The polynomials on w_{1}, w_{2} and w_{3} in the universal Wu classes

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

Toshio Yoshida

(Received November 28, 1994)

Abstract

The cohomology ring $H^{*}\left(B O ; Z_{2}\right)$ is the polynomial algebra $Z_{2}\left[w_{1}, w_{2}\right.$, $\left.w_{3}, \cdots\right]$, where w_{i} is the i-dimensional universal Stiefel-Whitney class. The i-dimensional universal Wu class v_{i} is defined inductively as follows: $v_{0}=w_{0}=1$ and $w_{i}=$ $v_{i}+\sum_{j=1}^{i} S q^{j} v_{i-j}(i \geq 1)$, where $S q^{j}$ is the Steenrod squaring operation. We can describe explicitly the polynomials on w_{1}, w_{2} and w_{3} in v_{i}.

1. Introduction

Let $B O$ be the space which classifies stable real vector bundles. Then its $\bmod 2$ cohomology $H^{*}\left(B O ; Z_{2}\right)$ is the polynomial algebra over Z_{2} on the universal Stiefel-Whitney classes $w_{i} \in H^{i}\left(B O ; Z_{2}\right)$ for $i \geq 1$ (cf. [4], [10]).

The i-dimensional universal Wu class $v_{i}(i \geq 0)$ is the element of $H^{i}\left(B O ; Z_{2}\right)$, and this is defined inductively by using the Steenrod squaring operations $S q^{j}$ in the following way (cf. [3], [6], [7], [8]):

$$
\begin{equation*}
v_{0}=w_{0}=1 \text { and } w_{i}=v_{i}+S q^{1} v_{i-1}+\cdots+S q^{i} v_{0} \quad \text { if } \quad i \geq 1 \tag{1.1}
\end{equation*}
$$

The i-dimensional Wu class $v_{i}(M)$ of a closed n-dimensional manifold M is the unique element of $H^{i}\left(M ; Z_{2}\right)$ such that

$$
S q^{i} x=x v_{i}(M) \quad \text { for all } \quad x \in H^{n-i}\left(M ; Z_{2}\right),
$$

and the following relations between the Stiefel-Whitney classes and the Wu classes of M hold (cf. [4], [9]):

$$
\begin{equation*}
v_{0}(M)=1 \text { and } w_{i}(M)=v_{i}(M)+S q^{1} v_{i-1}(M)+\cdots+S q^{i} v_{0}(M) \quad \text { if } i \geq 1 \tag{1.2}
\end{equation*}
$$

So if f denotes the classifying map for the stable tangent bundle of M, then

$$
f^{*} w_{i}=w_{i}(M) \text { and } f^{*} v_{i}=v_{i}(M) \quad \text { if } \quad i \geq 0 .
$$

Let J be the ideal of $H^{*}\left(B O ; Z_{2}\right)$ generated by the squares $w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, \cdots$.

[^0]Then the total universal Wu class $v=1+v_{1}+v_{2}+\cdots \bmod J$ is as follows (cf. [13]):

$$
v \equiv 1+\sum w_{i_{1}} \cdots w_{i_{i}} \bmod J,
$$

where Σ is taken over all sequences $1 \leq i_{1}<\cdots<i_{l}(l \geq 1)$ satisfying $\left\{i_{1}, \cdots, i_{l}\right\}$ $=\left\{\alpha_{1}, \beta_{1}, \cdots, \alpha_{m}, \beta_{m}, \gamma_{1}, \cdots, \gamma_{n}\right\}(l=2 m+n, m \geq 0, n \geq 0)$ such that $\alpha_{j}+\beta_{j}$ and γ_{j} are all powers of 2 .

So the final goal is to describe all monomials in v which belong to J. It is known that w_{j}^{2} appears in $v_{i}(i=2 j>0)$ if and only if $\alpha(i)=1$ or 2 , and also $w_{j} w_{1}^{i-j}(i \geq j \geq 2)$ appears in v_{i} if and only if $\alpha(i)=1$ and $i / 2<j \leq i$, or $\alpha(i)=2$ and $2^{b}<j \leq 2^{a}$ with $i=2^{a}+2^{b}(a>b \geq 0)$, where $\alpha(i)$ denotes the number of 1 's in the dyadic expansion of i (cf. [2]).

Now applying the Wu formula (cf. [5], [11])

$$
\begin{equation*}
S q^{j} w_{i}=\sum_{t=0}^{j}\binom{i-j-1+t}{t} w_{j-t} w_{i+t} \quad(0 \leq j<i) \tag{1.3}
\end{equation*}
$$

we can suppose the following (cf. Theorem 4.9, [12]):

$$
v_{j} \equiv\left\{\begin{array}{lll}
\left(w_{2}+w_{1}^{2}\right)^{j / 2} & \bmod I_{3} & \text { if } j=2^{a}(a \geq 1), \tag{1.4}\\
\left(\sum_{s=0}^{a-b-1} w_{2}^{\left.2^{s} w_{1}^{j / 2^{b}-2^{s+1}}\right)^{2^{b}}}\right. & \bmod I_{3} & \text { if } j=2^{a}+2^{b}(a>b \geq 0), \\
0 & \bmod I_{3} & \text { if } \alpha(j) \geq 3,
\end{array}\right.
$$

where I_{3}, generally I_{k} denotes the ideal of $H^{*}\left(B O ; Z_{2}\right)$ generated by w_{k}, w_{k+1}, ...

But the Wu classes modulo I_{4} seem very complicated. So we study these classes in this paper.

Let P_{t} be the element of $H^{2^{t+1}+1}\left(B O ; Z_{2}\right)$ defined by

$$
P_{t}=S q^{2 t} S q^{2^{t-1}} \cdots S q^{1} w_{2} \quad \text { if } t \geq 0 ; \text { and } P_{t}=0 \quad \text { if } t=-1
$$

Then the Wu classes modulo I_{4} are given by the following theorems.

Theorem 1.5.

(i) $v_{j} \equiv\left(v_{4}\right)^{j / 4} \equiv\left(w_{3} w_{1}+w_{2}^{2}+w_{1}^{4}\right)^{j / 4} \quad \bmod I_{4} \quad$ if $j=2^{a}(a \geq 2)$.
(ii) $\quad v_{i} \equiv P_{a-2} w_{1}^{(i-1) / 2}+w_{2}^{(i-1) / 2} w_{1} \quad \bmod I_{4} \quad$ if $i=2^{a}+1(a \geq 1)$.
(iii) $\quad v_{i} \equiv P_{a-1} w_{1}+\left(P_{a-2}+P_{a-3} w_{1}^{(i-2) / 4}+w_{2}^{(i-2) / 4} w_{1}\right)^{2}+w_{2} w_{1}^{i-2} \bmod I_{4}$ if $i=2^{a}+2(a \geq 2)$; and $v_{j} \equiv\left(v_{i}\right)^{j / i} \bmod I_{4}$ if $j=2^{a}+2^{b}(a>b \geq 1)$ and $i=j / 2^{b-1}$.
(iv) $v_{i} \equiv P_{a-1} w_{1}^{2 b}+P_{a-b-1}^{2 b} w_{1}+P_{b-1} w_{1}^{2 a} \bmod I_{4}$ if $i=2^{a}+2^{b}+1$ $(a>b \geq 1)$; and $v_{j} \equiv\left(v_{i}\right)^{j / i} \bmod I_{4}$ if $j=2^{a}+2^{b}+2^{c}(a>b>c \geq 0)$ and $i=j / 2^{c}$.
(v) $v_{j} \equiv 0 \quad \bmod I_{4} \quad$ if $\alpha(j) \geq 4$.

The above theorem will be proved in $\S 3$.
Let $F_{m, n}$ be the element of $\left.H^{2^{m-2^{n+1}}(B O ;} Z_{2}\right)$ defined by

$$
F_{m, n}=\sum_{i=n}^{m-1} w_{2}^{2^{i-2^{n}} w_{1}^{2 m-2^{i+1}} \quad \text { if } m>n \geq 0 ; \text { and } F_{m, n}=0 \quad \text { if } n \geq m \geq 0 . . . ~}
$$

And if $p=2^{p_{1}}+2^{p_{2}}+\cdots+2^{p_{s}}$ with $s \geq 1$ and $p_{1}>p_{2}>\cdots>p_{s} \geq 0$, then set

$$
G_{p}= \begin{cases}F_{p_{1}, p_{2}+1} F_{p_{2}, p_{3}+1} \cdots F_{p_{s-1}, p_{s}+1} & \text { if } s \geq 2, \\ 1 & \text { if } s=1\end{cases}
$$

and also set $h(p)=p_{1}$ and $l(p)=p_{s}$.
Let $P_{t}(p)$ be the sum consisting of all monomials on w_{3}, w_{2} and w_{1} in P_{t} such that each power of w_{3} for such monomials is p. If there are no such monomials, then also set $P_{t}(p)=0$ in $H^{2^{t+1}+1}\left(B O ; Z_{2}\right)$.

