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ABSTRACT. In this paper we study some properties of families of smooth curves

with several pencils, which are families of normalizations of the integral plane

curves with several ordinary singular points of high multiplicity at fixed points Pf e P2

and with several nodes as other singularities. We first show that every reasonably

good components of the family has the full symmetric group as monodromy group

of nodes. We then proceed to prove the existence of a component of the family

whose general element has nodes of maximal rank. We also prove the nonexistence

of some linear series under certain numerical assumption. Finally we discuss what

we can gain from the point of view of real algebraic curves from our construction.

In this note we consider some properties of certain families of smooth
curves with several pencils. These families are just the families of normaliza-
tions of the integral plane curves, say of degree n, with s ordinary singular
points of multiplicity wί5 1 < i < s, at fixed points Pf e P2 and with c nodes
as other singularities. We do not claim (and it should be false for most
data) that, for fixed data {n, mh Ph c} the corresponding family of curves is
irreducible (Severi-Enriques type of problem: see [8], [11] and [12]). Curves
with two pencils were studied in [3] and [4].

In §0 we fix a few notations and we list some interesting properties (such
as good postulation, uniform position, monodromy) of the set of nodes which
a general curve of an integral subfamily may have. In §1 we discuss the
case of the families which are deformations of n lines (hence we need here
n>mί + ~ + ms) and variations on the same theme (lines plus conies). In
Remark 1.1, we show that every reasonably good components (called principal
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components) of the family has the full symmetric group as monodromy group
of nodes. In Propositions 1.2 and 1.3, we prove the existence of a component
of the family whose general element has nodes of maximal rank.

In §2 we consider the existence of linear series on the normalization of
such curves. Specifically, in Theorem 2.1 we prove the nonexistence of some

linear series under certain numerical assumption. On this topic we stress the
Key Remark 2.3 which points out two general phenomena which should arise
"in general" for the normalization of "general" curves with assigned singu-
larities on every rational surface. In Remark 2.4 we show why the proof of

Theorem 2.1 works in positive characteristic.
In § 3 we consider the byproducts of the constructions considered in this

paper from the point of view of real algebraic curves. Also in §3 (with a
loose end) we point out what we can gain from the point of view of real
algebraic curves from this construction.

0. Notations

We work over an algebraically closed field with characteristic 0.
Fix nonnegative integers n, s, mt (with 1 < i < s), c, and s distinct points

P19 ..., Ps of P2. The set W:= {Pl9..., Ps} will be called the exceptional
set. We will write m^ for the (m£ — l)-th infinitesimal neighborhood of the
point Pt in P2 (a so-called fat point). Let W(n; s; {wj, {Pj, c) (or just

W(n9 m f, Ph c)) be the subscheme of Hilb(P2) parametrizing integral curves of
degree n with ordinary multiple points of multiplicity mf at Pt (for all integers

i with 1 < i < s) and c ordinary nodes as only singularities. In many steps
of the proof we will have large values of c (say c > 24; compare with Remark
0.1). Indeed we need W(n, mi9 Ph c) just with its reduced structure, essentially

as a set of curves. We do not claim that W(n, mh Pί? c) is irreducible or
nonempty. Let NW(n, mh Pi9 c) be the family of normalizations of the ele-

ments of W(n, mh Ph c); just as a subset of the family of all genus g curves
with g:=(n- l)(n - 2)/2 - c - ^-(m,- - l)mf/2. Let S be the surface obtained
by blowing-up P2 along the exceptional set {P1,...,PS}; let Et be the excep-
tional divisor of S with image Pf; Θs(t) will denote the pull-back on 5 of the
corresponding degree ί line bundle on P2. For any sheaf F on P2, Hl(F)

(resp. ti(F)) will denote Hl(P2, F) (resp. h*(P2

9 F)).
Fix an integral subvariety G of W(n, mh Ph c). We are interested in the

properties of the set A of c nodes of a general element C e G. For instance
Proposition 1.2 will give a case in which A has maximal rank, i.e. its postula-
tion is the same as the postulation of c general points of P2. Since the
family G is integral, it makes sense to speak of the monodromy (or Galois)
group of its set of nodes. In the next section (Remark 1.1) we will give a
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case in which the monodromy is the full symmetric group. One way to
check that the monodromy group is the full symmetric group is to check
that it contains a simple transposition and that it is doubly transitive. To
find a simple transposition usually it is sufficient to find a degenerate configu-
ration with c — 2 ordinary nodes and a tacnode. For the double transitivity
we may use the following obvious remark, which will be useful in the next
section.

