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Links with homotopically trivial complements are trivial
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1. Introduction

A smooth (resp. PL locally flat or locally flat) m-component link L stands
for m embedded disjoint n-spheres L t U •••U Lm in Sn+2. A knot is nothing
but a 1-component link. A smooth (resp. PL locally flat or locally flat)
m-component link is called trivial if it bounds m smoothly (resp. PL locally

flatly or locally flatly) embedded disjoint (n + l)-disks. The complement of a
trivial knot has the homotopy type of a circle S1. The converse is known
to be true for a locally flat knot. The converse is also known to be true for
a smooth (or PL locally flat) knot when n + 2 ([9] for n > 4, [14] for n = 3

and [13] for n= 1). The complement of a trivial m-component link has the

homotopy type of a one point union (V/l1S i

1) VίVjtVS"* 1 ) of circles and
(n + l)-spheres. So, there arises a natural question whether a link is trivial
if the complement of the link has the homotopy type of a one point union

of spheres. One of the purposes of this paper is to settle this question
affirmatively provided that n + 2:

THEOREM 1. Let L<= Sn+2 be a smooth (resp. PL locally flat or locally flat)

m-component link such that Sn + 2 — L has the homotopy type of (\lmS*)V
(Vm_!5π + 1). Suppose that nφl. Then L is trivial.

A one point union of spheres has a special property that it is covered
by two subsets which are contractible. This property itself is not a homotopy
type invariant and a better notion is that it has Lusternik-Schnirelmann
category one. The category cat X of a space X is the least integer n such

that X can be covered by n -I- 1 number of open subsets each of which is

contractible to a point in X. In particular, cat X is a homotopy type invariant
and cat((V m 5 1 )V(V m _ 1 S n + 1 ))= 1. We know that π^X) is a free group if
X is a manifold and catX = 1 (cf. [5]).

A locally flat knot (Sn+2, Sn) is topologically unknotted if and only if the
category of its complement is one [11]. In fact, cat(Sn+2 — Sn) = 1 if and

only if Sn+2 - Sn has the homotopy type of S1. So, a smooth (or PL locally
flat) knot (Sn+2

9 Sn) is unknotted if and only if cat (Sn+2 - Sn) = 1 when n φ 2.
By Theorem 1 of [8] the link complement Sn+2 — L has the homotopy
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t y p e o f ( V w ί S
1 ) V ( V m _ 1 5 π + 1 ) i f c a t ( 5 l l + 2 - L ) = l . So, Theorem 1 implies the

following theorem.

THEOREM 2. Let L be a smooth (resp. PL locally flat or locally flat)
m-component link in Sn + 2. Suppose that nφl. Then L is trivial if and only
*/cat(Sn + 2 - L ) = l .

A classical link L is trivial if π^S3 — L) is free by the loop theorem [13].
So, Theorem 1 is already known for n = 1. If Sn+2 — L has the homotopy
type of (V^.51) V(V m _ 1 5 π + 1 ) , we will show that L is a boundary link in
§2. Then, we see that L is trivial by the unlinking criterion of boundary
links due to Gutierrez ([6] for n > 4 and use the splitting theorem [1] for
n = 3).

The dimensional restriction can be removed for the case of knot by
considering homeomorphism rather than diffeomorphism but remains unknown
for the case of 2-dimensional link [4].

Theorem 2 has been conjectured by Professor T. Matumoto to whom the
author would like to express his sincere gratitude for suggesting the problem.

2. Proof of Theorem 1

In the proof the link exterior E = Sn+2 — Int N(L) is more useful than
the link complement Sn+2 — L where N(L) denotes a tubular neighborhood of
L; £ is a compact manifold with boundary dE = dN(L) and has the homotopy
type of the link complement. By the unlinking criterion of boundary links
due to Gutierrez [1], [6] it suffices to show that L is a boundary link if
Sn+2-L has the homotopy type of (V^1) V(V m _ 1 < S / l + 1 ) . We recall the
definition of a boundary link a smooth (resp. PL locally flat or locally flat)
m-component link is boundary if it bounds a Seifert manifold which consists
of m disjoint compact smooth (resp. PL locally flat or locally flat)
(n + l)-submanifolds with connected boundary. We remark that an element
of π1 (E) is called meridian if it is conjugate to a generator of the fundamental
group of some component S1 x Sn of dE. We will find m number of meridians
Wι,...,wm which generate π±(E)\ this is a necessary and sufficient condition
for the link to be boundary in our case that π i ( E ) is a free group by [6,
p. 493, Prop. 3] and [10, p. 109, Cor. 2.12].