Then we have the following, which will be proved in $\S 4$.
Theorem 1.6. Let $p \geq 2$ be an even integer. Then
(i) $P_{t}(1)=w_{3} F_{t+1,0}$.
(ii) $P_{t}(p)=w_{3}^{p} F_{t+1, h(p)+1} G_{p} F_{l(p), 0} w_{2} w_{1}$.
(iii) $P_{t}(p+1)=w_{3}^{p+1} F_{t+1, h(p)+1} G_{p} F_{l(p), 0}$.

If we apply Theorem 1.6 to Theorem 1.5, then common monomials will appear and they will cancel each other. Explicit descriptions by the distinct monomials of the Wu classes modulo I_{4} will be obtained in $\S 5$.

2. Iterated Steenrod operations on the Stiefel-Whitney classes

Let θ^{i} be the elements of the mod 2 Steenrod algebra defined inductively by

$$
\begin{align*}
& \theta^{0}=S q^{0}=1, \theta^{1}=S q^{1} \text { and } \\
& \theta^{i}=S q^{i}+S q^{i-1} \theta^{1}+S q^{i-2} \theta^{2}+\cdots+S q^{1} \theta^{i-1} \quad \text { if } i \geq 2 \text { (cf. [12]). } \tag{2.1}
\end{align*}
$$

Then $\theta^{i}=\Sigma S q^{j_{1} \cdots S} q^{j_{s}}$, where Σ is taken over all sequences $\left(j_{1}, \cdots, j_{s}\right)$ consisting of positive integers such that $j_{1}+\cdots+j_{s}=i$ for $i \geq 1$; and this implies the following equality:

$$
\begin{equation*}
\theta^{i}=S q^{i}+\theta^{1} S q^{i-1}+\theta^{2} S q^{i-2}+\cdots+\theta^{i-1} S q^{1} \quad \text { if } i \geq 2 . \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), the following equalities hold:

$$
\begin{align*}
& \left(S q^{0}+S q^{1}+S q^{2}+\cdots\right)\left(\theta^{0}+\theta^{1}+\theta^{2}+\cdots\right)=1 \\
& \left(\theta^{0}+\theta^{1}+\theta^{2}+\cdots\right)\left(S q^{0}+S q^{1}+S q^{2}+\cdots\right)=1 \tag{2.3}
\end{align*}
$$

Thus the inverse $S q^{-1}$ of $S q=S q^{0}+S q^{1}+S q^{2}+\cdots$ is given by

$$
\begin{equation*}
S q^{-1}=\theta^{0}+\theta^{1}+\theta^{2}+\cdots \tag{2.4}
\end{equation*}
$$

Proposition 2.5. Let $i \geq 0$. Then

$$
v_{i}=\theta^{i} w_{0}+\theta^{i-1} w_{1}+\cdots+\theta^{0} w_{i}
$$

Proof. Set $w=w_{0}+w_{1}+w_{2}+\cdots$ and $v=v_{0}+v_{1}+v_{2}+\cdots$. Then using (1.1) we see $w=S q v$, and so $v=S q^{-1} w$. Thus (2.4) implies the conclusion.

The following lemma is well-known (cf. [12]).
Lemma 2.6. (i) Let x be a one dimensional cohomology class. Then

$$
\theta^{i} x= \begin{cases}x^{i+1} & \text { if } i+1 \text { is a power of } 2 \\ 0 & \text { otherwise }\end{cases}
$$

(ii) Let x and y be cohomology classes. Then

$$
\theta^{i}(x y)=\sum_{j+k=i}\left(\theta^{j} x\right)\left(\theta^{k} y\right)
$$

Proof. (i) For a sequence $\left(j_{1}, j_{2}, \cdots, j_{s}\right)$ consisting of positive integers, we see

$$
S q^{j_{1}} S q^{j_{2}} \cdots S q^{j_{s}} x= \begin{cases}x^{2^{s}} & \text { if }\left(j_{1}, j_{2}, \cdots, j_{s}\right)=\left(2^{s-1}, 2^{s-2}, \cdots, 1\right) \\ 0 & \text { otherwise }\end{cases}
$$

Thus we obtain (i).
(ii) It holds that $S q\left\{S q^{-1}(x y)\right\}=S q\left\{\left(S q^{-1} x\right)\left(S q^{-1} y\right)\right\}$ since the left side is $\left(S q S q^{-1}\right)(x y)=x y$ and the right side is $\left(S q S q^{-1} x\right)\left(S q S q^{-1} y\right)=x y$. Applying $S q^{-1}$ on both sides of this equality, we see $S q^{-1}(x y)=\left(S q^{-1} x\right)\left(S q^{-1} y\right)$. Thus (ii) follows from (2.4).

Proposition 2.7. Let i and j be positive integers such that $\alpha(i)>j$. Then $\theta^{i-j} w_{j}=0$.

Proof. Let $B O(n)$ be the space which classifies real n-plane bundles. Then $H^{*}\left(B O(n), Z_{2}\right)$ is the polynomial algebra over Z_{2} on the Stiefel-Whitney classes $w_{m}\left(\gamma^{n}\right) \in H^{m}\left(B O(n) ; Z_{2}\right)(1 \leq m \leq n)$ of the universal bundle γ^{n} over $B O(n)$. And if $g: B O(n) \rightarrow B O$ denotes the natural inclusion map, then $g^{*} w_{m}=w_{m}\left(\gamma^{n}\right)$ and

$$
g^{*}: H^{k}\left(B O ; Z_{2}\right) \rightarrow H^{k}\left(B O(n) ; Z_{2}\right)
$$

is an isomorphism for all $k \leq n$ (cf. [4], [10]).

Now by the splitting principle, there exists a space X and a map $f: X \rightarrow$ $B O(n)$ such that the induced bundle $f^{*} \gamma^{n}$ is isomorphic to the Whitney sum $\xi_{1} \oplus \cdots \oplus \xi_{n}$ of suitable real line bundles $\xi_{s}(1 \leq s \leq n)$ over X, and also

$$
f^{*}: H^{k}\left(B O(n) ; Z_{2}\right) \rightarrow H^{k}\left(X ; Z_{2}\right)
$$

is a monomorphism for all k (cf. [5]).
Let $x_{s}=w_{1}\left(\xi_{s}\right)(1 \leq s \leq n)$. Then

$$
\left(f^{*} g^{*}\right) w_{j}=f^{*} w_{j}\left(\gamma^{n}\right)=w_{j}\left(f^{*} \gamma^{n}\right)=w_{j}\left(\xi_{1} \oplus \cdots \oplus \xi_{n}\right)=\sum x_{t_{1}} \cdots x_{t_{j}}
$$

where Σ is taken over all sequences $\left(t_{1}, \cdots, t_{j}\right)$ such that $1 \leq t_{1}<\cdots<t_{j} \leq n$. So we see

$$
\left(f^{*} g^{*}\right) \theta^{i-j} w_{j}=\theta^{i-j}\left(\left(f^{*} g^{*}\right) w_{j}\right)=\sum \theta^{i-j}\left(x_{t_{1}} \cdots x_{t_{j}}\right)
$$

From Lemma 2.6 we have

$$
\theta^{i-j}\left(x_{t_{1}} \cdots x_{t_{j}}\right)=\sum x_{t_{1}}^{p_{1}} \cdots x_{t_{j}}^{p_{j}}
$$

where Σ is taken over all sequences $\left(p_{1}, \cdots, p_{j}\right)$ consisting of powers of 2 such that $p_{1}+\cdots+p_{j}=i$. But such a sequence does not exist since $\alpha\left(p_{1}+\cdots+p_{j}\right) \leq j<\alpha(i)$. Thus $\left(f^{*} g^{*}\right) \theta^{i-j} w_{j}=0$, and so $\theta^{i-j} w_{j}=0$ by choosing n such that $i \leq n$.

Next we consider the case $\alpha(i) \leq j$, and obtain the following.
Proposition 2.8. Let i and j be positive integers such that $\alpha(i) \leq j \leq$ $\alpha(i)+l(i)$. Then

$$
\theta^{i-j} w_{j}=\left(\theta^{i / 2^{m-j}} w_{j}\right)^{2^{m}},
$$

where $m=\alpha(i)+l(i)-j$.
Proof. We use the same notations as the proof of Proposition 2.7. Then

$$
\left(f^{*} g^{*}\right) \theta^{i-j} w_{j}=\sum \sum x_{t_{1}}^{p_{1}} \cdots x_{t_{j}}^{p_{j}} .
$$

Here we have $p_{k} \geq 2^{m}$ for all $k(1 \leq k \leq j)$. To show this equality, if $j=1$, then $\alpha(i)=1$, and so $p_{1}=i=2^{l(i)}=2^{m}$. Next let $j \geq 2$. If $p_{1}=2^{a}<2^{m}$ for example, then $\alpha\left(p_{2}+\cdots+p_{j}\right)=\alpha\left(i-p_{1}\right)=(\alpha(i)-1)+(l(i)-a)>(\alpha(i)-1)+$ $(j-\alpha(i))=j-1$, which is incompatible with $\alpha\left(p_{2}+\cdots+p_{j}\right) \leq j-1$. Thus we obtain

$$
\left(f^{*} g^{*}\right) \theta^{i-j} w_{j}=\left(\sum \sum x_{t_{1}}^{q_{1}} \cdots x_{t_{j}}^{q_{j}}\right)^{2 m}
$$

where $\Sigma \Sigma$ are taken over all sequences $\left(t_{1}, \cdots, t_{j}\right)$ and $\left(q_{1}, \cdots, q_{j}\right)$ such that $1 \leq t_{1}<\cdots<t_{j} \leq n$ and $q_{1}+\cdots+q_{j}=i / 2^{m}$ with $q_{s}(1 \leq s \leq j)$ powers of 2.