REMARK 0.1. Fix an integer k > 1. To check that the monodromy group,
H, of the set of nodes of an integral family G of curves is at least fe-transitive
(assuming that it is at least (k — 1)-transitive) it is sufficient to check that,
for a sufficiently general C e G and for a subset, A, of k — 1 nodes, we may
move C in G keeping fixed A as a subset of the nodes and acting transitively
on the complementary set of c — k + 1 nodes. By the classification of finite
permutation groups ([5]) to check that the monodromy group contains the
alternating group (and hence that the Uniform Position Property holds) it is
sufficient to check that it is at least 6-transitive (and except for c= 11, 12,
23 or 24 just that it is at least 4-transitive).

1. Deformations of lines

Here we consider the case in which n > m t + ••• + ms. Let T be the
union of n distinct lines such that exactly mt of them contain the point Pt

and general with this restriction; here we only require that no such line
contains two of the exceptional points and that outside the exceptional points
T has only double points (hence exactly b := n(n — l)/2 — mί(m1 — l)/2 — —
ms(ms — l)/2 nodes). Let B be the strict transform of T in S. Fix a subset,
£, of the set of nodes of B (i.e. of Γ); set e := card (£); let E be the the set
of nodes of B not in E (and no Pt even if mt = 2). Note that B is connected
and hence the linear system \B\ contains an irreducible member by Bertini's
theorem. Since the strict transform, A, in S of any component of T has
A2 = 0, i.e. KSΆ = — 2 < 0, by [15], §2, we may deform B equisingularly at
E, while smoothing the other nodes, and obtain a family, F(E), of nodal curves
of S with dim F(E) = B (B- K)/2 - e = (n + 2)(n + l)/2 - 1 - (m^ + ϊ)mJ2 -
-" - (ms + l)ms/2 - e. By [15], Th. 2.13, if the set E is not a disconnecting
set of nodes (in the sense of Tannenbaum [15]) then a general element of
F(E) will be integral. It is easy to check the existence of a non-disconnecting
set E for every integer e with 0 < e <b — s + 1. We will call "principal" the
component of W(n, mi9Ph c) containing the normalizations of the irreducible
nodal curves of geometric genus g which arise as partial smoothing of B for
a fixed choice of unassigned nodes; we do not claim that the component is
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independent from the choice of the nodes which are smoothed (the unassigned
nodes). Moving the lines of T (but moving continuosly in the same way the
sets of assigned and non-assigned nodes) will produce genus g curves in the
same principal component. Now move also the points Pt (hence the lines of
T), and move continuosly in the same way the sets of assigned and non-
assigned nodes; "big principal component" will be the name of the correspond-
ing integral family of genus g curves; again, we do not claim that it is
independent from the rules used to give the assigned nodes. It is easy to
construct curves in the same big principal component, but with very different
Brill-Noether theory (e.g. gonality or Clifford index and so on; see Remark
2.6 and use points Pt with bad postulation).

Now we modify the construction, taking as T the union of n — 4 suitable
lines and 2 suitable conies which are tangents (not on the exceptional set);
this is always possible if n > m1 + - - - + ms + 2, but it is usually possible for
suitable {mj even if n is lower; the two tangent conies give a tacnode of
T. It is easy to check that this implies that the monodromy group of the
nodes contains a simple transposition. By Remark 0.1 and the way in which
the general theory allows T to be smoothed partially, we see that the
monodromy group is the full symmetric group. We record here this fact as
Remark 1.1.

REMARK 1.1. We have just checked that i f n > m 1 + + m s - f 2 then
every principal component has the full symmetric group as monodromy group
of the nodes.

The construction with conies may be done for much lower values of
n\ indeed if the integers {mj are nice enough, it is sufficient to have n >
(m^ + + ms)/4. When there is a principal component, choosing the conies
and the unassigned nodes carefully, we arrive also at the conic on the bound-
ary of that principal component.

