HIROSHIMA MATH. J.
25 (1995), 357-366

On the irreducible components of the solutions
of Matsuo’s differential equations

Dedicated to Professor Kiyosato Okamoto on his sixtieth birthday

Atsutaka KowATA and Ryoko WaADA
(Received January 11, 1994)

0. Introduction

Studying the Knizhnik-Zamolodchikov equation in conformal field theory,
Matsuo found a new system of differential equations of first order for a
function taking values in the group algebra C[W] of the Weyl group W
associated with an arbitrary root system in [4]. His system is equivalent to
the system of the differential equations given by Heckman and Opdam which
is a deformation of the system satisfied by the zonal spherical function of the
Riemannian symmetric space G/K of non compact type ([4] Theorem 5.4.1).

Let @ be a solution of Matsuo’s equations (see (1.1)). W denotes the
set of the equivalence classes of the irreducible representations of W. For
deW let E; be a representation space of 0 and n;=dim E;. Then

ns

C[W]= ) C[W]s; where C[W];= @ E;; and E,; is equivalent to E,
seW i=1

(1 <i<mns). Let d, be the trivial representation and @, be the C[W]; -

component of @. The Correspondence @ — @; gives the equivalence of the
above two systems.

For 6 W We consider the other C[W]s-components @; of &. In this
paper we obtain a system of differential equations satisfied by @;.

1. Preliminaries

Let E be an n-Euclidean space with the inner product (, ) and E* be
the dual space of E. For aeE with o #0 put ¥ = 2(a, @) 'a and denote
5,(A) =4 —(4, «")a for the orthogonal reflection in the hyperplane perpendicular
to o (AeE). Let Z < E be a root system with rank (X)=dimE =n. Fix
a system of positive roots X in Z. Furthermore we put £, = {aeX; a¢2X}
and Z; =Z,nZ*. Let W be the Weyl group and C[W] be the group algebra
of W. Puta=E* bh=E*@iE*. The inner product in E and the reflections
can be extended to b* naturally. We identify h* with b via the inner product

()
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Auy= (A u)  (Leb*, ueb).
We define the endomorphisms o, and ¢, of C[W] as follows:
o,(w) = s,w
and

) {w ifwlaeXt,
g, (w) =
* —w otherwise,

where weW, aeX. Furthermore for any Aeb* and ¢&ebh we define
e:(4)e End (C[W]) by

ex(A) (w) = (Wi, OHw.
Consider the following system of differential equations for a C[W]-valued

function @ on b:

(1.1) 0:D(u)

={ 2 /(& O™ + D(e*™ — 1) (0, — 1) + 0,8,)

aeZt

+ e (M} Pw);  Ceb,
(ueb),

where k, are given complex numbers such that k,,, = k, for all xeZ and we W
(see Matsuo [4]).

W denotes the set of the equivalence classes of the irreducible
representations of W and v denotes the left regular representation of W. For
deW let E; be a representation space of & and n; = dim E;. Then it is well
known that C[W] = Y C[W];, where C[W];=E; , ®-- @ E;,, and E;; is

65W
equivalent to E; (i=1,2,---,n;). Since E;; is an irreducible left ideal of

C[W], there is some irreducible idempotent &;,;€ C[W] such that
(12) Eé,i = C[W:Iﬁé,i (l = 1’ 2,"',”5)-

1s denotes the character of 6. We put

(1.3) Py=ns| W71 3 25w v(w).
weW

Then P; is the projection of C[W] onto C[W];. We set

(14 Ce= Y (k/2)(x, &)o,e, + e(d).

ael
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We have v(w)C,v(w) ™' = C,,; for any we W. Note that ) Cf commutes with
teW

the left regular representation of W for any natural number d. Let # be the
algebra of functions on {uel, e*® #1 for any aeXj} generated by
{1 —e*™)~1; xeX*}. A(H) denotes the set of all differential operators on
with constant coefficients. If P belongs to 2 ® A(h), P is expressed as

(1.5) P=Y e*a(P",

neQ +

where P* is some element of the symmetric algebra of h and Q, = { ) n,a;

aezt

n,=0,1,2,---}. We denote by C[h*] the polynomial algebra on h*. For
P= Y ed(P")e#® U(h) the Harish-Chandra homomorphism r: Z ® A(H)

ueQ+
— C[h*] is the algebra homomorphism defined by
(1.6) r(P)(4) = P4 + p),
where p= Y (k,/2)a, Aeb*. For T® PeEnd(C[W],) ®(ZQ U®D)) we
define %
(L.7) rs(T® P)(A) =r(P)()T.

