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Abstract

We show that the semi-cyclic matrices attached to some hypergeometric series

over finite fields are orthogonal. This proves Namba's conjecture. We also show

that for certain family of elliptic curves, their trace of the Frobenius map are equal

to special values of hypergeometric series over finite fields.

1. Introduction

Let F denote the finite field with q elements where q = pn and p is an

odd prime. Then F x is a cyclic group of order q — 1 generated by a primitive

element r. Put m = (q — l)/2.

For a function / : F X ->C, we define

C i = f ( r i ) - f ( - r i ) f o r i = 0 , 1, •••, m - 1 .

The semi-cyclic matrix Φ of size m x m attached to / is defined by

Φ =
- C m - 1

-Cm-2

c0

~Cm-l C0

Cm-2

Cm-3

C\ —^2 ^3 **• CQ

In this paper, we shall show that the orthogonality of these matrices are

described by means of the Mellin transform1 of /, which is defined by the

following; for any multiplicative character χ: F x -• C, the Mellin transform

Mf(χ) of / is defined by

Σ
ίeF*

We shall prove

1 This notion is defined in [2]
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THEOREM 1.1. The following conditions are equivalent.

(A) %Φ Φ = αl m , α e C x .

(B) Mf(χ)Mf(χ) = α, for all odd characters χ of F x .

Hypergeometric series over finite fields can provide us many examples

satisfying the above condition (B). For example, we have

THEOREM 1.2. Let φ be an even character of F x , φ Φ ε. Then

satisfies the condition (B).

2. Proof of Theorem 1.1

Throughout this paper, Greek letters χ, φ, η, will denote multiplicative

characters of F x . The trivial character and the quadratic character will be

denoted by ε and φ respectively.

For any odd character χ of F x , we put the vector vχ:

The following lemma may be well known and is easily proved:

LEMMA 2.1. For any odd character χ of F x , vχ is an eigenvector of Φ

with the eigenvalue Mf(χ).

Let S = (χl9 •••, χm) denote the set of all odd characters of F x . If m is

even, then φ φ S and if m is odd, φ e S. Hence we may assume the following:

If m is even, χt = χm+1-i for all i.

If m is odd, χ1 = φ and χ{ = χm+2-i for all i, 2 < i < m.

Let W and Ψ be

W =

ψ =

1

XiM

Mf(Xl)

1

χ2(r)

1

Mf(χ2)

Then the above lemma shows that
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ΦW= WΨ.

The orthogonal relations of characters imply that

45

m

if m is even,

m

m

if m is odd,

and

m

1 Zi(r)

1 Mr)

1 χm(r)

Mr"-1)

Therefore

mM /(χ 1)M /(χm)

if m is even,

mMf(χ2)Mf(χm)
if m is odd

mMf(χm)Mf(χ2)

Hence we get the proof of Theorem 1.1.

3. Hypergeometric series over finite fields

Here we shall prove Theorem 1.2.

The hypergeometric series over finite fields are first extensively studied

by Greene [1] and we use the same notation as in his paper. Here we only

use hypergeometric series of degree 2, which is defined by

Σ B(y)BC(l - y)Ά(l - xy).
¥
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Its Fourier expansion is given by

Let / be a function over F x and its Fourier expansion is given by

Then the Mellin transform of / is given by

Mf(χ) = (q- l ) c ( χ ) .

Since the Fourier expansion of hypergeometric series is already known

as above, its Mellin transform is also known explicitly. As a function f(x)

over F* considered in the previous sections, we take the hypergeometric series

Then we have

\(Cχ

A)\BC

For the later application, we assume that

A = φ , B = φ , C = ε .

where φ is not trivial. Then, in this case, we have

LEMMA 3.1. For any χ such that χφψ, φ9 ε, we have

Mf(χ)Mf(χ) = 1 .

PROOF. Using the formula (2.15) in Greene [1], we can see

under the above condition on χ, and the result follows. •

Similarly, we can prove following two lemmas.

