The polynomials on w_1 , w_2 and w_3 in the universal Wu classes

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

Toshio Yoshida

(Received November 28, 1994)

ABSTRACT. The cohomology ring $H^*(BO; Z_2)$ is the polynomial algebra $Z_2[w_1, w_2, w_3, \cdots]$, where w_i is the *i*-dimensional universal Stiefel-Whitney class. The *i*-dimensional universal Wu class v_i is defined inductively as follows: $v_0 = w_0 = 1$ and $w_i = v_i + \sum_{j=1}^{i} Sq^j v_{i-j} (i \ge 1)$, where Sq^j is the Steenrod squaring operation. We can describe explicitly the polynomials on w_1 , w_2 and w_3 in v_i .

1. Introduction

Let BO be the space which classifies stable real vector bundles. Then its mod 2 cohomology $H^*(BO; Z_2)$ is the polynomial algebra over Z_2 on the universal Stiefel-Whitney classes $w_i \in H^i(BO; Z_2)$ for $i \ge 1$ (cf. [4], [10]).

The *i*-dimensional universal Wu class v_i $(i \ge 0)$ is the element of $H^i(BO; Z_2)$, and this is defined inductively by using the Steenrod squaring operations Sq^j in the following way (cf. [3], [6], [7], [8]):

(1.1)
$$v_0 = w_0 = 1$$
 and $w_i = v_i + Sq^1v_{i-1} + \dots + Sq^iv_0$ if $i \ge 1$.

The *i*-dimensional Wu class $v_i(M)$ of a closed *n*-dimensional manifold M is the unique element of $H^i(M; Z_2)$ such that

$$Sq^{i}x = xv_{i}(M)$$
 for all $x \in H^{n-i}(M; \mathbb{Z}_{2})$,

and the following relations between the Stiefel–Whitney classes and the Wu classes of M hold (cf. [4], [9]):

(1.2)
$$v_0(M) = 1$$
 and $w_i(M) = v_i(M) + Sq^1v_{i-1}(M) + \dots + Sq^iv_0(M)$ if $i \ge 1$.

So if f denotes the classifying map for the stable tangent bundle of M, then

$$f^*w_i = w_i(M)$$
 and $f^*v_i = v_i(M)$ if $i \ge 0$.

Let J be the ideal of $H^*(BO; Z_2)$ generated by the squares $w_1^2, w_2^2, w_3^2, \cdots$.

¹⁹⁹¹ Mathematics Subject Classification. 55R40.

Key words and phrases. Wu class, Stiefel-Whitney class, Steenrod operation.

Then the total universal Wu class $v = 1 + v_1 + v_2 + \cdots \mod J$ is as follows (cf. [13]):

$$v \equiv 1 + \sum w_{i_1} \cdots w_{i_l} \mod J$$
,

where Σ is taken over all sequences $1 \le i_1 < \cdots < i_l \ (l \ge 1)$ satisfying $\{i_1, \cdots, i_l\}$ $= \{\alpha_1, \beta_1, \cdots, \alpha_m, \beta_m, \gamma_1, \cdots, \gamma_n\}$ $(l = 2m + n, m \ge 0, n \ge 0)$ such that $\alpha_j + \beta_j$ and γ_i are all powers of 2.

So the final goal is to describe all monomials in v which belong to J. It is known that w_i^2 appears in v_i (i = 2j > 0) if and only if $\alpha(i) = 1$ or 2, and also $w_i w_1^{i-j} (i \ge j \ge 2)$ appears in v_i if and only if $\alpha(i) = 1$ and $i/2 < j \le i$, or $\alpha(i) = 2$ and $2^b < j \le 2^a$ with $i = 2^a + 2^b$ $(a > b \ge 0)$, where $\alpha(i)$ denotes the number of 1's in the dyadic expansion of i (cf. [2]).

Now applying the Wu formula (cf. [5], [11])

(1.3)
$$Sq^{j}w_{i} = \sum_{t=0}^{j} \binom{i-j-1+t}{t} w_{j-t}w_{i+t} \quad (0 \le j < i),$$

we can suppose the following (cf. Theorem 4.9, [12]):

(1.4)
$$v_j \equiv \begin{cases} (w_2 + w_1^2)^{j/2} & \mod I_3 & \text{if } j = 2^a \ (a \ge 1), \\ (\sum_{s=0}^{a-b-1} w_2^{2^s} w_1^{j/2^b - 2^{s+1}})^{2^b} & \mod I_3 & \text{if } j = 2^a + 2^b \ (a > b \ge 0), \\ 0 & \mod I_3 & \text{if } \alpha(j) \ge 3, \end{cases}$$

where I_3 , generally I_k denotes the ideal of $H^*(BO; Z_2)$ generated by w_k , w_{k+1} ,

But the Wu classes modulo I_4 seem very complicated. So we study these classes in this paper.

Let P_t be the element of $H^{2^{t+1}+1}(BO; Z_2)$ defined by

$$P_t = Sq^{2^t}Sq^{2^{t-1}}\cdots Sq^1w_2$$
 if $t \ge 0$; and $P_t = 0$ if $t = -1$.

Then the Wu classes modulo I_4 are given by the following theorems.

THEOREM 1.5.

(i)
$$v_i \equiv (v_4)^{j/4} \equiv (w_3 w_1 + w_2^2 + w_1^4)^{j/4} \mod I_4$$
 if $j = 2^a$ $(a \ge 2)$

(1) $v_j \equiv (v_4)^{p/2} \equiv (w_3w_1 + w_2^2 + w_1^2)^{p/2} \mod I_4$ if $j = 2^a$ $(a \ge 2)$. (ii) $v_i \equiv P_{a-2}w_1^{(i-1)/2} + w_2^{(i-1)/2}w_1 \mod I_4$ if $i = 2^a + 1$ $(a \ge 1)$. (iii) $v_i \equiv P_{a-1}w_1 + (P_{a-2} + P_{a-3}w_1^{(i-2)/4} + w_2^{(i-2)/4}w_1)^2 + w_2w_1^{i-2} \mod I_4$ if $i = 2^a + 2$ $(a \ge 2)$; and $v_j \equiv (v_i)^{j/i} \mod I_4$ if $j = 2^a + 2^b$ $(a > b \ge 1)$ and $i = i/2^{b-1}$.

(iv) $v_i \equiv P_{a-1}w_1^{2^b} + P_{a-b-1}^{2^b}w_1 + P_{b-1}w_1^{2^a} \mod I_4$ if $i = 2^a + 2^b + 1$ $(a > b \ge 1)$; and $v_i \equiv (v_i)^{j/i} \mod I_4$ if $j = 2^a + 2^b + 2^c$ $(a > b > c \ge 0)$ and $i = j/2^{c}$.

(v)
$$v_j \equiv 0 \mod I_4$$
 if $\alpha(j) \ge 4$.

The above theorem will be proved in $\S3$.

Let $F_{m,n}$ be the element of $H^{2^{m-2^{n+1}}}(BO; \mathbb{Z}_2)$ defined by

$$F_{m,n} = \sum_{i=n}^{m-1} w_2^{2^{i-2^n}} w_1^{2^{m-2^{i+1}}} \quad if \ m > n \ge 0 \ ; \ and \ F_{m,n} = 0 \quad if \ n \ge m \ge 0 \ .$$

And if $p = 2^{p_1} + 2^{p_2} + \dots + 2^{p_s}$ with $s \ge 1$ and $p_1 > p_2 > \dots > p_s \ge 0$, then set

$$G_{p} = \begin{cases} F_{p_{1}, p_{2}+1} F_{p_{2}, p_{3}+1} \cdots F_{p_{s-1}, p_{s}+1} & \text{if } s \ge 2, \\ 1 & \text{if } s = 1; \end{cases}$$

and also set $h(p) = p_1$ and $l(p) = p_s$.

Let $P_t(p)$ be the sum consisting of all monomials on w_3 , w_2 and w_1 in P_t such that each power of w_3 for such monomials is p. If there are no such monomials, then also set $P_t(p) = 0$ in $H^{2^{t+1}+1}(BO; Z_2)$.

