~ 1)

ReRQ),RnU; #0
holds. By Ay(B(w;, r)) = Qyr" and (2) of Definition 2.1, we have the estimate
*{ReF: RNU; # 0} < QHVQyC !

for any i. Therefore there exists {R{"}iZ]%, such that

.....

UnK < | R™, R™Me R, m; < 2N QyC 1.

j=1

Since |U;| > 27" > A~ ' |R{M),

|R('“)|"

"MS
T M§

© 1 1
LS P
This implies that
CQRNAN*Q )~ #-H* (M) < H*(M).
The estimate
H*(M) < #-H*(M)
is clear from the definition. [

From now on, we restrict the Lebesgue measure on a sufficiently large
ball V = R" such that

RcV  for any ReZM with RnK # Q.
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Then Ay is a finite measure.

LEMMA 3.2. Suppose that R is a NET for K = RN. Then for any Borel
set M = K,

H-dim (M) = N - Hg-dim, (M)
holds.
PrOOF. Since R is included in a ball with radius |R|, we have
C|R|¥ < Ay(R) < Qy|RI for all ReZ# (3.1

by (2) of DEFINITION 2.1. Therefore we have

) © i
CN. Y IR[* < Y AWNR) < QYN Y IR,
i=1 i=1

i=1 i

where {R;e #}2, satisfies |R;| < p, M = U2, R;. This implies
CYN -H*(M) < Z-M5 ¥ (M) < QYN #2-H*(M).

Together with LEmma 3.1, we have

H-dim (M) = N - Hy-dim,,, (M). [

Next theorem is an extension of Billingsley’s theorem.

THEOREM 3.3. Suppose that ® is a v-NET and also a u-NET for
K < RM. If M satisfies the following condition

Mc {weKvnK,‘: liminf inf 108'0R) 5}, (3.2)

n>w weRe#(” log u(R)
then
Hg-dim, (M) > 6 - Hy-dim, (M).
Proor. We may assume 6 > 0. Set

M,,={weM: pu(R)=p or v(R) < p’ %(R) for any ReZ such that weR}.
Then for any ¢ >0 and we M, there exists N(w, ¢) such that

V(R) < w’~%(R) for any Re 2% with weR
for any n > N(w, ¢). Therefore if we take

p = inf {4 "*(R): e Re AL} > inf {1’ "*(R): we Re AN+ 1} >0
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then we see that we M, .. That is to say, for any ¢ >0,
M, 1M as plO.

Since M,. < M, for any given (p >)p' >0, y >0 and y >0, there exists
{R;}{2, satisfying the following conditions:

Re®, uR)<p',M,, <

8

R, RinM, #0

i=1

and

ﬂé/(Ri) < 7

M8

]

i=1

where
0’ = Hy-dim, (M) + y'.
Therefore we have

5’
o —

PR < 3 R) <

1 i

s

&
R-ME 5 (M) <

13

i 5
By letting p’ | 0, we have .@-M?“(MM) <7v. Therefore Hyg-dim, (M, ,) < e
—¢
Since M, .TM as p |0, by (3) in PrOPOSITION 2.4, we have
H4-dim, (M) + '
o—¢ .

Since ¢ > 0 and 7" > 0 are arbitrary, we have the conclusion. []

H 4-dim, (M) <

By LEmMMA 3.2 and THEOREM 3.3, we have the following main result.

THEOREM 3.4. Suppose that R is a v-NET for a bounded set K = RN.
(a) If M satisfies the condition

log v(R
Mc {weKV: liminf inf 28RS 5}, (3.3)
n—+o weReRY log |R|

then
H-dim (M) > 6 - Hg-dim, (M).
(b) If M satisfies the condition

log v(R) }

. . 1 R .
Mc {weKV: o <liminf inf og V(R) <limsup su <b
n~o  weReZ() Jog |R| n~o " gerey log|R]|

(3.4)
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then
a- Hg-dim, (M) < H-dim (M) < b - Hg-dim, (M).
Especially, if v(M)> 0 then
a < H-dim (M) < b.

Proor. Let p be Ay. Then we can apply THEOREM 3.3 and see
é
Hg-dim;, (M) > N Hg-dim, (M).

