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Oscillations of half-linear second order differential equations
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Abstract. Some oscillation criteria are given for the half-linear second order differential

equation

[Φ(u'(ί))]' + c(t)Φ(u(t)) = 0,

where Φ : R - » R is defined by Φ(s) = \s\p~2s with a fixed number p> 1 and

ceC([0, oo), R). These results improve Willett's results.

1. Introduction

Define Φ : R - > R by Φ(s) = \s\p~2s, where p > 1 is a given number.
Consider the half-linear second order differential equation

(E) [*("'(*))]' + c(t)Φ(u(t)) = 0,

where c(i) is a continuous function on [0, oo). We observe that if p = 2, then
equation (E) reduces to the linear equation

(EJ t/'(ί) + c(t)u(t) = 0.

Let u be a positive solution of (E). If υ! > 0 or u' < 0, then (E) reduces to
the following Euler-Lagrange equations:

or

at

respectively.
By a solution of (E) we mean a function weC^O, oo) such that Φ(u')e

C^O, oo), satisfying equation (E). Elbert [1] established the existence,
uniqueness and extension to [0, oo) of solutions to the initial value problem
for (E). We say that a nontrivial solution u of (E) is oscillatory if for any
N > 0 there exists t > N such that u(t) = 0, otherwise, it is nonoscillatory.
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From the uniqueness of the trivial solution of (E), the zeros of any nontrivial
solution of (E) is isolated.

There is a striking similarity in the oscillatory property between the
half-linear equation (E) and the corresponding linear equation (EJ. For
example, Sturm's comparison and separation theorems for (Ex) extend in a
natural way to (E), see Elbert [1,2], Li and Yeh [6, 7] and Mirzov
[8, 9]. Thus we know that all the nontrivial solutions of (E) are oscillatory
or nonoscillatory. In the former case we say that (E) is oscillatory and in
the latter we say that (E) is nonoscillatory.

In [12], Willett obtained some oscillation criteria for (Ex) by using
weighted average. The purpose of this paper is to generalize Willett's results
[12] to equation (E).

For more recent results, we refer to Kusano and Yoshida [3], Kusano,
Naito and Ogata [4], Kusano and Naito [5], Li and Yeh [7], and Pino and
Manasevich [10].

2. Preliminary lemmas

Let (ί/p) + (ί/q) = 1, and let 3 be the set of all nonnegative locally
integrable functions / on [0, oo) satisfying the condition

C ft )«-ι-*
(2.1) lim sup < f(s)ds{> {Fk(oo) - Fk(t)} > 0 for some fce[0, q - 1),

ί-»oo U J

where

If Fk(ao) = oo in (2.1), then /e3. Let 30 be the set of all nonnegative locally
integrable functions / on [0, oo) satisfying

(2.2) li
•

In order that either (2.1) or (2.2) can be satisfied by a nonnegative function
/, it is necessary that

r(2.3) I /(s)ώ=oo.

On the other hand, every bounded nonnegative locally integrable function
/ satisfying (2.3) belongs to 30, and 30 c 3. Since all nonnegative polynomials
are in 30, 30 contains some unbounded functions.
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Members of the classes 3 and 30 will be called weight functions.
If (E) is nonoscillatory and u(i) is a nontrivial solution of (E), then there

exists a number T > 0 such that u(i) has no zero on [T, oo), and hence

Φ(u'(i)}
v(t) =

Φ(u(t))

satisfies the generalized Riccati equation

(2.4) ι/(ί) + c(t) + (p - l)|t>(i)|« = 0 on [Γ, oo).

Conversely, if there exists a function v satisfying (2.4), then

satisfies (E) on [Γ, oo). It follows from Sturm's separation theorem [1] that
(E) is nonoscillatory. Therefore, we obtain the following

THEOREM 2.1. Equation (E) is nonoscillatory if and only if there exist a
number T> 0 and a function veC1 satisfying (2.4) on T, oo).

Clearly, (2.4) is equivalent to the integral equation

t > s > T.
J s J s

For /e3, define

(2.5) v(t) = v(s) - (p - 1) \v(τ)\*dτ - c(τ)dτ for
J s J s

LEMMA 2.2. Assume that v(t) satisfies (2.4) on [T, oo) /or some T> 0.
exwte /e 3

(2.6) lim inf AΛ , t) > — oo,
r->oo J

then f°°|ι?(s)|«ds< oo.

PROOF. Let >4(s, ί) = Af(s9 1) and assume that

Γ00

(2.7) |t;(s)|«ώ = cx).

