Generalized Bernoulli numbers on the $K O$-theory

Dedicated to Professor Yasutoshi Nomura on his 60th birthday
Mitsunori Imaoka
(Received August 31, 1994)

(Revised November 14, 1994)

Abstract

The Bernoulli number defined on the generalized cohomology theory is studied, mainly focusing it on complex unoriented theories. We give a concrete formula about it on the $K O$-theory for the stunted quaternionic quasi-projective space, and apply the formula to represent a factorization of the double transfer map concerning such projective spaces.

Introduction

In this paper, I study the Bernoulli numbers defined on the generalized cohomology theory, and represent some concrete formulas of them concerning the quaternionic quasi-projective spaces. Significant combination of the geometry with the classical Bernoulli numbers has been shown by Bott [6] and Adams [1] in the study of the J-theory. Extendending such utility, Miller [8] has introduced a generalized sense of Bernoulli numbers by giving them for each formal group law over a complex oriented theory, and Ray [10] has discussed some related articles. Our purpose here is to make such treatment of the Bernoulli numbers applicable also to complex unoriented theories. We pick up a typical case of the real $K O$-theory, and show effectiveness of our definition.

In § 1, we prepare some characteristic classes of vector bundles and give our definition of the Bernoulli numbers. In §2, we describe the KO-theoretical Bernoulli numbers for the vector bundles which define the quaternionic quasiprojective spaces. The result is summarized in Proposition 2.5. In §3, we apply the result of $\S 2$ to a factorization of the double transfer maps combined with the quaternionic quasi-projective spaces. The contents of this section are related to [7], and our main result is Theorem 3.8.

[^0]
1. Bernoulli numbers of vector bundles

We refer to [2] on the concepts of the stable homotopy category and the generalized cohomology theories, and make the conventional use of notations about them. Let E be a ring spectrum with the unit $l: S^{0} \rightarrow E$. We denote by $E_{*}=\sum_{i} E_{i}$ the coefficient ring $\pi_{*}(E)$ of E. Now, assume that a vector bundle α over a finite complex B is orientable and E-orientable. Then, the orientability of α gives a Thom class $U_{\alpha}^{H} \in H^{a}\left(B^{\alpha} ; Z\right)$, which is uniquely determined up to sign, for the ordinary integral cohomology theory $H Z$, and the E-orientability means that there is a Thom class $U_{\alpha}^{E} \in E^{a}\left(B^{\alpha}\right)$ in the E cohomology theory. Here, B^{α} denotes the Thom space of α, and a is the fiber dimension of α. For the maps $\eta_{R}: E=S^{0} \wedge E \xrightarrow{i \wedge 1} H Z \wedge E$ and η_{L} : $H Z=H Z \wedge S^{0} \xrightarrow{1 \wedge L} H Z \wedge E$ induced from the respective units, both images $\left(\eta_{R}\right)_{*}\left(U_{\alpha}^{E}\right)$ and $\left(\eta_{L}\right)_{*}\left(U_{\alpha}^{H}\right)$ of U_{α}^{E} and U_{α}^{H} in $(H Z \wedge E)^{a}\left(B^{\alpha}\right)$ are Thom classes of α in the $H Z \wedge E$-cohomology theory.

Definition 1.1. $\operatorname{sh}^{E}(\alpha) \in(H Z \wedge E)^{0}\left(B_{+}\right)$is an element defined by the relation $\left(\eta_{R}\right)_{*}\left(U_{\alpha}^{E}\right)=\left(\eta_{L}\right)_{*}\left(U_{\alpha}^{H}\right) s h^{E}(\alpha)$, where the right hand side of the equality is the image of $\operatorname{sh}^{E}(\alpha)$ under the Thom isomorphism $(H Z \wedge E)^{0}\left(B_{+}\right) \rightarrow$ $(H Z \wedge E)^{a}\left(B^{\alpha}\right)$ defined by $\left(\eta_{L}\right)_{*}\left(U_{\alpha}^{H}\right)$.