Since # is a NET for K,, by LEMMA 3.2 we have (a) in the theorem. By
interchanging v and u in THEOREM 3.3, we have (b) in the same way. The
last part is seen by (2) of Proposition 2.4. []

Readers will find that this Theorem is similar to the result of L. S. Young
(cited in Section 1). The following formulation which is due to Billingsley is
more useful in calculation.

THEOREM 3.5. Suppose that R is a v-NET for K< RN, If # is a
countable family and M satisfies the conditions

Mc {weKV: liminf inf log v(R) =limsup sup log v(R) = 5} 3.4y
n>o  weRe log |R| n>o " gereqyy log |R|
H-dim (KN R) < & - H4-dim, (M) (3.5)

for any Re# with v(R) =0, and

H-dim (K\ |J R)<6-Hgy-dim,(M) (3.6)

Rez (M

for any n> N, then

H-dim (M U(K\K,)) = & - Hy-dim, (M) = H-dim (M).

COROLLARY. Especially, if M = K, satisfies the conditions (3.4), (3.5) and
(3.6), then we have

H-dim (K) = 0 - Hg-dim, (K,).
PRrOOF OF THEOREM 3.5. Since £ is a countable family and the equality

H-dim (.G A) = sup H-dim (4)) 3.7

i=1
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holds, by (3.5) we see that

H-dim(Kn U  R) <6 Hy-dim (M),

ReZ,v(R)=0
and by (3.6) we see that for all n > Ny,
H-dim ((K\ U R)U(KNn (U R))<d-Hy-dim(M).
Rea(M Re,v(R)=0

Since

K\K,= U K\ U RU U (KnR),

I=Ng RezP ReZ,v(R)=0

again by (3.7) we have

H-dim (K \ K,) < H-dim ( G (K\ U RuKn U R))

1=N, Rea® Re,v(R)=0
< 0 - Hp-dim (M).
Together with THEOREM 3.4 (b), we have
H-dim (K \ K,) < 6 - H,-dim (M) = H-dim (M).
This means
H-dim (M U(K\ K,)) = H-dim (M) = - Hy-dim (M). O

An application of THEOREM 3.5 will appear in EXaMPLE 5.2 of Section 5.
LEMMA 3.6. Suppose that ® is a v-NET for K c RN. If M satisfies

M c {weKv: a < liminf inf V(R) <limsup sup T%zlg) < b}, (3.8)

n-ow weReAP |R|® T no0 0 peReam
then
b= 'R-M!(M)< R-H*(M) < a~*@-M}(M).

ProoF. If a =0 then the lefthand side inequality is clear, so we assume
a>0. For p>0, e>0, set

M, ,={weM:(a—¢|R°<v(R)<(b+e)|R]’ or v(R)=p
for any Re# such that weR}.

By (3.8), for any ¢ > 0 and we M, there exists N(w, ¢) > N4 such that
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(a—&) IR’ <v(R) < (b+ )R]

for any n > N(w, ¢) and any Re#{" with weR. Similarly to the proof of

Theorem 3.3, we can see M, . T M as p|0.
Firstly we prove the lefthand side inequality. For any sufficiently small

p” > 0 there exists 0 < p’ < p such that
v(R)<p” if |R|<p'. (3.9)
And for any y > 0 there exists {R;};2, satisfying the conditions:

R;, )“N(RinRj) =0 (i #j),

1

s

Rie'@a IRzI < p,, Mp.s S

13

0

RNM,,#0,0< Y [R|—#-Hy(M,,) <».

i=1

By (3.9) and the definition of M, ., we have
(3.10)

(@—e)IR° <v(R) < (b +¢)IR,[

for any i. Therefore we have the following estimate
#-H (M) = R-H) (M, )= Y, IR —7
i=1

0

>(b+e 'Y v(R)—y

i=1

>(b+e) 'R-M.,. (M,,)— 7.

