Links with homotopically trivial complements are trivial

Kazushi Komatsu

(Received May 20, 1994)

1. Introduction

A smooth (resp. PL locally flat or locally flat) m-component link L stands for m embedded disjoint n-spheres $L_{1} \cup \cdots \cup L_{m}$ in S^{n+2}. A knot is nothing but a 1 -component link. A smooth (resp. PL locally flat or locally flat) m-component link is called trivial if it bounds m smoothly (resp. PL locally flatly or locally flatly) embedded disjoint ($n+1$)-disks. The complement of a trivial knot has the homotopy type of a circle S^{1}. The converse is known to be true for a locally flat knot. The converse is also known to be true for a smooth (or PL locally flat) knot when $n \neq 2$ ([9] for $n \geq 4$, [14] for $n=3$ and [13] for $n=1$). The complement of a trivial m-component link has the homotopy type of a one point union $\left(\vee_{i=1}^{m} S_{i}^{1}\right) \vee\left(\vee_{j=1}^{m-1} S_{j}^{n+1}\right)$ of circles and $(n+1)$-spheres. So, there arises a natural question whether a link is trivial if the complement of the link has the homotopy type of a one point union of spheres. One of the purposes of this paper is to settle this question affirmatively provided that $n \neq 2$:

Theorem 1. Let $L \subset S^{n+2}$ be a smooth (resp. PL locally flat or locally flat) m-component link such that $S^{n+2}-L$ has the homotopy type of $\left(\vee_{m} S^{1}\right) \vee$ $\left(\mathrm{V}_{m-1} S^{n+1}\right)$. Suppose that $n \neq 2$. Then L is trivial.

A one point union of spheres has a special property that it is covered by two subsets which are contractible. This property itself is not a homotopy type invariant and a better notion is that it has Lusternik-Schnirelmann category one. The category cat X of a space X is the least integer n such that X can be covered by $n+1$ number of open subsets each of which is contractible to a point in X. In particular, cat X is a homotopy type invariant and cat $\left(\left(\vee_{m} S^{1}\right) \vee\left(\vee_{m-1} S^{n+1}\right)\right)=1$. We know that $\pi_{1}(X)$ is a free group if X is a manifold and cat $X=1$ (cf. [5]).

A locally flat $\mathrm{knot}\left(S^{n+2}, S^{n}\right)$ is topologically unknotted if and only if the category of its complement is one [11]. In fact, cat $\left(S^{n+2}-S^{n}\right)=1$ if and only if $S^{n+2}-S^{n}$ has the homotopy type of S^{1}. So, a smooth (or PL locally flat) knot $\left(S^{n+2}, S^{n}\right)$ is unknotted if and only if cat $\left(S^{n+2}-S^{n}\right)=1$ when $n \neq 2$.

By Theorem 1 of [8] the link complement $S^{n+2}-L$ has the homotopy
type of $\left(\vee_{m} S^{1}\right) \vee\left(\vee_{m-1} S^{n+1}\right)$ if cat $\left(S^{n+2}-L\right)=1$. So, Theorem 1 implies the following theorem.

Theorem 2. Let L be a smooth (resp. PL locally flat or locally flat) m-component link in S^{n+2}. Suppose that $n \neq 2$. Then L is trivial if and only if cat $\left(S^{n+2}-L\right)=1$.

A classical link L is trivial if $\pi_{1}\left(S^{3}-L\right)$ is free by the loop theorem [13]. So, Theorem 1 is already known for $n=1$. If $S^{n+2}-L$ has the homotopy type of $\left(\vee_{m} S^{1}\right) \vee\left(\vee_{m-1} S^{n+1}\right)$, we will show that L is a boundary link in §2. Then, we see that L is trivial by the unlinking criterion of boundary links due to Gutiérrez ([6] for $n \geq 4$ and use the splitting theorem [1] for $n=3$).

The dimensional restriction can be removed for the case of knot by considering homeomorphism rather than diffeomorphism but remains unknown for the case of 2-dimensional link [4].

Theorem 2 has been conjectured by Professor T. Matumoto to whom the author would like to express his sincere gratitude for suggesting the problem.