By definition, $s h^{E}(\alpha)$ is in $1+(H Z \wedge E)^{0}(B)$, and $s h^{E}$ is multiplicative in the sense that $\operatorname{sh}^{E}\left(\alpha_{1} \oplus \alpha_{2}\right)=s h^{E}\left(\alpha_{1}\right) s h^{E}\left(\alpha_{2}\right)$. Later, we will treat the case that E is the real K-theory $K O$, where we will see that $s h^{K O}(\alpha)$ corresponds to the characteristic class $\operatorname{sh}(\alpha)$ as in [1].

Assume that $H^{*}\left(B_{+} ; Q\right)$ has a basis $\left\{u_{k}\right\}_{k}$ as a vector space, where Q is the field of the rational numbers. Then, using this basis, we define the Bernoulli numbers $B_{k}^{E}(\alpha) \in E_{\left|u_{k}\right|} \otimes Q$ of α to be the elements satisfying

$$
\begin{equation*}
s h^{E}(\alpha)=\sum_{k} B_{k}^{E}(\alpha) u_{k} . \tag{1.2}
\end{equation*}
$$

When $E=K$, the complex K-theory, and $\alpha=-\gamma$ for the canonical complex line bundle γ over the complex projective space $C P^{n}$, we get $B_{i}^{K}(-\gamma)=$ $t^{i} B_{i} / i$! up to sign for the classical Bernoulli numbers B_{i} and the Bott class $t \in K_{2}$. Here, we take $U_{\gamma}^{K}=t^{-1}(\gamma-1) \in K^{2}\left(C P^{n+1}\right)$, which determines $\operatorname{sh}^{K}(\gamma)$ and hence $s h^{K}(-\gamma)=s h^{K}(\gamma)^{-1}$, and the basis $\left\{u^{i} \mid i \geq 0\right\}$ of $H^{*}\left(C P^{n} ; Q\right)$ for the Euler class $u=e(\gamma) \in H^{2}\left(C P^{n} ; Z\right)$ of γ.

In [8], it is effectively used the concept of the Bernoulli numbers with respect to each formal group law over a complex oriented ring spectrum E. The above example on the K-theory is a typical one which corresponds to the multiplicative formal group law, and such Bernoulli numbers defined for a formal group law are included in our definition by taking the following way: the bundle $-\gamma$, the Thom class U_{γ}^{E} which is associated with the Euler
class determined by the formal group law, and the basis $\left\{u^{i} \mid i \geq 0\right\}$ of $H^{*}\left(C P^{n} ; Q\right)$.

By our definition of the Bernoulli numbers, it is also possible to consider the case of the complex unoriented theories, like KO. The following is obvious from the properties of $s h^{E}(\alpha)$.

Lemma 1.3.
(1) Let α be as above, and $f: D \rightarrow B$ a map between finite complexes. Then, by taking $f^{*}\left(U_{\alpha}^{E}\right)$ as the Thom class of the induced vector bundle $f^{*}(\alpha)$ and a basis $\left\{v_{m}\right\}_{m}$ of $H^{*}\left(D_{+} ; Q\right)$, we have the relation $B_{m}^{E}\left(f^{*}(\alpha)\right)=A_{f}\left(B_{k}^{E}(\alpha)\right)_{m}$ between the matrices, where A_{f} is the matrix representing $f^{*}: H^{*}(B ; Q) \rightarrow H^{*}(D ; Q)$ with respect to the given bases.
(2) When $\alpha=\alpha_{1} \oplus \alpha_{2}$ over B, we have $B_{k}^{E}\left(\alpha_{1} \oplus \alpha_{2}\right)=\sum_{k_{1}, k_{2}} a_{k,\left(k_{1}, k_{2}\right)} B_{k_{1}}^{E}\left(\alpha_{1}\right)$ $B_{k_{2}}^{E}\left(\alpha_{2}\right)$ if $u_{k_{1}} u_{k_{2}}=\sum_{k} a_{k,\left(k_{1}, k_{2}\right)} u_{k}$.

2. Quaternionic quasi-projective spaces

Let H be the skew field of the quaternionic numbers, and ξ the canonical quaternionic line bundle over the quaternionic projective space $H P^{k}$ for each non-negative integer k. Let $x=e(\xi) \in H^{4}\left(H P^{k} ; Z\right)$ be the Euler class of ξ, and take $X=\xi-\underline{H}^{1} \in K O^{4}\left(H P^{\infty}\right)$ as the $K O$-Euler class of ξ. Then, it holds that $H^{*}\left(H P^{k} ; Z\right) \cong Z[x] /\left(x^{k+1}\right)$ and $K O^{*}\left(H P^{k}\right) \cong Z[X] /\left(X^{k+1}\right)$.