By letting p”, y |0, we have
(b+e 'R2-M;(M,,) <RH M)

Since #-M7 is an outer measure, #-M3(M, )1 #-Mi(M) as p|O (see

Therefore

P. Halmos [4] p. 47).
b+ e~ *&-M! (M) < #2-H°(M).

Since ¢ > 0 is arbitrary, we have the lefthand side inequality.
Secondly we prove the righthand side inequality. For any 0 < p <p

there exists p” > 0 such that
IRl <p" if v(R)<p”. (3.11)

And for any y > 0 there exists {R,};2, satisfying the conditions:

Rh )“N(RinRj) =0 (i #j),

1

s

Rie®, v(R)<p', M, =

i
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RNM,,#3,0< Y v(R)— #-ML,.(M, ) <.
i=1

1

Therefore together with (3.10)

A-M, (M) 2 B-M, .. (M, ) > 3 v(R) —y

i=1

20 Y IR~

>(a—eR-H (M, ,)— 7.
By letting p’, y | 0, we have
A-H (M, ) <(a—¢e) 'A-M!(M).

Therefore we have the righthand side inequality similarly to the lefthand side
inequality. O

LemMa 3.7. Suppose that # is a v-NET for K, E = K, then we have the
inequalities

V¥(E) < #-M; (E) < Ly ;,cv(RY),

where v¥ means the outer measure which is induced from measure v. Especially,
the condition

V(RiNR) =0 if Ay(R,NR)=0 R, R,e# (3.12)
is satisfied then
V¥(E) = #-M1(E).
ProoF.
V¥(E) < #-M1(E) < #-M! (E)
is clear from definition. Therefore we have only to show that
A-ML(E) < Ly ; cv(RY).

Put ¥ = Urnk,#0,red R then K, < ¥V for any n> N,. That is to say, K,

is covered by the elements of #% for any fixed n> Ng4. By ProOPOSITION
2.2, there exists {R;}7, such that

ReAP,E< U Ry, An(RiNR) =0 (i #)).
i=1

For any fixed we Y/~ R;, the number of R;’s containing w is bounded by
Ly ;.c. Therefore
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R-M(E) < ) v(R) < Ly ;,cv(U R) < Ly 5, cv(RY).
i=1 i=1
The last part is clear from the measurability of #. []
By Lemma 3.1, Lemma 3.6 and Lemma 3.7, we have the following.

THEOREM 3.8. Suppose that R is a v-NET for K = RV,
(@) If M satisfies (3.8) then we have the inequalities

b™'ATP LN v (M) < HX (M) < a™ 'Ly ; ¢ v(RY).
(b) If M satisfies (3.8) and R satisfies condition (3.12) then
b™'ATOLRL cv¢(M) < HY(M) < a™'v¥(M).
COROLLARY. If & is a countable family and there exists 6’ < 6 such that
H-dim (KNR) < §'- Hy-dim, (M), (3.5
for any Re R with v(R) =0, and

H-dim(K\ |J R) <’ - Hg-dim,(M), (3.6
Rez(™

for any n> N, then
b 1ATPLRY cv¥(M) < H (M) = HX (M U(K\K,)) <a 'Ly ; ¢ v(R").
Furthermore, if R satisfies the condition (3.12) then
b™1AT°LyY cv¥*(M) < HY(M) = HX(MU(K\ K,)) < a™'v¥(M).
Especially, if M = K, then
b 1ATOLyY cv¥(K,) < HY(K,) = H*(K) < a”'v*(K,).

4. Strict NET

In this section, we introduce some additional results which hold under
stronger conditions than in Section 3.

DEFINITION 4.1. For a given bounded set K = RY, a family # of bounded
Borel subsets of RY is called an sNET for K (a NET in strict sense) if %
satisfies the following conditions:

(1) If R;, R,e® then R, = R,, R, < R, or RinNR, =@ holds.
(2) There exists a positive constant C such that
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Ay(R)=C-|R|¥  for any Re®.

(3) There exist two constants 4 > 1, N,eZ satisfying the condition: There
exists Re #{" with weR for any n > N, and any wekK.

Similarly to the proof of PROPOSITION 2.2, we can prove PROPOSITION 4.2.

PROPOSITION 4.2. If & is an sNET for K < RY, then it is a NET for
K and there exist a constant A >1 and a sequence {E,(w)eR}>- n, Jor any
weK such that

w€E,(w), E() D E,;(0) and E,(w)eR
and that if w # ' then
E,(w) = E,(0) or E,(0)nE,(w)=0

holds for any n> N, Moreover, for e K and Re Y with weR, E,, ,(w) =
R c E,_,(w) holds for any n > N4z + 1.