2. Proof of Theorem 1

In the proof the link exterior $E=S^{n+2}-\operatorname{Int} N(L)$ is more useful than the link complement $S^{n+2}-L$ where $N(L)$ denotes a tubular neighborhood of $L ; E$ is a compact manifold with boundary $\partial E=\partial N(L)$ and has the homotopy type of the link complement. By the unlinking criterion of boundary links due to Gutierrez [1], [6] it suffices to show that L is a boundary link if $S^{n+2}-L$ has the homotopy type of $\left(\vee_{m} S^{1}\right) \vee\left(\vee_{m-1} S^{n+1}\right)$. We recall the definition of a boundary link; a smooth (resp. PL locally flat or locally flat) m-component link is boundary if it bounds a Seifert manifold which consists of m disjoint compact smooth (resp. PL locally flat or locally flat) $(n+1)$-submanifolds with connected boundary. We remark that an element of $\pi_{1}(E)$ is called meridian if it is conjugate to a generator of the fundamental group of some component $S^{1} \times S^{n}$ of ∂E. We will find m number of meridians m_{1}, \ldots, m_{m} which generate $\pi_{1}(E)$; this is a necessary and sufficient condition for the link to be boundary in our case that $\pi_{1}(E)$ is a free group by [6, p. 493, Prop. 3] and [10, p. 109, Cor. 2.12].

Let $i(k): \partial N\left(L_{k}\right) \rightarrow E$ be the inclusion map for k. Then, $i(k)_{*}: \pi_{n}\left(\partial N\left(L_{k}\right)\right) \rightarrow$ $\pi_{n}(E)$ is a 0 -map for any k, since $\pi_{n}(E)=0$. So, it suffices to show the following proposition in order to prove Theorem 1.

Proposition 2.1. Let L be an m-component link and $i(k): \partial N\left(L_{k}\right) \rightarrow E$ be
the inclusion map for a component L_{k} of the link L. Suppose that $\pi_{1}(E)$ is a free group and $i(k)_{*}: \pi_{n}\left(\partial N\left(L_{k}\right)\right) \rightarrow \pi_{n}(E)$ is a 0 -map for any k. Then, L is boundary.

Proof. By induction on m we will prove Proposition 2.1. Note that $\pi_{1}(E)$ is a free group F_{m} of rank m. The case when $m=1$ is proven because $\pi_{1}(E)$ is isomorphic to an infinite cyclic group \mathbf{Z} and it is generated by any meridian. So, we may assume that $m \geq 2$. Suppose that Proposition 2.1 is true for any j-component sublink L^{\prime} of $L(j<m)$ which satisfies the assumption in Proposition 2.1 that $i^{\prime}(k)_{*}: \pi_{n}\left(\partial N\left(L_{k}\right)\right) \rightarrow \pi_{n}\left(E^{\prime}\right)$ is a 0 -map for any component L_{k} of L^{\prime} and $\pi_{1}\left(E^{\prime}\right)$ is a free group. Here L^{\prime} is a sublink of L with the exterior E^{\prime} and $i^{\prime}(k): \partial N\left(L_{k}\right) \rightarrow E^{\prime}$ is the inclusion for a component L_{k} of L^{\prime}. We fix m number of meridians $m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{m}^{\prime}$ of L corresponding to the components $\partial N\left(L_{1}\right), \partial N\left(L_{2}\right), \ldots, \partial N\left(L_{m}\right)$ of ∂E. Let $H_{i}\left(\subset \pi_{1}(E)\right)$ be an infinite cyclic subgroup generated by m_{i}^{\prime}.

Even when ($E, \partial E$) admits no triangulation, $(E, \partial E)$ has the simple homotopy type of a finite Poincaré complex by [7, III, §4] and we will denote by $(E, \partial E)$ this finite Poincare complex instead of the original link exterior in this case. Let $p: \widetilde{E} \rightarrow E$ be the universal covering of E and put $\partial \widetilde{E}=p^{-1}(\partial E)$. Let $H_{c}^{*}(X ; \mathbf{Z})$ denote the cohomology with compact support of X. Since the CW complex pair $(\tilde{E}, \partial \widetilde{E})$ has the proper homotopy type of the universal covering of the original link exterior, we can apply the Poincare duality theorem for the non-compact manifold and see that the left $\mathbf{Z}\left[F_{m}\right]$-module $H_{n+1}(\tilde{E}, \partial \tilde{E} ; \mathbf{Z})$ is anti- $\mathbf{Z}\left[F_{m}\right]$ isomorphic to the right $\mathbf{Z}\left[F_{m}\right]-$ module $H_{c}^{1}(\tilde{E} ; \mathbf{Z})$ and the left $\mathbf{Z}\left[F_{m}\right]$-module $H_{n}\left(p^{-1}\left(\partial N\left(L_{i}\right)\right) ; \mathbf{Z}\right)$ is anti- $\mathbf{Z}\left[F_{m}\right]$ isomorphic to the right $\mathbf{Z}\left[F_{m}\right]$-module $H_{c}^{1}\left(p^{-1}\left(\partial N\left(L_{i}\right)\right) ; \mathbf{Z}\right)$.