Now, the tensor product $\xi \otimes_{H} \bar{\xi}$ of ξ and its quaternionic conjugate bundle $\bar{\xi}$ has a non-zero section, and thus it is isomorphic to $\zeta \oplus \underline{R}^{1}$ for a 3-dimensional real vector bundle ζ. The quaternionic quasi-projective space Q_{n} is defined to be the Thom space $\left(H P^{n-1}\right)^{\zeta}$ of ζ. Since $H P^{n-1}$ is 3-connected, ζ is orientable and $K O$-orientable. Let $U \in H^{3}\left(Q_{n} ; Z\right)$ and $U^{K O} \in K O^{3}\left(Q_{n}\right)$ be the respective Thom class of ζ. Then, through the Thom isomorphisms, $H^{*}\left(Q_{n} ; Z\right)$ and $K O^{*}\left(Q_{n}\right)$ are the free $H^{*}\left(H P^{n-1} ; Z\right)$ and $K O^{*}\left(H P^{n-1}\right)$ modules with generators U and $U^{K O}$, respectively. We assume that, for a $K O$ orientable vector bundle α, like ζ, we take the Thom class $U_{\alpha}^{K O}$ as the one of the Atiyah-Bott-Shapiro's sense [4].

Let $g_{i} \in K O_{4 i}$ be the Bott generator, and put $a(i)=1$ or 2 according as i is even or odd. Then, $g_{i} / a(i)=\left(g_{1} / 2\right)^{i}$ holds in $K O_{*} \otimes Q$. Let $p h=c h \circ c$: $K O \rightarrow K \rightarrow H Q$ be the Pontrjagin character. The classical characteristic class $\operatorname{sh}(\alpha)$ for a $K O$-orientable vector bundle α is defined by $p h\left(U_{\alpha}^{K O}\right)=U_{\alpha}^{H} \operatorname{sh}(\alpha)$ (cf. [6], [1]). $\left(\eta_{R}\right)_{*}\left(U^{K O}\right)$ corresponds to $p h\left(U^{K O}\right)$ under the isomorphism $(H Z \wedge K O)^{3}\left(Q_{n}\right) \rightarrow H^{*}\left(Q_{n} ; Q\right)$, and, if $\operatorname{sh}(\alpha)=\sum_{i} t_{i} x^{i}$ for $t_{i} \in Q$, then $\operatorname{sh}^{K O}(\alpha)=$ $\sum_{i}\left(g_{i} / a(i)\right) t_{i} x^{i}$. Now, for a power series $g(z)=(2 \sinh (\sqrt{z} / 2))^{2}=\sum_{i \geq 0} r_{i} z^{i+1}$ for $r_{i} \in Q$, we put

$$
\begin{equation*}
G(x)=\sum_{i \geq 0} \frac{g_{i}}{a(i)} r_{i} x^{i+1}=\frac{2}{g_{1}} g\left(\frac{g_{1}}{2} x\right) \quad \text { in } \quad(H Z \wedge K O)^{4}\left(H P^{n-1}\right), \tag{2.1}
\end{equation*}
$$

where $(H Z \wedge K O)^{*}\left(H P^{n-1}\right) \cong\left(K O_{*} \otimes Q\right)[x] /\left(x^{n}\right)$. Since $p h\left(U_{\xi}^{K O}\right)=p h(X)=$ $g(x)=U_{\xi}^{H}(g(x) / x)$, we have $\operatorname{sh}(\xi)=g(x) / x$, and thus

$$
\begin{equation*}
s h^{K O}(\xi)=\frac{G(x)}{x} \tag{2.2}
\end{equation*}
$$

Also, we have the following, where $d G(x) / d x$ is the derivative of $G(x)$:
Lemma 2.3.

