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Introduction

In this paper, we shall discuss the existence and then the uniqueness of
the solution to the Cauchy problem for the porous medium equation with
"convection" terms:

(1) (d/dt)u = Aφ(u) + Σf= ι*»

(2) ιι(0, x) = fi0(x),

Here, (•)*, = B/dxt (i = l, ,N) and J = X= 1(a/δx ί)
2, and φ and F,(i=l,- 9N)

are assumed to satisfy the conditions below:

(Cl) The function φ is strictly increasing, locally Lipschitz continuous on R1

and satisfies φ(0) = 0;
(C2) The functions Fi9 i = 1, ••-,#, are defined on J?1,Fί(0) = 0, and

|F, (r) — Ft(s)\/\φ(r) — φ(s)\ are bounded for r, s in every bounded
subinterval of Jϊ1.

First, we shall provide a direct method for solving the problem (l)-(2) via
the method of difference approximation:

= Σf-i k~2(Ti(V ~ 21 + 7J(- k))φ(u(t, x))

+ Σf=ι(2fc)"1(7; (fe) - Tt(- k))Ft(u(t,

Ti(k)u(x) = u(x + keh et = (0,-,0, I 0,-,0),

We shall explain in Section 1 that this scheme itself converges as Λ, fe 1 0 and
the limits give rise to a semigroup (5(ί) : ί ̂  0} of contractions on
Lί(RN)f]L(X)(RN) associated with the problem (l)-(2).

We have once tried an approach similar to that described in the above,
to a simpler equation without "convection" terms:
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(l)o (d/dt)u = Aφ(u), xeRN, t > 0

(see [8, 9]) to obtain a semigroup {S0(ί): t ^ 0} associated with the problem
(l)0-(2). We have then found that the function u(t, x) = S0(ί)w0(x) satisfies
the equality:

(3)0 u(t, )-u0 = A\ φ(u(r, ))dr, t > 0
Jo

in L1^^) (see [9, Lemma 3.3]). With the aid of this property we constructed
Trotter's products of semigroups generated by such operators as Aφ in Ll(RN)
which is not reflexive. In our approach to the problem (l)-(2) of this paper,
there is difficulty caused by the presence of the "convection" terms. We are
indeed forced to deal with the Laplacian Δ in some distribution sense. But
we can show that the function w(f, x) = 5(ί)w0(x), constructed by means of
the above semigroup associated with the problem (l)-(2), satisfies an equality
of analogous type:

f<
= ΣΓ= i (S/3xύ {φ(u(r, ))„ + f>(r, ))}dr, t > 0

Jo

in 2'(RN) together with the smoothness φ(u)x.eL2((Q, t) x RN) (i=l, ,N) (see
LEMMA 6).

Secondly, we shall use (3) as an equation to give a weak formulation of
the Cauchy problem (l)-(2) which admits a unique solution in a certain
sense. In Section 2, we show that w(ί, x) = S(ί)w0(x) is a unique solution of
(3) under appropriate additional conditions, and moreover that it becomes a
solution of (l)-(2) in '̂((0, oo) x RN) (see LEMMA 7). Our method uses the
inequality for pairs of solutions u and v of (3):

Γf
Jo JR

e-«(u-v)(φ(u)-φ(v))dxdt

' Σf= i ί T ί
Jo JR

£ (2ε)
RN

where ε > 0 is arbitrary. This inequality together with the conditions (Cl)
and (C2) implies

Γ f
Jo JR» " V ΨU
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From this the uniqueness of solution of (3) follows. In the case that
"convection" terms are not contained in (3), this inequality always holds, and
therefore the solution u(t, x) of (3)0 with φ(u)x.€L2((Q, t) x RN), i = 1, ,N,
among others, coincides with S0(t)u0(x) under condition (Cl). It is of interest
to compare this fact with the very general uniqueness theorem due to Brezis
and Crandall [2, Theorem 1].

As is well-known, the Cauchy problem (l)-(2) arises in many physical
and biological contexts (see e.g. [5] and its references). Our conditions (Cl)
and (C2) appear to be somewhat strong, but the method is simple and
elementary. The present author desires that this research will contribute not
only to the mathematical study but also to the numerical analysis for the
problem (l)-(2). It should be noted that if φ does not degenerate, condition
(C2) always holds true for locally Lipschitz continuous functions Fh

i = l , ,N on R1 with Ff(0) = 0.
Our method used for the problem (l)-(2) is applicable to the Cauchy

problem for the equation containing "convection" and "absorption":

(d/dt)u = Δφ(u) + ΣΓ-i *Ί(4c, - ΉM)> *e*"> ί > °>

where ψ is a nondecreasing function. It is indeed an easy exercise to construct
the associated semigroup in a similar way. But, it seems to be difficult to
discuss analogously the uniqueness for the Cauchy problem unless some
additional assumptions are made. We shall describe only the outline at the
end of this paper (see REMARKS 1 and 2).