Thus $\left(f^{*} g^{*}\right) \theta^{i-j} w_{j}=\left(f^{*} g^{*}\right)\left(\theta^{i / 2^{m-j}} w_{j}\right)^{2 m}$, and so $\theta^{i-j} w_{j}=\left(\theta^{i / 2^{m-j}} w_{j}\right)^{2 m}$ by choosing n such that $i \leq n$.

We obtain the following by using the above propositions.
Theorem 2.9. Let j and k be positive integers such that $\alpha(j)+1 \leq k \leq$ $\alpha(j)+l(j)+1$. Then

$$
v_{j} \equiv\left(v_{i}\right)^{2^{m}} \bmod I_{k},
$$

where $i=j / 2^{m}$ and $m=\alpha(j)+l(j)+1-k$.
Proof. Since $l(j)-m=k-\alpha(j)-1 \geq 0, i$ is a positive integer, and also $i \geq k-1$ holds because of $i \geq 2^{k-2}+2^{k-3}+\cdots+2^{k-\alpha(j)-1} \geq 2^{k-2} \geq k-1$. Now from Proposition 2.7 and (1.3), we see $\theta^{j-s} w_{s}=0(1 \leq s<\alpha(j))$ and $\theta^{j-s} w_{s} \equiv 0 \bmod I_{k}(k \leq s \leq j)$. Thus by Proposition 2.5 with $\theta^{j} w_{0}=0(j \geq 1)$, we have

$$
v_{j} \equiv \sum_{s=\alpha(j)}^{k-1} \theta^{j-s} w_{s} \bmod I_{k}
$$

Using Proposition 2.8 because of $\alpha(j) \leq s \leq k-1 \leq \alpha(j)+l(j)$, we see

$$
\theta^{j-s} w_{s}=\left(\theta^{j / 2^{p-s}} w_{s}\right)^{2 p} \text { for } p=\alpha(j)+l(j)-s
$$

Similarly noting $\alpha(i)=\alpha(j) \leq k-1$, we have

$$
v_{i} \equiv \sum_{s=\alpha(i)}^{k-1} \theta^{i-s} w_{s} \bmod I_{k}
$$

Since $\alpha(i)+l(i)=\alpha(j)+l(j)-m=k-1$, we see

$$
\theta^{i-s} w_{s}=\left(\theta^{i / 2 q-s} w_{s}\right)^{2 q} \text { for } q=\alpha(i)+l(i)-s .
$$

Since $i / 2^{q}=j / 2^{m+q}=j / 2^{p}$, we obtain

$$
\left(\theta^{i-s} w_{s}\right)^{2^{m}}=\left(\theta^{i / 2^{q-s}} w_{s}\right)^{2^{m+q}}=\left(\theta^{j / 2^{p-s}} w_{s}\right)^{2 p} .
$$

Therefore $v_{j} \equiv\left(v_{i}\right)^{2 m} \bmod I_{k}$.
Remark 2.10. Let j and k be positive integers such that $\alpha(j) \geq k$. Then in the proof of Theorm 2.9, it is shown that $v_{j} \equiv 0 \bmod I_{k}$.

3. The Wu classes modulo I_{4}

In this section we will study the Wu classes modulo I_{4} and prove Theorem 1.5.

Proposition 3.1.

(i) $v_{j} \equiv\left(v_{4}\right)^{j / 4} \bmod I_{4} \quad$ if $\alpha(j)=1(j \geq 4)$.
(ii) $\quad v_{j} \equiv\left(v_{i}\right)^{j / i} \quad \bmod I_{4} \quad$ if $\alpha(j)=2$ and $i=j / 2^{l(j)-1}, l(j) \geq 1$.
(iii) $v_{j} \equiv\left(v_{i}\right)^{j / i} \quad \bmod I_{4}$ if $\alpha(j)=3$ and $i=j / 2^{l(j)}$.
(iv) $v_{j} \equiv 0 \quad \bmod I_{4} \quad$ if $\alpha(j) \geq 4$.

Proof. Let $1 \leq \alpha(j) \leq 3$. Then Theorem 2.9 implies

$$
v_{j} \equiv\left(v_{i}\right)^{2^{m}} \quad \bmod I_{4} \quad \text { if } l(j) \geq 3-\alpha(j),
$$

where $i=j / 2^{m}$ and $m=\alpha(j)+l(j)-3$. Thus (i), (ii) and (iii) follow from this. Also (iv) follows from Remark 2.10.

Thus we have the following remark from the above proposition.
Remark 3.2. To describe the Wu classes v_{i} modulo $I_{4}(i \geq 3)$, it is sufficient only to describe v_{i} modulo I_{4}, where $i=4,2^{a}+1(a \geq 1), 2^{a}+2$ $(a \geq 2)$ and $2^{a}+2^{b}+1(a>b \geq 1)$.

The following lemma is known (cf. [1], [12]).
Lemma 3.3. Let i be a power of 2. Then
(i) $\theta^{i-1}=S q^{i / 2} S q^{i / 4} \cdots S q^{1} \quad$ if $i \geq 2$.
(ii) $\theta^{i-1-j}=S q^{i / 2-s} \theta^{i / 2-1-(j-s)}+S q^{i / 2} \theta^{i / 2-1-j}$ if $1 \leq j<i / 2$ and $s=2^{h(j)}$.
(iii) $\theta^{i-j}=S q^{i / 2} S q^{i / 4} \cdots S q^{s} \theta^{s-j}$ if $1 \leq j \leq h(i)$ and $s=2^{j-1}$.
(iv) $\theta^{2 k+1}=\theta^{2 k} S q^{1} \quad$ if $k \geq 0$.

The Wu classes modulo I_{4} of the dimenions in Remark 3.2 are as follows:
Proposition 3.4. Let i be $2^{a}+1(a \geq 1), 2^{a}+2(a \geq 2), 2^{a}+2^{b}+1$ ($a>b \geq 1$). Then

$$
v_{i} \equiv\left\{\begin{array}{lll}
\left(\theta^{i / 2-2} w_{2}\right)^{2}+\theta^{i-3}\left(w_{2} w_{1}\right) & \bmod I_{4} & \text { if } i=2^{a}+2, \\
\theta^{i-3}\left(w_{2} w_{1}\right) & \bmod I_{4} & \text { otherwise } .
\end{array}\right.
$$

Proof. We use Propositions 2.5 and 2.7. For $i \geq 1, \theta^{i} w_{0}=0$; and using (1.3), $\theta^{i-s} w_{s} \equiv 0 \bmod I_{4}$ for $4 \leq s \leq i$.

Let $i=2^{a}+1 \quad(a \geq 1)$. Then since $w_{3}=S q^{1} w_{2}+w_{2} w_{1}$ by (1.3), and $\theta^{i-3} S q^{1}=\theta^{i-2}$ by Lemma 3.3 (iv), we see
$v_{i} \equiv \theta^{i-2} w_{2}+\theta^{i-3} w_{3}=\theta^{i-2} w_{2}+\theta^{i-3}\left(S q^{1} w_{2}+w_{2} w_{1}\right)=\theta^{i-3}\left(w_{2} w_{1}\right) \bmod I_{4}$.
Let $i=2^{a}+2^{b}+1(a>b \geq 1)$. Then similarly we see
$v_{i} \equiv \theta^{i-3} w_{3}=\theta^{i-3}\left(S q^{1} w_{2}+w_{2} w_{1}\right)=\theta^{i-2} w_{2}+\theta^{i-3}\left(w_{2} w_{1}\right)=\theta^{i-3}\left(w_{2} w_{1}\right) \bmod I_{4}$ since $\theta^{i-2} w_{2}=0$ also by Proposition 2.7.

Let $i=2^{a}+2(a \geq 2)$. Then

$$
v_{i} \equiv \theta^{i-2} w_{2}+\theta^{i-3} w_{3}=\theta^{i-2} w_{2}+\theta^{i-3} S q^{1} w_{2}+\theta^{i-3}\left(w_{2} w_{1}\right) \bmod I_{4} .
$$

Here $\theta^{i-2} w_{2}=\left(\theta^{i / 2-2} w_{2}\right)^{2}$ by Proposition 2.8, and $\theta^{i-3} S q^{1}=\theta^{i-4} S q^{1} S q^{1}=0$ by Lemma 3.3 (iv) and the Adem relation $S q^{1} S q^{1}=0$.

In the following proposition, we consider $\theta^{i-3}\left(w_{2} w_{1}\right)$ in the above proposition.