$$
\operatorname{sh}^{K O}(\zeta)=\frac{d G(x)}{d x}
$$

Proof. It is enough to prove that

$$
\begin{equation*}
\operatorname{sh}\left(\xi \otimes_{H} \bar{\xi}\right)=\sum_{i \geq 0} \frac{1}{(2 i+1)!} x^{i} \tag{2.4}
\end{equation*}
$$

since the right hand side of the equation is equal to $d g(x) / d x$ and $\operatorname{sh}(\zeta)=$ $\operatorname{sh}\left(\xi \otimes_{H} \bar{\xi}\right)$. Let $\kappa: H P^{n-1} \rightarrow B S O(4)$ be the classifying map of $\xi \otimes_{H} \bar{\xi}$, and $B T^{2} \xrightarrow{i} B U(2) \xrightarrow{i} B S O(4)$ the canonical maps, where T^{2} is the maximal torus of $U(2)$ and we have $H^{*}\left(B T^{2} ; Z\right) \cong Z\left[x_{1}, x_{2}\right]$. Then,

$$
S H=\left(\sinh \left(x_{1} / 2\right) /\left(x_{1} / 2\right)\right)\left(\sinh \left(x_{2} / 2\right) /\left(x_{2} / 2\right)\right)
$$

is in the image of the monomorphism (ri)*: $H^{*}(B S O(4) ; Q) \rightarrow H^{*}\left(B T^{2} ; Q\right)$, and by [1] it follows that $\operatorname{sh}\left(\xi \otimes_{H} \bar{\xi}\right)=\kappa^{*}\left((r i)^{*}\right)^{-1}(S H)$. Let $P_{i} \in H^{4 i}(B S O(4))$ be the Pontrjagin class. Then, we see that $\kappa^{*}\left(P_{1}\right)=4 x$ and $\kappa^{*}\left(P_{i}\right)=0$ for $i \geq 2$. Also, we have $(r i)^{*}\left(P_{1}\right)=x_{1}^{2}+x_{2}^{2}$ and $(r i)^{*}\left(P_{2}\right)=\left(x_{1} x_{2}\right)^{2}$. Then, it is straightforward to obtain (2.4) from these data.

By (2.2) and Lemma 2.3, $s h^{K O}(\zeta+(m-1) \xi)=(G(x) / x)^{m-1} d G(x) / d x$, and thus we have the following by (1.2):

Proposition 2.5. As for the Bernoulli numbers $B_{i}^{K O}(\zeta+(m-1) \xi)$, we have the relation

$$
\left(\frac{G(x)}{x}\right)^{m-1} \frac{d G(x)}{d x}=\sum_{i \geq 0} B_{i}^{K O}(\zeta+(m-1) \xi) x^{i} \quad \text { for any } \quad m \in Z
$$

Before we apply Proposition 2.5 in the next section, it is convenient to prepare the next notation for the Thom class of $\zeta \oplus(m-1) \xi$. For an integer m, we denote by $Q P_{m}^{n+m}$ the Thom space $\left(H P^{n}\right)^{\zeta \oplus(m-1) \xi}$, which is called a stunted quaternionic quasi-projective space. For a positive integer m, it is homeomorphic to Q_{n+m} / Q_{m-1} (cf. [3]). Then, we have the canonical maps
$q: Q_{n+m} \rightarrow Q P_{m}^{n+m}$ and $q: Q P_{m}^{n+m} \rightarrow Q_{n+m}$ according as $m>0$ and $m \leq 0$. Let $U_{m}^{K O}$ be the $K O$-Thom class of $\zeta \oplus(m-1) \xi$. Then, the following is easily shown by taking the Pontrjagin character on the both sides of the equations.

Lemma 2.6. $q^{*}\left(U_{m}^{K O}\right)=U^{K O} X^{m-1}$ if $m>0$, and $q^{*}\left(U^{K O}\right)=U_{m}^{K O} X^{1-m}$ if $m \leq 0$.

By this lemma, it is possible that, with the notation $U^{K O} X^{j}$ for any $j \geq m-1$, we should regard $U^{K O} X^{i+m-1}$ as $U_{m}^{K O} X^{i}$ for any $i \geq 0$ and $m \in Z$, as in [8]. Then, $K O^{*}\left(Q P_{m}^{n+m}\right)$ is a free $K O^{*}\left(H P^{n}\right)$-module with a generator $U^{K O} X^{m-1}$ for any $m \in Z$.