Multiplying (2.5) by /(£) and integrating it from ξ to ί, we obtain

(2.8) ff(s)υ(s)ds
Jξ
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= υ ( ξ ) ΐ f ( s ) d s - Γ/(s) ('c(τ)dτds - (p - 1) P/(*) ί

= υ(ξ) \tf(s)ds - A(ξ, t) Γ/(s)<fa - (p - 1) P/(s) Γ
Jξ Jξ Jξ Jξ

= lυ(ξ) - A(ξ, ί)] Γ/Wώ - (P ~ 1) Γ/(s) Γ |i7(τ)|«dτώ,
Jξ Jξ Jξ

ξ Jξ

\Ό(τ)\ dτds

>ξ

where t>ξ>T. From (2.5), we have

υ(ξ) = v(T) - Γ c(s)d5 - (p - 1) Γ
Jr Jr

Since /e3, (2.3) holds. This implies that

= |f y4(T, ί) - φ)ds + o(l) as ί -̂  oo.

Thus,

(2.9) „«) - A(ξ, t) = .(Γ) - §^ ^(Γf t) - (p - 1) Γ
J T

as ί -> oo.

Since /e 3, there exists a positive number λ > 0 such that

(2.10) <(q-l-k)li

where fc is defined as in (2.1). It follows from (2.6), (2.7) and (2.9) that then
exist two numbers a and b with b > a> T such that

(2.11) φ) - Λ(α, t)< -λ for all ί > b.

Let

z(ί) = I f(s)υ(s)ds.

Then Holder's inequality implies

Γ•/α
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It follows from (2.8) and (2.11) that

(2.12) z(t) < — λ\ f(s)ds — (p — 1) f(s)\z(s)\ql fp(τ)dτ ) ds:= — G(i).
Ja Ja \ J α /

Thus,

(2.13) G'(t) = A/(t) + (p - l)/(t)|z(ί)lβ( \'f(s)ds\ "

and

(2.14) 0 < λ I f(s)ds < G(ί) < |z(f)|.

It follows from (2.12), (2.13) and (2.14) that

G'(t)G*~*(t);>G'(t)G*(t)|z(t)Γ

αί V / Γ
/(s)ds

I / \Jfl

For k < q — 1, if we integrte the above inequality from ί(> b) to oo, then

+1(0 > (p - l)Ak{n(oo) - Fk(t)}.
q-ί-k

It follows from (2.14) that

A1""

P - l

which contradicts (2.10). This contradiction completes our proof.

LEMMA 2.3. Assume that v(t) satisfies (2.4) on [T, oo) for some T> 0. 1
|°° \v(s)\qds < oo, ίΛe«, /or any /e30, lim,..^ y4y( , t) exists.

PROOF. As in the proof of Lemma 2.2, (2.8) holds. This implies that

(2.15)

Since /e30» (2-3) holds. Thus,

e

By Holder's inequality,
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Q < lim \ί'ξf(s)v(S)ds\ < lim (I't

fξf(s)ds

Hence, by (2.15), lim,..,,., A(ξ, f) exists and

=

lim A(ξ, t) = v(ξ) - (p - 1)
'̂  Jί

\υ(s)Γds.

LEMMA 2.4. Assume that B(s) and Q(s, ί) are nonnegative continuous
functions for T< s, ί < oo. T/"

Γ eβ
Jί

(2.16) I Q(s, t)B*(s)ds < p-"B(t) for t > T,

then the equation

(2.17) v(t) = B(t) + (p - 1) Γ Q(s, t)\v(s)\"ds for t > T,

has a continuous solution v(t).

PROOF. Let vt(t) = B(t) and define

vk+1(t) = B(t) + (p- l) Q(s, t)\Vk(s)\«ds for k = 2, 3 .....

Then, by (2.16),

υ2(t) = B(t) + (p-»ί>
< B(t) + (p - l)

< pB(t),

and t ̂ ί) < v2(t). Suppose vί < v2 < <, vn <, pB(t), where π is a positive
integer. Now

».(t) = B(t) + (p - 1) Γ Q(S, Olr^i
Jί

- 1) j β(s,

f " β(s,
Jί

B(t) + (p - 1) β(s, t)|».(s)|«ds = vn+i(t)

B(t) + (p- l)p
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= pB(t), for t > T.

Thus, the sequence {vn} is increasing and bounded above by pB(t). Hence,
{vn} converges uniformly to a continuous function v(t), which is a solution of
(2.17). Thus, the proof is complete.

LEMMA 2.5. Assume that B(t) and Q(s, t) are nonnegative continuous
functions for T < s, t < oo. If there exists ε > 0 such that

Γ Q(s,
Jt

(2.18) Q(s, t)B«(s)ds > p~9(l + ε)B(t) φβ for t>T,
Jt

then the inequality

(2.19) v(t) > B(t) + (p - 1) I ρ(5, t)\υ(s)\ ds9 t > T,

does not have a continuous solution for v(t).

PROOF. Suppose to the contrary that v(t) is a continuous function
satisfying (2.19) for t > T. Then t (ί) > B(t) > 0, which implies vq(t) > Bq(t) > 0
for t > T. Thus

υ(t) > B(t) + (p - 1) ί°° ρ(s, t)B*(s)ds > {1 + (P - 1)(1 + ε)p~q}B(t)

for t > T.