Let i(k): dN(Lk)^E be the inclusion map for k. Then, i(k)^: πn(dN(Lk))-+
πn(E) is a 0-map for any fe, since πn(E) = 0. So, it suffices to show the
following proposition in order to prove Theorem 1.

PROPOSITION 2.1. Let L be an m-component link and i(k): dN(Lk)^> E be
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the inclusion map for a component Lk of the link L. Suppose that π±(E) is a

free group and i(k)^: πn(dN(Lk)) -> πn(E) is a 0-map for any k. Then, L is

boundary.

PROOF. By induction on m we will prove Proposition 2.1. Note that
πι(E) is a free group Fm of rank m. The case when m = 1 is proven because
π^E) is isomorphic to an infinite cyclic group Z and it is generated by any
meridian. So, we may assume that m>2. Suppose that Proposition 2.1 is
true for any j-component sublink L' of L(J < m) which satisfies the assumption
in Proposition 2.1 that i'(k)+:πn(dN(Lk))-*πn(E') is a 0-map for any
component Lk of L' and π±(E') is a free group. Here L is a sublink of L
with the exterior E' and i'(fc): dN(Lk)-+E' is the inclusion for a component
Lk of L. We fix m number of meridians m(, mr

2ί...,m^ of L corresponding
to the components dN^J, dN(L2),...,dN(Lm) of dE. Let //^c π^E)) be an
infinite cyclic subgroup generated by m .

Even when (E, dE) admits no triangulation, (E, dE) has the simple
homotopy type of a finite Poincare complex by [7, III, §4] and we will
denote by (E, dE) this finite Poincare complex instead of the original link
exterior in this case. Let p: E -> E be the universal covering of E and put
dE = p~1(dE). Let H*(X; Z) denote the cohomology with compact support
of X. Since the CW complex pair (E, dE) has the proper homotopy type of
the universal covering of the original link exterior, we can apply the Poincare
duality theorem for the non-compact manifold and see that the left
Z[FJ-module #n+1(£, 3£; Z) is anti-Z[FJ isomorphic to the right Z[FJ-
module Hl

c(E; Z) and the left Z[FJ-module HΛ(p'l(dN(L^)ι Z) is anti-Z[FJ
isomorphic to the right Z[FJ-module H^(p~l(dN(Li)); Z).

We recall the relationship between homology of free coverings and
cohomology of groups. Let C#(X) denote the cellular chain complex of a
cellular complex X and Cf(X) denote the cellular cochain complex with
compact support of a cellular complex X. We see that Cf(E) is cochain
equivalent to the cochain complex HomZ[Fm] (C#(E), Z[Fm]), and that
Cf(p~i(dN(Li))) is cochain equivalent to the cochain complex HomZ[Fm](C#

(p-^δΛΓCLj))), Z[FJ) as in the proof of Lemma 2.1 (2) of [8]. Let H*(HΓzG)
denote the cohomology of a group H with coefficient ZG. Note that the
kernel of Z[Fm]-homomorphism between finitely generated projective Z[Fm]-
modules is a finitely generated projective Z[Fm]-module. In fact, it is
projective because Z[Fm] has the global dimension two due to [12, p. 326,
Cor. 2.7], and finitely generated because Z[Fm] is coherent [2, p. 137, Th. (2.1)],
[16, p. 158, Prop.]. Note that the cellular chain complexes (C#(£), d#} and
{C#(p~1(dN(Li)))9 d#} are chain complexes of finitely generated free Z[FW]-
modules and Z[Fm]-homomorphisms.
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Since E is the universal covering, H1(£;Z) = 0. Then, we have the

following projective resolution of Z over Z>[πl(E)'] = Z[Fm]: 0->Ker d2 c;

C2(E) •&> C, (E) ±* C0(£) -> C0(£)/Im d, s Z -> 0. Hence, we get f/,1 (£ Z) ̂

H^Homz^j (Q(£), Z[FJ)) s H^π^E); Z[Wl(£)]).
Let Mf denote one of the connected components of p 1(dN(Li)). Note

that the cellular chain complex {C#(M;), δ#} of Mf is a chain complex of

finitely genereted free Z^J-modules. Since M, is the universal covering of

p(Mf), H^Mi', Z) = 0. Then, we have the following projective resolution of Z

over ZC/ίJ : 0 -> Ker 0; c> C2(Mf) ̂  C^M,) -̂  C0(Af,) -̂  C0(Af ,)/Im δί s Z -̂