We define the differential operator D§.e End (C[W],) ® (2 @ U(b)) for SeW,
¢ebh and a nonnegative integer d inductively by

(18) D =(1,® D"

= 2 (/2 (2, O (e + 1)(e* — D{(vs(s) ® D DELP — DY VY,

aeZ*

19 D=1,

where 1, is the identity mapping on C[W]; and v; = v|cpw,. We set

(1.10) DY =Y D

teW

2. The differential equations for the irreducible components
Our main theorem in this paper is the following

THEOREM 2.1. Suppose that @ is a C[W]-valued function and satisfies
(1.1). Then ®; = P;o & satisfies the following formulas:



360 Atsutaka KowaTA and Ryoko Wapa

(PAY DY@, = (Y. Cy®,  (@=0,1,2).

teW

In particular ) C7 is a scalar operator on C[W]; and we have

teW
22) D@ &, = rs(DE) (1) B,
(2.3) rs(D2) (1)
=Y ALt —n; 'Y Y (kky/4) (@ tE) (B, tE)1s(5,5p)-
teW teW a,feX

We need the following lemmas to prove Theorem 2.1.
LemmA 2.2 ([4] Lemma 4.1.1). If &(u) is a solution of (1.1), we have
(24) DY @, = P;(Ci).

PrOOF. We obtain (2.4) in the same way as [4] Lemma 4.1.1.

Lemma 23. Let AeEnd (C[W]). If A commutes with the left regular
representation of W and A(1) belongs to the center of C[W], then A is a
scalar operator on C[W].

Proor. From the conditions on A
(2.5) A(x) = xA(1) = A(1)x
for any xeC[W]. Alg,, is the endomorphism on E;; from (2.5) and

commutes with the left regular representation on W. So A is a scalar operator
on E;; by Schur’s lemma. There exists f; ;e C[W] such that

(2.6) &.ifij€.j# 0

because ¢;; and ¢;; are equivalent (i, j =1, 2,---,n;). If Alg,, =4;-1 (4,€C,
i=1,2,---,n5), we have

2.7) Aes i = Aigs ;s

(2.8) Agé‘j = AA,jSé‘j.

Then we have

(2.9) A(gé,i)fi,jeé,j = lied,ifi,j Es,j»

(2.10) Sa,ifi,jA(So,j) = }“jsé,ifi,jaé,j‘

(2.5) gives
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(2.11) A(sé,i)fi,jsé,j = EJ,iA(l)fi,jga,j
= &,:f,;€,;4(1) = Sa,ifi,jA(Ea,j)

and we obtain 4; = 4; from (2.9)-(2.11). Hence we can see that A is a scalar
operator on C[W];. g.e.d.

LEMMA 24. ) Cj(1) belongs to the center of C[W].

teW

ProOF. By the definition of C? we get

2.12) Y Ci()= Y (4, 18?1
& i
— % kAG 06, 105
we set
(2.13) Co = IGZVZV a,gzg (kakg/4) (2, t8) (B, t8)s458p,
(2.14) Ci=3 2 (kke/H (o OB, td)s,sp

teW aeX+\Zg ,peLd

+Y Y (kkg/H) (@, tE) (B, 1E)s, S,

teW aeXd ,pel+\Zd

(2.15) Cr=3) ) (kke/4) (e tO)(B, t8)s,sp.

1eW a,PeE *\Ig
Suppose yeXy and 2y¢X*. Then we see
(2.16) 5, \Zg) =Z"\Zg,
(2.17) 5,(Zg) =g \{yHUu{-7}.

. -1 _
Since s,s,5, " = 5, (x€X), we get

(2.18) s,Cys; !