1. Construction of the associated semigroup

In this section we shall give a method for construction of the solution u
of the problem (l)-(2) by the formula:

tι(ί, ) = limhi0Cj^]M0 in L*(RN).

Here, CΛ>m is an operator in L1^^) suggested by the above difference scheme
and defined for each fixed m > 0 by

h~l(Ch,m ~ I)u = Σ?=1 fe-2(η(fe) -21 + Tt(- k))φ(u)
1(^(fe) - Tt(- k))F£(ιι)

under the condition:

(D) h>0 and (2NMmh)i/2 ^ k ̂  2/N

where
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Mm = supr>se/m (φ(r) - φ(s))/(r - s);

Nm = max^igjv supr,se/m \Ft(r) - Fi(s)\/\φ(r) - φ(s)\;

Im = [-m, m].

The most important step of this section is to show the convergence in L1 (RN) of

(I-λh-^C^-I))-1^ λ>0 as /ι|0.

Let us discuss the properties of CΛ > m:

Ch,mu = ιι - 2Nhk-2φ(u) + «Γ2Σ?,
(4)

+ **-2Σ?-ι Γ,(

as an operator on the set Lm of all wel^ΠL0 0 such that \\u\\ ̂  ^m, where
L" denotes the real Banach space (LP(RN), \\ ||p) (p = 1, 2 or oo).

The following is our key lemma.

LEMMA 1. Under the conditions (Cl) and (C2) with (D) fλe functions:

r->φ(r)±(k/2)F,(r) (i = l,-,N)

are nondecreasing on Im, and satisfy, for r, selm,

\r-s\ = \r- 2Nhk~2φ(r) - s + 2Nhk~2φ(s)\

+ /»fc-2ΣΓ=ι \<P(r) + (*/2)F,{r) - φ(s) - (fe/2)Ft(s)|

+ Λfe- 2 Σf = 1 I^W - (*/2)F,(r) - φ(s) + (fc/ΣJF^s)!.

PROOF. If r ̂  s with r, selm, then

r - 2Nhk~2φ(r) - s + 2Nhk~2φ(s) ^ (1 - 2NMmhk~2)(r - s);

φ(r) ± (fc/2)F,(r) - φ(s) =F (*/2)F,(s)

(i = 1, - , N).

Thus, we obtain the former, and hence the latter. Q.E.D.

In the following we always assume (Cl) and (C2).

LEMMA 2. Ch = Ch<m maps Lm into itself and satisfies, for u, veLm,

( i ) I I C ^ - C u P l l ^ H t t - i l l ! ;

(ii) | |C A M|| p :g | |w| | p (p = 1, oo);

(iii) (Chu\ = Chuy for yeRN where uγ(x) = u(x + y);
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(iv) sgfί(u) h-1(Cll-I)uf(x)dxί
JR*

for /eL°o with f(x) Z 0 and fxt, /,(X|eL" (i = l. .ΛΓ);

(v) f {Λ-1(CA-/)u/+Σf=1£>ί(fc)<?.(u)Z)ί(fe)/
JRN

+ Σf=ι Ft(u)2-1(Dt(k) + A(- *))/} dx = 0

/or /eL2nL°°, wΛm? D,(Jk) = (Γ^k) - ί)/k (i = 1, ,JV).

PROOF. Using LEMMA 1, we obtain (i) and (ii):

l|C»u - C u P l l i g f {|« - 2Nhk~2φ(u) - v
JR«

+ hk~2Σ =1 \<P(u) + (*/2)F

^u) - φ(υ) + (fc/2)F,(»)|} dx;

The proof of (iii) and (v) is easy and may be omitted. It remains to prove
(iv). Noting the expression of h~^(Ch — /) with (4), we find

λ-^C*-/)!!^ -2Nk-2\φ(u)\

+ fe~2Σf=ι T,(- k)\φ(u) - (k/2)F,(u)\.

Multiplication by /(x) and integration over RN gives

ί sgn («) h ~ 1 (Ch - I)uf(x) dxϊ-f I φ(u)\ 2Nk~2f(x) dx
JR" JR*>

+ ί Σ^l\
(P(^JR"

+ ί ΣΓ= 1 1 *»(«)
J«"

Here, again using LEMMA 1, we obtain the inequality:
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ί spι(u) h-l(Ck-I)uf(x)dx
RN

(- k))f(x)dx^ f W")lΣf=ιfc~ W) - 2/
JRN

- f sgn (ιι) - ΣΓ=ι WCfcΓW) - 7J(- k))f(x)dx9
JRN

R

implying (iv). Q.E.D.

REMARK. The last inequality in the above proof suggests that the
inequality of Kato-type:

^ A \φ(u)\ + Σf=ι (sgn (11) (̂11)),, in D'(RN)

holds true which is essential for our approach.