0. We have the natural Z^^E)] -isomorphisms #,-: C](Mj) (x)z[fl,]^[πι(^)] •"*

Cj(p~l(dN(L^)) such that ^_ j o (δ; <g)ZIHϊ] ίdz[jeι(£)]) = δj ° qj for any . Hence,

we get Ht(p-i(dN(L^ Z) = H^Hom^^C^-

H^Homz^ίQίM,) (Sz^ZCπ^E)], Z[FJ)) £ H1

We consider the following commutative diagram:

+ l(E9 SE; Z) Hn(δ£; Z) = ®?^Hn{p-l(dN(Lύ)'9 Z)

ί I-
H}(E; Z) — , Θ^iHcίp '̂ ίL,)); Z)

where r,: H^ r^E); Z[^(£)])-> H1^; Z[^(£)]) is the restriction map

induced by the inclusion Ht c+π^E) and the vertical maps are Poincare duality

isomorphisms for non-compact manifolds.

Because dE is an (n + l)-dimensional non-compact manifold, we have

Hn+l(dE; Z) = 0. So, the kernel of d* is isomorphic to Hn+1(E; Z) by the

homology long exact sequence of (£, dE). Then, we see that the kernel of r

is isomorphic to Hn+l(E\ Z) ̂  Z"1"1 by the above commutative diagram.

Hence, ΠΓ=ι Ker ri = Ker r / {0} when m>2. We quote the following
theorem:

THEOREM 2.2 ([15, p. 75, 1.1. Theorem]). Let G be a finitely generated

group and let Hh 1 < ί < m, be subgroups of G. Let rh 1 < i < m, denote

the restriction maps H1(G; ZG) -^H1^; ZG). If the intersection of the

kernels of r{ is non-zero, then, either

a) G has a non-trivial decomposition G = Gx *FG2 w/fλ F finite and each Hf

is conjugate to a subgroup of Gί or G2; or

b) G A&s α non-trivial decomposition G = Gx *F w//Λ F ^«/ίe α«ί/ each Ht is

conjugate to a subgroup of Gί.
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We can apply Theorem 2.2 to the case that G = πx(£) and Ht is the
infinite cyclic subgroup generated by m (1 < i < w), since we have shown that
ΠΓ=ι Ker rt Φ {0}. Since π^E) is a free group, we see that πx(£) doesn't have
a non-trivial decomposition of the case b), and we see that π^E) has a
non-trivial decomposition π1(£) = G 1 *G 2 such that each Ht is conjugate to
a subgroup of Gx or G2.

To complete the induction step we need the following two lemmas.

LEMMA 2.3. Let H be a normal subgroup of A and K be a normal subgroup
of B. If N is the normal closure of the subgroup of A * B generated by H
and K, then (A *B)/N s (A/H)*(B/K).

This algebraic lemma can be proven easily, since (A*B)/N is obtained
by adding the relators H and K to the relators of A * B by [10, p. 71, Th. 2.1].

LEMMA 2.4. Let L = L 1 U U L m be an m-component link and L(ϊ) =
I^U •••U L,-ι UL ί + 1 U " U Lm (1 < i < m) be the (m — \\component sublink of
L with the exterior E(ΐ). Suppose that i(k)^: πn(dN(Lk)) -* πn(E) is a §-map
for any k and π ί ( E ) is a free group. Then Γ(fc)#: πn(dN(Lk))-+πn(E(i)) is a
Q-map for the inclusion i'(k): dN(Lk) -> E(i) (k φ i) and π1(£(i)) is a free group.

PROOF OF LEMMA 2.4. The first statement is easy: Since i(k)^: πn(dN(Lk))
-»πn(E) is a 0-map for any k and ι'(fc) is the composition of i(k) and the
inclusion E c; £(i), we see that i'(k)^: πn(dN(Lk)) -> πn(E(i)) is a 0-map (k φ i).