LEMMA 3.2. Assume that ψ φ φ. Then

Mf(ψ)Mf(φ) = -.
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LEMMA 3.3. Assume that φ = φ. Then

Mf(φ) = -.

Lemma 3.1 leads to the proof of Theorem 1.2 as follows; assume that

φ is an even character. Then the set S of all odd characters of F x does

not contain φ and φ, so all χ e S satisfy the assumption in Lemma 3.1. Hence

the condition (B) is proved to be true.

Lemma 3.2 and 3.3 are used to show that semi-cyclic matrices are not

really orthogonal in some cases which are treated in later sections.

As interesting examples, we give four cases in which Φ has rational

coefficients. We denote by ώ a generator of the character group of F x .

Case 1. q = 1 (mod 4) and φ = φ = ώ(q~1)/2.

Case 2. q = 1 (mod 3) and φ = ώ (*"1 ) / 3.

Case 3. q=\ (mod 8) and φ = ώiq~1)/4.

Case 4. q = 1 (mod 12) and φ = wiq~1)/6.

It is clear that the congruence conditions for q imply that φ are even

in all the above cases, so we can apply Theorem 1.2.

/φ, φ \
PROPOSITION 3.1. In the above cases, qm2^i\ \ x) a r e rational

integers for all x e F x .

PROOF. Let σ e Gal(Q/Q). Then it is clear that

In the above cases, the set {φ,φ} coincides with {φσ,φσ} for all

σ e Gal(Q/Q). Using Theorem 3.20 in [1], we see that

Hence, combining these two identities, these values are proved to be

rational. From the definition, it is easily seen that the values in the proposi-

tion are algebraic integers, so the rationality implies that these values are

rational integers. •

REMARK 3.1. Let φ be a non trivial even character. Let φh 1 < i < n

be all the conjugate characters of φ. Then the same argument as above shows

that
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(Ψl, Ϋ2, ' " > Ψn
nΓn-l\

\ ε,

satisfies the condition (B).

4. Elliptic curves

The origin of semi-cyclic orthogonal matrices is in Namba [6]. His
interest comes from the study of elliptic curves over the finite fields F p with
p elements. To compute the number of rational points of certain elliptic
curves, he used the fact that the trace of the Frobenius map of this elliptic
curve is congruent mod p to the special value of Legendre polynomials which
is related to hypergeometric series. Thus he computed many examples and
obtained serveral conjectures on semi-cyclic matrices, one of which is relevant
to our Theorem 1.2.

We shall explain his conjecture and its relation to our theorem.
For any λ e Fp, λ ̂ 0, 1, we consider the elliptic curves Eλ of the form:

Then the number of Fp-rational points of Eλ which is denoted by Nλ is
given by

Nλ=l + Σ {1 + Φ(t(t - l)(t - λ))}
te¥p

= l + p + Σ φ(t)φ(t - i)φ(t - λ)
tεFp

Therefore the trace ap(λ) of the Frobenius map is

ap(λ) =l+p-Nλ

(*9 Φ \λ).

Defining ap(l) so that the above equality holds for λ = 1 too, Namba
considered ap(λ) as a function on F* and computed the semi-cyclic matrix
attached to this function. He conjectured that this matrix satisfies the condi-
tion (A) if p = 1 (mod 4).

Since the above equality shows that the semi-cyclic matrix in Case 1 is
constant times of Namba's one, so his conjecture is proved to be true by
Theorem 1.2.

When p = 3 (mod 4), Namba found that the semi-cyclic matrix does not
satisfy the condition (A). From our point of view, this is so because φ is odd.
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PROPOSITION 4.1. The notation being the same as in the previous section,
we consider the following case that q = 3 (mod 4) and φ = φ. Then the semi-
cyclic matrix Φ satisfies the following:

where Ω is the matrix of size m x m whose (ίj) component is φ{ri+j).