Continuing in this way, we obtain v(t) > anB(t), where a± — 1, απ < αn+1 and

(2.20) 0,+! = 1 + (p - l)αjp~9(l + ε) for n > 1.

We claim that l^^^ an = oo. Assume, to the contrary, that limπ_00 an =
A < oo. Thus A > 1. It follows from (2.20) that

(2.21) Λ = l+(p-l)(l+εμV

But it is easy to see that (2.21) is not possible for λ > 1. This contradiction
proves lim,,^ 0n = oo. Then B(t) = 0 for ί > T, which contradicts (2.18).
This contradiction completes our proof.

3. Oscillation criteria

In this section, we shall derive some oscillation criteria for solutions of
equation (E).

THEOREM 3.1. If there exists /e3 such that (2.6) holds, then either (E) is
oscillatory, or lim^^ Ag( - , t) exists for all 0e30.
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PROOF. Suppose (E) is nonoscillatory. Then, by Theorem 2.1, there exist
a Γ>0 and a function veC1 such that (2.4) holds on [Γ, oo). It follows
from Lemma 2.2 that J°° \v(s)\qds < oo. Thus, by Lemma 2.3, lim,^ Ag( - , ί)
exists for all #e30. Hence, we complete the proof.

COROLLARY 3.2. If there exist two nonnegatίve bounded functions f and
g on [T, oo) satisfying J°°/(s)ds = J°°0(s)ds = oo such that

lim AΛT, t) < lim Aq(T9 f),
t~* oo f-* oo

equation (E) w oscillatory.

PROOF. Let α and β be numbers satisfying

lim AΛT, t) < α < β < lim ^(T, £)•
ί— > 00 f~> 00

Let fc(ί) = gf(ί) for T< t < tl9 where t1 is determined such that Ag(T, tj > β
and ftg(s)ds > 1. Let /ι(ί) =/(ί) for ίx < ί < ί25 where ί2 i

§ determined such
that Ah(T9 t2) < α and ^h(s)ds > 2. This is possible because

Ak(T9 t2)

f g/Mf 'Γc(μ)dμιfa f g

f ¥ g(s)ds + f ;j/(s)ώ

= Af(T,t2) [1 + o(l)] + o(l) as ί2 -> oo.

Continuing in this manner, we obtain a nonnegative, nonintegrable and
bounded function h(t) defined on [T, oo) such that

lim sup Ah(T, t) > β > α > lim inf Ah(T, t).
f->oo '^^

Hence, by Theorem 3.1, (E) is oscillatory.

THEOREM 3.3. IfB(t) = $? c(s)ds>0 and ̂  Bq(s)ds<p~qB(t) for t > T>0,
then (E) is nonoscillatory.

PROOF. By Lemma 2.4, the equation

v(t) = B(t) + (p-l)Γ\v(s)\«ds
Jt

has a continuous solution v(t) on [T, oo). Then
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ι/(f) = - c(t) -(p- l)\υ(t)\q for t > T.

By Theorem 2.1, (E) is nonoscillatory.

THEOREM 3.4. If c(i) satisfies the following conditions:
(i) there is a T> 0 such that B(t) = Jt°° c(s)ds >Q for t>T;
(ii) /Aere is α « ε > 0 swcλ fλα/ J^lFφds > p~*(l + ε)β(f) for t > Γ,

(E) is oscillatory, where the constant p~q in (ii) is best possible.

PROOF. Suppose to the contrary that (E) is nonoscillatory. It follows
from Theorem 2.1 that there exist a number 7\ and a function veC1 satisfying
(2.4) on [T1? oo ). Without loss of generality, let 7\ = T. It follows from (i)
that lim inf^^ Af(T, t) = ̂ c(μ)dμ > - oo. This and Lemma 2.2 imply
$τ\v(s)\qds < oo. Thus, it follows from (i) and (2.5) that v(t) satisfies

v(t) = B(t) + (p - 1) Msψώ.

But, by (ii) and Lemma 2.5, the equation

fαo

\w(s)\qds

does not have a continuous solution, which is a contradiction.
To see that the constant p~q is best possible, we consider the half-linear

differential equation

(3.1) ^ Φ(ιι'(f)) + q~p(t + !ΓpΦ(u(t)) = 0.
at

Clearly, (3.1) has a solution u(t) = (t + l)1/q. Hence, (3.1) is nonoscillatory.
Since c(t) = q~p(t + l)~p,

Γ(ί c(τ)dτ } ds = q~pq(p -
s

Γ00

- 1)~« c(s)ds
Jt

c(s)ds.

This means that the number p~q in Theorem 3.4 is best possible.

If c(t) is a continuous positive function on [0, oo), then Theorems 3.3
and 3.4 reduce to Theorem 1.1 of [10].
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