Proposition 3.5. Let i be $2^{a}+1(a \geq 2), 2^{a}+2(a \geq 2), 2^{a}+2^{b}+1$ ($a>b \geq 1$). Then
$\theta^{i-3}\left(w_{2} w_{1}\right)$

$$
= \begin{cases}w_{2}^{m} w_{1}+P_{a-2} w_{1}^{m} & \text { if } i=2^{a}+1 \text { and } m=2^{a-1}, \\ P_{a-1} w_{1}+w_{2}^{m} w_{1}^{2}+P_{a-3}^{2} w_{1}^{m}+w_{2} w_{1}^{2 m} & \text { if } i=2^{a}+2 \text { and } m=2^{a-1}, \\ P_{a-b-1}^{n} w_{1}+P_{a-1} w_{1}^{n}+P_{b-1} w_{1}^{2 m} & \text { if } i=2^{a}+2^{b}+1 \text { and } m=2^{a-1}, n=2^{b} .\end{cases}
$$

Proof. Let $i=2^{a}+1(a \geq 2)$ and $m=2^{a-1}$. Then using Lemma 2.6 and Proposition 2.7, we see

$$
\begin{aligned}
\theta^{i-3}\left(w_{2} w_{1}\right) & =\left(\theta^{2 m-2} w_{2}\right) w_{1}+\sum_{p=1}^{a-1}\left\{\theta^{\left(2 m-2^{p+1)-2}\right.} w_{2}\right\}\left(\theta^{2 p-1} w_{1}\right) \\
& =\left(\theta^{2 m-2} w_{2}\right) w_{1}+\left(\theta^{m-1} w_{2}\right) w_{1}^{m}
\end{aligned}
$$

since $\alpha\left(2 m-2^{p}+1\right)=a-p+1>2$ for $1 \leq p<a-1$.
Here from Proposition 2.8 and Lemma 3.3 (i), we see

$$
\theta^{2 m-2} w_{2}=\left(\theta^{0} w_{2}\right)^{m}=w_{2}^{m} \quad \text { and } \quad \theta^{m-1} w_{2}=S q^{m / 2} S q^{m / 4} \cdots S q^{1} w_{2}=P_{a-2} .
$$

Let $i=2^{a}+2(a \geq 2)$ and $m=2^{a-1}$. Then similarly we see

$$
\begin{aligned}
\theta^{i-3}\left(w_{2} w_{1}\right) & =\left(\theta^{2 m-1} w_{2}\right) w_{1}+\left(\theta^{2 m-2} w_{2}\right) w_{1}^{2}+\sum_{p=2}^{a-1}\left\{\theta^{\left(2 m-2^{p}+2\right)-2} w_{2}\right\} w_{1}^{2^{p}}+w_{2} w_{1}^{2 m} \\
& =\left(\theta^{2 m-1} w_{2}\right) w_{1}+\left(\theta^{2 m-2} w_{2}\right) w_{1}^{2}+\left(\theta^{m} w_{2}\right) w_{1}^{m}+w_{2} w_{1}^{2 m}
\end{aligned}
$$

since $\alpha\left(2 m-2^{p}+2\right)=a-p+1>2$ for $2 \leq p<a-1$.
Here $\theta^{2 m-1} w_{2}=P_{a-1}, \theta^{2 m-2} w_{2}=w_{2}^{m}$ and $\theta^{m} w_{2}=\left(\theta^{m / 2-1} w_{2}\right)^{2}=P_{a-3}^{2}$ for $a \geq 3$. Thus noting $P_{a-3}^{2}=0$ for $a=2$, we obtain the conclusion.

Let $i=2^{a}+2^{b}+1(a>b \geq 1)$ and $m=2^{a-1}, n=2^{b}$. Then similarly we see

$$
\begin{aligned}
\theta^{i-3}\left(w_{2} w_{1}\right)= & \left(\theta^{2 m+n-2} w_{2}\right) w_{1}+\sum_{p=1}^{b-1}\left\{\theta^{\left(2 m+n-2^{p+1)-2}\right.} w_{2}\right\} w_{1}^{2 p}+\left(\theta^{2 m-1} w_{2}\right) w_{1}^{n} \\
& +\sum_{p=b+1}^{a-1}\left\{\theta^{\left(2 m-2^{p+n+1)-2} w_{2}\right\} w_{1}^{2 p}+\left(\theta^{n-1} w_{2}\right) w_{1}^{2 m}}\right. \\
= & \left(\theta^{2 m+n-2} w_{2}\right) w_{1}+\left(\theta^{2 m-1} w_{2}\right) w_{1}^{n}+\left(\theta^{n-1} w_{2}\right) w_{1}^{2 m}
\end{aligned}
$$

since $\alpha\left(2 m+n-2^{p}+1\right)=b-p+2>2$ for $1 \leq p \leq b-1$, and also $\alpha(2 m-$ $\left.2^{p}+n+1\right)=a-p+2>2$ for $b+1 \leq p \leq a-1$.
Here $\theta^{2 m+n-2} w_{2}=\left(\theta^{2 m / n-1} w_{2}\right)^{n}=P_{a-b-1}^{n}, \theta^{2 m-1} w_{2}=P_{a-1}$ and $\theta^{n-1} w_{2}=P_{b-1}$.
We are now in a position to prove Theorem 1.5.
Proof of Theorem 1.5. (i) $v_{4} \equiv \theta^{3} w_{1}+\theta^{2} w_{2}+\theta^{1} w_{3} \bmod I_{4}$. Here by Proposition 2.8 and (1.3), we see $\theta^{3} w_{1}=\left(\theta^{0} w_{1}\right)^{4}=w_{1}^{4}, \theta^{2} w_{2}=\left(\theta^{0} w_{2}\right)^{2}=w_{2}^{2}$ and $\theta^{1} w_{3}=S q^{1} w_{3}=w_{3} w_{1}$. Hence (i) follows from Proposition 3.1 (i).
(ii) $v_{3}=w_{2} w_{1}$ by Proposition 3.4. So (ii) holds for $a=1$ since $P_{-1}=0$ by the definition. Next let $i=2^{a}+1(a \geq 2)$. Then Propositions 3.4 and 3.5 imply (ii).
(iii) Using Propositions 3.4, 3.5 and letting $m=2^{a-1}$, we see

$$
\begin{aligned}
v_{i} & \equiv\left(\theta^{m-1} w_{2}\right)^{2}+\theta^{i-3}\left(w_{2} w_{1}\right) \\
& =P_{a-2}^{2}+P_{a-1} w_{1}+w_{2}^{m} w_{1}^{2}+P_{a-3}^{2} w_{1}^{m}+w_{2} w_{1}^{2 m} \\
& =P_{a-1} w_{1}+\left(P_{a-2}+P_{a-3} w_{1}^{m / 2}+w_{2}^{m / 2} w_{1}\right)^{2}+w_{2} w_{1}^{2 m} \bmod I_{4}
\end{aligned}
$$

which is the result for v_{i}. And the one for v_{j} follows from Proposition 3.1 (ii).
(iv) Propositions 3.4 and 3.5 imply the result for v_{i}. And the one for v_{j} follows from Proposition 3.1 (iii).
(v) This follows from Proposition 3.1 (iv).

4. $S q^{2^{t}} S q^{2^{t-1}} \cdots S q^{1} w_{2}$ modulo I_{4}

In this section we will study the terms $P_{t}=S q^{2^{t}} S q^{2^{2-1}} \cdots S q^{1} w_{2}$ which remain to be known in Theorem 1.5 .

The following lemma will be used often.
Lemma 4.1 ([6]). Let $a=\Sigma_{i} a_{i} 2^{i}$ and $b=\Sigma_{i} b_{i} 2^{i}\left(0 \leq a_{i}, b_{i} \leq 1\right)$. Then

$$
\binom{a}{b} \equiv \prod_{i}\binom{a_{i}}{b_{i}} \bmod 2 .
$$

We have the following formula on P_{t}.

Proposition 4.2. Let $x=w_{3}+w_{2} w_{1}$ and $y=w_{2}+w_{1}^{2}$. Then

$$
\begin{equation*}
P_{t} \equiv \sum_{0 \leq 3 i<n}\binom{3 i}{i} x^{2 i+1} y^{n-3 i-1} \bmod I_{4} \tag{4.3}
\end{equation*}
$$

where $n=2^{t}(t \geq 0)$.
Proof. We notice the following (4.4):
(4.4) $\quad S q^{1} x=0, \quad S q^{2} x \equiv x y \bmod I_{4}, \quad S q^{3} x=x^{2}, \quad S q^{1} y=x, \quad S q^{2} y=y^{2}$.