We recall the relationship between homology of free coverings and cohomology of groups. Let $C_{\#}(X)$ denote the cellular chain complex of a cellular complex X and $C_{c}^{\#}(X)$ denote the cellular cochain complex with compact support of a cellular complex X. We see that $C_{c}^{\#}(\tilde{E})$ is cochain equivalent to the cochain complex $\operatorname{Hom}_{\mathbf{z}\left[F_{m}\right]}\left(C_{\#}(\tilde{E}), \mathbf{Z}\left[F_{m}\right]\right)$, and that $C_{c}^{\#}\left(p^{-1}\left(\partial N\left(L_{i}\right)\right)\right)$ is cochain equivalent to the cochain complex $\operatorname{Hom}_{\mathbf{z}\left[F_{m}\right]}\left(C_{\#}\right.$ $\left.\left(p^{-1}\left(\partial N\left(L_{i}\right)\right)\right), \mathbf{Z}\left[F_{m}\right]\right)$ as in the proof of Lemma 2.1 (2) of [8]. Let $H^{*}(H: \mathbf{Z} G)$ denote the cohomology of a group H with coefficient $Z G$. Note that the kernel of $\mathbf{Z}\left[F_{m}\right]$-homomorphism between finitely generated projective $\mathbf{Z}\left[F_{m}\right]-$ modules is a finitely generated projective $\mathbf{Z}\left[F_{m}\right]$-module. In fact, it is projective because $\mathbf{Z}\left[F_{m}\right]$ has the global dimension two due to [12, p. 326, Cor. 2.7], and finitely generated because $\mathbf{Z}\left[F_{m}\right]$ is coherent [2, p. 137, Th. (2.1)], $[16$, p. 158, Prop. $]$. Note that the cellular chain complexes $\left\{C_{\#}(\tilde{E}), \partial_{\#}\right\}$ and $\left\{C_{\#}\left(p^{-1}\left(\partial N\left(L_{i}\right)\right)\right), \partial_{\#}^{\prime}\right\}$ are chain complexes of finitely generated free $\mathbf{Z}\left[F_{m}\right]-$ modules and $\mathbf{Z}\left[F_{m}\right]$-homomorphisms.

Since \tilde{E} is the universal covering, $H_{1}(\tilde{E} ; \mathbf{Z})=0$. Then, we have the following projective resolution of \mathbf{Z} over $\mathbf{Z}\left[\pi_{1}(E)\right]=\mathbf{Z}\left[F_{m}\right]: 0 \rightarrow \operatorname{Ker} \partial_{2} G$ $C_{2}(\tilde{E}) \xrightarrow{\partial_{2}} C_{1}(\tilde{E}) \xrightarrow{\partial_{1}} C_{0}(\tilde{E}) \rightarrow C_{0}(\tilde{E}) / \operatorname{Im} \partial_{1} \cong \mathbf{Z} \rightarrow 0$. Hence, we get $H_{c}^{1}(\tilde{E} ; \mathbf{Z}) \cong$ $H^{1}\left(\operatorname{Hom}_{\mathbf{Z}\left[F_{m}\right]}\left(C_{\#}(\tilde{E}), \mathbf{Z}\left[F_{m}\right]\right)\right) \cong H^{1}\left(\pi_{1}(E) ; \mathbf{Z}\left[\pi_{1}(E)\right]\right)$.