Using LEMMA 2, (i) and (ii), we obtain that for every ueLm there exists
a unique fixed point Jh

λu in Lm of the mapping:

v-+h(λ + h)~^u + λ(λ + h)~lChv

for each fixed λ > 0, which implies Jh

λ = (I - λh~l(Ch -I))'1-

LEMMA 3. Jh

λ maps Lm into itself and satisfies, for u, veLm,

(i) || J$κ 11,^11 n i l , (p=l, oo);

(ii) || Jh

λu — Jh

λvHi ^ ||u — v||x

(iii) || J*M — (JjiOj, || j ^ || u — uy \\ 1 for yeR";

! h <! -1

I I

for p > 1, wλere Cm w α positive constant independent of ft, λ and p\

(v) ί
JR»

(vi) 2 I H(Jh

λu)dx + ^Σf=ι ll^ίWφί^*11)!!!
)Λ^
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RN

where H(r) = φ(s)ds for re/? 1.
Jo

PROOF. The statements (i)-(iii) immediately follow from LEMMA 2,
(i)-(iii).

Let us prove (iv). Replacing u in LEMMA 2, (iv) by Jh

λu, we have

ί \Jh

λu\f(x)dx^ I \u\f(x)dx
JRN JRN

+ λ |MJ2")llι M/IL + ΛΣΓ-i U ̂ ί") 111 IIAJL-

Here, let us choose a function geC2(R1) with values in [0, 1] which equals 0
on (-00, 0) and 1 on (1, oo), and set /(x) = g(\x\/ρ - 1) for p > 0. Then,
we have for xeRN

lμ/(x)| g p-2 H a l l o o + (N - l)p-2

and therefore

ί \Jh

λu\dx^! \u\dx
J \ x \ > 2 p J\X\>P) \ x \ > 2 p J \ x \ > P

λMm\\u\\1p-2(\\g"\\ao+(N-l)\\g'\\J

We thus obtain (iv) with Cm = NMm (\\g'\\«> + I I g" I I J + NNmMm \\ g f \ \ a o .
Next, replacing u in LEMMA 2, (v) by J\u, we have (v). Finally, setting

/= φ(J\u) in (v) and using the inequality H(v) — H(u) ̂  φ(v)(v — u), we obtain
(vi). Q.E.D.

We are now in a position to discuss the convergence in L1 of Jh

λu as
h 1 0. For the sake of simplicity we assume

(Dx) Λ > 0 and k = (2NMmh)1/2,

a special case of (D), in what follows.

PROPOSITION 4. Let λ > 0 be fixed and ueLm be given. Then, under (Cl)
and (C2) the following hold:

(i) (I-λh-^C^-I))-1**-** in L1 as Λ J O ;

(ii) w fo>/0H^ to Lm w/7Λ U w l l p g ||u||p (p = 1, oo) and φ(w) to H1

satisfying
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ί
J

(5) {(w - u)f + ΛΣf., (φ(w)Xi + FM)/,,} dx = 0
Jκ»

/or all /e/j^nL0 0, wAere /ί1 denotes the usual Sobolev space H1(RN).

PROOF. From LEMMA 3, (i), (iii) and (iv) we obtain by the Frechet-
Kolmogorov theorem that the set [ J h

λ u : h > 0} is precompact in L1 (see [9,
Lemma 2.1]). Next, noting the inequalities 0 ̂  H(r) ̂  rφ(r) for rel?1, we
obtain

^^from LEMMA 3, (vi) with (i). Therefore, for each i = l , ,N the set
{Di(k)φ(J\u): h > 0} is bounded in L2.

Thus, for any sequence {hn} with /tπ|0, we can choose a subsequence
{hn(j}} such that as j -* oo with h = ΛΠ(Λ and fe = (2NMmhnU))

112

Jh

λu -* w in L1

Di(k)φ(J\u) -* t;£ weakly in L2 (i = 1, - , ΛΓ).

Here, LEMMA 3, (i) implies || w||p ^ | |M| |P (p = 1, oo) and

χ u)-> φ (w) in L2 .

Therefore, φ(w) belongs to Wiί2(RN) which equals f f 1 , ty for each ί = 1, ,ΛΓ
coincides with φ(w)x. and

D^feJφίJjuJ-^φίw)^ weakly in L2.

Going to the limit as j -+ oo in LEMMA 3, (v) with h = hn(j) and
k = (2NMmhn(j})

1/2 for/e/^nL 0 0, we obtain (5).
Thus, we have proved (ii). We can finish the proof of (i) and this

proposition by showing the uiqueness of the solution w of (5).

LEMMA 5. Let λ > 0 be fixed and Mj.eL1 ΠL00 (j = 1, 2) be given. Then,
the corresponding solutions w; of (5) with Wj eL1 nL°° and φ(wJ)eHi (j = 1, 2)
satisfy

(6) l lHΊ-wJ^II^-^l l ! .