PROOF. The argument is similar to the proof of Theorem 1.2. Only the

difference is that φ belongs to S and Mf(φ)Mf(φ) = -^ by Lemma 3.3. •

In [6], he also considered another family of elliptic curves E\\

E\:y2 = x3 + x2- — ,

λe¥p9 2 / 0 , 1.
Like the above case, he considered the trace ap(l9 λ) of the Frobenius

map of E\ as a function on Fp

x and computed semi-cyclic matrices attached
to this function and got similar conjectures. To prove his conjectures, we
shall show that ap(l, λ) is written by hypergeometric series in Case 4 in the
next sections.

5. Estimate of values of hypergeometric series

For any λ e F, λ φ 0, 1, we consider the elliptic curve Eλ over F

Eλ:y
2 = x(x-l)(x-λ)

Let aq(λ) denote the trace of gth-Frobenius map of Eλ. Then, by the
same argument as in the previous section, we get

aq(λ)=-qφ(-l) 2F1(
Φ'

The well-known estimate of the number of F-rational points of Eλ implies

\aq(λ)\ <

Hence we get

This estimate holds for λ = 1 too.
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PROPOSITION 5.1. Let φ be any character in the four cases in the section

3. Then we have the following estimate:

| [ ^ 1,2,
x)\zUy/q in Case 3,

n \ in Case 4

for all x in F \

REMARK 5.1. The above estimate is temporary. If hyper geometric series

are defined over the finite field ¥p, the precise one will be given in Corollary

6.1.

PROOF. Concerning to Case 1, we already prove this estimate by using

Hasse's inequality for elliptic curves over finite fields.

For Case 2, we consider the following curve

y* = χ(χ - \)(χ - λ)2 .

Then the number N of F-rational points of this affine curve is given by

* \ λj,

by using Proposition 3.1. Applying Theorem 6.57. in [4], we obtain the

following estimate

Hence we get the proof for this case.

For Case 3, we consider the curve

y4" = x(x —

Then the number N of F-rational points of this affine curve is given by

N = q + 2qφ(-l) 2Fί(
Ψ' ^ \ λ^j + qφ{- 1) 2FX ^ * \ λj 9

by using Proposition 3.1. too.

The estimate of the last term of the above equality is already known.

Then applying Theorem 6.57 in [4], we obtain the proof for this case.

The proof for Case 4 being similar to the above, we omit it. •

REMARK 5.2. The congruence conditions in these cases which assure that

φ are even are not needed for the above result.
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6. Elliptic curves again

In this section, all objects are defined over the finite field Fp. Let p = 1
p-\

6
that λ φ 0, 1, we consider the elliptic curve E{:

(mod 3) and put / = —-— and assume that p > 101. For any λe¥p such

E\:y2 = x3 + x 2 - - .

Let ap(l, λ) denote the trace of the Frobenius map of this elliptic curve.
We define the polynomial Hp(X) e Z[Jf] as follows:

and put

Hp(X) = Hp{X) (mod p).

In [5], it is shown that

ap(l 4)(mod p) = Hp(λ).

As in [3], we may consider the values of hypergeometric series p-adically.
We denote by ω the Teichmuller character of ¥p. Put φ = ωip~1)/β.

By using the same argument as in the proof of Proposition 1 in [3],
we can prove

' \ I ΛJ (mod p) = Hp(λ)

Hence we get

ap(l,λ)= -p^F.Γ' ^ I λj (mod p)

The estimate of these two rational integers are known by Proposition
5.1 and by the Hasse's inequality, so they are equal since p > 101.

THEOREM 6.1. The notation being as above, we assume that p > 101. Then
we have

ap(lλ)=-p'2Fί^ ^

We can prove the following theorem by using the similar argument as
above.
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THEOREM 6.2. Let p = 1 (mod 4) and put η = ω ( p " 1 ) / 4 . For any λe¥p

such that λ φ 0, 1, consider the elliptic curve'.

E\ : y2 = x3 + x2 + jX .

Then its trace of the Frobenius map is equal to

As a corollary of these theorems, we get a more precise estimate of

hypergeometric series than in Proposition 5.1.

COROLLARY 6.1. The notation and assumptions are the same as above.

Let ψ be any character in the four cases given in the section 3. Assume that

p is greater than 100. Then we have the following estimate:

I x) < 2y/p for all x in Fp

x .
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