The products $\boldsymbol{\beta}_{s} \boldsymbol{\beta}_{t p / p}$ in the stable homotopy of $\boldsymbol{L}_{\mathbf{2}}$-localized spheres

Dedicated to Professor Seiya Sasao on his 60 th birthday

Katsumi Shmomura
(Received April 4, 1994)

1. Introduction

The β-elements in the stable homotopy groups $\pi_{*}\left(S^{0}\right)$ of spheres at the prime >3 are introduced by H. Toda ([20]) and generalized by L. Smith ([19]) and S. Oka ([4], [5], [6]). In [3], H. Miller, D. Ravenel and S. Wilson presented that the Adams-Novikov spectral sequence is powerful to study the stable homotopy groups of spheres, and gave the way to define the generalized Greek letter elements in its E_{2}-term including β-elements. S. Oka [7], [8] and H. Sadofsky [11] showed that some of those β-elements are permanent cycles.
S. Oka and the author has studied about the product of these β-elements in the homotopy groups $\pi_{*}\left(S^{0}\right)([9],[12],[13],[14],[15])$ and show whether or not the products of the form $\beta_{s} \beta_{t p / j}$ are trivial except for the case where

$$
j=p, s=r p+1, p \nmid t \quad \text { and } \quad p^{n+1} \mid r+t+p^{n} \quad \text { for some } n \geq 0 .
$$

Here β_{s} for $s>0$ and $\beta_{t p / j}$ for $j, t>1$ are the β-elements given by L. Smith and S. Oka. In the recent work [18], A. Yabe and the author have determined the homotopy groups of L_{2}-local spheres, where L_{2} stands for the Bousfield localization functor with respect to the Johnson-Wilson spectrum $E(2)$ with the coefficient ring $\boldsymbol{Z}_{(p)}\left[v_{1}, v_{2}, v_{2}^{-1}\right]$ (cf. [1], [10]). In this paper we show the triviality of the product of β-elements in the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ for the above exceptional case (see Theorem 3.3). Consider the map $l_{*}: \pi_{*}\left(S^{0}\right) \rightarrow$ $\pi_{*}\left(L_{2} S^{0}\right)$ induced from the localization map $l: S^{0} \rightarrow L_{2} S^{0}$. We notice that if $l_{*}(x)=l_{*}(y)$ in the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$, then $x \equiv y \bmod F_{5}$ in $\pi_{*}\left(S^{0}\right)$, where F_{i} denotes the Adams-Novikov filtration.

Together with known results, we obtain
Theorem 1.1. Let s and t be positive integers. Then in the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right), \beta_{s} \beta_{t p / p}=0$ if and only if one of the following condition holds:

1) $p \mid s t$ or
2) $s=r p+1$ and $p^{n+1} \mid r+t+p^{n}$ for some integers r and $n \geq 0$.

Note that $\beta_{p / p}$ is not a homotopy element of $\pi_{*}\left(S^{0}\right)$, but of $\pi_{*}\left(L_{2} S^{0}\right)$. Using the relation $\beta_{s} \beta_{t p^{2} / p, 2}=\beta_{s+t\left(p^{2}-p\right)} \beta_{t p / p}$ of [9, Prop. 6.1] in the E_{2}-term, we have

Corollary 1.2. For positive integers s and t, in the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right), \beta_{s} \beta_{t p^{2} / p, 2}=0$ if and only if one of the following condition holds:

1) $p \mid s t$ or
2) $s=r p+1$ and $p^{n+1} \mid r+t p+p^{n}$ for some $n \geq 0$.

Theorem 1.1 must be a corollary of the result of [18], but it seems hard to tell which generator of $\pi_{*}\left(L_{2} S^{0}\right)$ given there corresponds to our product. So we here prove the theorem directly.