PROOF. Since Z/nL 0 0 = (Jm>oLm, we may assume that u1 and M2 belong
to Lm for some m > 0. From (5) we obtain

- w -

I = 0.
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Here, taking a function peC(R1) with values — 1 for r < — 1, r for — 1 ̂  r ^ 1
and 1 for r > 1, and setting /(x) = p(n(φ(wι) - φ(w2))) for a positive integer
n, we have

(wi - w2)p(n(9(wι) ~ φ(w2)))dx - II MI - u2 \\ ί
v R

where En = {xeRN : \<P(WI) — <p(w2)| ^ l/w} In fact, we have

(wί - w2 -
JΛ^

= ~^ΣΓ=ι ί
JR

Since |p(r)| ^ 1 on Jϊ1, the left-hand side is bounded below by

(Wi - w2)p(n(φ(wl) -
JRN

x - u - u

On the other hand, since p'(r) equals 1 for — 1 ̂  r ^ 1 and 0 for r < — 1 or
r > 1, the right-hand side is written as

- nλ I p'Mφ^J - φ(w
JRN

- >^ΣΓ= i f (^ι(wι) - FίJΛ^

<4,
and this is bounded above by

— nλ \Y<P(WI) -

N Γ

l = 1 J f i n

= - (πλ/2) ί
Ji
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M/2)ΣΓ-ι f
JE

Thus the desired estimate is obtained.
The right-hand side of it is, by (C2), dominated by

and therefore vanishes as n -> oo. Consequently we obtain

sgn (P(HΊ) - φ(w2)) (M^ - w2)dx ^ || M X - u2 II i,
IRN

and hence, by (Cl), the inequality (6). Q.E.D.

This lemma suggests that there is an acretive operator - A in L1 such
that the solution w of (5) equals (/ - λA)~1u with A = Aφ + ΣΓ=ι F f( )x. in
the following sense.

DEFINITION. We say that u belongs to D(A) and Au = veL1 if

u belongs to Z/nL0 0 and φ(u) to H1;

{»/ + Σf= i (Φ («)„ + ^(iiJJ/J </x = 0

for all/eJ^nL0 0.

PROPOSITION 4 implies the range condition:

Ll^Uf> for A > 0,

L

and (6) means that — A is accretive in L1 . Thus, we have that the solution
w of (5) coincides with (/ — λA)~lu.

THEOREM I. Under the conditions (Cl) and (C2), the operator Jλ = (I —
for λ > 0 has the following properties :

( i ) Jλ maps L1 n L°° into itself satisfying

\\JιU\\P£ W\P (P = I oo) for wel^nL 0 0 ;

(ii) φ(JλU) belongs to H1 for wel/ΓlL 0 0 satisfying

'/,2 H(Jλu)dx + AΣΓ-i ll(0/d*M4i«)ll2
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(iii) For ueLm, as h|0 with k = (2NMmh)1/2

(7) (I-λh-l(Chfm-I)Γlu-+Jλu in L1.

PROOF. The theorem is a simple consequence of PROPOSITION 4. The
assertion (ii) is derived from (5) with /= φ(w) and w = Jλu. Q.E.D.

REMARK. The operator A is shown to be densely defined in L1. The
proof is carried out by showing that

Jλu -+u in L1 as λ [ 0

for u e L1 Π L°°, which belongs to Lm for some m > 0. The convergence (7)
implies that LEMMA 3, (i), (iii) and (iv) remain true with J\u replaced by
Jλu. Again using the Frechet-Kolmogorov theorem, we obtain that the set
[Jλu: 0 < λ ̂  1} is precompact in L1. Therefore, for any sequence {λn} with
Λ,w JO we can choose a subsequence {λn(j)} such that as j-> oo with λ = An(j),
Jλu converges in L1 to some uel/nL 0 0. But, from (5) we obtain

I{(JAu - u)/ - λφ(Jλu)Λf + λΣ"= i Fι(Jλu)fx.} dx = 0

for all feCS>(RN).

Here, going to the limit as -̂  oo with λ = AΛ(Λ, we have

(υ - u)f(x)dx = 0,

which implies v = u. Q.E.D.

We are now ready to construct the associated semigroup (S(ί): t ^ 0} in
L1 in terms of A with the aid of the theory of nonlinear semigroup generation
(see [4]):

(8) (I-λAΓ[t/λ]u-+S(t)u in L1 as λ|0

for wel/ΓiL 0 0 . To conclude this section we shall describe below the results
obtained from THEOREM I: The properties of (S(t): t ^ 0} the approxima-
tion of S(t) by means of CΛ>m.

THEOREM II. Under the conditions (Cl) and (C2), the semigroup (S(t): ί^O}
consisting of contractions on L1 Π L°° has the following properties:

( i ) For every weί/nL 0 0, S ( - ) u belongs to C([0, oo); L1) with

| |S(ί)ιι | |p^||ιι | |p(p=l, oo) for ί>0;
(ii) For m?ry ί > 0 αnrf uel/ΓiL 0 0 , (d/dx^φ(S( )u) belongs to

L2((0, ί) x fl*) (i = 1,-,AΓ) satisfying
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ί f H(S(t)u)dx + ΣΓ-! Γ \\(d/dXi)φ(S(r)u)\\2

2dr
JRN Jo

^ 2 i H(u)dx + Σf-i f \\fi(S(r)u)\\\dr\
JRN Jo

(iii) For weLm, as hlO with k = (2NMmh)1/2

(9) Cl'/Jii -> S(t)u in L1

uniformly on every bounded subinterval of [0, oo).

