On a characterization of $L^{\boldsymbol{p}}$-norm and a converse of Minkowski's inequality

Janusz Matkowski
(Received February 18, 1991)

Abstract

Let \mathbf{C} be a cone in a linear space. Under some weak regularity conditions we show that every subadditive function $\mathbf{p}: \mathbf{C} \rightarrow \boldsymbol{R}$ such that $\mathbf{p}(r x) \leqslant r \mathbf{p}(x)$ for some $r \in(0,1)$ and all $x \in \mathbf{C}$ must be positively homogenous. As an application we obtain a new characterization of L^{p}-norm. This permits us to prove among other things the following converse of Minkowski's inequality.

Let (Ω, Σ, μ) be a measure space such that there exist disjoint sets $A, B \in \Sigma$ satisfying the condition $\mu(B)=1 / \mu(A), \mu(A) \neq 1$. If $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$is an arbitrary bijection such that $$
\varphi^{-1}\left(\int_{\Omega} \varphi \circ(x+y) d \mu\right) \leqslant \varphi^{-1}\left(\int_{\Omega} \varphi \circ x d \mu\right)+\varphi^{-1}\left(\int_{\Omega} \varphi \circ y d \mu\right)
$$ for all the μ-integrable step functions $x, y: \Omega \rightarrow \boldsymbol{R}_{+}$then φ is a power function.

Introduction

Let $\boldsymbol{R}, \boldsymbol{R}_{+}$and \boldsymbol{N} denote respectively the set of reals, nonnegative reals and positive integers.

For a measure space (Ω, Σ, μ) let $\mathbf{S}=\mathbf{S}(\Omega, \Sigma, \mu)$ stand for the linear space of all the μ-integrable step functions $x: \Omega \rightarrow \boldsymbol{R}$ and let $\mathbf{S}_{+}:=\{x \in S: x \geqslant 0\}$.

It can be easily verified that for every bijection $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$such that $\varphi(0)=0$ the functional $\boldsymbol{P}_{\varphi}: \mathbf{S} \rightarrow \boldsymbol{R}_{+}$given by the formula

$$
\begin{equation*}
\boldsymbol{P}_{\varphi}(x):=\varphi^{-1}\left(\int_{\Omega} \varphi \circ|x| d \mu\right), \quad x \in \mathbf{S}, \tag{1}
\end{equation*}
$$

is well defined. In [4] we have proved the following converse of Minkowski's inequality.

Let (Ω, Σ, μ) be a measure space with two sets $A, B \in \Sigma$ such that

$$
\begin{equation*}
0<\mu(A)<1<\mu(B)<\infty \tag{2}
\end{equation*}
$$

[^0]and $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$a bijection such that $\varphi(0)=0$. If φ^{-1} is continuous at 0 and
\[

$$
\begin{equation*}
\boldsymbol{P}_{\varphi}(x+y) \leqslant \boldsymbol{P}_{\varphi}(x)+\boldsymbol{P}_{\varphi}(y), \quad x, y \in \mathbf{S}_{+}, \tag{3}
\end{equation*}
$$

\]

then $\varphi(t)=\varphi(1) t^{p},(t \geqslant 0)$, for some $p \geqslant 1$.
It has also been shown that condition (2) is essential. In this paper we show that modifying the definition of \boldsymbol{P}_{φ} one can eliminate the assumption $\varphi(0)=0$. The remaining assumption of the continuity of φ^{-1} at 0 plays a key but technical role. We conjecture that the above result is valid without this assumption. However it seems to be a difficult problem to get rid of it completely.

In a recent paper [7] we have attempted to replace the continuity of φ^{-1} at 0 by the following assumption: there exist disjoint sets $C, D \in \Sigma$ of positive measures such that $\mu(C)+\mu(D)=1$. This approach leads to some open problems in the theory of convex functions. Nevertheless we were able to prove that in the case when $\mu(C)=\mu(D)$ the continuity of φ^{-1} at 0 is superfluous.

In section 3 of the present paper we show that the continuity of φ^{-1} at 0 together with assumption (2) can be replaced by one of the following conditions:
(i) there exist $n \in N, n>1$, and $A, B \in \Sigma$ such that

$$
A \cap B=\varnothing ; \quad \mu(A)=\frac{1}{n} ; \quad \mu(B)=n,
$$

or
(ii) there exist $n, m \in N, n \neq m, n>1$, and $A, B, C \in \Sigma$ such that

$$
A \cap B=\varnothing ; \quad \mu(A)=\frac{m}{n} ; \quad \mu(B)=\frac{n}{m} ; \quad \mu(C)=n .
$$

The proof of this theorem is based on the following characterization of $L^{p_{-}}$ norm which is the main result of section 2.