Let M_{i} denote one of the connected components of $p^{-1}\left(\partial N\left(L_{i}\right)\right)$. Note that the cellular chain complex $\left\{C_{\#}\left(M_{i}\right), \partial_{\#}^{\prime \prime}\right\}$ of M_{i} is a chain complex of finitely genereted free $\mathbf{Z}\left[H_{i}\right]$-modules. Since M_{i} is the universal covering of $p\left(M_{i}\right), H_{1}\left(M_{i} ; \mathbf{Z}\right)=0$. Then, we have the following projective resolution of \mathbf{Z} over $\mathbf{Z}\left[H_{i}\right]: 0 \rightarrow \operatorname{Ker} \partial_{2}^{\prime \prime} \subseteq C_{2}\left(M_{i}\right) \xrightarrow{\partial_{2}^{\prime \prime}} C_{1}\left(M_{i}\right) \xrightarrow{\partial_{1}^{\prime \prime}} C_{0}\left(M_{i}\right) \rightarrow C_{0}\left(M_{i}\right) / \operatorname{Im} \partial_{1}^{\prime \prime} \cong \mathbf{Z} \rightarrow$ 0 . We have the natural $\mathbf{Z}\left[\pi_{1}(E)\right]$-isomorphisms $q_{j}: C_{j}\left(M_{i}\right) \otimes_{\mathbf{z}_{\left[H_{i}\right]}} \mathbf{Z}\left[\pi_{1}(E)\right] \stackrel{ }{\Longrightarrow}$ $C_{j}\left(p^{-1}\left(\partial N\left(L_{i}\right)\right)\right)$ such that $q_{j-1} \circ\left(\partial_{j}^{\prime \prime} \otimes_{\mathbf{z}\left[H_{i}\right]} i d_{\mathbf{Z}\left[\pi_{1}(E)\right]}\right)=\partial_{j}^{\prime} \circ q_{j}$ for any j. Hence, we get $H_{c}^{1}\left(p^{-1}\left(\partial N\left(L_{i}\right)\right) ; \mathbf{Z}\right)=H^{1}\left(\operatorname{Hom}_{\mathbf{Z}\left[F_{m}\right]}\left(C_{\#}\left(p^{-1}\left(\partial N\left(L_{i}\right)\right)\right), \quad \mathbf{Z}\left[F_{m}\right]\right)\right) \cong$ $H^{1}\left(\operatorname{Hom}_{\mathbf{Z}\left[F_{m}\right]}\left(C_{\#}\left(M_{i}\right) \otimes_{\mathbf{Z}\left[H_{i}\right]} \mathbf{Z}\left[\pi_{1}(E)\right], \mathbf{Z}\left[F_{m}\right]\right)\right) \cong H^{1}\left(H_{i} ; \mathbf{Z}\left[\pi_{1}(E)\right]\right)$.

We consider the following commutative diagram:

where $r_{i}: H^{1}\left(\pi_{1}(E) ; \mathbf{Z}\left[\pi_{1}(E)\right]\right) \rightarrow H^{1}\left(H_{i} ; \mathbf{Z}\left[\pi_{1}(E)\right]\right)$ is the restriction map induced by the inclusion $H_{i} G \pi_{1}(E)$ and the vertical maps are Poincare duality isomorphisms for non-compact manifolds.

Because $\partial \tilde{E}$ is an $(n+1)$-dimensional non-compact manifold, we have $H_{n+1}(\partial \tilde{E} ; \mathbf{Z})=0$. So, the kernel of ∂_{*} is isomorphic to $H_{n+1}(\tilde{E} ; \mathbf{Z})$ by the homology long exact sequence of $(\tilde{E}, \partial \widetilde{E})$. Then, we see that the kernel of r is isomorphic to $H_{n+1}(\tilde{E} ; \mathbf{Z}) \cong \mathbf{Z}^{m-1}$ by the above commutative diagram. Hence, $\bigcap_{i=1}^{m} \operatorname{Ker} r_{i}=\operatorname{Ker} r \neq\{0\}$ when $m \geq 2$. We quote the following theorem:

Theorem 2.2 ([15, p. 75, 1.1. Theorem]). Let G be a finitely generated group and let $H_{i}, 1 \leq i \leq m$, be subgroups of G. Let $r_{i}, 1 \leq i \leq m$, denote the restriction maps $H^{1}(G ; \mathbf{Z} G) \rightarrow H^{1}\left(H_{i} ; \mathbf{Z} G\right)$. If the intersection of the kernels of r_{i} is non-zero, then, either
a) G has a non-trivial decomposition $G=G_{1} *_{F} G_{2}$ with F finite and each H_{i} is conjugate to a subgroup of G_{1} or G_{2}; or
b) G has a non-trivial decomposition $G=G_{1} *_{F}$ with F finite and each H_{i} is conjugate to a subgroup of G_{1}.