3. Application

In [8], [5] and [7], some factorizations of transfer maps are discussed. Such factorization certainly exists for the transfer map combined with the quaternionic quasi-projective space, and we describe it by applying Proposition 2.5.

From the S^{3}-principal bundle $p: S^{4 n-1} \rightarrow H P^{n-1}$, a stable map $\tau: Q P_{m+1}^{n+m} \rightarrow$ $S^{4 m}$ called the S^{3}-transfer map is constructed by a transfer construction. Our necessary knowledge about τ is not the construction of it but the fact that its fiber spectrum is $Q P_{m}^{n+m}$ and that it is compatible with n. Therefore, by omitting n, we denote $Q P_{m}^{n+m}$ simply by $Q P_{m}$, and then we have the cofibering

$$
\begin{equation*}
S^{4 m-1} \xrightarrow{i} Q P_{m} \xrightarrow{j} Q P_{m+1} \xrightarrow{\tau} S^{4 m} . \tag{3.1}
\end{equation*}
$$

Since the Thom class $U_{m}^{H} \in H^{4 m-1}\left(Q P_{m} ; Z\right)$ of $\zeta+(m-1) \xi$ can be considered as an element of the stable cohomotopy group $\pi^{4 m-1}\left(Q P_{m} ; Q\right)$ with Q-coefficient through the Hurewicz isomorphism $h^{H}: \pi^{4 m-1}\left(Q P_{m} ; Q\right) \rightarrow$ $H^{4 m-1}\left(Q P_{m} ; Q\right)$, we get the following diagram which is stably homotopy commutative up to sign:

where the lower sequence is the cofibering of the Moore spectra associated with the exact sequence $0 \rightarrow Z \rightarrow Q \rightarrow Q / Z \rightarrow 0$.

Henceforce, we assume that the matter we discuss is all localized at 2. By (3.2), τ factors through $S^{4 m-1} Q / Z$ which is equal to $\Sigma^{4 m-1} N_{1}$ for the first state $\delta_{1}: N_{1} \rightarrow S^{1}$ of the chromatic filtration by [9]. Let $h^{K O} ; \pi^{*}(-; \Lambda) \rightarrow$
$K O^{*}(-; \Lambda)$ be the $K O$-Hurewicz homomorphism. Since $j^{*}: K O^{4 m-1}\left(Q P_{m+1} ; Q\right)$ $\rightarrow K O^{4 m-1}\left(Q P_{m} ; Q\right)$ is a monomorphism, $h^{K O}\left(\bar{u}_{1}\right) \in K O^{4 m-1}\left(Q P_{m+1} ; Q / Z\right)$ is determined by $\rho_{Z}\left(h^{K O}\left(U_{m}^{H}\right)\right)$, where ρ_{Z} denotes the $\bmod Z$ reduction in the $K O$-cohomology groups. First, we describe the formula of $h^{K O}\left(U_{m}^{H}\right)$.

We put $f(z)=\left(2 \sinh ^{-1}(\sqrt{z} / 2)\right)^{2}=\sum_{j \geq 0} s_{j} z^{j+1}$ for $s_{j} \in Q$, and define

$$
\begin{equation*}
F(X)=\sum_{j \geq 0} \frac{g_{j}}{a(j)} s_{j} X^{j+1}=\frac{2}{g_{1}} f\left(\frac{g_{1}}{2} X\right) \tag{3.3}
\end{equation*}
$$

as an element of $K O^{4}\left(H P^{n} ; Q\right)$. Then we have
Lemma 3.4.

$$
h^{K o}\left(U_{m}^{H}\right)=U_{m}^{K O}\left(\frac{F(X)}{X}\right)^{m-1} \frac{d F(X)}{d X} .
$$