PROOF. THEOREM I, (i) with (8) gives (i). Next, by Brέzis-Pazy's
theorem on nonlinear ChernofΓs formula [3, Theorem 3.2], the convergence
(7) implies (9). We have therefore only to prove (ii). To this end we shall
use Pazy's theory on Lyapunov function for the accretive operator — A (see
[7], and also [10]).

Replacing u in THEOREM I, (ii) by J{~lu and summing up for; = 1, •••,«,
we have

2 ί H(Jn

λu)dx + AX;= 1 £f=1 \\(d/Bxύφ(Jiu)\\l
JRN

^ 2 f H(u)dx + AX;= 1 Σf=1 IIFΛJiiOIII.
JΛ^

Setting here un(r) = J{u for λ(j ' — 1) < r ^ Λ/ with A = ί/«, we obtain

2 f H(un(t))dx + Σf=1 Γ
JΛ^ Jo

^ 2 f H(u) dx + ΣΓ- 1 Γ
JΛ^ Jo

Let us note that G : L2 -> [0, oo] defined by

l l 2 2 for

+ oo otherwise,

is lower semicontinuous and, by (i), that un(t) -> S(t)u, φ(un(t)) -> φ(S(t)ύ) and
Fi(un(t)) -> FjίSίf)!*) (i = 1, ,JV) in L2 as n-^ oo. Thus, letting n-^ oo in the
above and using Fatou's lemma, we obtain the desired inequality. Q.E.D.

REMARK. The product formula (9) provides a simple proof of the
comparison principle: If for w, t eZ/nL0 0

u(x) ^ v(x), then S(t)u(x) ^ S(t)v(x)
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for every t > 0 and a.a. xeRN.
Indeed, from (4) we see Chu(x) ^ Chv(x) a.e. on RN and hence for every

ί >0 and a.a. xeRN

(Ct/n)
nu(x)^(Ct/n)

nv(x), n = l , 2 , . . .

since u and υ belong to Lm for some m > 0. Thus, (9) gives the desired
inequality.

This principle can also be derived from the inequality

||(S(ί)ιι - S(t)vΓ H i £ ||(ι< - ι;)+ ||x for t > 0,

where r+ =max(0, r). Indeed, dealing with h~1(Ch — I) as in the proof of
LEMMA 2, (iv), we obtain

L sgn+(w - v) {h-l(Ch - I)u - h~\Ch - I)v}dx ^ 0,
r

where sgn+ r equals 1 for r > 0 and 0 for r g 0. Here, replacing u and v by
Jh

λu and Jh

λv, respectively, we have

|| ( J*ιι - Jh

λv)+ || ! g || (ii - v)+ || , for λ > 0,

which together with (7) implies

\\(Jλu-Jλυ)+\\l^\\(u^υ)+\\l for λ > 0.

Thus, the formula (8) gives the desired inequality.

2. Uniqueness of solutions of the Cauchy problem

In this section, we shall show that the function w(ί, x) = S(t)u0(x)
constructed by means of the associated semigroup, becomes a unique solution
of our Cauchy problem (l)-(2) in the sense mentioned in the introduction. We
still assume the conditions (Cl) and (C2) throughout.

To begin with we shall describe a precise statement of (3).

LEMMA 6. For WoeZ/nL 0 0 , w(ί, x) = S(t)uQ(x) satisfies the equality.

(10)

(u(t9x)-u0(x))f(x)dx

Γ= i ί Γ ̂ (M(r' *»* + Fί(M(

JRN JO

for all /ef^nL 0 0 and t > 0.
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PROOF. From (5) we see

f (Jλu-u)f(x)dx
JRN

- λ f {φ(Jλu)Af(x) - ΣJ11 F^i
JRN

for all feCS>(RN).

Here, replacing u by J{~luQ and summing for j = l, ,n, we have

(J"u0-u0)f(x)dx
JRN

i
v R

>RN

and therefore

0(x))f(x)dx

= 0,

*(wπ(ί, x) — M01
J RN

Γ Γ'— {φ(un(r,
JRN Jo

where wπ(r, x) = J{u0(x) for A(; — 1) < r ^ Aj with λ = t/n. Going to the limit
as n -> oo, w obtain

f (u(t9x)-u0(x))f(X)dx
J RN

- {φ(u(r9 x))Af(x) - £f= ί Ft(u(r9 x))f(x)Xi} drdx = 0.
JRN Jo

Thus, the smoothness φ(w)x.eL2((0, ί) x RN) (i = 1, ,./V) which is a
consequence of THEOREM II, (ii), gives the desired equality (10). Q.E.D.

The following lemma shows that the solution u(t, x) = S(t)u0(x) of the
equation (10) becomes a solution of the problem (l)-(2) in '̂((0, oo) x RN),
as mentioned in the introduction.