Then we have the following, which will be proved in §4.

THEOREM 1.6. Let $p \ge 2$ be an even integer. Then (i) $P_t(1) = w_3 F_{t+1,0}$. (ii) $P_t(p) = w_3^p F_{t+1,h(p)+1} G_p F_{l(p),0} w_2 w_1$. (iii) $P_t(p+1) = w_3^{p+1} F_{t+1,h(p)+1} G_p F_{l(p),0}$.

If we apply Theorem 1.6 to Theorem 1.5, then common monomials will appear and they will cancel each other. Explicit descriptions by the distinct monomials of the Wu classes modulo I_4 will be obtained in §5.

2. Iterated Steenrod operations on the Stiefel-Whitney classes

Let θ^i be the elements of the mod 2 Steenrod algebra defined inductively by

(2.1)
$$\begin{array}{l} \theta^{0} = Sq^{0} = 1 , \ \theta^{1} = Sq^{1} \ \text{and} \\ \theta^{i} = Sq^{i} + Sq^{i-1}\theta^{1} + Sq^{i-2}\theta^{2} + \dots + Sq^{1}\theta^{i-1} \qquad \text{if} \ i \ge 2 \ (\text{cf. [12]}) . \end{array}$$

Then $\theta^i = \Sigma Sq^{j_1} \cdots Sq^{j_s}$, where Σ is taken over all sequences (j_1, \dots, j_s) consisting of positive integers such that $j_1 + \dots + j_s = i$ for $i \ge 1$; and this implies the following equality:

(2.2)
$$\theta^i = Sq^i + \theta^1 Sq^{i-1} + \theta^2 Sq^{i-2} + \dots + \theta^{i-1} Sq^1 \quad \text{if } i \ge 2.$$

From (2.1) and (2.2), the following equalities hold:

(2.3)
$$(Sq^0 + Sq^1 + Sq^2 + \cdots)(\theta^0 + \theta^1 + \theta^2 + \cdots) = 1, \\ (\theta^0 + \theta^1 + \theta^2 + \cdots)(Sq^0 + Sq^1 + Sq^2 + \cdots) = 1.$$

Thus the inverse Sq^{-1} of $Sq = Sq^0 + Sq^1 + Sq^2 + \cdots$ is given by

(2.4)
$$Sq^{-1} = \theta^0 + \theta^1 + \theta^2 + \cdots$$

PROPOSITION 2.5. Let $i \ge 0$. Then

$$v_i = \theta^i w_0 + \theta^{i-1} w_1 + \dots + \theta^0 w_i$$

PROOF. Set $w = w_0 + w_1 + w_2 + \cdots$ and $v = v_0 + v_1 + v_2 + \cdots$. Then using (1.1) we see w = Sq v, and so $v = Sq^{-1}w$. Thus (2.4) implies the conclusion.

The following lemma is well-known (cf. [12]).

LEMMA 2.6. (i) Let x be a one dimensional cohomology class. Then

$$\theta^{i}x = \begin{cases} x^{i+1} & \text{if } i+1 \text{ is a power of } 2, \\ 0 & \text{otherwise }. \end{cases}$$

(ii) Let x and y be cohomology classes. Then

$$\theta^{i}(xy) = \sum_{j+k=i} (\theta^{j}x)(\theta^{k}y) \,.$$

PROOF. (i) For a sequence (j_1, j_2, \dots, j_s) consisting of positive integers, we see

$$Sq^{j_1}Sq^{j_2}\cdots Sq^{j_s}x = \begin{cases} x^{2^s} & \text{if } (j_1, j_2, \cdots, j_s) = (2^{s-1}, 2^{s-2}, \cdots, 1), \\ 0 & \text{otherwise}. \end{cases}$$

Thus we obtain (i).

(ii) It holds that $Sq\{Sq^{-1}(xy)\} = Sq\{(Sq^{-1}x)(Sq^{-1}y)\}$ since the left side is $(SqSq^{-1})(xy) = xy$ and the right side is $(SqSq^{-1}x)(SqSq^{-1}y) = xy$. Applying Sq^{-1} on both sides of this equality, we see $Sq^{-1}(xy) = (Sq^{-1}x)(Sq^{-1}y)$. Thus (ii) follows from (2.4). \Box

PROPOSITION 2.7. Let *i* and *j* be positive integers such that $\alpha(i) > j$. Then $\theta^{i-j}w_j = 0$.

PROOF. Let BO(n) be the space which classifies real *n*-plane bundles. Then $H^*(BO(n), Z_2)$ is the polynomial algebra over Z_2 on the Stiefel-Whitney classes $w_m(\gamma^n) \in H^m(BO(n); Z_2)$ $(1 \le m \le n)$ of the universal bundle γ^n over BO(n). And if $g: BO(n) \to BO$ denotes the natural inclusion map, then $g^*w_m = w_m(\gamma^n)$ and

 $g^*: H^k(BO; Z_2) \rightarrow H^k(BO(n); Z_2)$

is an isomorphism for all $k \le n$ (cf. [4], [10]).

Now by the splitting principle, there exists a space X and a map $f: X \to BO(n)$ such that the induced bundle $f^*\gamma^n$ is isomorphic to the Whitney sum $\xi_1 \oplus \cdots \oplus \xi_n$ of suitable real line bundles ξ_s $(1 \le s \le n)$ over X, and also

$$f^*: H^k(BO(n); \mathbb{Z}_2) \to H^k(X; \mathbb{Z}_2)$$

is a monomorphism for all k (cf. [5]).

Let $x_s = w_1(\xi_s)$ $(1 \le s \le n)$. Then

$$(f^*g^*)w_j = f^*w_j(\gamma^n) = w_j(f^*\gamma^n) = w_j(\xi_1 \oplus \cdots \oplus \xi_n) = \sum x_{t_1} \cdots x_{t_j},$$

where Σ is taken over all sequences (t_1, \dots, t_j) such that $1 \le t_1 < \dots < t_j \le n$. So we see

$$(f^*g^*)\theta^{i-j}w_j = \theta^{i-j}((f^*g^*)w_j) = \sum \theta^{i-j}(x_{t_1}\cdots x_{t_j}).$$

From Lemma 2.6 we have

$$\theta^{i-j}(x_{t_1}\cdots x_{t_j})=\sum x_{t_1}^{p_1}\cdots x_{t_j}^{p_j},$$

where Σ is taken over all sequences (p_1, \dots, p_j) consisting of powers of 2 such that $p_1 + \dots + p_j = i$. But such a sequence does not exist since $\alpha(p_1 + \dots + p_j) \le j < \alpha(i)$. Thus $(f^*g^*)\theta^{i-j}w_j = 0$, and so $\theta^{i-j}w_j = 0$ by choosing *n* such that $i \le n$. \Box

Next we consider the case $\alpha(i) \leq j$, and obtain the following.

PROPOSITION 2.8. Let *i* and *j* be positive integers such that $\alpha(i) \le j \le \alpha(i) + l(i)$. Then

$$\theta^{i-j}w_i = (\theta^{i/2^m-j}w_i)^{2^m},$$

where $m = \alpha(i) + l(i) - j$.

PROOF. We use the same notations as the proof of Proposition 2.7. Then

$$(f^*g^*)\theta^{i-j}w_j=\sum \sum x_{i_1}^{p_1}\cdots x_{i_j}^{p_j}.$$

Here we have $p_k \ge 2^m$ for all k $(1 \le k \le j)$. To show this equality, if j = 1, then $\alpha(i) = 1$, and so $p_1 = i = 2^{l(i)} = 2^m$. Next let $j \ge 2$. If $p_1 = 2^a < 2^m$ for example, then $\alpha(p_2 + \cdots + p_j) = \alpha(i - p_1) = (\alpha(i) - 1) + (l(i) - a) > (\alpha(i) - 1) + (j - \alpha(i)) = j - 1$, which is incompatible with $\alpha(p_2 + \cdots + p_j) \le j - 1$. Thus we obtain

$$(f^*g^*)\theta^{i-j}w_j = (\sum \sum x_{t_1}^{q_1} \cdots x_{t_i}^{q_j})^{2^m},$$

where $\Sigma\Sigma$ are taken over all sequences (t_1, \dots, t_j) and (q_1, \dots, q_j) such that $1 \le t_1 < \dots < t_j \le n$ and $q_1 + \dots + q_j = i/2^m$ with q_s $(1 \le s \le j)$ powers of 2.