2. β-elements

Let (A, Γ) denote the Hopf algebroid associated to the Johnson-Wilson spectrum $E(2)$, that is,

$$
\begin{aligned}
& A=E(2)_{*}=Z_{(p)}\left[v_{1}, v_{2}, v_{2}^{-1}\right] \text { and } \\
& \Gamma=E(2)_{*}(E(2))=E(2)_{*}\left[t_{1}, t_{2}, \cdots\right] /\left(\eta_{R}\left(v_{i}\right): i>2\right),
\end{aligned}
$$

where $\eta_{R}: B P_{*} \rightarrow B P_{*}(B P) \rightarrow E(2)_{*}\left[t_{1}, t_{2}, \cdots\right]$ denotes the right unit map of the Hopf algebroid associated to the Brown-Peterson spectrum $B P$ at the prime p. Here p denotes a prime number greater than 3. Then there is the Adams-Novikov spectral sequence converging to the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ of $E(2)_{*}$-local spheres S^{0} with E_{2}-term $E_{2}^{*}=\operatorname{Ext}_{\Gamma}^{*}(A, A)$ (cf. [10], [1]). In order to compute the E_{2}-term, Miller, Ravenel and Wilson [3] introduced the chromatic spectral sequence associated to the short exact sequences

$$
\begin{equation*}
0 \longrightarrow N_{0}^{i} \hookrightarrow M_{0}^{i} \longrightarrow N_{0}^{i+1} \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

for $i \geq 0$, where $N_{0}^{0}=A=E(2)_{*}, M_{0}^{i}=v_{i}^{-1} N_{0}^{i}$ and N_{0}^{i+1} is the cokernel of the inclusion $N_{0}^{i} \subset M_{0}^{i}$. Note that $M_{0}^{2}=N_{0}^{2}$ and $M_{0}^{i}=0$ if $i>2$. The E_{1}-term is $\operatorname{Ext}^{*}\left(M_{0}^{i}\right)$ and the abutment is $\operatorname{Ext}{ }^{*}\left(N_{0}^{0}\right)$ that is the E_{2}-term of the Adams-Novikov spectral sequence. Hereafter we use the abbreviation

$$
\operatorname{Ext}^{k}(M)=\operatorname{Ext}_{\Gamma}^{k}(A, M)
$$

for a Γ-comodule M. We deduce that $\operatorname{Ext}^{i}\left(M_{0}^{2}\right)=0$ if $i>4$ by the Bockstein spectral sequence from Morava's vanishing line theorem that says $\operatorname{Ext}^{i}\left(E(2)_{*} /\right.$ $\left.\left(p, v_{1}\right)\right)=0$ if $i>4$. This implies $\operatorname{Ext}^{i}\left(N_{0}^{0}\right)=0$ if $i>6$ by the chromatic
spectral sequence. By this, the Adams-Novikov spectral sequence collapses and arises no extension problem. Thus the E_{2}-term $\operatorname{Ext}{ }^{*}\left(N_{0}^{0}\right)$ equals to the abutment $\pi_{*}\left(L_{2} S^{0}\right)$. And we identify these two algebras. Consider the connecting homomorphisms associated to the short exact sequences (2.1) for $i=0$ and 1 :

$$
\begin{aligned}
& \delta_{0}: \operatorname{Ext}^{k}\left(N_{0}^{1}\right) \longrightarrow \operatorname{Ext}^{k+1}\left(N_{0}^{0}\right) \text { and } \\
& \delta_{1}: \operatorname{Ext}^{k}\left(N_{0}^{2}\right) \longrightarrow \operatorname{Ext}^{k+1}\left(N_{0}^{1}\right) .
\end{aligned}
$$

Then the β-elements in the E_{2}-term of the Adams-Novikov spectral sequence are defined by:

$$
\begin{align*}
& \beta_{s}=\delta_{0} \delta_{1}\left(v_{2}^{s} / p v_{1}\right) \in \operatorname{Ext}^{2}\left(N_{0}^{0}\right)=\pi_{*}\left(L_{2} S^{0}\right) \text { and } \tag{2.2}\\
& \beta_{t p / p}=\delta_{0} \delta_{1}\left(v_{2}^{t p} / p v_{1}^{p}\right) \in \operatorname{Ext}^{2}\left(N_{0}^{0}\right)=\pi_{*}\left(L_{2} S^{0}\right) .
\end{align*}
$$

Here we state the relation between these β-elements and the β-elements in $\pi_{*}\left(S^{0}\right)$. Combining the results of [20], [5], [2] and [3], we have

Theorem 2.3. β_{s} for $s>0$ and $\beta_{t p / p}$ for $t>1$ are pulled back to the homotopy groups $\pi_{*}\left(S^{0}\right)$ of spheres under the localization map $l_{*}: \pi_{*}\left(S^{0}\right) \rightarrow$ $\pi_{*}\left(L_{2} S^{0}\right)$.