=) Y (kkg/A) (@ tE) (B, t8)Ss, 0S5y

teW aeX*\Ld,peld

+ 3 Y (kkg/ (e, t8) (B, t8)S,, S5, )

teW aeld ,peX*\I¢

If we replace s,(«) and s,(f) with a and B, (2.15)—(2.17) imply
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(2.19) 5,Ci8;1 =Y Y (kokg/4) (0, tE) (B, t&)s,5p

teW acLt \Zg
Beg \(¥hu{-7}

+ z z (kakﬂ/4) (d, té)(ﬂ, tf)sasﬂ'
teW ae(Zg \(yHuf— 7
BeX*\Zg
(2.19) gives
(2.20) 5,Cys7t = C,

==2Y Y (kke/D OB, tE)s,s,

teW BeX+\Xg

—2Y Y (kk, /) (0 tE)(, tE)s,s,.

teW aeX+\Xd

If we put « = s5,(B), we have s,55 = s,5,, k, = ks, = ks and the second term
of the right hand side of (2.20) is

(2.21) Y2 (kky /9o tE) () t)s,s,

teW aeX*\Xd

=Y % (kB 1O (— 1. 15,5

teW BeX+\Xg

(2.20) and (2.21) imply s,C,s; ' =C,. we can see that s,Cos, ' = C, and
5,Czs, ! = C, similarly.
Next suppose yeXg and 2yeX*. In this case we have

(2.22) 5,7\ Zg U{2y}) = Z5 U {2y},
(2.23) 5,(29) = — 2.

By using (2.22) and (2.23) we can prove s,Cys; ' = C, similarly. Hence C,
belongs to the center of C[W]. In the same way we can see that C, and
C, belongs to the center of C[W] and this proves the lemma. q.e.d.

LEMMA 2.5 (cf. [4] Lemma 4.1.2). For any xe C[W]; we have
(2.24) rs(D$) (A)x = Ci(1)x.

Proor. When d =0, (2.24) is valid. We assume that (2.24) holds for
d — 1. By using v(s,)Ci;1(1) = C¢~'(s,) we have

(225 rs(DP)A)x =rs((1;® 6,) DYV

= ¥ (/D (e + D+ D(e* — DTH{(v(s) @ DDELRP — DY VD (Ax

ael*
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= (4, OrsDE Y W)x + ¥ (ka/2) (@, E)v(s)rs(DS.e) (A)x

aeXt

=4 OCIT I Mx+ Y (ke/2) (@ tE)v(s)Cig ' (1)x

aeX*

= {4 OCE M+ ¥ (k/D (@ E)CE H(s)}x

ael*
= C{ 1 (C:(1))x.
Therefore we get (2.25). g.e.d.

PrROOF OF THEOREM 2.1. Suppose that &(u) is a solution of (1.1). Since

Y. CZ is a linear mapping and commutes with v(w) for any we W, we have
teW

(2.26) Ps(Y, CH =() CHP;

teW teW

from (1.3). (2.1) follows from (2.4) and (2.26). By Lemmas 2.3 and 2.4 we see
that ) C3Z is a scalar operator on C[W];. Since ) CZ(1) belongs to the

teW teW
center of C[W] we get (2.2) from (2.1) and (2.25). We obtain (2.3) by
calculations. g.e.d.

REMARK. Let §, and é, be the trivial representation and the alternative
representation, respectively. Since C[W],, and C[W];, are 1-dimensional
spaces, DY, and DY, belong to Z® A(). If @ is a solution of (1.1), the
following formulas are valid for d =0, 1, 2,---:

2.27) DY, ®;, = r(DD ) (D) D,
(2.28) DY) b, = r(DP ) (D) P,

(2.27) is proved in Matsuo [4]. Since ) Ci:(1) belongs to the center of
teW
C[W],, we have (2.28) by (2.24).

3. An example of type A,

In this section let X be the A; type root ststem. We put a = {(t,, t,, t3)e
R t, +t,+t3;=0}and h=a +ia. For h=(hy, h,, hy)el) we define a;eT*
(i=1,2,3) as follows:
ay(h) = hy — hy,
(3.1 oy(h) = hy — hs,
a3(h) = oy (h) + oy (h).