Thus $(f^*g^*)\theta^{i-j}w_j = (f^*g^*)(\theta^{i/2^m-j}w_j)^{2^m}$, and so $\theta^{i-j}w_j = (\theta^{i/2^m-j}w_j)^{2^m}$ by choosing *n* such that $i \le n$. \Box

We obtain the following by using the above propositions.

THEOREM 2.9. Let j and k be positive integers such that $\alpha(j) + 1 \le k \le \alpha(j) + l(j) + 1$. Then

$$v_i \equiv (v_i)^{2^m} \mod I_k ,$$

where $i = j/2^{m}$ and $m = \alpha(j) + l(j) + 1 - k$.

PROOF. Since $l(j) - m = k - \alpha(j) - 1 \ge 0$, *i* is a positive integer, and also $i \ge k - 1$ holds because of $i \ge 2^{k-2} + 2^{k-3} + \cdots + 2^{k-\alpha(j)-1} \ge 2^{k-2} \ge k - 1$. Now from Proposition 2.7 and (1.3), we see $\theta^{j-s}w_s = 0$ $(1 \le s < \alpha(j))$ and $\theta^{j-s}w_s \equiv 0 \mod I_k$ $(k \le s \le j)$. Thus by Proposition 2.5 with $\theta^j w_0 = 0$ $(j \ge 1)$, we have

$$v_j \equiv \sum_{s=\alpha(j)}^{k-1} \theta^{j-s} w_s \mod I_k$$
.

Using Proposition 2.8 because of $\alpha(j) \le s \le k - 1 \le \alpha(j) + l(j)$, we see

$$\theta^{j-s} w_s = (\theta^{j/2^p-s} w_s)^{2^p}$$
 for $p = \alpha(j) + l(j) - s$.

Similarly noting $\alpha(i) = \alpha(j) \le k - 1$, we have

$$v_i \equiv \sum_{s=\alpha(i)}^{k-1} \theta^{i-s} w_s \mod I_k$$
.

Since $\alpha(i) + l(i) = \alpha(j) + l(j) - m = k - 1$, we see

$$\theta^{i-s}w_s = (\theta^{i/2^q-s}w_s)^{2^q}$$
 for $q = \alpha(i) + l(i) - s$.

Since $i/2^q = j/2^{m+q} = j/2^p$, we obtain

$$(\theta^{i-s}w_s)^{2^m} = (\theta^{i/2^q-s}w_s)^{2^{m+q}} = (\theta^{j/2^p-s}w_s)^{2^p}$$

Therefore $v_j \equiv (v_i)^{2^m} \mod I_k$. \square

REMARK 2.10. Let j and k be positive integers such that $\alpha(j) \ge k$. Then in the proof of Theorm 2.9, it is shown that $v_i \equiv 0 \mod I_k$.

3. The Wu classes modulo I_{A}

In this section we will study the Wu classes modulo I_4 and prove Theorem 1.5.

Proposition 3.1.

PROOF. Let $1 \le \alpha(j) \le 3$. Then Theorem 2.9 implies

$$v_i \equiv (v_i)^{2^m} \mod I_4$$
 if $l(j) \ge 3 - \alpha(j)$,

where $i = j/2^m$ and $m = \alpha(j) + l(j) - 3$. Thus (i), (ii) and (iii) follow from this. Also (iv) follows from Remark 2.10. \Box

Thus we have the following remark from the above proposition.

REMARK 3.2. To describe the Wu classes v_i modulo I_4 $(i \ge 3)$, it is sufficient only to describe v_i modulo I_4 , where i = 4, $2^a + 1$ $(a \ge 1)$, $2^a + 2$ $(a \ge 2)$ and $2^a + 2^b + 1$ $(a > b \ge 1)$.

The following lemma is known (cf. [1], [12]).

LEMMA 3.3. Let i be a power of 2. Then

- (i) $\theta^{i-1} = Sq^{i/2}Sq^{i/4}\cdots Sq^1$ if $i \ge 2$.
- (ii) $\theta^{i-1-j} = Sq^{i/2-s}\theta^{i/2-1-(j-s)} + Sq^{i/2}\theta^{i/2-1-j}$ if $1 \le j < i/2$ and $s = 2^{h(j)}$.
- (iii) $\theta^{i-j} = Sq^{i/2}Sq^{i/4}\cdots Sq^s\theta^{s-j}$ if $1 \le j \le h(i)$ and $s = 2^{j-1}$.
- (iv) $\theta^{2k+1} = \overline{\theta}^{2k} S q^1$ if $k \ge 0$.

The Wu classes modulo I_4 of the dimensions in Remark 3.2 are as follows:

PROPOSITION 3.4. Let *i* be $2^a + 1$ $(a \ge 1)$, $2^a + 2$ $(a \ge 2)$, $2^a + 2^b + 1$ $(a > b \ge 1)$. Then

$$w_i \equiv \begin{cases} (\theta^{i/2-2}w_2)^2 + \theta^{i-3}(w_2w_1) \mod I_4 & \text{if } i = 2^a + 2, \\ \theta^{i-3}(w_2w_1) \mod I_4 & \text{otherwise}. \end{cases}$$

PROOF. We use Propositions 2.5 and 2.7. For $i \ge 1$, $\theta^i w_0 = 0$; and using (1.3), $\theta^{i-s} w_s \equiv 0 \mod I_4$ for $4 \le s \le i$.

Let $i = 2^a + 1$ $(a \ge 1)$. Then since $w_3 = Sq^1w_2 + w_2w_1$ by (1.3), and $\theta^{i-3}Sq^1 = \theta^{i-2}$ by Lemma 3.3 (iv), we see

$$v_i \equiv \theta^{i-2} w_2 + \theta^{i-3} w_3 = \theta^{i-2} w_2 + \theta^{i-3} (Sq^1 w_2 + w_2 w_1) = \theta^{i-3} (w_2 w_1) \mod I_4.$$

Let $i = 2^a + 2^b + 1$ $(a > b \ge 1)$. Then similarly we see

$$v_i \equiv \theta^{i-3} w_3 = \theta^{i-3} (Sq^1 w_2 + w_2 w_1) = \theta^{i-2} w_2 + \theta^{i-3} (w_2 w_1) = \theta^{i-3} (w_2 w_1) \mod I_4$$

since $\theta^{i-2} w_2 = 0$ also by Proposition 2.7.

Let
$$i = 2^a + 2$$
 $(a \ge 2)$. Then
 $v_i \equiv \theta^{i-2}w_2 + \theta^{i-3}w_3 = \theta^{i-2}w_2 + \theta^{i-3}Sq^1w_2 + \theta^{i-3}(w_2w_1) \mod I_4$.

Here $\theta^{i-2}w_2 = (\theta^{i/2-2}w_2)^2$ by Proposition 2.8, and $\theta^{i-3}Sq^1 = \theta^{i-4}Sq^1Sq^1 = 0$ by Lemma 3.3 (iv) and the Adem relation $Sq^1Sq^1 = 0$. \Box

In the following proposition, we consider $\theta^{i-3}(w_2w_1)$ in the above proposition.