Now we consider the postulation of the set of nodes of a sufficiently
general C e W(n, mί9 Ph c).

PROPOSITION 1.2. For every numerical data with n > m^ + ••• + ms (and
with the corresponding geometric genus g > 0, as always) there is a principal
component, V, such that the general C e V has nodes which are of maximal
rank (as set of points in P2).

PROOF. Fix a configuration, T, of lines defining, after partial smoothing,
the principal components. Let c be the number of nodes of a general integral
curve in V and let r be the integer such that r(r + l)/2 < c < (r + l)(r + 2)/2.
It is sufficient to prove that T contains a non-disconnecting set M of c
nodes such that h°(SM(r - 1)) = 0 and h°(SM(r)) = (r + l)(r + 2)/2 - c. For



On plane curves with several singular points with high multiplicity 121

any ordering, say Ll9 ..., Lπ, of the lines of T the two cohomological condi-
tions are satisfied if we take as M the nodes Lf Π L7 for ΐ < j < r and the
nodes LrΓ\Lj with 1 <j < c — r(r + l)/2 (e.g. use Horace method—first intro-
duced and used in [10] and [9]—after adding to M the remaining points
of Lr Π Lj with j < r). We need to check that, since g > 0, we may also
satisfy the non-disconnectedness condition. If n > m^ + - - - + ms, to obtain
this condition it is sufficient to take as unassigned nodes the singular points
on Ln. Assume n = mί + ••• + ms. Fix a line L' through Px and a line L"
through P2 and take as unassigned nodes at least all the nodes on L and
L'ΠL".

PROPOSITION 1.3. Fix a set of numerical data with n>mί + - + ms and
corresponding geometric genus g > 0. Define r by the relation r(r + l)/2 < c <
(r + l)(r + 2)/2 and set t := max {r + m l 5 m^ + + ms — 1}. Then there is a
big principal component, V, such that the general C e V has a set, N, of nodes
which are of maximal rank (as set of points in P2) and such that /ι1(t/TFUN(ί)) = 0.

PROOF. We will take the exceptional set in a very particular way. We
fix a line, D, and we assume that Pt e D for every i. Fix a configuration, T,
of lines defining, after partial smoothing, a principal component with respect
to this exceptional set. We apply Horace method m1 times exploiting the
line D (and loosing after the first step many conditions if s > 1). We reduce
to prove that hl(JN(t — mj) = 0. By the choice of t and r, the proof of
Proposition 1.2 works and gives the thesis.

2. Linear systems

In this section we consider the existence of linear series on curves 7e

NW(n, mi9 Ph c).

THEOREM 2.1. Fix the points Pί9 ..., Ps and the numerical data {n, mi9 c}.
Set W:={P19...9 Ps}. Fix a subset A of P2 with card (A) = c and Pi φ A for
every i\ assume that for every subset A' of A, the scheme WΌA has maximal
rank. Let j be the first integer with j2 + 3j > £i(mi + IJwj. Fix an integer
x with

x<jn- 3 ( j 2 +j)/2 + £ (m? - l)/4 (1)

Assume

n2 > 9 (Y m, J and c+ x < n2/18 - Y (mf + l)2/4 (2)
\ i /
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Let Y be the normalization of an integral curve C in W(n, mh Pί9 c) with A as

set of nodes. Then Y has no g*.

PROOF. We will follow the outline of [2] (i.e. Reider-Lazarsfeld method).

Assume the existence of a gl

x. Shrinking x if necessary we may assume that
this pencil is complete and base-point-free.

(i) Fix a general divisor B of the g* considered as a subset of the plane;

B is reduced because we are in characteristic 0. By elementary adjunction

theory we have ΛI(^FOIUΛ(Π "~ 3)) Φ 0 and since hl(Jw(n — 3)) = 0 (e.g. by the
existence of C and the independence of the adjoint conditions ([!]; Chapt.