If (Ω, Σ, μ) is a measure space with two disjoint sets $A, B \in \Sigma$ such that $\mu(A)=\mu(B)=1$; a function $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$is bijective, inequality (3) holds and there exists an $r \in(0,1)$ such that $\boldsymbol{P}_{\varphi}(r x) \leqslant r \boldsymbol{P}_{\varphi}(x)$ for all $x \in S_{+}$then $\dot{\varphi}(t)=$ $\varphi(1) t^{p},(t \geqslant 0)$, for some $p \geqslant 1$.

This is a partial generalization of a theorem in [5] where \boldsymbol{P}_{φ} is supposed to be positively homogeneous. A keystone of the proof is a recently obtained theorem which roughly speaking states that (under some weak regularity conditions) every real subadditive function \mathbf{p} defined on a cone \mathbf{C} in a linear space satisfying condition that there exists an $r \in(0,1)$ such that $\mathbf{p}(r x) \leqslant r \mathbf{p}(x)$ for every $x \in \mathbf{C}$ must be positively homogeneous (cf. [8] and [9]). In the preparatory section 1 we give a sketch of the proof of this result.

1. Auxiliary results

Let \mathbf{X} be a real linear space. A set $\mathbf{C} \subset \mathbf{X}$ is said to be a cone in \mathbf{X} if $\mathbf{C}+\mathbf{C} \subset \mathbf{C}$ and $t \mathbf{C} \subset \mathbf{C}$ for every $t>0$.

Lemma 1. Let \mathbf{X} be a real linear space and \mathbf{C} a cone in \mathbf{X}. If $\mathbf{p}: \mathbf{C} \rightarrow \boldsymbol{R}$ satisfies the following conditions:
1°. \mathbf{p} is subadditive i.e. $\mathbf{p}(x+y) \leqslant \mathbf{p}(x)+\mathbf{p}(y)$ for all $x, y \in \mathbf{C}$;
2°. for every $x \in \mathbf{C}$ the function $f_{x}:(0, \infty) \rightarrow \boldsymbol{R}$ given by the formula

$$
f_{x}(t):=\mathbf{p}(t x), \quad t>0
$$

is bounded above in a neighbourhood of a point;
3°. there exists an $r \in(0,1)$ such that

$$
\mathbf{p}(r x) \leqslant r \mathbf{p}(x), \quad x \in \mathbf{C},
$$

then \mathbf{p} is positively homogeneous i.e. $\mathbf{p}(t x)=t \mathbf{p}(x)$ for all $t>0, x \in \mathbf{C}$.
Proof. (Sketch) Take an arbitrary $x \in \mathbf{C}$. By 1° the function $f:=f_{x}$ is subadditive in $(0, \infty)$. This together with 2° implies that f is locally bounded above, (i.e. bounded above on every compact subset of $(0, \infty)$), and, consequently, locally bounded. Therefore (cf. [2], Theorem 7.6.1, p. 244 and the remark coming after its proof; also [3], p. 407)

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\inf _{t>0} \frac{f(t)}{t} \tag{4}
\end{equation*}
$$

By induction from 3° we have

$$
\frac{f(t)}{t} \leqslant \frac{f\left(r^{-n} t\right)}{r^{-n} t}, \quad t>0 ; \quad n \in N .
$$

Letting $n \rightarrow \infty$ and making use of (4) we hence obtain for all $t>0$

$$
\frac{f(t)}{t} \leqslant \inf _{t>0} \frac{f(t)}{t},
$$

which means that $f(t)=f(1) t$ for all $t>0$. Now by the definition of f we have

$$
\mathbf{p}(t x)=f_{x}(t)=f(t)=f(1) t=f_{x}(1) t=\mathbf{p}(x) t
$$

which was to be shown.
Remark 1. The same argument permits us to get more general result. Namely, instead of 1° we can assume that for every $x \in \mathbf{C}$ the function f_{x} is subadditive in $(0, \infty)$ and instead of 2° that for every $x \in \mathbf{C}$ there is $r_{x} \in(0,1)$
such that every $t>0$ we have $f_{x}\left(r_{x} t x\right) \leqslant r_{x} f_{x}(t x)$, (cf. [8] where a detailed proof is given).