PROPOSITION 3.5. Let *i* be $2^a + 1$ $(a \ge 2)$, $2^a + 2$ $(a \ge 2)$, $2^a + 2^b + 1$ $(a > b \ge 1)$. Then

$$\theta^{i-3}(w_2w_1) = \begin{cases} w_2^m w_1 + P_{a-2}w_1^m & \text{if } i = 2^a + 1 \text{ and } m = 2^{a-1}, \\ P_{a-1}w_1 + w_2^m w_1^2 + P_{a-3}^2 w_1^m + w_2 w_1^{2m} & \text{if } i = 2^a + 2 \text{ and } m = 2^{a-1}, \\ P_{a-b-1}^n w_1 + P_{a-1}w_1^n + P_{b-1}w_1^{2m} & \text{if } i = 2^a + 2^b + 1 \text{ and } m = 2^{a-1}, n = 2^b. \end{cases}$$

PROOF. Let $i = 2^a + 1$ $(a \ge 2)$ and $m = 2^{a-1}$. Then using Lemma 2.6 and Proposition 2.7, we see

$$\theta^{i-3}(w_2w_1) = (\theta^{2m-2}w_2)w_1 + \sum_{p=1}^{a-1} \left\{ \theta^{(2m-2^p+1)-2}w_2 \right\} (\theta^{2^p-1}w_1)$$
$$= (\theta^{2m-2}w_2)w_1 + (\theta^{m-1}w_2)w_1^m$$

since $\alpha(2m-2^p+1) = a-p+1 > 2$ for $1 \le p < a-1$. Here from Proposition 2.8 and Lemma 3.3 (i), we see

$$\theta^{2m-2}w_2 = (\theta^0 w_2)^m = w_2^m \quad and \quad \theta^{m-1}w_2 = Sq^{m/2}Sq^{m/4}\cdots Sq^1w_2 = P_{a-2}$$

Let $i = 2^a + 2$ $(a \ge 2)$ and $m = 2^{a-1}$. Then similarly we see

$$\theta^{i-3}(w_2w_1) = (\theta^{2m-1}w_2)w_1 + (\theta^{2m-2}w_2)w_1^2 + \sum_{p=2}^{a-1} \{\theta^{(2m-2^p+2)-2}w_2\}w_1^{2^p} + w_2w_1^{2m}$$
$$= (\theta^{2m-1}w_2)w_1 + (\theta^{2m-2}w_2)w_1^2 + (\theta^m w_2)w_1^m + w_2w_1^{2m}$$

since $\alpha(2m-2^p+2) = a-p+1 > 2$ for $2 \le p < a-1$. Here $\theta^{2m-1}w_2 = P_{a-1}$, $\theta^{2m-2}w_2 = w_2^m$ and $\theta^m w_2 = (\theta^{m/2-1}w_2)^2 = P_{a-3}^2$ for $a \ge 3$. Thus noting $P_{a-3}^2 = 0$ for a = 2, we obtain the conclusion.

Let $i = 2^a + 2^b + 1$ $(a > b \ge 1)$ and $m = 2^{a-1}$, $n = 2^b$. Then similarly we see

The polynomials on w_1 , w_2 and w_3 in the universal Wu classes

$$\begin{aligned} \theta^{i-3}(w_2w_1) &= (\theta^{2m+n-2}w_2)w_1 + \sum_{p=1}^{b-1} \left\{ \theta^{(2m+n-2^{p+1})-2}w_2 \right\} w_1^{2p} + (\theta^{2m-1}w_2)w_1^n \\ &+ \sum_{p=b+1}^{a-1} \left\{ \theta^{(2m-2^{p}+n+1)-2}w_2 \right\} w_1^{2p} + (\theta^{n-1}w_2)w_1^{2m} \\ &= (\theta^{2m+n-2}w_2)w_1 + (\theta^{2m-1}w_2)w_1^n + (\theta^{n-1}w_2)w_1^{2m} \end{aligned}$$

since $\alpha(2m + n - 2^p + 1) = b - p + 2 > 2$ for $1 \le p \le b - 1$, and also $\alpha(2m - 2^p + n + 1) = a - p + 2 > 2$ for $b + 1 \le p \le a - 1$. Here $\theta^{2m+n-2}w_2 = (\theta^{2m/n-1}w_2)^n = P_{a-b-1}^n, \ \theta^{2m-1}w_2 = P_{a-1}$ and $\theta^{n-1}w_2 = P_{b-1}$. \Box

We are now in a position to prove Theorem 1.5.

PROOF OF THEOREM 1.5. (i) $v_4 \equiv \theta^3 w_1 + \theta^2 w_2 + \theta^1 w_3 \mod I_4$. Here by Proposition 2.8 and (1.3), we see $\theta^3 w_1 = (\theta^0 w_1)^4 = w_1^4$, $\theta^2 w_2 = (\theta^0 w_2)^2 = w_2^2$ and $\theta^1 w_3 = Sq^1 w_3 = w_3 w_1$. Hence (i) follows from Proposition 3.1 (i).

(ii) $v_3 = w_2 w_1$ by Proposition 3.4. So (ii) holds for a = 1 since $P_{-1} = 0$ by the definition. Next let $i = 2^a + 1$ ($a \ge 2$). Then Propositions 3.4 and 3.5 imply (ii).

(iii) Using Propositions 3.4, 3.5 and letting $m = 2^{a-1}$, we see

$$v_{i} \equiv (\theta^{m-1}w_{2})^{2} + \theta^{i-3}(w_{2}w_{1})$$

= $P_{a-2}^{2} + P_{a-1}w_{1} + w_{2}^{m}w_{1}^{2} + P_{a-3}^{2}w_{1}^{m} + w_{2}w_{1}^{2m}$
= $P_{a-1}w_{1} + (P_{a-2} + P_{a-3}w_{1}^{m/2} + w_{2}^{m/2}w_{1})^{2} + w_{2}w_{1}^{2m} \mod I_{4}$

which is the result for v_i . And the one for v_i follows from Proposition 3.1 (ii).

(iv) Propositions 3.4 and 3.5 imply the result for v_i . And the one for v_i follows from Proposition 3.1 (iii).

(v) This follows from Proposition 3.1 (iv).

4. $Sq^{2^t}Sq^{2^{t-1}}\cdots Sq^1w_2$ modulo I_4

In this section we will study the terms $P_t = Sq^{2^t}Sq^{2^{t-1}}\cdots Sq^1w_2$ which remain to be known in Theorem 1.5.

The following lemma will be used often.

LEMMA 4.1 ([6]). Let
$$a = \sum_i a_i 2^i$$
 and $b = \sum_i b_i 2^i$ ($0 \le a_i, b_i \le 1$). Then
 $\binom{a}{b} \equiv \prod_i \binom{a_i}{b_i} \mod 2$.

We have the following formula on P_t .

PROPOSITION 4.2. Let $x = w_3 + w_2w_1$ and $y = w_2 + w_1^2$. Then

(4.3)
$$P_{t} \equiv \sum_{0 \leq 3i < n} {3i \choose i} x^{2i+1} y^{n-3i-1} \mod I_{4},$$

where $n = 2^t$ $(t \ge 0)$.

PROOF. We notice the following (4.4):

(4.4)
$$Sq^1x = 0$$
, $Sq^2x \equiv xy \mod I_4$, $Sq^3x = x^2$, $Sq^1y = x$, $Sq^2y = y^2$.

In fact using (1.3) and the Cartan formula, we see

$$Sq^{1}x = w_{3}w_{1} + w_{2}w_{1}^{2} + (w_{3} + w_{2}w_{1})w_{1} = 0,$$

$$Sq^{2}x = w_{5} + w_{4}w_{1} + w_{3}w_{2} + (w_{3} + w_{2}w_{1})w_{1}^{2} + w_{2}^{2}w_{1} \equiv xy \mod I_{4},$$

$$Sq^{1}y = Sq^{1}w_{2} = w_{3} + w_{2}w_{1} = x.$$

And since dim x = 3 and dim y = 2, $Sq^3x = x^2$ and $Sq^2y = y^2$ hold.