As to the representative of $\beta_{t p / p}$ in the cobar complex, we recall [9, Lemma 4.4]

Lemma 2.4. In the cobar complex $\Omega_{\Gamma}^{2} A=\Gamma \otimes_{A} \Gamma$,

$$
\beta_{t p / p}=-t v_{2}^{t p-1} g_{0}
$$

for an integer t, where $g_{0}=v_{2}^{-p}\left(t_{1} \otimes t_{2}^{p}+t_{2} \otimes t_{1}^{p^{2}}\right)$.

3. Triviality of the products

In our proof of the triviality of the products, we construct cochains that bounds the products. For this sake, we recall [3, Prop. 5.4] the elements x_{i} such that

$$
\begin{equation*}
d_{0}\left(x_{i}\right) \equiv v_{1}^{a_{i}} v_{2}^{(p-1) p^{i-1}}\left(2 t_{1}-v_{1} \zeta\right) \bmod \left(p, v_{1}^{2+a_{i}}\right) \tag{3.1}
\end{equation*}
$$

for $i>1$, where $d_{0}: A \rightarrow \Gamma=\Omega_{\Gamma}^{1} A$ is the differential defined by $d_{0}=\eta_{R}-\eta_{L}$ for the right and the left units η_{R} and η_{L}, and $\zeta=v_{2}^{-1} t_{2}+v_{2}^{-p}\left(t_{2}^{p}-t_{1}^{p^{2}+p}\right)$.

Lemma 3.2. For any integers t and $n>0, v_{2}^{(t p-1) p^{n}} / p v_{1} \otimes g_{0}=0$ in $\operatorname{Ext}^{2}\left(M_{0}^{2}\right)$.

Proof. Consider the element $\xi=1 / t p^{n+2} v_{1}^{p^{n+1}+p^{n}} \otimes d_{0}\left(x_{n+1}^{t}\right)$ of the cobar
complex $\Omega_{\Gamma}^{1} M_{0}^{2}=M_{0}^{2} \otimes_{A} \Gamma$. The differential $d_{1}: \Omega_{\Gamma}^{1} M_{0}^{2} \rightarrow \Omega_{\Gamma}^{2} M_{0}^{2}$ satisfies the relation $\quad d_{1}\left(1 / p^{i} v_{1}^{j} \otimes x\right)=1 / p^{i} v_{1}^{j} \otimes d_{1}(x)+d_{0}\left(1 / p^{i} v_{1}^{j}\right) \otimes x \quad$ for $\quad x \in \Omega_{\Gamma}^{1} A=\Gamma$. Furthermore, $d_{1} d_{0}=0, \quad d_{0}\left(v_{1}\right)=p t_{1} \in \Gamma, \quad d_{0}\left(v_{2}\right) \equiv v_{1} t_{1}^{p} \bmod \left(p, v_{1}^{p}\right) \in \Gamma$ and $d_{1}\left(t_{1}\right)=0 \in \Gamma \otimes_{A} \Gamma$. So we compute

$$
\begin{align*}
d_{1}(\xi) & =-1 / t p v_{1}^{p^{n+1}+p^{n+1} \otimes t_{1} \otimes d_{0}\left(x_{n+1}^{t}\right)} \\
& =-1 / p v_{1}^{2} \otimes t_{1} \otimes v_{2}^{(t p-1) p^{n}}\left(2 t_{1}-v_{1} \zeta\right) \tag{3.1}\\
& =d_{1}\left(v_{2}^{(t p-1) p^{n}} / p v_{1}^{2} \otimes t_{1}^{2}\right)+v_{2}^{(t p-1) p^{n}} / p v_{1} \otimes t_{1} \otimes \zeta
\end{align*}
$$

by noticing $n>0$. Thus $v_{2}^{(t p-1) p^{n}} / p v_{1} \otimes t_{1} \otimes \zeta$ is homologous to zero. On the other hand, in [17, Prop. 4.4], it is shown that $v_{2}^{m} / p v_{1} \otimes g_{0}$ is homologous to $v_{2}^{m} / p v_{1} \otimes t_{1} \otimes \zeta$ for any integer m. Note here that, in [17], we use a convention to denote $v_{2}^{m} g_{0} / p v_{1}$ for $v_{2}^{m} / p v_{1} \otimes g_{0}$. Hence we have the desired result.
q.e.d.