LEMMA 7. For Moeί/nL 0 0, w(ί, x) = S(t)u0(x) satisfies the equality.

\ u(T9x)f(T9x)dx- ί w0(x)/(0,x)dx
JRN JR"
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= ί T ί ("ft - Σf= i (Φ(4c,
Jo JK*

+ *

for all T> 0 and feH*(QT)[\L»(QT), Qτ = (0, T) x tf".

PROOF. Replacement by /(ί, x)t = (d/dt)f(t, x) of /(x) in (10) and
integration over (0, T) with respect to ί gives the equality. Q.E.D.

The following proposition suggests that the solution of the equation (10)
is uniquely determined by u0.

PROPOSITION 8. Let (Cl) and (C2) hold. Let u and v satisfy, for T> 0,

φ(u)Xi,φ(v)XiεL2(Qτ)

and

ίu(f, x)/ + £f= χ Γ {φ(ιι(r, x))Xί + Ff(M(r, x))} dr
I Jo

= f \v(t, x)/ + Xf= x Γ {φ(υ(r, x))Xi + F,(ι;(r, x))} drfx\ dx
JR» I Jo J

for all f€H1Γ\Lcc and ίe(0, T).

' following hold:

Γ Γ(i) ^ (u — v)(φ(u) — φ(v))dxdt
Jo JRN

i- Ft(v))2dxdt1 Σf= i ί T ί
Jo JR

/or an arbitrary ε > 0

(ii) w(ί, x) = v(t, x) α.e. o« βτ.

PROOF. Let us set for the sake of simplicity

z(ί, x) = w(ί, x) - v(t, x),

Λ(ί, x) = φ(ιι(ί, x)) - φ(ι?(ί, x)),

fc,(ί, x) = Λ(ί, x)Xι.

and

ft(ί, x) = ̂ (iiίί, x)) - Ft(υ(t, x)) (ί = 1, - , AT).

Then, the given equality becomes
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f z(ί, x)fdx + Σf-i f Γ (*ιfc *) + fcfo xftdrfvdx = °
JR* J f l ^ J o

Replacing /(x) by /ι(ί, x), we have

x)dx

ΣΓ=ι (Mr, *) + fcfc *))dr(Mi, Λ) + ft(ί, x))dx

z(ί, x)h(t,
JRN

Γ=ι f Γ (Mr, *)
JRN Jo

= Σf= i f Γ Mr>
JR^ Jo

Therefore, we obtain for a. a. ίe(0, T)

\ z(t, x)h(t, x)dx + 2-l(d/dt)K(i)
JRN

where

= Σf= i ί if (*ι̂  )̂ + flf,(r, x)) dr I' dx.
JΛ* Uo J

The right-hand side is written as

ί Γ 11/2

(βKWWβ^Σf.J ft(t,x)2Λc[ ,
I JR» )

which is not larger than

(ε/2)K(t) + (26)-^f=1 f ft(ί, x)2dx,
JΛ^

and hence this inequality becomes

z(ί, x)/ι(ί, x)dx + ((d/dt)K(t) - εK(t))/2
JRN

Multiplication of both sides by e " therefore gives

e~"\ z(t,x)h(t, x)dx + 2-
J RN
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Thus, integration of both sides of this inequality over (0, T) with respect to
t gives

x)h(t, x)dxdte~εtz(t9
£N

ΦΓ'Σf-iΓ ί *~*0t(t>x)2dxdt,
Jo JRNo JRH

which implies (i).
Let us next prove (ii). Assuming |tι|, \v\ ^ m a.e. on Qτ with some m > 0

and recalling the definition of the constants Mm and Nm, we find

Σf=ι fcfc x)2 ^ NN*Mmz(t, χ)fe(ί, x)

and hence, by (i),

(1 - NN2

ΛMJ(2ε)) Γ f β-£ίz(ί, x)/ι(ί, χ)dχΛ ^ 0.
Jo JRN

Choosing ε = ΛW^Mm, we obtain

ΓΓ Γ _™2 Λ ,
^ NΛΓ-Mmίz(ί, x)/ι(ί, x)dxΛ^O,

Jo JΛ^

and therefore

Γ f *
Jo JRN

x)h(t,x)dxdt^Q.

This inequality with (Cl) implies z(ί, x)h(t, x) = 0 and hence the desired result
u = v a.e. on Qτ. Q.E.D.

REMARK. In the case that "convection" terms are not contained, the
given equality with /(x) replaced by h(t, x) becomes

f z(ί, x)fc(t, x)dxdt + 2~l(d/dt)Σΐ=l ί j Γ fc,(r, x)dr\2dx = 0
JR" JR» Uo J

for a.a. fe(0, T), and therefore

Γ ί z(ί, x)Λ(ί, x)dxdt + 2-^f^ ί j Γ^Γ, x)dr|2rfx = 0.
Jo JRN JRN Uo J
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From this the uniqueness of solution of (3)0 immediately follows under (Cl),
as mentioned in the introduction.