We prove (4.3) by induction on t. Since $P_0 = Sq^1w_2 = x$ and $P_1 = Sq^2P_0 = Sq^2x \equiv xy \mod I_4$, (4.3) holds for t = 0, 1. Assume that (4.3) holds for t - 1 ($t \ge 2$). Then since $Sq^iI_4 \subseteq I_4$ and $n = 2^t = \dim P_{t-1} - 1$, the left side of (4.3) for t is as follows:

$$\begin{split} P_t &= Sq^n P_{t-1} \equiv Sq^n \sum_{0 \le 3i < n/2} \binom{3i}{i} x^{2i+1} y^{n/2-3i-1} \\ &= \sum_{0 \le 3i < n/2} \binom{3i}{i} \{ (2i+1)(Sq^2x) x^{4i} y^{n-6i-2} \\ &+ (n/2 - 3i - 1) x^{4i+2} (Sq^1y) y^{n-6i-4} \} \\ &= \sum_{0 \le 6j < n/2} \binom{6j}{2j} \{ (Sq^2x) x^{8j} y^{n-12j-2} + x^{8j+2} (Sq^1y) y^{n-12j-4} \} \\ &+ \sum_{0 \le 6j + 3 < n/2} \binom{6j+3}{2j+1} \{ (Sq^2x) x^{8j+4} y^{n-12j-8} \} \\ &\equiv \sum_{0 \le 6j < n/2} \binom{6j}{2j} (x^{8j+1} y^{n-12j-1} + x^{8j+3} y^{n-12j-4}) \\ &+ \sum_{0 \le 6j + 3 < n/2} \binom{6j+3}{2j+1} (x^{8j+5} y^{n-12j-7}) \mod I_4 . \end{split}$$

On the other hand, using Lemma 4.1, we see

$$\sum_{0 \le 3i < n} \binom{3i}{i} x^{2i+1} y^{n-3i-1} = S_1 + S_2 + S_3 + S_4 ,$$

where

$$S_{1} = \sum_{0 \le 12j \le n} {\binom{12j}{4j}} x^{8j+1} y^{n-12j-1} = \sum_{0 \le 6j \le n/2} {\binom{6j}{2j}} x^{8j+1} y^{n-12j-1} ,$$

$$S_{2} = \sum_{0 \le 12j+3 \le n} {\binom{12j+3}{4j+1}} x^{8j+3} y^{n-12j-4} = \sum_{0 \le 6j \le n/2} {\binom{6j}{2j}} x^{8j+3} y^{n-12j-4} ,$$

$$S_{3} = \sum_{0 \le 12j+6 \le n} {\binom{12j+6}{4j+2}} x^{8j+5} y^{n-12j-7} = \sum_{0 \le 6j+3 \le n/2} {\binom{6j+3}{2j+1}} x^{8j+5} y^{n-12j-7} ,$$
and since ${\binom{12j+9}{j}}$ is even

and since $\binom{12j+9}{4j+3}$ is even

$$S_4 = \sum_{0 \le 12j+9 < n} {\binom{12j+9}{4j+3}} x^{8j+7} y^{n-12j-10} = 0$$

Therefore (4.3) for t holds. \Box

Next we have another inductive formula on P_t .

PROPOSITION 4.5. Let $x = w_3 + w_2 w_1$ and $y = w_2 + w_1^2$. Then (4.6) $P_t \equiv y^n P_{t-1} + x^n P_{t-2} \mod I_4$,

where $n = 2^{t-1}$ $(t \ge 1)$.

PROOF. We prove (4.6) by induction on t. Since $P_{-1} = 0$, $P_0 = x$, $P_1 \equiv xy \mod I_4$, $P_2 = Sq^4P_1 \equiv Sq^4(xy) = (Sq^2x)y^2 + x^2(Sq^1y) \equiv xy^3 + x^3 \equiv y^2P_1 + x^2P_0 \mod I_4$, (4.6) holds for t = 1, 2. Assume that (4.6) holds for t - 1 ($t \ge 3$). Then the left side of (4.6) for t is as follows:

$$P_{t} = Sq^{2n}P_{t-1} \equiv Sq^{2n}(y^{n/2}P_{t-2} + x^{n/2}P_{t-3})$$

= $(Sq^{n-1}y^{n/2})P_{t-2}^{2} + y^{n}(Sq^{n}P_{t-2})$
+ $(Sq^{n+n/2-1}x^{n/2})P_{t-3}^{2} + x^{n}(Sq^{n/2}P_{t-3}) \mod I_{4}$

Here $Sq^{n-1}y^{n/2} = 0$ and $Sq^{n+n/2-1}x^{n/2} = 0$ since n-1 and n+n/2-1 are both odd and n/2 is even; $Sq^nP_{t-2} = P_{t-1}$ and $Sq^{n/2}P_{t-3} = P_{t-2}$. Thus $P_t \equiv y^nP_{t-1} + x^nP_{t-2} \mod I_4$, which completes induction on t. \Box

COROLLARY 4.7. Let $t \ge 0$. Then

(4.8)
$$P_t \equiv \sum_{i=0}^t w_2^{2i} w_1^{m-2^{i+1}} \mod I_3 ,$$

where $m = 2^{t+1} + 1$.

PROOF. We prove (4.8) by induction on t. Since $P_0 = Sq^1w_2 \equiv w_2w_1 \mod I_3$ and $P_1 = Sq^2P_0 \equiv Sq^2(w_2w_1) = (Sq^1w_2)w_1^2 + w_2^2w_1 \equiv w_2w_1^3 + w_2^2w_1 \mod I_3$, (4.8) holds for t = 0, 1. Assume that (4.8) holds for less than t - 1 ($t \ge 2$). Then the left side of (4.8) for t is as follows by using Proposition 4.5 and letting $n = 2^{t-1}$, $m = 2^{t+1} + 1$:

$$\begin{split} P_t &\equiv (w_2 + w_1^2)^n P_{t-1} + (w_2 w_1)^n P_{t-2} \\ &\equiv (w_2^n + w_1^{2n}) \sum_{i=0}^{t-1} w_2^{2i} w_1^{2n+1-2^{i+1}} + (w_2^n w_1^n) \sum_{i=0}^{t-2} w_2^{2i} w_1^{n+1-2^{i+1}} \\ &= \sum_{i=0}^{t-1} w_2^{2i+n} w_1^{2n+1-2^{i+1}} + \sum_{i=0}^{t-1} w_2^{2i} w_1^{4n+1-2^{i+1}} + \sum_{i=0}^{t-2} w_2^{2i+n} w_1^{2n+1-2^{i+1}} \\ &= \sum_{i=0}^{t} w_2^{2i} w_1^{m-2^{i+1}} \mod I_3 , \end{split}$$

which completes induction on t. \Box

We obtain the following theorem which is (1.4) in §1 (cf. [12]).

THEOREM 4.9.

(i) $v_j \equiv (v_2)^{j/2} = (w_2 + w_1^2)^{j/2} \mod I_3$ if $j = 2^a$ $(a \ge 1)$. (ii) $v_i \equiv \sum_{s=0}^{a-1} w_2^{2s} w_1^{i-2^{s+1}} \mod I_3$ if $i = 2^a + 1$ $(a \ge 1)$; and $v_j \equiv (v_i)^{j/i} \mod I_3$ if $j = 2^a + 2^b$ $(a > b \ge 0)$ and $i = j/2^b$. (iii) $v_i \equiv 0 \mod I_3$ if $\alpha(j) \ge 3$.

PROOF. (iii) follows from Remark 2.10. So assume $\alpha(j) \leq 2$. Then by Theorem 2.9, we have

$$v_j \equiv (v_i)^{2^m} \mod I_3$$
 if $l(j) \ge 2 - \alpha(j)$,

where $i = j/2^m$ and $m = \alpha(j) + l(j) - 2$.

(i) If $j = 2^a$ $(a \ge 1)$, then $v_j \equiv (v_2)^{j/2} \mod I_3$. Here we see that $v_2 = \theta^1 w_1 + \theta^0 w_2 = w_1^2 + w_2$.