We can apply Theorem 2.2 to the case that $G=\pi_{1}(E)$ and H_{i} is the infinite cyclic subgroup generated by $m_{i}^{\prime}(1 \leq i \leq m)$, since we have shown that $\bigcap_{i=1}^{m} \operatorname{Ker} r_{i} \neq\{0\}$. Since $\pi_{1}(E)$ is a free group, we see that $\pi_{1}(E)$ doesn't have a non-trivial decomposition of the case b), and we see that $\pi_{1}(E)$ has a non-trivial decomposition $\pi_{1}(E)=G_{1} * G_{2}$ such that each H_{i} is conjugate to a subgroup of G_{1} or G_{2}.

To complete the induction step we need the following two lemmas.
Lemma 2.3. Let H be a normal subgroup of A and K be a normal subgroup of B. If N is the normal closure of the subgroup of $A * B$ generated by H and K, then $(A * B) / N \cong(A / H) *(B / K)$.

This algebraic lemma can be proven easily, since $(A * B) / N$ is obtained by adding the relators H and K to the relators of $A * B$ by [10, p. 71, Th. 2.1].

Lemma 2.4. Let $L=L_{1} \cup \cdots \cup L_{m}$ be an m-component link and $L(i)=$ $L_{1} \cup \cdots \cup L_{i-1} \cup L_{i+1} \cup \cdots \cup L_{m}(1 \leq i \leq m)$ be the $(m-1)$-component sublink of L with the exterior $E(i)$. Suppose that $i(k)_{*}: \pi_{n}\left(\partial N\left(L_{k}\right)\right) \rightarrow \pi_{n}(E)$ is a 0 -map for any k and $\pi_{1}(E)$ is a free group. Then $i^{\prime}(k)_{*}: \pi_{n}\left(\partial N\left(L_{k}\right)\right) \rightarrow \pi_{n}(E(i))$ is a 0 -map for the inclusion $i^{\prime}(k): \partial N\left(L_{k}\right) \rightarrow E(i)(k \neq i)$ and $\pi_{1}(E(i))$ is a free group.

Proof of Lemma 2.4. The first statement is easy: Since $i(k)_{*}: \pi_{n}\left(\partial N\left(L_{k}\right)\right)$ $\rightarrow \pi_{n}(E)$ is a 0 -map for any k and $i^{\prime}(k)$ is the composition of $i(k)$ and the inclusion $E \hookrightarrow E(i)$, we see that $i^{\prime}(k)_{*}: \pi_{n}\left(\partial N\left(L_{k}\right)\right) \rightarrow \pi_{n}(E(i))$ is a $0-m a p(k \neq i)$.

Now we will prove the other statement. Since each component $\partial N\left(L_{k}\right)$ of ∂E is homeomorphic to $S^{1} \times S^{n}$ and $i(k)_{*}: \pi_{n}\left(\partial N\left(L_{k}\right)\right) \rightarrow \pi_{n}(E)$ is a 0-map for any k, we see that $i(k)_{*}: H_{n}\left(p^{-1}\left(\partial N\left(L_{k}\right)\right) ; \mathbf{Z}\right) \rightarrow H_{n}(\tilde{E} ; \mathbf{Z})$ is a 0 -map for any k and hence $H_{n}(\partial \tilde{E} ; \mathbf{Z}) \rightarrow H_{n}(\tilde{E} ; \mathbf{Z})$ is a 0 -map for the inclusion $\partial \widetilde{E} \leftrightarrows \widetilde{E}$. Then $\partial_{*}: H_{n+1}(\tilde{E}, \partial \widetilde{E} ; \mathbf{Z}) \rightarrow H_{n}(\partial \tilde{E} ; \mathbf{Z})$ is surjective by the homology long exact sequence of $(\widetilde{E}, \partial \widetilde{E})$. So, r is surjective by the above commutative diagram, and hence each r_{i} is surjective.