Thus, we can conclude that the function u(ί, x) = S(t)u0(x) for uQeLl nL°°,
constructed by the formula (9), becomes a unique solution of the equation
(10) which implies our Cauchy problem (l)-(2) in '̂((0, oo) x RN).

THEOREM III. Let (Cl) and (C2) hold. Then, for given uQeL^ ΠL°°, there
exists exactly one solution u(t9 x) of the equation (10) (the precise statement of
(3)) satisfying

weC([0, oo); L^nL00^, oo) x RN);

φ(w)XίeL2((0, t) x RN) for every t > 0,

PROOF. Let u be any solution of (10) in the above sense, and set
v(t, x) = S(t)u0(x). Then, for any T> 0, u and v belong to Ll(QT){\L*(QT)9

and φ(u)Xi and φ(v)Xί to L2(QT) (i = 1, •••,#). Using PROPOSITION 8, we
obtain w(ί, x) = 5(ί)w0(x) a.e. on Qτ and hence for t > 0 and a.a. xeRN.
Q.E.D.

REMARK 1. Our method for generation and construction of the semigroup
associated with (l)-(2) is still available to the problem for the equation
containing "absorption":

(11) (d/dt)u = Aφ(u) + Σf-i^Mci ~ <A(")> *e#", ' > 0

under the condition:

(C3) The function ψ is nondecreasing, locally Lipschitz continuous on Rl

and satisfies ^(0) = 0,

in addition to (Cl) and (C2). In this case, we have only to deal with the
operator DAjln defined on Lm by

Dhmu = u- 2Nhk~2φ(u) - hψ(u)

+ >*fc-2Σ?=ι Tt(k)(q>(u) + (k/2)Ft(u))

under the condition instead of (D):

0 < h < ί/Hm and (2NMmh/(l - Hmh))1'2 ^k^ 2/Nm,

where

Hm = supr>se/m (ψ(r) - ψ(s))/(r - s)
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Noting Dh,m = Ch,m-hψ and h-l(Dktm- I) = h~l(Cktm- I)-ψ, we obtain
quite easily an analogue of PROPOSITION 4 as follows.

PROPOSITION 9. Under the conditions (C1)-(C3), the following hold for

λ>0 and u e Lm :

(i) (/-λΛ- 1(β*.m-/)Γ 1tt-*w in L1 as h, fc|0;

(ii) w belongs to Lm with \ \ w \ \ p ^ \ \ u \ \ p (p = 1, oo) and φ(w) to H1

satisfying

ί {(w - ιι)/ + Λ£f= , (φ(w)xι + F^))fXί + Ww)/} </x = 0
JΛ"

for all fεH^L".

Thus, we obtain as before the operator (I — λAψ)'1 such that w =
(/ — Λ,^)"1!*, and the associated semigroup {S^(ί):ί^0} with generator

AΦ = Aφ + Σ?,lFl( )Xi-ψ:

ψ) and Aψu =

u belongs to i/nL00 and φ(u) to H1;

Γ {vf+YN (φ(u) +F.(u))f +φ(ι
J βN

for all

Moreover, we find that for MoeZ/nL 0 0 , the function w(ί, x) = S^
is a solution of the equation

I (u(ί, x) - ιι0(x))/dx + i f ψ(u(r, x)) drfdx
JRN J R " J o

(12) + Σf= i ί Γ {<P(u(r, x))Xi + F,(M(Γ, x))} dr/Xί dx = 0
JRN Jo

for all/eH^L00 and t > 0,

satisfying

weC([0, oo); L^nL00^, oo) x RN),

φ(u)x.εL2((Q9 t) x RN) for every t > 0,

i = l , ,ΛΓ.

REMARK 2. Uniqueness for the Cauchy problem (ll)-(2) can also be
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discussed through the equation (12), however, under the condition instead of

(C3):

(C4) The function φ is nondecreasing on Jf1, satisfies ^(0) = 0, and

is bounded for r, s in every bounded subinterval of R1 .

Dealing with the equality (12) by a quite similar method, we obtain an
analogue of PROPOSITION 8 as follows.

PROPOSITION 10. Let (Cl), (C2) and (C4) hold. Let u and v satisfy, for
Γ>0,

n,ι>6L1(βτ)nLβo(βΓ);

φ(u)Xi,φ(v)XieL2(Qτ) (i=l,-,N)

and

\u(t,x)+ (Ί,(u(r,x))dr}f(x)dx
( . J o )

Σf= i ί P M«fc *))* + ̂ «(«(r. *))} drfxί dx
JR" J O

= I ίv(r, x) + \ ψ(v(r, x))dr\f(x)dx
JRN ( Jo J

Σf= i ί Γ {<P(v(r, x)k + Ft(v(r9 x))} drfXi dx
JRK Jo

/or all /e/^nL00 α«rf ίe(0, T).