Proof. By the same way as the notation $U_{m}^{K O}=U^{K O} X^{m-1}$, we can write $U_{m}^{H}=U x^{m-1}$ for any $m \in Z$. Recall that $g(x)=(2 \sinh (\sqrt{x} / 2))^{2}$ and then $p h(X)=g(x)$. Thus, $p h(F(X))=f(g(x))=x$. Since $\operatorname{sh}(\zeta)=d g(x) / d x$ as in the proof of Lemma 2.3, $p h\left(U^{K O}\right)=U d g(x) / d x$, and thus $p h\left(U^{K O} d F(X) / d X\right)=U$. Hence,

$$
\begin{equation*}
p h\left(U^{K O} F(X)^{k} \frac{d F(X)}{d X}\right)=U x^{k}=U_{m}^{H} x^{k-m+1} \tag{3.5}
\end{equation*}
$$

for any $k \geq m-1$. Since $(p h)^{-1}\left(U_{m}^{H}\right)=h^{K O}\left(U_{m}^{H}\right)$, by taking $k=m-1$ in (3.5), we get the required result.

Before proceeding to a factorization of the double transfer map, we remark that $h^{K O}\left(U_{m}^{H}\right)-U_{m}^{K O} \in \operatorname{Ker}\left(i^{*}\right)=\operatorname{Im}\left(j^{*}\right)$ for the maps i and j in (3.1). Thus, there is an element $V_{m} \in K O^{4 m-1}\left(Q P_{m+1} ; Q\right)$ with $j^{*}\left(V_{m}\right)=h^{K O}\left(U_{m}^{H}\right)-$ $U_{m}^{K O}$. Since j^{*} is injective, V_{m} is uniquely determined by the given relation, and we can denote $V_{m}=h^{K O}\left(U_{m}^{H}\right)-U_{m}^{K O}$. We notice that $h^{K O}\left(\bar{u}_{1}\right)=\rho_{Z}\left(V_{m}\right)$, and the following is clear from Lemma 3.4:

Corollary 3.6.

$$
V_{m}=U_{m}^{K O}\left(\left(\frac{F(X)}{X}\right)^{m-1} \frac{d F(X)}{d X}-1\right)
$$

The double transfer map τ_{2} of τ is defined to be $\tau \wedge \tau=(\tau \wedge 1)(1 \wedge \tau)$: $Q P_{m+1} \wedge Q P_{n+1} \rightarrow S^{4(m+n)}$ for any $m, n \in Z . \quad$ Let $N_{2} \xrightarrow{\delta_{2}} \Sigma N_{1} \xrightarrow{\delta_{1}} S^{2}$ be the first two stages of the chromatic filtration (cf. [9]). Then, by [7; Th. 2.8], the double transfer map τ_{2} factors through N_{2} as follows:

THEOREM 3.7. There is a map $\bar{u}_{2}: Q P_{m+1} \wedge Q P_{n+1} \rightarrow \Sigma^{4(m+n)-2} N_{2}$ which
makes the following diagram stably homotopy commutative up to sign:

In this paper, we omit the details of this factorization, and refer to [7] on its application to the transfer images. Here, we only remark that the map \bar{u}_{2} is well described by an element $\tilde{u} \in K O^{4(m+n)-2}\left(Q P_{m+1} \wedge Q P_{n} ; Q\right)$, by [7; §2], and we show in the next theorem that \tilde{u} can be represented by the Bernoulli numbers.

Theorem 3.8.

$$
\tilde{u}=U_{m}^{K O}\left(\left(\frac{F(X)}{X}\right)^{m-1} \frac{d F(X)}{d X}-1\right) \otimes U_{n}^{K O}+\sum_{k, l>0} \Gamma_{k, l} U_{m}^{K O} h_{m, k}(X) \otimes U_{n}^{K O} h_{n, l}(X),
$$

where $\Gamma_{k, l}=\left(9^{l}-1\right) /\left(9^{k+l}-1\right)$ and $h_{i, j}(X)$ is given by

$$
h_{i, j}(X)=B_{j}^{K o}(\zeta+(i-1) \xi) F(X)^{j}\left(\frac{F(X)}{X}\right)^{i-1} \frac{d F(X)}{d X} .
$$

Proof. We put $B_{k}^{m}=B_{k}^{K O}(\zeta+(m-1) \xi)$ for brevity. By the proof of [7; Prop. 2.4], \tilde{u} is given by

$$
\begin{equation*}
\tilde{u}=V_{m} \otimes U_{n}^{K O}-\sum_{k, l>0} \Gamma_{k, l} A_{k} \otimes B_{l} \tag{3.9}
\end{equation*}
$$