Theorem 3.3. In the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$,

$$
\beta_{r p+1} \beta_{t p / p}=0
$$

if $p^{n} \mid r+t+p^{n-1}$ for some integer $n>0$.
Proof. Since the connecting homomorphisms are maps of $\operatorname{Ext}^{*}(A)$ modules, we have

$$
\begin{aligned}
\beta_{r p+1} \beta_{t p / p} & =\delta_{0} \delta_{1}\left(v_{2}^{r p+1} / p v_{1}\right) \beta_{t p / p} \\
& =\delta_{0} \delta_{1}\left(v_{2}^{r p+1} / p v_{1} \otimes \beta_{t p / p}\right)
\end{aligned}
$$

by (2.2). Now substitute $-t t_{2}^{t p-1} g_{0}$ for $\beta_{t p / p}$ by Lemma 2.4, and we see the triviality $v_{2}^{(r+t) p} / p v_{1} \otimes g_{0}=0$ by Lemma 3.2 if $r+t=(u p-1) p^{n-1}$ for some u and $n>0$.
q.e.d.

References

[1] A. K. Bousfield, The localization of spectra with respect to homology, Topology, 18 (1979), 257-281.
[2] D. C. Johnson, H. R. Miller, W. S. Wilson, and R. S. Zahler, Boundary homomorphisms in the generalised Adams spectral sequence and the non-triviality of infinitely many γ_{t} in stable homotopy, Reunion sobre teorie de homotopia, Northwestern Univ. 1974, Soc. Mat. Mexicana, (1975), 47-59.
[3] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math., 106 (1977), 469-516.
[4] S. Oka, A new family in the stable homotopy groups of spheres, Hiroshima Math. J., 5 (1975), 87-114.
[5] S. Oka, A new family in the stable homotopy groups of spheres II, Hiroshima Math. J., 6 (1976), 331-342.
[6] S. Oka, Realizing some cyclic $B P_{*}$ modules and applications to stable homotopy of spheres, Hiroshima Math. J., 7 (1977), 427-447.
[7] S. Oka, Small ring spectra and p-rank of the stable homotopy of spheres, Proceedings of the 1982 Northwestern Conference in Homotopy Theory, Contemp. Math. 19, Amer. Math. Soc., (1983), 267-308.
[8] S. Oka, Multiplicative structure of finite ring spectra and stable homotopy of spheres, Proceedings of the Aahus Algebraic Topology Conference 1982, Lecture Notes in Math., 1051 (1984), 418-441.
[9] S. Oka and K. Shimomura, On products of the β-elements in the stable homotopy groups of spheres, Hiroshima Math. J., 12 (1982), 611-626.
[10] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math., 106 (1984), 351-414.
[11] H. Sadofsky, Higher p-torsion in the β-family, Proc. of A.M.S., 108 (1990), 1063-1071.
[12] K. Shimomura, On the Adams-Novikov spectral sequence and products of β-elements, Hiroshima Math. J., 16 (1986), 209-224.
[13] K. Shimomura, Non-triviality of some products of β-elements in the stable homotopy of spheres, Hiroshima Math. J., 17 (1987), 349-353.
[14] K. Shimomura, Triviality of products of β-elements in the stable homotopy group of spheres, J. Math. Kyoto Univ., 29 (1989), 57-67.
[15] K. Shimomura, On the products $\beta_{s} \beta_{t}$ in the stable homotopy groups of spheres, Hiroshima Math. J., 19 (1989), 347-354.
[16] K. Shimomura and H. Tamura, Non-triviality of some compositions of β-elements in the stable homotopy of the Moore spaces, Hiroshima Math. J., 16 (1986), 121-133.
[17] K. Shimomura and A. Yabe, On the chromatic E_{1}-term $H^{*} M_{0}^{2}$, Cont. Math. Series of the A.M.S., Topology and Representation Theory, 158 (1994), 217-228.
[18] K. Shimomura and A. Yabe, The homotopy group $\pi_{*}\left(L_{2} S^{0}\right)$, Topology, 34 (1995), 261-289.
[19] L. Smith, On realizing complex bordism modules, IV, Applications to the stable homotopy groups of spheres, Amer. J. Math., 99 (1971), 418-436.
[20] H. Toda, Algebra of stable homotopy of $\boldsymbol{Z}_{\boldsymbol{p}}$-spaces and applications, J. Math. Kyoto Univ., 11 (1971), 197-251.

Department of mathematics
Faculty of Education
Tottori University