In fact using (1.3) and the Cartan formula, we see

$$
\begin{gathered}
S q^{1} x=w_{3} w_{1}+w_{2} w_{1}^{2}+\left(w_{3}+w_{2} w_{1}\right) w_{1}=0, \\
S q^{2} x=w_{5}+w_{4} w_{1}+w_{3} w_{2}+\left(w_{3}+w_{2} w_{1}\right) w_{1}^{2}+w_{2}^{2} w_{1} \equiv x y \bmod I_{4}, \\
S q^{1} y=S q^{1} w_{2}=w_{3}+w_{2} w_{1}=x .
\end{gathered}
$$

And since $\operatorname{dim} x=3$ and $\operatorname{dim} y=2, S q^{3} x=x^{2}$ and $S q^{2} y=y^{2}$ hold.
We prove (4.3) by induction on t. Since $P_{0}=S q^{1} w_{2}=x$ and $P_{1}=$ $S q^{2} P_{0}=S q^{2} x \equiv x y \bmod I_{4}$, (4.3) holds for $t=0,1$. Assume that (4.3) holds for $t-1(t \geq 2)$. Then since $S q^{i} I_{4} \subseteq I_{4}$ and $n=2^{t}=\operatorname{dim} P_{t-1}-1$, the left side of (4.3) for t is as follows:

$$
\begin{aligned}
P_{t}=S q^{n} P_{t-1} \equiv & S q^{n} \sum_{0 \leq 3 i<n / 2}\binom{3 i}{i} x^{2 i+1} y^{n / 2-3 i-1} \\
= & \sum_{0 \leq 3 i<n / 2}\binom{3 i}{i}\left\{(2 i+1)\left(S q^{2} x\right) x^{4 i} y^{n-6 i-2}\right. \\
& \left.+(n / 2-3 i-1) x^{4 i+2}\left(S q^{1} y\right) y^{n-6 i-4}\right\} \\
= & \sum_{0 \leq 6 j<n / 2}\binom{6 j}{2 j}\left\{\left(S q^{2} x\right) x^{8 j} y^{n-12 j-2}+x^{8 j+2}\left(S q^{1} y\right) y^{n-12 j-4}\right\} \\
& +\sum_{0 \leq 6 j+3<n / 2}\binom{6 j+3}{2 j+1}\left\{\left(S q^{2} x\right) x^{8 j+4} y^{n-12 j-8}\right\} \\
\equiv & \sum_{0 \leq 6 j<n / 2}\binom{6 j}{2 j}\left(x^{8 j+1} y^{n-12 j-1}+x^{8 j+3} y^{n-12 j-4}\right) \\
& +\sum_{0 \leq 6 j+3<n / 2}\binom{6 j+3}{2 j+1}\left(x^{8 j+5} y^{n-12 j-7}\right) \bmod I_{4} .
\end{aligned}
$$

On the other hand, using Lemma 4.1, we see

$$
\sum_{0 \leq 3 i<n}\binom{3 i}{i} x^{2 i+1} y^{n-3 i-1}=S_{1}+S_{2}+S_{3}+S_{4}
$$

where

$$
\begin{gathered}
S_{1}=\sum_{0 \leq 12 j<n}\binom{12 j}{4 j} x^{8 j+1} y^{n-12 j-1}=\sum_{0 \leq 6 j<n / 2}\binom{6 j}{2 j} x^{8 j+1} y^{n-12 j-1}, \\
S_{2}=\sum_{0 \leq 12 j+3<n}\binom{12 j+3}{4 j+1} x^{8 j+3} y^{n-12 j-4}=\sum_{0 \leq 6 j<n / 2}\binom{6 j}{2 j} x^{8 j+3} y^{n-12 j-4}, \\
S_{3}=\sum_{0 \leq 12 j+6<n}\binom{12 j+6}{4 j+2} x^{8 j+5 y^{n-12 j-7}}=\sum_{0 \leq 6 j+3<n / 2}\binom{6 j+3}{2 j+1} x^{8 j+5} y^{n-12 j-7},
\end{gathered}
$$

and since $\binom{12 j+9}{4 j+3}$ is even

$$
S_{4}=\sum_{0 \leq 12 j+9<n}\binom{12 j+9}{4 j+3} x^{8 j+7} y^{n-12 j-10}=0
$$

Therefore (4.3) for t holds.
Next we have another inductive formula on P_{t}.
Proposition 4.5. Let $x=w_{3}+w_{2} w_{1}$ and $y=w_{2}+w_{1}^{2}$. Then

$$
\begin{equation*}
P_{t} \equiv y^{n} P_{t-1}+x^{n} P_{t-2} \quad \bmod I_{4} \tag{4.6}
\end{equation*}
$$

where $n=2^{t-1}(t \geq 1)$.
Proof. We prove (4.6) by induction on t. Since $P_{-1}=0, P_{0}=x, P_{1} \equiv$ $x y \bmod I_{4}, \quad P_{2}=S q^{4} P_{1} \equiv S q^{4}(x y)=\left(S q^{2} x\right) y^{2}+x^{2}\left(S q^{1} y\right) \equiv x y^{3}+x^{3} \equiv y^{2} P_{1}+$ $x^{2} P_{0} \bmod I_{4}$, (4.6) holds for $t=1$, 2. Assume that (4.6) holds for $t-1(t \geq 3)$. Then the left side of (4.6) for t is as follows:

$$
\begin{aligned}
P_{t}= & S q^{2 n} P_{t-1} \equiv S q^{2 n}\left(y^{n / 2} P_{t-2}+x^{n / 2} P_{t-3}\right) \\
= & \left(S q^{n-1} y^{n / 2}\right) P_{t-2}^{2}+y^{n}\left(S q^{n} P_{t-2}\right) \\
& +\left(S q^{n+n / 2-1} x^{n / 2}\right) P_{t-3}^{2}+x^{n}\left(S q^{n / 2} P_{t-3}\right) \bmod I_{4} .
\end{aligned}
$$

Here $S q^{n-1} y^{n / 2}=0$ and $S q^{n+n / 2-1} x^{n / 2}=0$ since $n-1$ and $n+n / 2-1$ are both odd and $n / 2$ is even; $S q^{n} P_{t-2}=P_{t-1}$ and $S q^{n / 2} P_{t-3}=P_{t-2}$. Thus $P_{t} \equiv y^{n} P_{t-1}+$ $x^{n} P_{t-2} \bmod I_{4}$, which completes induction on t.

Corollary 4.7. Let $t \geq 0$. Then

$$
\begin{equation*}
P_{t} \equiv \sum_{i=0}^{t} w_{2}^{2^{i}} w_{1}^{m-2^{i+1}} \bmod I_{3} \tag{4.8}
\end{equation*}
$$

where $m=2^{t+1}+1$.

Proof. We prove (4.8) by induction on t. Since $P_{0}=S q^{1} w_{2} \equiv$ $w_{2} w_{1} \bmod I_{3}$ and $P_{1}=S q^{2} P_{0} \equiv S q^{2}\left(w_{2} w_{1}\right)=\left(S q^{1} w_{2}\right) w_{1}^{2}+w_{2}^{2} w_{1} \equiv w_{2} w_{1}^{3}+$ $w_{2}^{2} w_{1} \bmod I_{3}$, (4.8) holds for $t=0,1$. Assume that (4.8) holds for less than $t-1(t \geq 2)$. Then the left side of (4.8) for t is as follows by using Proposition 4.5 and letting $n=2^{t-1}, m=2^{t+1}+1$:

$$
\begin{aligned}
P_{t} & \equiv\left(w_{2}+w_{1}^{2}\right)^{n} P_{t-1}+\left(w_{2} w_{1}\right)^{n} P_{t-2} \\
& \equiv\left(w_{2}^{n}+w_{1}^{2 n}\right) \sum_{i=0}^{t-1} w_{2}^{2^{i}} w_{1}^{2 n+1-2^{i+1}}+\left(w_{2}^{n} w_{1}^{n}\right) \sum_{i=0}^{t-2} w_{2}^{2^{i}} w_{1}^{n+1-2^{i+1}} \\
& =\sum_{i=0}^{t-1} w_{2}^{2^{i+n}} w_{1}^{2 n+1-2^{i+1}}+\sum_{i=0}^{t-1} w_{2}^{2^{i}} w_{1}^{4 n+1-2^{i+1}}+\sum_{i=0}^{t-2} w_{2}^{2^{i+n} w_{1}^{2 n+1-2^{i+1}}} \\
& =\sum_{i=0}^{t} w_{2}^{2^{i}} w_{1}^{m-2^{i+1}} \bmod I_{3},
\end{aligned}
$$

which completes induction on t.
We obtain the following theorem which is (1.4) in § 1 (cf. [12]).

Theorem 4.9.

(i) $v_{j} \equiv\left(v_{2}\right)^{j / 2}=\left(w_{2}+w_{1}^{2}\right)^{j / 2} \bmod I_{3}$ if $j=2^{a}(a \geq 1)$.
(ii) $v_{i} \equiv \sum_{s=0}^{a-1} w_{2}^{2 s} w_{1}^{i-2^{s+1}} \bmod I_{3}$ if $i=2^{a}+1(a \geq 1)$; and $v_{j} \equiv\left(v_{i}\right)^{j / i}$ $\bmod I_{3}$ if $j=2^{a}+2^{b}(a>b \geq 0)$ and $i=j / 2^{b}$.
(iii) $v_{j} \equiv 0 \quad \bmod I_{3}$ if $\alpha(j) \geq 3$.