We quote the following result due to T. Świątkowski and the present author (cf. [6]).

Lemma 2. Let $f: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$be a subadditive bijection. If f is continuous at 0 then it is a homeomorphism of \boldsymbol{R}_{+}.

Remark 2. Let $x \in \mathbf{S}$. Then there exist disjoint $A_{1}, \ldots, A_{k} \in \Sigma$ and x_{1}, $\ldots, x_{k} \in R$ such that

$$
x=\sum_{i=1}^{k} x_{i} \chi_{A_{i}} ; \quad \mu\left(A_{i}\right)<\infty, \quad(i=1, \ldots, k)
$$

(χ_{E} denotes the characteristic function of a set E). For an arbitrary bijection $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$we have

$$
\varphi \circ|x|=\sum_{i=1}^{k} \varphi\left(\left|x_{i}\right|\right) \chi_{A_{i}}+\varphi(0) \chi_{\Omega-A_{i}}
$$

If $\varphi(0)=0$ then $x \in \mathbf{S} \Rightarrow \varphi \circ|x| \in \mathbf{S}_{+}$and, consequently, the functional \boldsymbol{P}_{φ} is well defined for every measure space (Ω, Σ, μ).

It is easily seen that in the case when $\mu(\Omega)<\infty$ the functional \boldsymbol{P}_{φ} is well defined by the formula (1) even when the condition $\varphi(0)=0$ fails to hold. One can also avoid this assumption in the case $\mu(\Omega)=\infty$ modifying the formula (1) as follows

$$
\boldsymbol{P}_{\varphi}(x):=\varphi^{-1}\left(\int_{\Omega_{x}} \varphi \circ|x| d \mu\right), \quad x \in \mathbf{S},
$$

where $\Omega_{x}:=\{\omega \in \Omega: x(\omega) \neq 0\}$. Thus the assumption $\varphi(0)=0$ in [4] was made to simplify the notations. From the next lemma it follows that it could be done without any loss of generality.

Lemma 3. Let (Ω, Σ, μ) be a measure space with at least one set $A \in \Sigma$ of positive finite measure such that $\mu(A) \neq 1$ and $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$an arbitrary bijection satisfying inequality (3). Then $\varphi(0)=0$.

Proof. Let $a:=\mu(A)$. Putting in (3) $x=y:=t \chi_{A}, t \geqslant 0$, we obtain

$$
\varphi^{-1}(a \varphi(2 t)) \leqslant 2 \varphi^{-1}(a \varphi(t)), \quad t \geqslant 0
$$

which means that the function $f:=\varphi^{-1} \circ(a \varphi)$ satisfies the inequality

$$
f(2 t) \leqslant 2 f(t), \quad t \geqslant 0
$$

Since f is a bijection of \boldsymbol{R}_{+}there is a $t_{0} \in \boldsymbol{R}_{+}$such that $f\left(t_{0}\right)=0$. From
the above inequality we infer that $f\left(2 t_{0}\right)=0$ and, consequently, $f\left(2 t_{0}\right)=f\left(t_{0}\right)$. Now the bijectivity of f implies that $t_{0}=0$. Hence we get $\varphi^{-1}(a \varphi(0))=0$ and, since $a \neq 1, \varphi(0)=0$. This completes the proof.

2. A characterization of $L^{\boldsymbol{P}}$-norm

In this section we prove the following
Theorem 1. Let (Ω, Σ, μ) be a measure space with at least two sets A, $B \in \Sigma$ such that

$$
\begin{equation*}
A \cap B=\varnothing, \quad \mu(A)=\mu(B)=1, \tag{5}
\end{equation*}
$$

and suppose that $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$is bijective. If

$$
\begin{equation*}
\boldsymbol{P}_{\varphi}(x+y) \leqslant \boldsymbol{P}_{\varphi}(x)+\boldsymbol{P}_{\varphi}(y), \quad x, y \in \mathbf{S}_{+} \tag{6}
\end{equation*}
$$

and there exists an $r \in(0,1)$ such that for every $x \in \mathbf{S}_{+}$

$$
\begin{equation*}
\boldsymbol{P}_{\varphi}(r x) \leqslant r \boldsymbol{P}_{\varphi}(x), \tag{7}
\end{equation*}
$$

then $\varphi(t)=\varphi(1) t^{p},(t \geqslant 0)$, for some $p \geqslant 1$.
Proof. To apply Lemma 1 put $\mathbf{X}:=\boldsymbol{R}^{2}, \mathbf{C}:=\boldsymbol{R}_{+}^{2}$ and define $\mathbf{p}: \mathbf{C} \rightarrow \boldsymbol{R}$ by

$$
\mathbf{p}(x):=\boldsymbol{P}_{\varphi}\left(x_{1} \chi_{A}+x_{2} \chi_{B}\right), \quad x=\left(x_{1}, x_{2}\right) \in \boldsymbol{R}_{+}^{2} .
$$