Now we will prove the other statement. Since each component dN(Lk)
of BE is homeomorphic to S1 x Sn and i(k)^: πn(dN(Lk))^πn(E) is a 0-map
for any k, we see that i(k)^: Hn(p'1(dN(L1^);Z) ^Ha(E'9Z) is a 0-map for
any k and hence Hn(dE; Z)-^ Hn(E\ Z) is a 0-map for the inclusion
dE q: E. Then d+: Hn+l(E, dE\ Z) -> HΠ(δE; Z) is surjective by the homology
long exact sequence of (£, dE). So, r is surjective by the above commutative
diagram, and hence each rf is surjective.

So, we can use the following result given in [3].

PROPOSITION 2.5 ([3, p. 246]). Let H be an infinite cyclic subgroup of
the finitely generated group G. If the restriction map res: fί1(G, ZG) ->
Hl(H, ZG) is surjective, then H is a free factor of G.

By Proposition 2.5 there is a free group Kt such that n^(E) = H^Ki for
any i. Hence, by Lemma 2.3 the fundamental group πι(E(i)) = π1(E)/NHi of
the exterior of the (m — l)-component sublink L(i) of L is isomorphic to the
free group Ki9 where NHt is the normal closure of Ht. The proof of Lemma
2.4 is complete. q.e.d.

Recall that πt(£) has a non-trivial decomposition π1(E) = G 1 *G 2 such
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that each Ht is conjugate to a subgroup of G± or G2. Since π^E) = N<jn{ 1 <
ϊ < w > , by Lemma 2.3 and reordering indices, there are an integer / with
2 < / < m — 1 and g^n^E) with 1 < ί < m such that ^m ^"1 e^ι f°r

1 < i < / and ^m^f~* e G2 for / + 1 < ί < m. Here N<wί 1 < * < w>
denotes the normal closure of the subgroup generated by wj , m29...,m

f

m.
Now we will show that G1 ? G2 are isomorphic to the fundamental groups

of the exteriors of the sublinks of L which satisfy the assumption in Proposition
2.1 and gimίg^1€G1 or G2 correspond to those meridians. Let NK denote
the normal closure in π±(E) of a subgroup K and NtKi denote the normal
closure in Gf of a subgroup Kt of Gt(i = 1, 2) and <x, ; 1 < ί < fe> denote the
subgroup of G!, G2 or π^E) generated by k number of elements x1? x2,...,xk.
Since N^m ; / + 1 < i < m> = N(N2<,gim'ig^\ / -h 1 < ϊ < m»), the funda-
mental group π1(£)/ΛΓ<m ί

/; *f -h 1 < i < m> of the exterior of the sublink L :

U U L ^ of L is isomorphic to G± *(G2/N2^gim g^ / + 1 < i< m» by
Lemma 2.3. Because πx(£) = ΛΓ<m ; 1 < ϊ < m>, by Lemma 2.3 we get (Gl/

N^gtmίgΓ1; 1 < i < O)*(G2/N2<,gim
f

lgΓ1l S + 1 < i < m» = ^(£)/N<m/;
1 < i < m> = {!}. Then, G2/N2(gim'igr1; S + 1 < i < m> = {!}. Hence, Gj
is isomorphic to the fundamental group of the exterior of the sublink
Z^U Ulv of L, and ^I /w/^ ί~

1eG1 ( ! < / < / ) correspond to its meridians.
Similarly G2 is isomorphic to the fundamental group of the exterior of the
sublink L^+1 U •••U Lm of L, and gίm g^1EG2(^' + 1 < i < m) correspond to its
meridians.

By an inductive argument on the number of compoments of sublinks,
Lemma 2.4 implies that two sublinks L j U U L ^ and L,+ 1U U L m of L
satisfy the assumption in Proposition 2.1. Then, by the inductive hypothesis
in the proof of Proposition 2.1, we have that L t U " U L, an(l £*+ι U - - - U Lw

are boundary links. Hence, as mentioned above, we see that each Gf is
generated by the meridians in it, that is, there exist h^n^E) (1 < i < m) such
that hieGi (1 < i < /) and Gx is generated by mf = Λ i f i f i m i ' g f f 1 Λ i ~

1 (1 ̂  i ̂  0»
and /ι feG 2 (/ + 1 < i < m) and G2 is generated by mt = higim'igi'ίh^1

(ί + 1 < i < m). Hence π1(E) is generated by m number of meridians
(mj. This implies that L is boundary as mentioned above. q.e.d.

Now L is a boundary link by Proposition 2.1. So, L is trivial by the
unlinking criterion [1], [6]. This completes the proof of Theorem 1.
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