Proof. (iii) follows from Remark 2.10. So assume $\alpha(j) \leq 2$. Then by Theorem 2.9, we have

$$
v_{j} \equiv\left(v_{i}\right)^{2 m} \quad \bmod I_{3} \quad \text { if } l(j) \geq 2-\alpha(j)
$$

where $i=j / 2^{m}$ and $m=\alpha(j)+l(j)-2$.
(i) If $j=2^{a}(a \geq 1)$, then $v_{j} \equiv\left(v_{2}\right)^{j / 2} \bmod I_{3}$. Here we see that $v_{2}=$ $\theta^{1} w_{1}+\theta^{0} w_{2}=w_{1}^{2}+w_{2}$.
(ii) If $j=2^{a}+2^{b}(a>b \geq 0)$, then $v_{j} \equiv\left(v_{i}\right)^{j / i} \bmod I_{3}$ where $i=j / 2^{b}$. Also if $i=2^{a}+1(a \geq 1)$, then using Corollary 4.7, we see

$$
v_{i} \equiv \theta^{i-2} w_{2}=P_{a-1} \equiv \sum_{s=0}^{a-1} w_{2}^{2 s} w_{1}^{i-2^{s+1}} \bmod I_{3}
$$

Remark 4.10. Using Theorem 1.5, we can also prove Theorem 4.9 in the following way:
(i) Let $j=2^{a}(a \geq 2)$. Then Theorem 1.5 (i) implies that $v_{j} \equiv\left(w_{2}^{2}+w_{1}^{4}\right)^{j / 4}$ $=\left(w_{2}+w_{1}^{2}\right)^{j / 2} \bmod I_{3}$.
(ii) Let $i=2^{a}+1(a \geq 1)$ and $m=2^{a-1}+1$. Then Theorem 1.5(ii) and Corollary 4.7 imply

$$
v_{i} \equiv\left(\sum_{s=0}^{a-2} w_{2}^{2^{s}} w_{1}^{m-2^{s+1}}\right) w_{1}^{m-1}+w_{2}^{m-1} w_{1}=\sum_{s=0}^{a-1} w_{2}^{2^{s} s} w_{1}^{i-2^{s+1}} \bmod I_{3}
$$

Let $j=2^{a}+2(a \geq 2), i=j / 2$ and $m=2^{a}+1$. Then Theorem 1.5(iii), Corollary 4.7 and the above result for $i=j / 2$ imply

$$
\begin{aligned}
v_{j} \equiv & \left(\sum_{s=0}^{a-1} w_{2}^{2^{s} s} w_{1}^{m-2^{s+1}}\right) w_{1} \\
+ & \left\{\sum_{s=0}^{a-2} w_{2}^{2^{s}} w_{1}^{(m-1) / 2+1-2^{s+1}}+\left(\sum_{s=0}^{a-3} w_{2}^{2^{s}} w_{1}^{(m-1) / 4+1-2^{s+1}}\right) w_{1}^{(m-1) / 4}+w_{2}^{(m-1) / 4} w_{1}\right\}^{2} \\
& +w_{2} w_{1}^{m-1}=\sum_{s=0}^{a-1} w_{2}^{2^{s}} w_{1}^{j-2^{s+1}}+w_{2} w_{1}^{m-1}=\sum_{s=1}^{a-1} w_{2}^{2^{s} s} w_{1}^{j-2^{s+1}} \\
= & \left(\sum_{t=0}^{a-2} w_{2}^{2^{t}} w_{1}^{i-2^{t+1}}\right)^{2} \equiv\left(v_{i}\right)^{j / i} \bmod I_{3} .
\end{aligned}
$$

Let $j=2^{a}+2^{b}(a>b \geq 1)$ and $i=j / 2^{b}$. Then Theorem 1.5(iii) and the above result for $v_{2 i}$ imply that $v_{j} \equiv\left(v_{2 i}\right)^{j / 2 i} \equiv\left(v_{i}\right)^{j / i} \bmod I_{3}$.
(iii) Let $i=2^{a}+2^{b}+1(a>b \geq 1), m=2^{a}+1$ and $n=2^{b}+1$. Then Theorem 1.5 (iv) and Corollary 4.7 imply

$$
\begin{aligned}
v_{i} \equiv & \left(\sum_{s=0}^{a-1} w_{2}^{2^{s}} w_{1}^{m-2^{s+1}}\right) w_{1}^{n-1}+\left(\sum_{s=0}^{a-b-1} w_{2}^{2^{s}} w_{1}^{(m-1) /(n-1)+1-2^{s+1}}\right)^{n-1} w_{1} \\
& +\left(\sum_{s=0}^{b-1} w_{2}^{2^{s}} w_{1}^{n-2^{s+1}}\right) w_{1}^{m-1} \\
= & \sum_{s=0}^{a-1} w_{2}^{2^{s}} w_{1}^{i-2^{s+1}}+\sum_{s=b}^{a-1} w_{2}^{2^{s}} w_{1}^{i-2^{s+1}}+\sum_{s=0}^{b-1} w_{2}^{2^{s}} w_{1}^{i-2^{s+1}}=0 \bmod I_{3} .
\end{aligned}
$$

Let $j=2^{a}+2^{b}+2^{c}(a>b>c \geq 0)$ and $i=j / 2^{c}$. Then Theorem 1.5(iv) and the above result for $j / 2^{c}$ imply that $v_{j} \equiv\left(v_{i}\right)^{2 c} \equiv 0 \bmod I_{3}$.

Let $\alpha(j) \geq 4$. Then $v_{j} \equiv 0 \bmod I_{3}$ by Theorem 1.5(v).
We are now in a position to prove Theorem 1.6.
Proof of Theorem 1.6 (i). By the definition of $F_{t+1,0}$, (i) means the following:

$$
\begin{equation*}
P_{t}(1)=w_{3} \sum_{i=0}^{t} w_{2}^{2^{i-1}} w_{1}^{m-2^{i+1}}, \tag{4.11}
\end{equation*}
$$

where $m=2^{t+1}$.

We prove (4.11) by induction on t. Since $P_{0}=w_{3}+w_{2} w_{1}$ and $P_{1} \equiv$ $\left(w_{3}+w_{2} w_{1}\right)\left(w_{2}+w_{1}^{2}\right) \bmod I_{4}$, we see that $P_{0}(1)=w_{3}$ and $P_{1}(1)=w_{3}\left(w_{2}+w_{1}^{2}\right)$. So (4.11) holds for $t=0,1$. Assume that (4.11) holds for less than $t-1$ $(t \geq 2)$. Then the left side of (4.11) for t is as follows by using Proposition 4.5 and letting $m=2^{t+1}$:

$$
\begin{aligned}
P_{t}(1) & =\left(w_{2}+w_{1}^{2}\right)^{m / 4} P_{t-1}(1)+\left(w_{2} w_{1}\right)^{m / 4} P_{t-2}(1) \\
& =\left(w_{2}+w_{1}^{2}\right)^{m / 4} w_{3} \sum_{i=0}^{t-1} w_{2}^{2_{2}^{i-1}} w_{1}^{m / 2-2^{i+1}}+\left(w_{2} w_{1}\right)^{m / 4} w_{3} \sum_{i=0}^{t-2} w_{2}^{2^{i-1}} w_{1}^{m / 4-2^{i+1}} \\
& =w_{3} \sum_{i=0}^{t} w_{2}^{2 i-1} w_{1}^{m-2^{i+1}}
\end{aligned}
$$

which completes induction on t.
Proof of Theorem 1.6 (ii). We prove (ii) by induction on t. We see that $P_{0}(p)=0$ and $P_{1}(p)=0$ since $\operatorname{dim} P_{0}=3<3 p$ and $\operatorname{dim} P_{1}=5<3 p$. On the other hand, $F_{1, h(p)+1}=0$ and $F_{2, h(p)+1}=0$ since $h(p)+1 \geq 2$. Thus (ii) holds for $t=0,1$. Also using Propositions 4.2 or 4.5 , we see that $P_{2} \equiv$ $x y^{3}+x^{3} \bmod I_{4}$, where $x=w_{3}+w_{2} w_{1}$ and $y=w_{2}+w_{1}^{2}$. So $P_{2}(2)=w_{3}^{2} w_{2} w_{1}$ and $P_{2}(p)=0$ for $p \geq 4$. On the other hand, $w_{3}^{2} F_{3,2} G_{2} F_{1,0} w_{2} w_{1}=w_{3}^{2} w_{2} w_{1}$ and $F_{3, h(p)+1}=0$ for $p \geq 4$ since $h(p) \geq 2$ for $p \geq 4$. Hence (ii) also holds for $t=2$. Assume that (ii) holds for less than $t-1(t \geq 3)$. Then the left side of (ii) for t is as follows by using Proposition 4.5 and letting $n=2^{t-1}$:

Case 1. $p<n$.
In this case $t \geq h(p)+2$ holds, and we see

$$
\begin{aligned}
P_{t}(p) & =\left(w_{2}+w_{1}^{2}\right)^{n} P_{t-1}(p)+\left(w_{2} w_{1}\right)^{n} P_{t-2}(p) \\
& =w_{3}^{p} G_{p} F_{l(p), o} w_{2} w_{1}\left\{\left(w_{2}^{n}+w_{1}^{2 n}\right) F_{t, h(p)+1}+w_{2}^{n} w_{1}^{n} F_{t-1, h(p)+1}\right\} .
\end{aligned}
$$

Here by letting $m=h(p)+1$, we see

$$
\left(w_{2}^{n}+w_{1}^{2 n}\right) F_{t, m}+w_{2}^{n} w_{1}^{n} F_{t-1, m}=\sum_{i=m}^{t} w_{2}^{2 i-2^{m}} w_{1}^{4 n-2^{i+1}}=F_{t+1, m}
$$