From (6) and (7) the assumptions 1° and 3° of Lemma 1 are satisfied. To verify that condition 2° of this lemma is also fulfilled, we note that by the definitions of \mathbf{p} and \boldsymbol{P}_{φ} and (5) we get

$$
\begin{equation*}
\mathbf{p}(x)=\varphi^{-1}\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right), \quad x=\left(x_{1}, x_{2}\right) \in \boldsymbol{R}_{+}^{2} \tag{8}
\end{equation*}
$$

As p is subadditive in C we have

$$
\varphi^{-1}\left(\varphi\left(x_{1}+y_{1}\right)+\varphi\left(x_{2}+y_{2}\right)\right) \leqslant \varphi^{-1}\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right)+\varphi^{-1}\left(\varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)\right)
$$

for all nonnegative $x_{1}, x_{2}, y_{1}, y_{2}$. Since $\mu(A \cup B)=2$ it follows from Lemma 3 that $\varphi(0)=0$. Therefore substituting $y_{1}=x_{2}:=0$ we obtain $\varphi^{-1}\left(\varphi\left(x_{1}\right)+\right.$ $\left.\varphi\left(y_{2}\right)\right) \leqslant x_{1}+y_{2}$ or, equivalently,

$$
\begin{equation*}
\mathbf{p}(x)=\varphi^{-1}\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right) \leqslant x_{1}+x_{2}, \quad x_{1}, x_{2} \geqslant 0 . \tag{9}
\end{equation*}
$$

Hence $f_{x}(t):=\mathbf{p}(t x)=\varphi^{-1}\left(\varphi\left(t x_{1}\right)+\varphi\left(t x_{2}\right)\right) \leqslant t\left(x_{1}+x_{2}\right)$ which shows that condition 2° of Lemma 1 is fulfilled. According to this lemma we have $\mathbf{p}(t x)=$ $t \mathbf{p}(x)$ for all $x \in \mathbf{C}$ and $t>0$ which, in view of (8), can be written as

$$
\varphi^{-1}\left(\varphi\left(t x_{1}\right)+\varphi\left(t x_{2}\right)\right)=t \varphi^{-1}\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right), \quad x_{1}, x_{2} \geqslant 0 ; \quad t>0 .
$$

Replacing here x_{1} by $\varphi^{-1}\left(x_{1}\right)$ and x_{2} by $\varphi^{-1}\left(x_{2}\right)$ and making use of the bijectivity of φ we obtain

$$
\varphi\left(t \varphi^{-1}\left(x_{1}+x_{2}\right)\right)=\varphi\left(t \varphi^{-1}\left(x_{1}\right)\right)+\varphi\left(t \varphi^{-1}\left(x_{2}\right)\right), \quad x_{1}, x_{2} \geqslant 0, \quad t>0,
$$

which means that for every $t>0$ the function $\varphi \circ\left(t \varphi^{-1}\right)$ is additive. Since $\varphi \circ\left(t \varphi^{-1}\right)$ is nonnegative, it must be a linear function (cf. J. Aczél [1], p. 34). Consequently, for every $t>0$, there exists an $m(t)>0$ such that

$$
\begin{equation*}
\varphi\left(t \varphi^{-1}(x)\right)=m(t) x, \quad x \geqslant 0 . \tag{10}
\end{equation*}
$$