I, Appendix A): we do not need here the maximal rank assumption) we may
take a minimal subset A' of A and B' of B with hl(Jw^A^B'(n — 3)) φ 0. Since

the g\ is complete and base-point-free we may assume B' = B. Set c' :=

card (A'). Let k be the first integer with hQ(JWUA^B(Kf) Φ 0; by the maximal
rank condition on W we have k > j and

k(k + l)/2 < c' + x + £ (m, 4- l)mf/2 < (k + l)(fe + 2)/2 . (3)
i

(ii) Note that by (2) we have 3k + 1 < n. We will check here the follow-
ing inequality:

c' + x > k(n - k) - Σ (m, + l)2/4 . (4)
i

The nonvanishing of hl(fw^A,^B(n — 3)) gives (calling again A' and B the
counterimages of A and 5 in S) h1(S9tfA^B(n — 3 — YjimiEi))^Q. By the

minimality condition on A and 5 we see that A'UB satisfies the Cayley-

Bacharach condition with respect to the line bundle R := Θs(n — £i(mi + l)Ef)
and hence determines the following exact sequence

0 -> ϋs -» F -> J^UB (x) # -> 0 (5)

with F rank 2 vector bundle with c2(F) = c' + x and c^F)2 = n2 - Σi(mi + !)2

Assume the contrary to (4), i.e. c' + x < fe(n — fe) — Σί(mί + l)2/4 Since
4c' + 4x < Ci(F)2, F is Bogomolov unstable and fits in an extension

0 -> R' -> F -> R" (x) J ẑ -* 0

with dim (Z) = 0 and R' ® R"* pseudoeffective; set R' := &s(w - ΣiaiEi) for

some w and aί9 ..., as; since R'®^* is pseudoeίfective, we have w > n — w.

The section of F coming from (5) shows in a standard way that n — w > k
and that we have:

c' + x > w(n - w) + ίφf + mf + 1). (6)
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Since w + k < n and k < n/2, we have w(n — w) > k(n — k). Hence the worst
case a priori coming from (6) is when for all integers i we have either 2ai =
— mi or 2at = —mi—l9k = n — w. Hence c' + x > k(n — k) — £i(mi + 1)7^/2,
a contradiction.

(iii) Since 3k + 1 < n, the inequality (4) contradicts (3).

REMARK 2.2. The maximal rank condition for WUA' with A' subset of
A is satisfied if it holds for W and we take as A the union of c general
points of P2. Instead of maximal rank for W, we may just take as.data the
postulation of W and obtain a result corresponding to Theorem 2.1, but with
worst bounds.

KEY REMARK 2.3. The essential point is not to have upper bounds for the
degree of pencils for curves of NW(n, mi9 Ph c). The essential point is the
following phenomenon: under much weaker assumptions, if there is a gl

x for
every or some or the general curve in some NW(n, mh Ph c) with, say, c > 1,
there is an integer c" < c such that for every c' with c" < c' < c there is a
g* on every or some or the general curve in NW(n, mf, Ph c'\ Furthermore
the g* on the curves, 7, in NW(n, mh Pi9 c) is not unique at least if we take
a general subset A of P2 with card (A) = c as the set of nodes: by monodromy
Y will have at least one such g\ for every choice of a subset A" of A with
card (A") = c". Both phenomena are known for plane nodal curves, when
the minimal degree g* is induced by the pencil of lines through a node
([2]). These phenomena hold (under suitable assumptions) on relatively mini-
mal rational ruled surfaces and indeed (as shown by S) we strongly believe
that the same is true on every rational surface; however, due to the big
Picard groups and the messy numerology we were unable to prove in a
reasonable number of cases the nonemptiness of the numerical interval in
which the proof of Theorem 2.1 shows that these phenomena must occur.

REMARK 2.4. A weaker form of Theorem 2.1 holds in positive characteris-
tic p (with the same proof), i.e. with the additional condition that x is the
minimal degree of a pencil; indeed in this case B is reduced since there is
no pencil of degree x/p, while Bogomolov-Reider technique works in positive
characteristic on every rational surface ([6]).

Now we will consider the case c = 0 (although we allow m,- = 2 for
some j).