Thus $P_{t}(p)=w_{3}^{p} F_{t+1, h(p)+1} G_{p} F_{l(p), 0} w_{2} w_{1}$, which completes induction on t.
Case 2. $p=n$.
In this case, using Corollary 4.7 and noting $P_{t-1}(p)=0, P_{t-2}(p)=0$, we see

$$
P_{t}(p)=w_{3}^{n} \sum_{i=0}^{t-2} w_{2}^{2^{i}} w_{1}^{n-2^{i+1}+1} .
$$

On the other hand, since $h(p)=l(p)=t-1, F_{t+1, t}=1$ and $G_{p}=1$, we see

$$
w_{3}^{p} F_{t+1, h(p)+1} G_{p} F_{l(p), 0} w_{2} w_{1}=w_{3}^{n} F_{t-1,0} w_{2} w_{1}=w_{3}^{n} \sum_{i=0}^{t-2} w_{2}^{2^{i}} w_{1}^{n-2^{i+1}+1}
$$

which completes induction on t.
Case 3. $n<p<2 n$.
In this case $h(p)=t-1$ and $p-n(>0)$ is even. So noting $P_{t-1}(p)=0$, $P_{t-2}(p)=0, F_{t-1, h(p-n)+1} G_{p-n}=G_{p}$ and $l(p-n)=l(p)$, we see

$$
\begin{aligned}
P_{t}(p) & =w_{3}^{n} P_{t-2}(p-n) \\
& =w_{3}^{n} w_{3}^{p-n} F_{t-1, h(p-n)+1} G_{p-n} F_{l(p-n), 0} w_{2} w_{1}=w_{3}^{p} G_{p} F_{l(p), 0} w_{2} w_{1}
\end{aligned}
$$

On the other hand, since $F_{t+1, h(p)+1}=F_{t+1, t}=1$, we see

$$
w_{3}^{p} F_{t+1, h(p)+1} G_{p} F_{l(p), 0} w_{2} w_{1}=w_{3}^{p} G_{p} F_{l(p), 0} w_{2} w_{1}
$$

which completes induction on t.
Case 4. $p \geq 2 n$.
Since $\operatorname{dim} P_{t}=4 n+1$ and $3 p \geq 6 n>4 n+1$, we see $P_{t}(p)=0$. On the other hand, since $h(p)+1 \geq t+1$, we see $F_{t+1, h(p)+1}=0$, which completes induction on t.

Proof of Theorem 1.6 (iii). We prove (iii) in the same way as the proof of (ii). Then we see that (iii) holds for $t=0,1$. And since $P_{2}(3)=w_{3}^{3}$ and $P_{2}(p+1)=0$ for $p \geq 4$, (iii) also holds for $t=2$. Assume that (iii) holds for less than $t-1(t \geq 3)$. Then the left side of (iii) for t is as follows by using Proposition 4.5 and letting $n=2^{t-1}$:

Case 1. $p+1<n$.
In this case $t \geq h(p+1)+2=h(p)+2$ holds, and we see

$$
\begin{aligned}
P_{t}(p+1) & =\left(w_{2}+w_{1}^{2}\right)^{n} P_{t-1}(p+1)+\left(w_{2} w_{1}\right)^{n} P_{t-2}(p+1) \\
& =w_{3}^{p+1} G_{p} F_{l(p), 0} F_{t+1, h(p)+1}
\end{aligned}
$$

Case 2. $p+1=n+1$.
In this case, using Theorem 1.6(i) and noting $P_{t-1}(p+1)=0, P_{t-2}(p+1)$ $=0, h(p)=l(p)=t-1, F_{t+1, h(p)+1}=F_{t+1, t}=1$ and $G_{p}=1$, we see
$P_{t}(p+1)=w_{3}^{n} P_{t-2}(1)=w_{3}^{n+1} F_{t-1,0}=w_{3}^{p+1} F_{t+1, h(p)+1} G_{p} F_{l(p), 0}$.

Case 3. $n+1<p+1<2 n$.
In the same way as the Case 3 in the proof of Theorem 1.6(ii), we see

$$
\begin{aligned}
P_{t}(p+1) & =w_{3}^{n} P_{t-2}(p-n+1)=w_{3}^{p+1} F_{t-1, h(p-n)+1} G_{p-n} F_{l(p-n), 0} \\
& =w_{3}^{p+1} F_{t+1, h(p)+1} G_{p} F_{l(p), 0} .
\end{aligned}
$$

Case 4. $p+1>2 n$.
Since $3(p+1)>\operatorname{dim} P_{t}$, we have $P_{t}(p+1)=0$. Also since $h(p)+1 \geq$ $t+1$, we have $F_{t+1, h(p)+1}=0$.

5. Some explicit descriptions of the Wu classes modulo \boldsymbol{I}_{4}

In this section, using Theorems 1.5 and 1.6 , we will describe v_{i} modulo I_{4} by the distinct monomials on w_{3}, w_{2} and w_{1}. We will do it only for $i=2^{a}+1(a \geq 1), 2^{a}+2(a \geq 2)$ and $2^{a}+2^{b}+1(a>b \geq 1)$, but this is sufficient by Theorem 1.5.

In the following theorems, $p \equiv q(n)$ denotes $p \equiv q \bmod n$.
Theorem 5.1. Let $i=2^{a}+1(a \geq 1)$. Then

$$
\begin{aligned}
v_{i} \equiv & F_{a, 0} w_{2} w_{1}+w_{3} F_{a-1,0} w_{1}^{m} \\
& +\sum_{p \equiv 0(2)} w_{3}^{p} F_{a-1, h(p)+1} G_{p} F_{l(p), 0}\left(w_{3}+w_{2} w_{1}\right) w_{1}^{m} \bmod I_{4}
\end{aligned}
$$

where $p>0$ and $m=2^{a-1}$.
Proof. By Theorem 4.9(ii) or Remark 4.10(ii), we have

Thus the conclusion follows from Theorems 1.5 and 1.6.
Theorem 5.2. Let $i=2^{a}+2(a \geq 2)$. Then

$$
\begin{aligned}
v_{i} \equiv & \left(F_{a-1,0} w_{2} w_{1}\right)^{2}+w_{3} F_{a, 0} w_{1}+w_{3}^{2}\left(w_{2}^{m-2}+F_{a, 2} w_{2} w_{1}^{2}\right) \\
& +\sum_{p \equiv 0(2)} w_{3}^{p+1} F_{a, h(p)+1} G_{p} F_{l(p) ; 0} w_{1} \\
& +\sum_{p \equiv 0(4)} w_{3}^{p}\left(F_{a, h(p)+1} G_{p} w_{2} w_{1}^{2 l(p)}+F_{a-1, h(p)+1} G_{p} F_{l(p), 1} w_{2}^{2} w_{1}^{m+2}\right) \\
& +\sum_{p \equiv 0(4)} w_{3}^{p+2}\left(F_{a, h(p)+1} G_{p} F_{l(p), 2} w_{2} w_{1}^{2}+w_{2}^{m-2 h(p)+1} G_{p} F_{l(p), 1}\right) \bmod I_{4},
\end{aligned}
$$

where $p>0, m-2^{h(p)+1} \geq 0$ and $m=2^{a-1}$.
Proof. By Remark 4.10(ii), we have

$$
v_{i} \equiv\left(v_{i / 2}\right)^{2} \equiv\left(F_{a-1,0} w_{2} w_{1}\right)^{2} \quad \bmod I_{3} .
$$

Let $v_{j}(p)$ be the sum consisting of all monomials on w_{3}, w_{2} and w_{1} in v_{j} such that each power of w_{3} for such monomials is p. If there are no such monomials, then also set $v_{j}(p)=0$ in $H^{j}\left(B O ; Z_{2}\right)$.

Then using Theorem 1.5 (iii) and Theorem 1.6(i), (ii) and noting $\left(F_{m, n}\right)^{)^{t}}=$ $F_{m+t, n+t}$, we see

$$
\begin{aligned}
v_{i}(1) & =P_{a-1}(1) w_{1}=w_{3} F_{a, 0} w_{1} . \\
v_{i}(2) & =P_{a-1}(2) w_{1}+\left(P_{a-2}(1)+P_{a-3}(1) w_{1}^{m / 2}\right)^{2} \\
& =w_{3}^{2} F_{a, 2} G_{2} F_{1,0} w_{2} w_{1}^{2}+\left(w_{3} F_{a-1,0}+w_{3} F_{a-2,0} w_{1}^{m / 2}\right)^{2} \\
& =w_{3}^{2}\left(F_{a, 2} w_{2} w_{1}^{2}+F_{a, 1}+F_{a-1,1} w_{1}^{m}\right)=w_{3}^{2}\left(F_{a, 2} w_{2} w_{1}^{2}+w_{2}^{m-2}\right) .
\end{aligned}
$$

Let $p \equiv 0(2)$ and $p>0$. Then from Theorems 1.5 (iii) and 1.6 (iii), we see

$$
v_{i}(p+1)=P_{a-1}(p+1) w_{1}=w_{3}^{p+1} F_{a, h(p)+1} G_{p} F_{l(p), 0} w_{1} .
$$