So, we can use the following result given in [3].
Proposition 2.5 ([3, p. 246]). Let H be an infinite cyclic subgroup of the finitely generated group G. If the restriction map res: $H^{1}(G, \mathbf{Z} G) \rightarrow$ $H^{1}(H, \mathbf{Z} G)$ is surjective, then H is a free factor of G.

By Proposition 2.5 there is a free group K_{i} such that $\pi_{1}(E)=H_{i} * K_{i}$ for any i. Hence, by Lemma 2.3 the fundamental group $\pi_{1}(E(i))=\pi_{1}(E) / N H_{i}$ of the exterior of the $(m-1)$-component sublink $L(i)$ of L is isomorphic to the free group K_{i}, where $N H_{i}$ is the normal closure of H_{i}. The proof of Lemma 2.4 is complete. q.e.d.

Recall that $\pi_{1}(E)$ has a non-trivial decomposition $\pi_{1}(E)=G_{1} * G_{2}$ such
that each H_{i} is conjugate to a subgroup of G_{1} or G_{2}. Since $\pi_{1}(E)=N\left\langle m_{i}^{\prime} ; 1 \leq\right.$ $i \leq m\rangle$, by Lemma 2.3 and reordering indices, there are an integer ℓ with $2 \leq \ell \leq m-1$ and $g_{i} \in \pi_{1}(E)$ with $1 \leq i \leq m$ such that $g_{i} m_{i}^{\prime} g_{i}^{-1} \in G_{1}$ for $1 \leq i \leq \ell \quad$ and $\quad g_{i} m_{i}^{\prime} g_{i}^{-1} \in G_{2}$ for $\ell+1 \leq i \leq m$. Here $N\left\langle m_{i}^{\prime} ; 1 \leq i \leq m\right\rangle$ denotes the normal closure of the subgroup generated by $m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{m}^{\prime}$.

Now we will show that G_{1}, G_{2} are isomorphic to the fundamental groups of the exteriors of the sublinks of L which satisfy the assumption in Proposition 2.1 and $g_{i} m_{i}^{\prime} g_{i}^{-1} \in G_{1}$ or G_{2} correspond to those meridians. Let $N K$ denote the normal closure in $\pi_{1}(E)$ of a subgroup K and $N_{i} K_{i}$ denote the normal closure in G_{i} of a subgroup K_{i} of $G_{i}(i=1,2)$ and $\left\langle x_{i} ; 1 \leq i \leq k\right\rangle$ denote the subgroup of G_{1}, G_{2} or $\pi_{1}(E)$ generated by k number of elements $x_{1}, x_{2}, \ldots, x_{k}$. Since $N\left\langle m_{i}^{\prime} ; \ell+1 \leq i \leq m\right\rangle=N\left(N_{2}\left\langle g_{i} m_{i}^{\prime} g_{i}^{-1} ; \ell+1 \leq i \leq m\right\rangle\right)$, the fundamental group $\pi_{1}(E) / N\left\langle m_{i}^{\prime} ; \ell+1 \leq i \leq m\right\rangle$ of the exterior of the sublink L_{1} $\cup \cdots \cup L_{\ell}$ of L is isomorphic to $G_{1} *\left(G_{2} / N_{2}\left\langle g_{i} m_{i}^{\prime} g_{i}^{-1} ; \ell+1 \leq i \leq m\right\rangle\right)$ by Lemma 2.3. Because $\pi_{1}(E)=N\left\langle m_{i}^{\prime} ; 1 \leq i \leq m\right\rangle$, by Lemma 2.3 we get ($G_{1} /$ $\left.N_{1}\left\langle g_{i} m_{i}^{\prime} g_{i}^{-1} ; 1 \leq i \leq \ell\right\rangle\right) *\left(G_{2} / N_{2}\left\langle g_{i} m_{i}^{\prime} g_{i}^{-1} ; \ell+1 \leq i \leq m\right\rangle\right)=\pi_{1}(E) / N\left\langle m_{i}^{\prime} ;\right.$ $1 \leq i \leq m\rangle=\{1\}$. Then, $G_{2} / N_{2}\left\langle g_{i} m_{i}^{\prime} g_{i}^{-1} ; \ell+1 \leq i \leq m\right\rangle=\{1\}$. Hence, G_{1} is isomorphic to the fundamental group of the exterior of the sublink $L_{1} \cup \cdots \cup L_{\ell}$ of L, and $g_{i} m_{i}^{\prime} g_{i}^{-1} \in G_{1}(1 \leq i \leq \ell)$ correspond to its meridians. Similarly G_{2} is isomorphic to the fundamental group of the exterior of the sublink $L_{\ell+1} \cup \cdots \cup L_{m}$ of L, and $g_{i} m_{i}^{\prime} g_{i}^{-1} \in G_{2}(\ell+1 \leq i \leq m)$ correspond to its meridians.