(ii) If $j = 2^a + 2^b$ $(a > b \ge 0)$, then $v_j \equiv (v_i)^{j/i} \mod I_3$ where $i = j/2^b$. Also if $i = 2^a + 1$ $(a \ge 1)$, then using Corollary 4.7, we see

$$v_i \equiv \theta^{i-2} w_2 = P_{a-1} \equiv \sum_{s=0}^{a-1} w_2^{2^s} w_1^{i-2^{s+1}} \mod I_3$$
.

REMARK 4.10. Using Theorem 1.5, we can also prove Theorem 4.9 in the following way:

(i) Let $j = 2^a$ $(a \ge 2)$. Then Theorem 1.5 (i) implies that $v_j \equiv (w_2^2 + w_1^4)^{j/4} = (w_2 + w_1^2)^{j/2} \mod I_3$.

(ii) Let $i = 2^a + 1$ $(a \ge 1)$ and $m = 2^{a-1} + 1$. Then Theorem 1.5(ii) and Corollary 4.7 imply

$$v_i \equiv \left(\sum_{s=0}^{a-2} w_2^{2^s} w_1^{m-2^{s+1}}\right) w_1^{m-1} + w_2^{m-1} w_1 = \sum_{s=0}^{a-1} w_2^{2^s} w_1^{i-2^{s+1}} \mod I_3$$

Let $j = 2^a + 2$ $(a \ge 2)$, i = j/2 and $m = 2^a + 1$. Then Theorem 1.5(iii), Corollary 4.7 and the above result for i = j/2 imply

$$\begin{split} v_{j} &\equiv \left(\sum_{s=0}^{a-1} w_{2}^{2s} w_{1}^{m-2^{s+1}}\right) w_{1} \\ &+ \left\{\sum_{s=0}^{a-2} w_{2}^{2s} w_{1}^{(m-1)/2+1-2^{s+1}} + \left(\sum_{s=0}^{a-3} w_{2}^{2s} w_{1}^{(m-1)/4+1-2^{s+1}}\right) w_{1}^{(m-1)/4} + w_{2}^{(m-1)/4} w_{1}\right\}^{2} \\ &+ w_{2} w_{1}^{m-1} = \sum_{s=0}^{a-1} w_{2}^{2s} w_{1}^{j-2^{s+1}} + w_{2} w_{1}^{m-1} = \sum_{s=1}^{a-1} w_{2}^{2s} w_{1}^{j-2^{s+1}} \\ &= \left(\sum_{t=0}^{a-2} w_{2}^{2t} w_{1}^{i-2^{t+1}}\right)^{2} \equiv (v_{i})^{j/i} \mod I_{3} \; . \end{split}$$

Let $j = 2^a + 2^b$ $(a > b \ge 1)$ and $i = j/2^b$. Then Theorem 1.5(iii) and the above result for v_{2i} imply that $v_j \equiv (v_{2i})^{j/2i} \equiv (v_i)^{j/i} \mod I_3$.

(iii) Let $i = 2^a + 2^b + 1$ $(a > b \ge 1)$, $m = 2^a + 1$ and $n = 2^b + 1$. Then Theorem 1.5(iv) and Corollary 4.7 imply

$$\begin{split} v_i &\equiv \left(\sum_{s=0}^{a-1} w_2^{2^s} w_1^{m-2^{s+1}}\right) w_1^{n-1} + \left(\sum_{s=0}^{a-b-1} w_2^{2^s} w_1^{(m-1)/(n-1)+1-2^{s+1}}\right)^{n-1} w_1 \\ &+ \left(\sum_{s=0}^{b-1} w_2^{2^s} w_1^{n-2^{s+1}}\right) w_1^{m-1} \\ &= \sum_{s=0}^{a-1} w_2^{2^s} w_1^{i-2^{s+1}} + \sum_{s=b}^{a-1} w_2^{2^s} w_1^{i-2^{s+1}} + \sum_{s=0}^{b-1} w_2^{2^s} w_1^{i-2^{s+1}} = 0 \mod I_3 \; . \end{split}$$

Let $j = 2^a + 2^b + 2^c$ $(a > b > c \ge 0)$ and $i = j/2^c$. Then Theorem 1.5(iv) and the above result for $j/2^c$ imply that $v_j \equiv (v_i)^{2^c} \equiv 0 \mod I_3$.

Let $\alpha(j) \ge 4$. Then $v_j \equiv 0 \mod I_3$ by Theorem 1.5(v). \Box

We are now in a position to prove Theorem 1.6.

PROOF OF THEOREM 1.6 (i). By the definition of $F_{t+1,0}$, (i) means the following:

(4.11)
$$P_t(1) = w_3 \sum_{i=0}^t w_2^{2^{i-1}} w_1^{m-2^{i+1}},$$

where $m = 2^{t+1}$.

We prove (4.11) by induction on t. Since $P_0 = w_3 + w_2w_1$ and $P_1 \equiv (w_3 + w_2w_1)(w_2 + w_1^2) \mod I_4$, we see that $P_0(1) = w_3$ and $P_1(1) = w_3(w_2 + w_1^2)$. So (4.11) holds for t = 0, 1. Assume that (4.11) holds for less than t - 1 ($t \ge 2$). Then the left side of (4.11) for t is as follows by using Proposition 4.5 and letting $m = 2^{t+1}$:

$$P_{t}(1) = (w_{2} + w_{1}^{2})^{m/4} P_{t-1}(1) + (w_{2}w_{1})^{m/4} P_{t-2}(1)$$

$$= (w_{2} + w_{1}^{2})^{m/4} w_{3} \sum_{i=0}^{t-1} w_{2}^{2i-1} w_{1}^{m/2-2i+1} + (w_{2}w_{1})^{m/4} w_{3} \sum_{i=0}^{t-2} w_{2}^{2i-1} w_{1}^{m/4-2i+1}$$

$$= w_{3} \sum_{i=0}^{t} w_{2}^{2i-1} w_{1}^{m-2i+1},$$

which completes induction on t.

PROOF OF THEOREM 1.6 (ii). We prove (ii) by induction on t. We see that $P_0(p) = 0$ and $P_1(p) = 0$ since dim $P_0 = 3 < 3p$ and dim $P_1 = 5 < 3p$. On the other hand, $F_{1,h(p)+1} = 0$ and $F_{2,h(p)+1} = 0$ since $h(p) + 1 \ge 2$. Thus (ii) holds for t = 0, 1. Also using Propositions 4.2 or 4.5, we see that $P_2 \equiv xy^3 + x^3 \mod I_4$, where $x = w_3 + w_2w_1$ and $y = w_2 + w_1^2$. So $P_2(2) = w_3^2w_2w_1$ and $P_2(p) = 0$ for $p \ge 4$. On the other hand, $w_3^2F_{3,2}G_2F_{1,0}w_2w_1 = w_3^2w_2w_1$ and $F_{3,h(p)+1} = 0$ for $p \ge 4$ since $h(p) \ge 2$ for $p \ge 4$. Hence (ii) also holds for t = 2. Assume that (ii) holds for less than t - 1 ($t \ge 3$). Then the left side of (ii) for t is as follows by using Proposition 4.5 and letting $n = 2^{t-1}$:

Case 1. p < n. In this case $t \ge h(p) + 2$ holds, and we see

$$P_t(p) = (w_2 + w_1^2)^n P_{t-1}(p) + (w_2 w_1)^n P_{t-2}(p)$$

= $w_3^p G_p F_{l(p), 0} w_2 w_1 \{ (w_2^n + w_1^{2n}) F_{t, h(p)+1} + w_2^n w_1^n F_{t-1, h(p)+1} \}.$

Here by letting m = h(p) + 1, we see

$$(w_2^n + w_1^{2n})F_{t,m} + w_2^n w_1^n F_{t-1,m} = \sum_{i=m}^t w_2^{2^{i-2m}} w_1^{4n-2^{i+1}} = F_{t+1,m}.$$

Thus $P_t(p) = w_3^p F_{t+1,h(p)+1} G_p F_{l(p),0} w_2 w_1$, which completes induction on t.

Case 2. p = n.