Note that this relation remains valid if we additionally define $m(0):=0$. Take arbitrary $s, t \geqslant 0$. Composing the functions $\varphi \circ\left(s \varphi^{-1}\right)$ and $\varphi \circ\left(t \varphi^{-1}\right)$ and making use of relation (10) we get

$$
\varphi\left(s t \varphi^{-1}(x)\right)=m(s) m(t) x, \quad x \geqslant 0 .
$$

On the other hand the same relation says that

$$
\varphi\left(s t \varphi^{-1}(x)\right)=m(s t) x, \quad x \geqslant 0
$$

Hence we infer that

$$
m(s t)=m(s) m(t), \quad s, t \geq 0
$$

i.e. m is multiplicative, and, in view of (10), m is bijective and

$$
\varphi^{-1}(t)=\varphi^{-1}(1) m^{-1}(t), \quad t \geqslant 0 .
$$

Now from (8) and from the multiplicativity of m and m^{-1} we have

$$
\mathbf{p}(x)=m^{-1}\left(m\left(x_{1}\right)+m\left(x_{2}\right)\right), \quad x=\left(x_{1}, x_{2}\right) \in \boldsymbol{R}_{+}^{2},
$$

and, as \mathbf{p} is subadditive,

$$
\begin{equation*}
m^{-1}\left(m\left(x_{1}+y_{1}\right)+m\left(x_{2}+y_{2}\right)\right) \leqslant m^{-1}\left(m\left(x_{1}\right)+m\left(x_{2}\right)\right)+m^{-1}\left(m\left(y_{1}\right)+m\left(y_{2}\right)\right) \tag{11}
\end{equation*}
$$

for all $x_{1}, x_{2}, y_{1}, y_{2} \geqslant 0$. Setting here $x_{1}=y_{1}:=s$ and $x_{2}=y_{2}:=t$, we get

$$
m^{-1}(2 m(s+t)) \leqslant 2 m^{-1}(m(s)+m(t)), \quad s, t \geqslant 0 .
$$

From the multiplicativity of m^{-1} we obtain

$$
m^{-1}(2)(s+t) \leqslant 2 m^{-1}(m(s)+m(t)), \quad s, t \geqslant 0 .
$$

This implies that for $s, t \geqslant 0$ and $c:=m^{-1}(2) / 2$ we have

$$
c m^{-1}(t) \leqslant m^{-1}(s+t), \quad c>0
$$

and, consequently,

$$
c \cdot \lim \sup _{t \rightarrow 0} m^{-1}(t) \leqslant \inf \left\{m^{-1}(s): s>0\right\} .
$$

Since m is bijective it follows that

$$
\lim _{t \rightarrow 0} m^{-1}(t)=0=m^{-1}(0)
$$

i.e. the function m^{-1} is continuous at 0 . Setting in (11): $x_{1}:=m^{-1}(s), y_{2}:=$ $m^{-1}(t), x_{2}=y_{1}:=0$ we get

$$
m^{-1}(s+t) \leqslant m^{-1}(s)+m^{-1}(t), \quad s, t \geqslant 0
$$

i.e. m^{-1} is subadditive in \boldsymbol{R}_{+}. By Lemma 2, m^{-1} is a homeomorphism of \boldsymbol{R}_{+}. Consequently (cf. J. Aczél [1], p. 41), there is a $p>0$ such that $m(t)=t^{p}$ for all $t \geqslant 0$. Hence $\varphi(t)=\varphi(1) t^{p},(t \geqslant 0)$, which completes the proof.

Remark 3. It is quite obvious that condition (7) of Theorem 1 is fulfilled if there exists an $r>1$ such that for every $x \in \mathbf{S}_{+}$:

$$
\boldsymbol{P}_{\varphi}(r x) \geqslant r \boldsymbol{P}_{\varphi}(x) .
$$

Moreover, according to Remark 1, both these conditions can be replaced by more general ones.

Taking in Theorem 1 the measure space (Ω, Σ, μ) such that $\Omega:=\{1,2\}$; $\Sigma:=2^{\Omega} ; \mu(\{1\})=\mu(\{2\}):=1$ and making use of Remark 3 we obtain the following

Corollary 1. Let $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$be a bijection such that

$$
\varphi^{-1}\left(\varphi\left(x_{1}+y_{1}\right)+\varphi\left(x_{2}+y_{2}\right)\right) \leqslant \varphi^{-1}\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right)+\varphi^{-1}\left(\varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)\right)
$$

for all nonnegative $x_{1}, y_{1}, x_{2}, y_{2}$. If there exists an $r \in(0,1)$, (resp. $\left.r>1\right)$, such that

$$
\varphi^{-1}\left(\varphi\left(r x_{1}\right)+\varphi\left(r x_{2}\right)\right) \leqslant r \varphi^{-1}\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right), \quad x_{1}, x_{2} \geqslant 0,
$$