Let $p \equiv 0$ (4) and $p>0$. Then using Theorems 1.5 (iii), 1.6 (ii) and noting $\left(G_{p / 2}\right)^{2}=G_{p}$, we see

$$
\begin{aligned}
v_{i}(p) & =P_{a-1}(p) w_{1}+\left(P_{a-2}(p / 2)+P_{a-3}(p / 2) w_{1}^{m / 2}\right)^{2} \\
& =w_{3}^{p}\left\{F_{a, h(p)+1} G_{p}\left(F_{l(p), 0} w_{2} w_{1}^{2}+F_{l(p), 1} w_{2}^{2} w_{1}^{2}\right)+F_{a-1, h(p)+1} G_{p} F_{l(p), 1} w_{2}^{2} w_{1}^{m+2}\right\}
\end{aligned}
$$

Here we see that $F_{l(p), 0} w_{2} w_{1}^{2}+F_{l(p), 1} w_{2}^{2} w_{1}^{2}=w_{2} w_{1}^{2 l(p)}$.
Let $p \equiv 0(4)$ and $p>0$. Then using Theorems 1.5 (iii) and 1.6 (ii), (iii) and noting $G_{p+2}=G_{p} F_{l(p), 2}$, we see

$$
\begin{aligned}
v_{i}(p+2) & =P_{a-1}(p+2) w_{1}+\left(P_{a-2}(p / 2+1)+P_{a-3}(p / 2+1) w_{1}^{m / 2}\right)^{2} \\
& =w_{3}^{p+2}\left\{F_{a, h(p)+1} G_{p} F_{l(p), 2} w_{2} w_{1}^{2}+\left(F_{a, h(p)+1}+F_{a-1, h(p)+1} w_{1}^{m}\right) G_{p} F_{l(p), 1}\right\} .
\end{aligned}
$$

Here we see that $F_{a, h(p)+1}+F_{a-1, h(p)+1} w_{1}^{m}=w_{2}^{m-2^{h(p)+1}}$ if $h(p) \leq a-2 ; 0$ otherwise.

Theorem 5.3. Let $i=2^{a}+2^{b}+1(a>b \geq 1)$. Then

$$
\begin{aligned}
v_{i} \equiv & w_{3}\left(\sum_{s=b}^{a-1} w_{2}^{2 s-1} w_{1}^{i-2^{s+1}-1}\right) \\
& +\sum_{p \equiv 0(2), h(p) \leq a-2} w_{3}^{p+1}\left(\sum_{s=\max (b, h(p)+1)}^{a-1} w_{2}^{2^{s-} 2^{h(p)+1}} w_{1}^{i-2^{s+1}-1}\right) G_{p} F_{l(p), 0} \\
& +\sum_{p \equiv 0(2), p \neq 0(m), h(p) \leq a-2} w_{3}^{p}\left(\sum_{s=\max (b, h(p)+1)}^{a-1} w_{2}^{2 s-2^{h(p)+1}} w_{1}^{i-2^{s+1}-1}\right) G_{p} F_{l(p), 0} w_{2} w_{1} \\
& +w_{3}^{m}\left(F_{a, b+1} F_{b, 0} w_{2} w_{1}^{m+1}+F_{a, b} w_{1}\right) \\
& +\sum_{p \equiv 0(2 m)} w_{3}^{p+m} F_{a, h(p)+1} G_{p}\left(F_{l(p), b+1} F_{b, 0} w_{2} w_{1}^{m+1}+F_{l(p), b} w_{1}\right) \\
& +\sum_{p \equiv 0(2 m)} w_{3}^{p} F_{a, h(p)+1} G_{p}\left(\sum_{s=0}^{b-1} w_{2}^{2^{s} s w_{1}^{2 l p)+m-2^{s+1}+1}}\right) \bmod I_{4}
\end{aligned}
$$

where $p>0$ and $m=2^{b}$.

Proof. We have $v_{i} \equiv 0 \bmod I_{3}$ by Theorem 4.9(iii) or Remark 4.10(iii). We also use the notation $v_{j}(p)$ used in the proof of Theorem 5.2.

From Theorems $1.5(\mathrm{iv})$ and $1.6(\mathrm{i})$, we see

$$
v_{i}(1)=P_{a-1}(1) w_{1}^{2 b}+P_{b-1}(1) w_{1}^{2 a}=w_{3}\left(\sum_{s=b}^{a-1} w_{2}^{2 s-1} w_{1}^{i-2^{s+1}-1}\right)
$$

Let $p \equiv 0(2)$ and $p>0$. Then using Theorems $1.5(\mathrm{iv}), 1.6$ (iii) and letting $m=2^{b}, n=2^{a}$, we see

$$
\begin{aligned}
v_{i}(p+1) & =P_{a-1}(p+1) w_{1}^{m}+P_{b-1}(p+1) w_{1}^{n} \\
& =w_{3}^{p+1}\left(F_{a, h(p)+1} w_{1}^{m}+F_{b, h(p)+1} w_{1}^{n}\right) G_{p} F_{l(p), 0}
\end{aligned}
$$

Here we see that $F_{a, h(p)+1} w_{1}^{m}+F_{b, h(p)+1} w_{1}^{n}=\sum_{s=\max (b, h(p)+1)}^{a-1} w_{2}^{2 s-2^{h(p)+1}} w_{1}^{i-2^{s+1}-1}$ if $h(p) \leq a-2 ; 0$ if $h(p) \geq a-1$.

Let $p \equiv 0(2), p>0$ and $p \not \equiv 0(m)$. Then since $v_{i}(p)=P_{a-1}(p) w_{1}^{m}+P_{b-1}(p) w_{1}^{n}$ ($m=2^{b}, n=2^{a}$), we obtain the conclusion in the same way as the above case.

From Theorems $1.5(\mathrm{iv}), 1.6(\mathrm{i})$ and (ii), we have

$$
v_{i}(m)=P_{a-1}(m) w_{1}^{m}+\left(P_{a-b-1}(1)\right)^{m} w_{1}=w_{3}^{m}\left(F_{a, b+1} F_{b, 0} w_{2} w_{1}^{m+1}+F_{a, b} w_{1}\right) .
$$

Let $p \equiv 0(2 m)$ and $p>0$. Then using Theorems $1.5(\mathrm{iv}), 1.6(\mathrm{ii})$ and (iii), we see

$$
\begin{aligned}
v_{i}(p+m) & =P_{a-1}(p+m) w_{1}^{m}+\left(P_{a-b-1}(p / m+1)\right)^{m} w_{1} \\
& =w_{3}^{p+m} F_{a, h(p)+1} G_{p}\left(F_{l(p), b+1} F_{b, 0} w_{2} w_{1}^{m+1}+F_{l(p), b} w_{1}\right) .
\end{aligned}
$$

Let $p \equiv 0(2 m)$ and $p>0$. Then using Theorems 1.5 (iv) and 1.6 (ii), we see

$$
\begin{aligned}
v_{i}(p) & =P_{a-1}(p) w_{1}^{m}+\left(P_{a-b-1}(p / m)\right)^{m} w_{1} \\
& =w_{3}^{p} F_{a, h(p)+1} G_{p}\left(F_{l(p), 0} w_{2} w_{1}^{m+1}+F_{l(p), b} w_{2}^{m} w_{1}^{m+1}\right)
\end{aligned}
$$

Here we see that $F_{l(p), 0} w_{2} w_{1}^{m+1}+F_{l(p), b} w_{2}^{m} w_{1}^{m+1}=\sum_{s=0}^{b-1} w_{2}^{2^{s}} w_{1}^{2 l(p)+m-2^{s+1}+1}$.

References

[1] D. M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc., 44 (1974), 235-236.
[2] H. Ichikawa and T. Yoshida, Some monomials in the universal Wu classes, Hiroshima Math. J., 20 (1990), 127-136.
[3] J. W. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology, 3 (1965), 223-230.
[4] J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies No. 76, Princeton Univ. Press, Princeton, New Jersey and Univ. of Tokyo Press, Tokyo, 1974.
[5] H. Osborn, Vector bundles, vol. 1, Foundations and Stiefel-Whitney classes, Academic Press, New York-London, 1982.
[6] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Annals of Mathematics Studies No. 50, Princeton Univ. Press, Princeton, New Jersey, 1962.
[7] R. E. Stong, Cobordism and Stiefel-Whitney numbers, Topology, 4 (1965), 241-256.
[8] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, New Jersey and Univ. of Tokyo Press, Tokyo, 1968.
[9] R. E. Stong and T. Yoshida, Wu classes, Proc. Amer. Math. Soc., 100 (1987), 352-354.
[10] J. Vrabec, Bordism, homology, and Stiefel-Whitney numbers, Postdiplom. Sem. Mat. 13, Društvo Mat. Fiz. Astronom. SR Slovenije, Ljubljana, 1982.
[11] W.-T. Wu, Les i-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris, 230 (1950), 918-920.
[12] T. Yoshida, Wu classes and unoriented bordism classes of certain manifolds, Hiroshima Math. J., 10 (1980), 567-596.
[13] T. Yoshida, Universal Wu classes, Hiroshima Math. J., 17 (1987), 489-493.

Faculty of Integrated Arts and Sciences
 Hiroshima University
 Higashi-Hiroshima 739
 Japan

[^0]: 1991 Mathematics Subject Classification. 55R40.
 Key words and phrases. Wu class, Stiefel-Whitney class, Steenrod operation.