In this case, using Corollary 4.7 and noting $P_{t-1}(p) = 0$, $P_{t-2}(p) = 0$, we see

$$P_t(p) = w_3^n \sum_{i=0}^{t-2} w_2^{2^i} w_1^{n-2^{i+1}+1} .$$

On the other hand, since h(p) = l(p) = t - 1, $F_{t+1,t} = 1$ and $G_p = 1$, we see

The polynomials on w_1 , w_2 and w_3 in the universal Wu classes

$$w_3^p F_{t+1,h(p)+1} G_p F_{l(p),0} w_2 w_1 = w_3^n F_{t-1,0} w_2 w_1 = w_3^n \sum_{i=0}^{t-2} w_2^{2^i} w_1^{n-2^{i+1}+1},$$

which completes induction on t.

Case 3. n .

In this case h(p) = t - 1 and p - n (> 0) is even. So noting $P_{t-1}(p) = 0$, $P_{t-2}(p) = 0$, $F_{t-1,h(p-n)+1}G_{p-n} = G_p$ and l(p-n) = l(p), we see

$$\begin{split} P_t(p) &= w_3^n P_{t-2}(p-n) \\ &= w_3^n w_3^{p-n} F_{t-1,h(p-n)+1} G_{p-n} F_{l(p-n),0} w_2 w_1 = w_3^p G_p F_{l(p),0} w_2 w_1 \;. \end{split}$$

On the other hand, since $F_{t+1,h(p)+1} = F_{t+1,t} = 1$, we see

$$w_3^p F_{t+1,h(p)+1} G_p F_{l(p),0} w_2 w_1 = w_3^p G_p F_{l(p),0} w_2 w_1 ,$$

which completes induction on t.

Case 4. $p \ge 2n$.

Since dim $P_t = 4n + 1$ and $3p \ge 6n > 4n + 1$, we see $P_t(p) = 0$. On the other hand, since $h(p) + 1 \ge t + 1$, we see $F_{t+1,h(p)+1} = 0$, which completes induction on t. \Box

PROOF OF THEOREM 1.6 (iii). We prove (iii) in the same way as the proof of (ii). Then we see that (iii) holds for t = 0, 1. And since $P_2(3) = w_3^3$ and $P_2(p+1) = 0$ for $p \ge 4$, (iii) also holds for t = 2. Assume that (iii) holds for less than t - 1 ($t \ge 3$). Then the left side of (iii) for t is as follows by using Proposition 4.5 and letting $n = 2^{t-1}$:

Case 1. p + 1 < n. In this case $t \ge h(p + 1) + 2 = h(p) + 2$ holds, and we see

$$P_t(p+1) = (w_2 + w_1^2)^n P_{t-1}(p+1) + (w_2 w_1)^n P_{t-2}(p+1)$$
$$= w_3^{p+1} G_p F_{l(p),0} F_{t+1,h(p)+1} .$$

Case 2. p + 1 = n + 1.

In this case, using Theorem 1.6(i) and noting $P_{t-1}(p+1) = 0$, $P_{t-2}(p+1) = 0$, h(p) = l(p) = t - 1, $F_{t+1,h(p)+1} = F_{t+1,t} = 1$ and $G_p = 1$, we see

$$P_t(p+1) = w_3^n P_{t-2}(1) = w_3^{n+1} F_{t-1,0} = w_3^{p+1} F_{t+1,h(p)+1} G_p F_{l(p),0}.$$

Case 3. n + 1 .

In the same way as the Case 3 in the proof of Theorem 1.6(ii), we see

$$P_t(p+1) = w_3^n P_{t-2}(p-n+1) = w_3^{p+1} F_{t-1,h(p-n)+1} G_{p-n} F_{l(p-n),0}$$
$$= w_3^{p+1} F_{t+1,h(p)+1} G_p F_{l(p),0} .$$

Case 4. p+1 > 2n. Since $3(p+1) > \dim P_t$, we have $P_t(p+1) = 0$. Also since $h(p) + 1 \ge t + 1$, we have $F_{t+1,h(p)+1} = 0$. \Box

5. Some explicit descriptions of the Wu classes modulo I_4

In this section, using Theorems 1.5 and 1.6, we will describe v_i modulo I_4 by the distinct monomials on w_3 , w_2 and w_1 . We will do it only for $i = 2^a + 1$ ($a \ge 1$), $2^a + 2$ ($a \ge 2$) and $2^a + 2^b + 1$ ($a > b \ge 1$), but this is sufficient by Theorem 1.5.

In the following theorems, $p \equiv q(n)$ denotes $p \equiv q \mod n$.

THEOREM 5.1. Let
$$i = 2^a + 1$$
 $(a \ge 1)$. Then
 $v_i \equiv F_{a,0} w_2 w_1 + w_3 F_{a-1,0} w_1^m$
 $+ \sum_{p \equiv 0(2)} w_3^p F_{a-1,h(p)+1} G_p F_{l(p),0} (w_3 + w_2 w_1) w_1^m \mod I_4$,

where p > 0 and $m = 2^{a-1}$.

PROOF. By Theorem 4.9(ii) or Remark 4.10(ii), we have

$$v_i \equiv \sum_{s=0}^{a-1} w_2^{2^s} w_1^{i-2^{s+1}} = F_{a,0} w_2 w_1 \mod I_3$$
.

Thus the conclusion follows from Theorems 1.5 and 1.6. \Box

$$\begin{split} \text{THEOREM 5.2.} \quad Let \ i &= 2^a + 2 \ (a \geq 2). \quad Then \\ v_i &\equiv (F_{a-1,0} w_2 w_1)^2 + w_3 F_{a,0} w_1 + w_3^2 (w_2^{m-2} + F_{a,2} w_2 w_1^2) \\ &+ \sum_{p \equiv 0(2)} w_3^{p+1} F_{a,h(p)+1} G_p F_{l(p),0} w_1 \\ &+ \sum_{p \equiv 0(4)} w_3^p (F_{a,h(p)+1} G_p w_2 w_1^{2^{l(p)}} + F_{a-1,h(p)+1} G_p F_{l(p),1} w_2^2 w_1^{m+2}) \\ &+ \sum_{p \equiv 0(4)} w_3^{p+2} (F_{a,h(p)+1} G_p F_{l(p),2} w_2 w_1^2 + w_2^{m-2^{h(p)+1}} G_p F_{l(p),1}) \mod I_4 \ , \end{split}$$

where p > 0, $m - 2^{h(p)+1} \ge 0$ and $m = 2^{a-1}$.

PROOF. By Remark 4.10(ii), we have

$$v_i \equiv (v_{i/2})^2 \equiv (F_{a-1,0} w_2 w_1)^2 \mod I_3$$
.

Let $v_j(p)$ be the sum consisting of all monomials on w_3 , w_2 and w_1 in v_j such that each power of w_3 for such monomials is p. If there are no such monomials, then also set $v_j(p) = 0$ in $H^j(BO; \mathbb{Z}_2)$.

Then using Theorem 1.5(iii) and Theorem 1.6(i), (ii) and noting $(F_{m,n})^{2^t} = F_{m+t,n+t}$, we see

$$\begin{split} v_i(1) &= P_{a-1}(1)w_1 = w_3 F_{a,0} w_1 \ . \\ v_i(2) &= P_{a-1}(2)w_1 + (P_{a-2}(1) + P_{a-3}(1)w_1^{m/2})^2 \\ &= w_3^2 F_{a,2} G_2 F_{1,0} w_2 w_1^2 + (w_3 F_{a-1,0} + w_3 F_{a-2,0} w_1^{m/2})^2 \\ &= w_3^2 (F_{a,2} w_2 w_1^2 + F_{a,1} + F_{a-1,1} w_1^m) = w_3^2 (F_{a,2} w_2 w_1^2 + w_2^{m-2}) \ . \end{split}$$

Let $p \equiv 0(2)$ and p > 0. Then from Theorems 1.5(iii) and 1.6(iii), we see

$$v_i(p+1) = P_{a-1}(p+1)w_1 = w_3^{p+1}F_{a,h(p)+1}G_pF_{l(p),0}w_1$$

Let $p \equiv 0(4)$ and p > 0. Then using Theorems 1.5(iii), 1.6(ii) and noting $(G_{p/2})^2 = G_p$, we see

$$\begin{aligned} v_i(p) &= P_{a-1}(p)w_1 + (P_{a-2}(p/2) + P_{a-3}(p/2)w_1^{m/2})^2 \\ &= w_3^p \{F_{a,h(p)+1} G_p(F_{l(p),0}w_2w_1^2 + F_{l(p),1}w_2^2w_1^2) + F_{a-1,h(p)+1} G_pF_{l(p),1}w_2^2w_1^{m+2}\}. \end{aligned}$$

Here we see that $F_{l(p), 0} w_2 w_1^2 + F_{l(p), 1} w_2^2 w_1^2 = w_2 w_1^{2^{l(p)}}$.