77ze«, /Ae following hold:

(i) Γί β-εί(M-
Jo JΛ^

^ (2ε)~ ' Σf= i ί T ί ^"fiί(^ (") - FiW)2 dx at
Jo JK*

+ (2s)-1 Γ ί e~εt{(ψ(u) - ψ(v))2 + (φ(u) - φ(t;)
Jo JR"

/0r β« arbitrary ε > 0

(ii) u(t, x) = ι?(ί, x) a.e. on Qτ.
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PROOF. Recalling the proof of PROPOSITION 8, we have

z(ί, x)fc(ί, x)dx + 2~1(d/dt)K(t) + 2"

I 1/2

1/2

where

p(ί, x) = ̂ (ιι(t, x)) - ψ(v(t, x)),

6(0= ί i f P(r,x)dr\2dx.
JRN Uo J

Thus, an elementary calculus gives (i), which together with (C4) gives
(ii). Q.E.D.

The condition (C4) trivially holds if ψ satisfies (C3) and if (ψ(r) - ψ(s))/
(φ(r) — φ(s)) is bounded for r, s in every bounded subinterval of I?1: φ(r) = rm

and ψ(r) = rp with p ^ 1 and p^m, for example. The condition (C4) is also
satisfied by φ(r) = rm and ψ(r) = rp with p < m ̂  2p — 1. In fact,
(ψ(r) — ψ(s))2/((r — s)(φ(r) — φ(s))) converges as r-»s to (ψ'(s))2/φ'(s), which
is equal to (p2/m)s2p~1~m and hence bounded for s in every bounded
subinterval of R1 if m ̂  2p — 1.

Note added in proof

Recently we became aware that all the results of this paper can be derived
through a slight modification of the operator CΛ>m even if condition (C2) is
replaced by a weaker condition as below:

(C2) The functions Fί5 ί = 1,••-,#, are defined on Λ1, Ff(0) = 0, and

(Fί(r)-Fi(s))2/\(r-s)(φ(r)-φ(s))\

are bounded for r, s in every bounded subinterval of R1.

As long as condition (Cl) is supposed to hold, (C2) implies (C2).
Moreover, it should be noted that this condition (C2) enables us to deal
with the equation
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in the cases where nt>m and m > nt > (m + l)/2, i = 1, ,N, for example.
The previous condition (C2) fails to include the latter case. This is easily
seen from the fact that the last statement of (C2) (resp. (C2)) is satisfied by
differentiable functions φ and Fί9 ί= 19 9N9 if and only if

(Fί(r))2/\φ'(r)\ (resp. \Fl(r)/φ'(r)\)

are bounded for r in every bounded subinterval of R1.
We have already shown in effect that both of the uniqueness results for

the equations (5) and (10) are obtained under (C2) with (Cl). Indeed, the
inequality used in the proof of LEMMA 5:

JR
- M -u2 1

) £ f
i— 1 J<j f»(Wl) = <j!>(W2)

>RN

and the estimate exhibited in PROPOSITION 8, (i):

e~εt(u - v)(φ(u) - φ(υ))dxdtHJo JR)R»

<(2εY 1Σ Γ f e-'φiM-FάΌtf
ί=ι Jo JR"

indicate that condition (C2) is more natural than condition (C2). To improve
this paper, therefore, we have only to show that all the existence results given
in Section 1 still hold true with CΛ>m replaced by a slightly modified operator

Ch,mu = u + ΛΣf-i *~2(T,(*) -21 + Tt(- k))(φ(u) + ku)
(4)

- TJ(-

where

(D) h > 0 and Nh + (N2h2 + 2NMmh)1/2 <k<

and Nm denotes

max sup
— *— r,S6/w

As is easily seen, our operator CΛ>m is defined by the replacement of φ(r) in

C*,m wίΛ 9k(r) = φ(r) Ί kr- Let us show that LEMMA 1 is true for this
φk. If r > s with r, se/m, then, thanks to (D),

r - 2Nhk'2φk(r) -s + 2Nhk~2φk(s)
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> (1 - 2Nhk~1 - 2NMmhk~2)(r - s) > 0;

φk(r) ± (k/2)Ft(r) - φk(s)

= φ(r) - φ(s) + k(r - s) ±

> 2(k(r - s)(φ(r) - φ(s)))1/2 - (k^Ffc) - Ft(s)\

> (2/c1/2 - Nmk/2)((r - s)(φ(r) - φ(s)))1/2 > 0.

This implies that r->r-2Nhk~2φk(r) and r-+φk(r)±(k/2)Fί(r) (i= 1, ,N) are
nondecreasing on /m, and that the proof is obtained as before. Consequently,
LEMMAS 2 and 3 hold for φk. Therefore PROPOSITION 4 is also obtained
for Chtm since LEMMA 5 holds true under (C2) with_(Cl), as verified
above. Thus, THEOREMS I and II with CΛ>m replaced by CΛ>m are established

under the conditions (Cl) and (C2).

Finally, LEMMAS 6 and 7, PROPOSITION 8, and THEOREM III given
in Section 2 are all valid under the weaker condition (C2) with (Cl).
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