DErFINITION 4.3.  Suppose that K = RY is a bounded set, # is a family
of bounded Borel subsets of RY and v is a positive finite Borel measure on
RN without atoms. Then the family £ is calle a v-sNET for K, if # is an
sNET for K,.

Through out this section, {E,(w)eZ};°.; means the same meaning in
PropoOSITION 4.2 for a given NET for K. By PROPOSITION 4.2 and by definition
of K,, if #Z is an sNET for K, then we have

0

K,= N U RNK.

I=Ng ReZ{,v(R)>0

LEMMA 44. Suppose that R is a v-sNET and also a p-sNET for
KcRN If

log v(E
ev(Esi (@) _ | “n
e log v(E,(w))
SJor all weK,nK, then
tim inf 28 EO) _ i 02 YR) _ fimint sup 08YWR) )

i .
o log u(E,(w)) o ecReARlog u(R) "7 wereay log u(R)

PrROOF. By PROPOSITION 4.2, for e K,nK, and Re Z{ with weR
En+1(w) cRc En—l(w)

holds for any n > N, + 1. Therefore we have
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log v(E, -, (@) _ logv(R) _ logv(E, ()
log (E, (@) ~ log u(R) ~ log u(E,- ()
for any Re #{ with weR. Together with (4.1), we have (4.2). [
By using LEMMA 4.4, we can rewrite the results in Section 3.
LEMMA 4.5. Suppose that R is a v-sNET and also a pu-sNET for
K < RN, If # satisfies the condition (4.1) and M satisfies

Mc {weKvnKu: lim inf 28V Enl@) 5},
nee log p(E,(w))

then
Hg-dim, (M) = 6 - Hg-dim, (M)
holds.
It is easy to check that A, satisfies the condition (4.1). Therefore we have

THEOREM 4.6. Suppose that R is a v-sNET for K = RN. If M satisfies
the following condition

Mc {weK‘,: lim infl—w > 5},
n>e log |E,(w)]

4.3)
then
H-dim (M) > 6 - Hg-dim, (M).

COROLLARY. If we change the condition (4.3) for the following condition

Mc {weKV: a < lim inpr < lim su W < b},
n>o log |E,(w)| n>e log|E,(w)l

then
a- Hy-dim, (M) < H-dim (M) < b - Hg-dim, (M).
Especially, if v(M) > 0 then
a < H-dim(M) <b.

THEOREM 4.7. Suppose that R is a v-sNET for K< RN. If & is a
countable family and M satisfies the conditions (3.5), (3.6) (or (3.5), (3.6)) and

M c {weKV: lim M = 5},
" log |E,(w)|



On the Billingsley dimension on RY 137

then
H-dim (MU(K\K,)) = & - H g-dim, (M) = H-dim (M).
THEOREM 4.8. Suppose that R is a v-sNET for K = RN. If M satisfies

Mc {weKV: a < lim infv(E”(w)ﬁ) < limsu v(E,,(w)a) < b},
no |E, (o) nro |E, (o)

(4.4)

then
b_ll“’L;,}LCv*(M) < H’(M) < a”'v¥(M).

COROLLARY. Suppose that # is a v-sNET for K<RN. If # is a
countable family and M satisfies the conditions (3.5), (3.6) and (4.4) then

b™1AT°LyL v¥(M) < H*(M) = H (M U(K\ K,)) < a”"v¥(M).
Especially, if M =K, then
b= Lk ov*(K,) < HY(K,) = HO(K) < a ' v*(K,).

5. Examples

In this section, we will introduce two examples. The first example
K(Py, P,, P3) is not a compact set. In case of (P, P,, P;)=(1/3,1/3,1/3),
we know that the Hausdorff measure is positive and finite by using Theorem
3.8. But in the other case, we don’t know whether the Hausdorff measure
is finite or not. In this example, we will calculate only the Hausdorff
dimension of K (P,, P,, P5).