Let $p \equiv 0(4)$ and p > 0. Then using Theorems 1.5(iii) and 1.6(ii), (iii) and noting $G_{p+2} = G_p F_{l(p),2}$, we see

$$w_i(p+2) = P_{a-1}(p+2)w_1 + (P_{a-2}(p/2+1) + P_{a-3}(p/2+1)w_1^{m/2})^2$$

= $w_3^{p+2} \{F_{a,h(p)+1} G_p F_{l(p),2} w_2 w_1^2 + (F_{a,h(p)+1} + F_{a-1,h(p)+1} w_1^m) G_p F_{l(p),1}\}.$

Here we see that $F_{a,h(p)+1} + F_{a-1,h(p)+1}w_1^m = w_2^{m-2^{h(p)+1}}$ if $h(p) \le a-2$; 0 otherwise.

THEOREM 5.3. Let
$$i = 2^a + 2^b + 1$$
 $(a > b \ge 1)$. Then

$$\begin{split} v_i &\equiv w_3 \left(\sum_{s=b}^{a-1} w_2^{2s-1} w_1^{i-2^{s+1}-1} \right) \\ &+ \sum_{p \equiv 0(2), h(p) \le a-2} w_3^{p+1} \left(\sum_{s=\max(b,h(p)+1)}^{a-1} w_2^{2s-2^{h(p)+1}} w_1^{i-2^{s+1}-1} \right) G_p F_{l(p),0} \\ &+ \sum_{p \equiv 0(2), p \neq 0(m), h(p) \le a-2} w_3^p \left(\sum_{s=\max(b,h(p)+1)}^{a-1} w_2^{2s-2^{h(p)+1}} w_1^{i-2^{s+1}-1} \right) G_p F_{l(p),0} w_2 w_1 \\ &+ w_3^m (F_{a,b+1} F_{b,0} w_2 w_1^{m+1} + F_{a,b} w_1) \\ &+ \sum_{p \equiv 0(2m)} w_3^{p+m} F_{a,h(p)+1} G_p (F_{l(p),b+1} F_{b,0} w_2 w_1^{m+1} + F_{l(p),b} w_1) \\ &+ \sum_{p \equiv 0(2m)} w_3^p F_{a,h(p)+1} G_p \left(\sum_{s=0}^{b-1} w_2^{2s} w_1^{2^{l(p)}+m-2^{s+1}+1} \right) \mod I_4 \;, \end{split}$$

where p > 0 and $m = 2^{b}$.

PROOF. We have $v_i \equiv 0 \mod I_3$ by Theorem 4.9(iii) or Remark 4.10(iii). We also use the notation $v_i(p)$ used in the proof of Theorem 5.2.

From Theorems 1.5(iv) and 1.6(i), we see

$$v_i(1) = P_{a-1}(1)w_1^{2^b} + P_{b-1}(1)w_1^{2^a} = w_3\left(\sum_{s=b}^{a-1} w_2^{2^{s-1}}w_1^{i-2^{s+1}-1}\right).$$

Let $p \equiv 0(2)$ and p > 0. Then using Theorems 1.5(iv), 1.6(iii) and letting $m = 2^b$, $n = 2^a$, we see

$$v_i(p+1) = P_{a-1}(p+1)w_1^m + P_{b-1}(p+1)w_1^n$$

= $w_3^{p+1}(F_{a,h(p)+1}w_1^m + F_{b,h(p)+1}w_1^n)G_pF_{l(p),0}$.

Here we see that $F_{a,h(p)+1}w_1^m + F_{b,h(p)+1}w_1^n = \sum_{s=\max(b,h(p)+1)}^{a-1} w_2^{2s-2^{h(p)+1}}w_1^{i-2^{s+1}-1}$ if $h(p) \le a-2$; 0 if $h(p) \ge a-1$.

Let $p \equiv 0(2)$, p > 0 and $p \neq 0(m)$. Then since $v_i(p) = P_{a-1}(p)w_1^m + P_{b-1}(p)w_1^n$ $(m = 2^b, n = 2^a)$, we obtain the conclusion in the same way as the above case.

From Theorems 1.5(iv), 1.6(i) and (ii), we have

$$v_i(m) = P_{a-1}(m)w_1^m + (P_{a-b-1}(1))^m w_1 = w_3^m (F_{a,b+1}F_{b,0}w_2w_1^{m+1} + F_{a,b}w_1).$$

Let $p \equiv 0(2m)$ and p > 0. Then using Theorems 1.5(iv), 1.6(ii) and (iii), we see

$$v_i(p+m) = P_{a-1}(p+m)w_1^m + (P_{a-b-1}(p/m+1))^m w_1$$

= $w_3^{p+m} F_{a,h(p)+1} G_p(F_{l(p),b+1}F_{b,0}w_2w_1^{m+1} + F_{l(p),b}w_1)$

Let $p \equiv 0(2m)$ and p > 0. Then using Theorems 1.5(iv) and 1.6(ii), we see

$$v_i(p) = P_{a-1}(p)w_1^m + (P_{a-b-1}(p/m))^m w_1$$

= $w_3^p F_{a,h(p)+1} G_p(F_{l(p),0} w_2 w_1^{m+1} + F_{l(p),b} w_2^m w_1^{m+1})$

Here we see that $F_{l(p),0}w_2w_1^{m+1} + F_{l(p),b}w_2^mw_1^{m+1} = \sum_{s=0}^{b-1} w_2^{2s}w_1^{2^{l(p)}+m-2^{s+1}+1}$. \Box

References

- D. M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc., 44 (1974), 235-236.
- [2] H. Ichikawa and T. Yoshida, Some monomials in the universal Wu classes, Hiroshima Math. J., 20 (1990), 127-136.
- [3] J. W. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology, 3 (1965), 223-230.
- [4] J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies No. 76, Princeton Univ. Press, Princeton, New Jersey and Univ. of Tokyo Press, Tokyo, 1974.

- [5] H. Osborn, Vector bundles, vol. 1, Foundations and Stiefel-Whitney classes, Academic Press, New York-London, 1982.
- [6] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Annals of Mathematics Studies No. 50, Princeton Univ. Press, Princeton, New Jersey, 1962.
- [7] R. E. Stong, Cobordism and Stiefel-Whitney numbers, Topology, 4 (1965), 241-256.
- [8] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, New Jersey and Univ. of Tokyo Press, Tokyo, 1968.
- [9] R. E. Stong and T. Yoshida, Wu classes, Proc. Amer. Math. Soc., 100 (1987), 352-354.
- [10] J. Vrabec, Bordism, homology, and Stiefel-Whitney numbers, Postdiplom. Sem. Mat. 13, Društvo Mat. Fiz. Astronom. SR Slovenije, Ljubljana, 1982.
- [11] W.-T. Wu, Les *i*-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris, 230 (1950), 918-920.
- [12] T. Yoshida, Wu classes and unoriented bordism classes of certain manifolds, Hiroshima Math. J., 10 (1980), 567-596.
- [13] T. Yoshida, Universal Wu classes, Hiroshima Math. J., 17 (1987), 489-493.

Faculty of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 739 Japan