By an inductive argument on the number of compoments of sublinks, Lemma 2.4 implies that two sublinks $L_{1} \cup \cdots \cup L_{\ell}$ and $L_{\ell+1} \cup \cdots \cup L_{m}$ of L satisfy the assumption in Proposition 2.1. Then, by the inductive hypothesis in the proof of Proposition 2.1, we have that $L_{1} \cup \cdots \cup L_{\ell}$ and $L_{\ell+1} \cup \cdots \cup L_{m}$ are boundary links. Hence, as mentioned above, we see that each G_{i} is generated by the meridians in it, that is, there exist $h_{i} \in \pi_{1}(E)(1 \leq i \leq m)$ such that $h_{i} \in G_{1}(1 \leq i \leq \ell)$ and G_{1} is generated by $m_{i}=h_{i} g_{i} m_{i}^{\prime} g_{i}^{-1} h_{i}^{-1}(1 \leq i \leq \ell)$, and $h_{i} \in G_{2} \quad(\ell+1 \leq i \leq m)$ and G_{2} is generated by $m_{i}=h_{i} g_{i} m_{i}^{\prime} g_{i}^{-1} h_{i}^{-1}$ $(\ell+1 \leq i \leq m)$. Hence $\pi_{1}(E)$ is generated by m number of meridians $\left\{m_{i}\right\}$. This implies that L is boundary as mentioned above. q.e.d.

Now L is a boundary link by Proposition 2.1. So, L is trivial by the unlinking criterion [1], [6]. This completes the proof of Theorem 1.

References

[1] S. Cappell, A splitting theorem for manifolds, Invent. Math., 33 (1976), 69-170.
[2] K. G. Choo, K. Y. Lam and E. Luft, On free products of rings and the coherence property, Algebraic K-theory II, Lecture Notes in Math., 342 (ed. H. Bass) Springer-Verlag (1973), 135-143.
[3] M. J. Dunwoody, Recognizing free factors, Homological methods in Group Theory (ed. C.T.C.Wall) Cambridge Univ. Press (1979), 245-249.
[4] M. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Math. Series 39, Princeton Univ. Press, Princeton, 1990.
[5] J. C. Gómez-Larrañaga and F. González-Acuña, Lusternik-Schnirelmann category of 3manifolds, Topology, 31 (1992), 791-800.
[6] M. A. Gutiérrez, Boundary links and an unlinking theorem, Trans. Amer. Math. Soc., 171 (1972), 491-499.
[7] R. C, Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. of Math. Studies 88, Princeton Univ., 1977.
[8] K. Komatsu, On links whose complements have the Lusternik-Schnirelmann category one, Hiroshima Math. J., 24 (1994), 473-483.
[9] J. Levine, Unknotting spheres in codimension two, Topology, 4 (1965), 9-16.
[10] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1969.
[11] T. Matumoto, Lusternik-Schnirelmann category and knot complement, J. Fac. Sci. Univ. Tokyo, 37 (1990), 103-107.
[12] B. Mitchell, On the dimensional of objects and categories I. Monoids, J. Algebra, 9 (1968), 314-340.
[13] C. D. Papakyriakopolous, On Dehn's lemma and the asphericity of knots, Ann. of Math., 66 (1957), 1-26.
[14] J. L. Shaneson, Embeddings with codimension two of spheres in spheres and h-cobordisms of $S^{1} \times S^{3}$, Bull. Amer. Math. Soc., 74 (1968), 972-974.
[15] G. A. Swarup, Relative version of a theorem of Stallings, J. Pure Appl. Algebra, 11 (1977), 75-82.
[16] F. Waldhausen, Whitehead groups of generalized free products, Algebraic K-theory II, Lecture Notes in Math., 342 (ed. H. Bass) Springer-Verlag (1973), 155-179.

Department of Mathematics
Faculty of Science
Kochi University
Kochi 780 Japan