ExaMPLE 5.1. (Sierpinski Gasket) Let us define contraction maps
¢;: R? — R? i=1,2,3,

1 \/§>

1
<pli(x,y)—+<—x,—y+——

2 72 2
] 1 1 1
(P2~(x>)’)_’<5x_—2',5J’>>
<p3r(x,y)——><lx+l,1y>,
2 2°2

and let X be the regular triangle:

X={(x,y)elRZ:yZO,ys\/gx+3,ys—ﬁx+3}.
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The Sierpinski gasket K is defined by
[il’ iz,""in] =@ 0 Q000 (pi,.(X)a

K = ﬁ U [il’iZ,'"’in]'

n=1 (i1,i2,,in)e{l,2,3}"
We define a surjection map ¢ from {1, 2, 3}N to K by
W = (601, COZ,"')E{I, 2’ 3}N I ﬂ [601, wz""awn]'
Define n=1

Ni(w, n)
n

K(PI,PZ,P3)={(p(w): — P, as n—»oo},

where

Ni(w, n) =*{k: k < n, o, =i} for w=(w,, w,,-,-)e{l, 2, 3}V,

3
Y Pp=1 0<P<l.
Then =t

B Y PlogP

H-dim (K(P,, P,, P;)) = log 2

(5.1)

PrOOF OF (5.1). Let us define
R = {[iy, iz, 0n]s (iy, igy -+ 50)€{1, 2,3}, n=1,2,---}.

It is easy to check that # is a NET for K. Let u be the (P,, P,, P;)-Bernoulli
measure on {1, 2, 3}V, that is to say

u({(o = (,, w2,~-)€{1, 2, 3}N; Wy =iy, Wy =iy, 0, Wy = in}) =P, PP

Then u has no atoms. We can introduced a probability measure v on R?
from the probability measure u by

v(B) = u(¢ " Y(BnK)) for any Borel set B of R2.

Since [iy, iy, ,i,] and [j;,j,, *,jm] have the property that one includes the
other or their intersection consists of at most one point. Therefore we see that

v(Liy, inseesin]) = P, PP,

and that _
v([ila i2""9in]n[jl,jZa""]m]) =0

if their intersection consists of at most one point. Therefore # is a v-NET
for K. Furthermore for any we ¢~ (K (P, P,, P3))
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log v([w,, wy, -, w, > Ny, n)lo P; > Plo P,
gv([o;, v, 1) _ Za"l (@, n) e, LiiPiloeh oo
log [[w;, wy,++, w,]] i=1 Ni(w, n)log 2 log 2

By (5.2), THEOREM 3.4 (b) and v(K(P,, P,, P;)) = 1, we have

3
> P.log P; .
H-dim (K(P,, P,, P3)) = — Z—l—{g— H,-dim, (K (P,, P,, Py))
og
B >  PlogP
log 2

The second example is an application of Theorem 4.7 and Theorem
4.8. In this example, we can calculate Hausdorff dimension of K without
constructing any complete covering of K.

EXAMPLE 5.2. Let us define contraction maps ¢;: R? > R?,i =1, 2, 3, 4,

e (Pe e L2 L)
r 2 2rHE 2 2pH
x 1 y 1 1

L X, > - T s ~ ~ 5l
¢21 (X, ) < 2 2P’ 2 T o

where

o
A
=)
A
VH
o
A
~
&

(5.3)

d-c opdbz >b-d=c 3=bdc >=b-d=¢ ap 3¢ Db a=b3=¢

Bpa

T+t 3¢ e 3t 3c

I IC I FT I I

=3t ST FC T

pe >pge Sp = Py

b=
p=
-t
=

b3 b4 at3e b3
S EEEEEE

= ¢

stdc >bd-c >b3c

e o

3T TEC Sp g apT s

£t 3t3

3+ ot 3¢ 4

A

Figure 2. (r=5, H = 8)

3= 2=t
o=t

ok e 3 dp 3p r 3 tr >+ g dr b ap

3+ e > 3

b3 b2t 3¢ >

i
R
t

3¢ k-3¢ t+c =+
Lot dc >t2cat3c 3]
Dgaaags s

i ¥ }
i} - i i
Figure 1. (r =25, H = .757)

Spgroeysardcarar spar ot ar e arar

e sbae st stastiae st otaasdans

>pgcopgTapaeapas
gt opararac
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Put
1 1 1
X=<(xyeR*:y=2—, ——<x<— U
{( ¥) y > T3 2}
{(x YeR?: x = + —1< <1}
and ) TSV E,
K = the closure of (XU { U ®i, 0 Qi 00 @y (X)),

n=1 (iy,i2,..., in)efl,2,3,4)n
Then we have the following fact.
ProposITION 5.3. If 2 < < 2H*! then

(1+ H)log2
Hlogr

If 28+ < ¥ then H-dim (K) =1 and

o = H-dim (K) = ,  0<H%K)< 0.