Here, V_{m} is the element of Corollary 3.6, and A_{k} and B_{l} are given respectively by the relations $V_{m}=\sum_{i>0} A_{i}$ with $\psi^{3} A_{i}=9^{i} A_{i}$ and $U_{n}^{K O}=\sum_{j \geq 0} B_{j}$ with $\psi^{3} B_{j}=$ $9^{j} B_{j}$ for the stable Adams operation ψ^{3}. The first term on the right hand side of the required equality follows from Corollary 3.6 , and thus we have only to check that A_{i} and B_{j} are given by the required formulas. We can regard the equation of Proposition 2.5 as the one with variable x, and thus, replacing x by $F(X)$ and using that $G(F(X))=X$, we have

$$
\frac{X^{m-1}}{F(X)^{m-1} \frac{d F(X)}{d X}}=\sum_{k \geq 0} B_{k}^{m} F(X)^{k}
$$

Hence, $U_{m}^{K O}=U^{K O} X^{m-1}=\sum_{k \geq 0} U^{K o} B_{k}^{m} F(X)^{m+k-1}(d F(X) / d X)$. On the other hand, by (3.5), we have $\operatorname{ph}\left(U^{K O} F(X)^{m+k-1}(d F(X) / d X)\right)=U x^{m+k-1}$. Thus, by these equations,

$$
\begin{equation*}
p h\left(U_{m}^{K O}\right)=\sum_{k \geq 0} U p h\left(B_{k}^{m}\right) x^{m+k-1} \tag{3.10}
\end{equation*}
$$

Then, $p h\left(V_{m}\right)=p h\left(h^{K O}\left(U_{m}^{H}\right)-U_{m}^{K O}\right)=U_{m}^{H}-p h\left(U_{m}^{K O}\right)=-\sum_{k>0} U p h\left(B_{k}^{m}\right) x^{m+k-1}$. Hence, it follows that $p h\left(A_{k}\right)=-U p h\left(B_{k}^{m}\right) x^{m+k-1}$, and thus

$$
\begin{equation*}
A_{k}=-U^{K o} B_{k}^{m} F(X)^{m+k-1} \frac{d F(X)}{d X} . \tag{3.11}
\end{equation*}
$$

Using (3.10) for n instead of m, and just by the same reason as above, we have

$$
\begin{equation*}
B_{l}=U^{K o} B_{l}^{n} F(X)^{n+l-1} \frac{d F(X)}{d X} . \tag{3.12}
\end{equation*}
$$

Thus we complete the proof by (3.9), (3.11) and (3.12).

References

[1] J. F. Adams, On the groups $J(X)$-II, Topology 3 (1965), 137-171.
[2] J. F. Adams, Stable Homotopy and Generalised Homology, Chicago Lectures in Math., The University of Chicago Press, 1974.
[3] M. F. Atiyah, Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
[4] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (1964), 3-38.
[5] A. Baker, D. Carlisle, B. Gray, S. Hilditch, N. Ray and R. Wood, On the iterated complex transfer, Math. Z. 199 (1988), 191-207.
[6] R. Bott, Lectures on $K O(X)$, Mimeographed Notes, Harvard University, 1962.
[7] M. Imaoka, Factorization of double transfer maps, Osaka J. Math. 30 (1993), 759-769.
[8] H. Miller, Universal Bernoulli numbers and the S^{1}-transfer, Canadian Math. Soc. Conference Proc. 2 (1982), 437-449.
[9] D. C. Ravenel, A geometric realization of the chromatic resolution, Proc. J. C. Moore Conf., Princeton (1983), 168-179.
[10] N. Ray, Extensions of Umbral calculas: Penumbral coalgebras and generalized Bernoulli numbers, Advances Math. 61 (1986), 49-100.

Department of Mathematics Education
Faculty of Education
Hiroshima University, Higashi-Hiroshima, 739, Japan

[^0]: 1991 Mathematics Subject Classification. 55P42, 55R12, 55N20, 55Q10, 55N15.
 Key words and phrases. Bernoulli numbers; KO-theory; quasi-projective spaces; double transfer map.