364 Atsutaka KowaTa and Ryoko Wapa

Let s; be the reflection along a;. We set

go =145, + 5, + 85 + 5,8 +5,5,8,)/6,
e =145, — 5,5 —5;5,5,)/3,

(32) 1 ( 1 291 192 1)/
&= (1 —5; —5;5, +5:5,5)/3,

e3=(1—5;, — S, +5;5, + 5,5 — 5:5,5,)/6.
€9, €1, €2, and ¢ are irreducible idempotent elements of C[W]; and

3
C[W]= @ C[W]e; is the irreducible decomposition of C[W]. v acts
i=0
trivially on C[W]e, and alternatively on C[W]e;. C[W]e; and C[W]e,
are equivalent. Furthermore we have

itae
&
I

(3.3
g€g;=0;;6 (1,j=0,1,2,3).
If we put
(34) Px=x¢g (i=0,1,2 3, xeC[W]),

then P; is the projection onto C[W]e;.
For ) aw)w and ) bw)weC[W] we define

weW weW
(3.5 ( ZW a(w)w, ZW b(w)w) = ZW a(w)b(w),

(a(w), b(w)eC). (, ) is a non-degenerate bilinear form and for any we W and
u, ve C[W] we have

(3.6) (wo, u) = (v, w™lu).

If T is a linear mapping on C[W] and satisfies the formula (Tx, y) = (x, Ty)
(resp. (Tx, y) = (x, — Ty)), we call T is symmetric (resp. anti symmetric) with
respect to the bilinear form ( , ).

We put v; = v|¢mwy, and

(3.7) D =(1®2a)D¢ Y
= X (/D O + Die” = D{(ls) ® DD — D1},

aeX*

(3.8) DO =1®1,



The irreducible components of the solutions of Matsuo’s equations 365

(39) D=3 D

teW

For T® PeEnd (C[W]e) ® (# ® U(h)) we define r,(T® P) in the same way
as (1.7).
We shall prove the following theorem in this section.

THeOREM 3.1. If & is a solution of (1.1), we have
(39) D@ =r(Di)(HD;  (@d=0,1,2,-),
where we put @, = P,®.

We need the following lemma to prove Theorem 3.1.

LEmmA 32. ) Cf (1) belongs to the center of C[W] (d =0, 1, 2,--).

teW

ProoF. Since o,¢, is anti symmetric and e,(4) is symmetric with respect
to the bilinear form ( , ), ), Cf: is expressed as follows:
teW

(310) Z C;ié = A{,d + B‘:,d,

teW

where A, ,; is symmetric and B, ,; is anti symmetric with respect to the bilinear
form (, ) and A, ,4(1) is a linear combination of even products of reflections
and B, ,(1) is a linear combination of odd products of reflections. For any
weW we see that v(w)A.,v(w)™' is symmetric and v(w)B,,v(w)~' is anti
symmetric by (3.6). Therefore v(w)A, ,v(w) ™' = 4, and v(w)B; 4;v(w)"! = B, 4

because v(w)( ), Ch)v(w)™! = Y C for any weW. Then we have for any

eWw teW teW
w
(3.11) (Ag,a(1), w— w =0

because (4 4(w), 1) = (WA, 4(1), 1) = (A o(1), w™') and (4, 4(w), 1) = (W, 4 4(1))
= (Ag4(1), w). Similarly we have for any we W

(3.12) (Bea(l), w +w™1) = 0.

Since {1, 5y, 55, 515251, 5155 + 5,51, 815, — 5,5,} is a basis of C[W], A4, ,(1)
and B; (1) are expressed as follows:

(3.13) Aga(l) =ao- 1+ a;s; + ays, + azs;s,s,
+ a4(sy5; + 528),

(3.14) B.:,d(l) = as(s;5; — 5;5y),
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where a,,---,as€C. Hence we get B ;,(1) =0 and A, 4(1) = ag - 1 + a4(s;s, +
s,5;). This shows that ). C{k(1) belongs to the center of C[W]. g.e.d.

teW

ProOOF OF THEOREM 3.1. In the same way as Lemma 2.2 and Lemma
2.5 we have for i=0,1,2,3

(3.15) DY, =Y Cia,
teW
(3.16) r(D%) (A)x = Ci(1)x ("xeC[W]e).
From (3.15), (3.16) and Lemma 3.2 we can prove (3.9) in the same way as the
proof of Theorem 2.1. g.e.d.
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