HL(K)={OO if 261 <P < 4,
positive finite  if 4 < r¥.
PrROOF. Suppose that 2 < r#. Denote
E* = the closed convex hull of E,
[0] = K*, [0iyiy---iy] = (@, © @y, 0= © @, (K))* (5:5)

and n, and =, be the projections onto x-coordinate and y-coordinate, respec-
tively. Then {[0i i,---i,]} are rectangles. For any (iy, iz,=**,in)s (1sJ2s "> Jm)>
one of

[0iyiy--+i,] S [0j1j2jmls [0j1j2+ jm] S [0iyiy---i,] oOrF
[0iyiy---i, N [0j1jz-jm] =9 (5.6)

holds. And their diameters are evaluated as

1 H 4 1
([0 -++1,])| = (’ * 1>r*", 17,015 ++i,])| = (:,, ks )rnﬂ.

¥

Set

L([0iy --i,])
ltor2, if i,=1lor2

. [nH]+15m5n},
3or4, if i,=3o0r4

= {[Oixiz - inamH]+ 1 ol Jm = {

S([0iyip--i,)=( U Ly*. (5.7)

LeL([0iyi2...in])
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Then {S([0i,i, --i,])} are rectangles such that for any (iy, i, ,i,), (j1sJ2>">
jn), one of
S([0iyiy-+1,1) S S([0j1/2+jml)s S([0j1jz - Jml) S S([0iyi5--+i,]) OF
S([0iyiy--i, NN S([0j1)z+jml) =D (5.8)
holds and that

1 H
|(S(L0y 151, = (’ ! )r‘l"'“, |7, (S([07y 1y -++i,1)| = (:H - 1>r"‘H.

r—1 1
(5.9)
Now we put
‘@ = {S([OIIIZIH:]) (il’ iZ,H"in)e{l’ 27 35 4}“) nh= 17 2’}
Since [0i,i,---i,] is compact and
[0iyiy-i,i]N[0igiy--+i,j1 = O (i #Jj)
and
4
[0iyiy--i] 2 U [Oigiy---inj] for any [0iyiy---iy],
j=1
there exists a probability measure v on R? such that
v([0iyiy---i,])=4"" for any [0iyiy---i,].
We can easily see that # is an sNET for
K,=Kn U S([0iyiy--i,]).
n=1 (i1,iz2,...,in)e{1,2,3,4}"
Since v(S([0i iy-+-i,])) =2~ "*"HD ' we have
log v(S([0i,iy---i, 1+ H)log?2
gvS([0iyiy- i) ) log (5.10)

log |S([0iyiy---i,])] Hlogr

for any (0, iy, iy, *»in,---)€{1,2,3,4}N. If r¥ <2#*! then o > 1. Therefore
together with (5.8), (5.9), # is a v-sNET for K and £ satisfies the condition
(3.6)'. Since v(R)> 0 for any Re#, condition (3.5) holds obviously. Therefore
by using THEOREM 4.7, we have

(1 + H)log2

H-dim (K) = a =
Hlogr

And



142 Satoshi IKEDA

dr*2 = ———— = =
IS([0iy iy i, ]) "

2d2——a2—n(1 +H)rmzH’

where

r+1 \ [rf+1)? r+ 1\ (41
dy = r) + , dy=
VG ) e G5 G

that is to say

df“Sv(S([Oilizmi"]))

[S([07yiy--- i, ])I7

Therefore by using THEOREM 4.8, we have 0 < H¥(K) < oo for 2 < rf <

On the other hand, if 2¥*! <r# then a<1. Since H-dim(K)>1

obviously, (5.10) implies that H-dim (K) = 1. Therefore evaluation of H*(K)
is clear. [

<2d;° for any [0i i,---i,].

2H+1
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