PROPOSITION 2.5. Fix an integer s > 0. Assume ml -\- m2 + '" -\- ms<
n + s — 2, x + m2 + + m s < n — 1 and x + m1 < n. Fix Y e NW(n, mh Ph 0)
and assume that Y has a g*. Then x = n — m1? the Q\ is unique and induced
by the pencil of lines through P^.

PROOF. Let D be a g*. First assume that there is no line containing
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P! and other 2 points Pfs. Fix a general group of points (i.e. a divisor), B,
of D; we may assume B reduced; regard B as a subset of P2. By the
generality of B we may assume that no point of B is contained in a line
containing P1 and another point in the exceptional set. Furthermore, by the
integrality of Y we may assume that either there is a line containing [P^} U B
or that no line through P1 contains two points of B; until the end of the
proof we will assume that the second case occurs. Set E = m1Pί U UwsPs

(the exceptional set which is the union of fat points as a scheme) and E' :=

E\{m1Pl}. Choose homogeneous coordinates (xo'9Xι'9x2)
 suςh that Λ =

(1; 0; 0). Consider the family of homolographies ht E Aut (P2) defined by

ht(xo> Xι>x2):= (ίxoί χιl X2)- By the noncollinearity assumption we see that
{ht(E(JB)} has as flat limit when ί goes to 0 the scheme E" union of m1P1,
s — 1 fat points QJ9 2 <j < s, on the line R = {x0 = 0} with β, with multiplicity
nij and the x points obtained projecting B from Px into R. Hence the length
of the intersection, A', of this scheme with R is x + m2 + + ms < n — 2.
Since the g* is special, by semicontinuity we have hl(SE (n — 3)) / 0. Now
we will use Horace method exploiting R. The residual scheme, A, of E" with
respect to R is the union of m1P1 and the fat points (m/— l)βy, 2<j<s.
Exploiting the line R n — 4 times, we see by Horace method that hl(JA(n — 4))
= 0. Hence (again by Horace method applied using R) hl(E"(n — 3)) <
hl(R, ΘR(n — 3 — x — m2 — "' — ms)) = 0, contradiction.

Now assume that there are two (or more) exceptional points PJ9 j > 1,
on a line containing Plβ One checks easily that the flat limit, E", of the
family {A f(EUΰ)} has length (F'ΠΛ) < x + w2 + ••• + ms and that the same
contradiction comes applying the Horace method n — 3 times with respect
to R.

Hence the linear system D is induced by the pencil of lines through P le

We only have to check that this linear system is complete (i.e. that x =
n — mt). Assume x<n — mί. Consider again the flat limit of the family
(ht(E\JB)}. In the same way Horace method gives the contradiction.

REMARK 2.6. For many numerical data with s > 3, a general Y e
NW(n, mi9 Pi9 c) has a pencil of degree smaller than n — nij for every j (and
this may occur even if c = 0). Assume W; > mj for i > j. Fix an integer
t > 2 and assume that for some integer a < s with a < (t2 + 3ί — 2)/2 we have
m2 + + ma > n(t — 1). Then there is at least a pencil of degree t plane
curves containing {P1?..., Pα} and this pencil induces a g* with x < n — m1.

3. Real curves

In this short section we make a few remarks on the smooth real algebraic
curves which we are able to find with this construction. For the background,
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see e.g. [7], [13], [16], [17] or [14]. We fix any principal component;
let T be the union of lines in the plane invariant over conjugation. We
consider the case in which all points Pt are reals; in the other possible cases
we have the same type of informations (with different numbers) in a similar
way; in this case we may (and will) assume that all the lines are real and
all the nodes are real. We may apply the standard (see e.g. the survey [7])
technique of smoothing the nodes in a particular way to obtain (in S) smooth
curves (if we consider only the case c = 0) with circles as real part with
various properties. The maximal number of connected components of the
real locus of such curves is 1 + b — e. Using a theorem of Brusotti on the
independence of simplification of nodes (for plane curves and even for curves
in S) ([7]), it is easy to obtain curves with real locus with lower number of
connected components. We do not know how to construct curves in this
way with interesting real scheme and complex scheme (in the sense of [13]
and [16]) as curves in S or as singular curves in the plane. Of course, the
usual Bezout trick to bound the depth/number of nested connected compo-
nents works in S, too.
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