(resp. the reversed inequality holds), then $\varphi(t)=\varphi(1) t^{p},(t \geqslant 0)$, for some $p \geqslant 1$.
Remark 4. If a bijection $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$satisfies the functional equation

$$
\varphi(r t)=\rho \varphi(t), \quad t>0
$$

for some positive r and $\rho, r \neq \rho$, then

$$
\varphi^{-1}\left(\varphi\left(r x_{1}\right)+\varphi\left(r x_{2}\right)\right)=r \varphi^{-1}\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right), \quad x_{1}, x_{2} \geqslant 0 .
$$

Indeed, we have $\varphi^{-1}(\rho t)=r \varphi^{-1}(t),(t>0)$, and, therefore

$$
\begin{aligned}
\varphi^{-1}\left(\varphi\left(r x_{1}\right)+\varphi\left(r x_{2}\right)\right) & =\varphi^{-1}\left(\rho\left[\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right]\right) \\
& =r \varphi^{-1}\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right) .
\end{aligned}
$$

3. A converse of Minkowski's inequality

In the previous section we have proved that if the functional \boldsymbol{P}_{φ} satisfies the triangle inequality and a kind of substitute of the homogeneity condition, (cf. e.g. (7)), then φ must be a power function. Now we assume that \boldsymbol{P}_{φ} satisfies only the triangle inequality.

The main result of this section reads as follows.
Theorem 2. Let (Ω, Σ, μ) be a measure space such that there exist A, B, $C \in \Sigma$ and $m, n \in N, m \neq n$, satisfying the following conditions:

$$
A \cap B=\varnothing ; \quad \mu(A)=\frac{m}{n} ; \quad \mu(B)=\frac{n}{m} ; \quad \mu(C)=n
$$

If $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$is a bijection such that

$$
\boldsymbol{P}_{\varphi}(x+y) \leqslant \boldsymbol{P}_{\varphi}(x)+\boldsymbol{P}_{\varphi}(y), \quad x, y \in \mathbf{S}_{+}
$$

then $\varphi(t)=\varphi(1) t^{p},(t \geqslant 0)$, for some $p \geqslant 1$.
Proof. By Lemma 3 we have $\varphi(0)=0$. Hence, substituting in the assumed triangle inequality

$$
x:=\varphi^{-1}\left(\frac{s}{\mu(A)}\right) \chi_{A} ; \quad y:=\varphi^{-1}\left(\frac{t}{\mu(B)}\right) \chi_{B}
$$

we get

$$
\varphi^{-1}(s+t) \leqslant \varphi^{-1}(s)+\varphi^{-1}(t), \quad s, t \geqslant 0
$$

i.e. φ^{-1} is subadditive. By induction we have for every $k \in N$

$$
\varphi^{-1}\left(t_{1}+\cdots+t_{k}\right) \leqslant \varphi^{-1}\left(t_{1}\right)+\cdots+\varphi^{-1}\left(t_{k}\right), \quad t_{1}, \ldots, t_{k} \geqslant 0
$$

Setting here $t_{1}=\cdots=t_{k}:=t$ we get $\varphi^{-1}(k t) \leqslant k \varphi^{-1}(t)$ and, consequently,

$$
\varphi^{-1}(k \varphi(t)) \leqslant k t, \quad k \in N, \quad t \geqslant 0 .
$$

This implies that for every $k \in N$ the function $\varphi^{-1} \circ(k \varphi)$ is continuous at 0 . Substituting in the triangle inequality in turn

$$
x:=s \chi_{A}, \quad y:=t \chi_{A} ; \quad x:=s \chi_{B}, \quad y:=t \chi_{B} ; \quad x:=s \chi_{C}, \quad y:=t \chi_{C}
$$

we infer that the functions $\varphi^{-1} \circ\left(\frac{m}{n} \varphi\right), \varphi^{-1} \circ\left(\frac{n}{m} \varphi\right)$ and $\varphi^{-1} \circ(n \varphi)$ are subadditive in \boldsymbol{R}_{+}. From Lemma 2 it follows that $\varphi^{-1} \circ(n \varphi)$ is a homeomorphism of \boldsymbol{R}_{+}. Since the composition of an increasing subadditive function and subadditive one is subadditive, the relation

$$
\varphi^{-1} \circ(m \varphi)=\left(\varphi^{-1} \circ(n \varphi)\right) \circ\left(\varphi^{-1} \circ\left(\frac{m}{n} \varphi\right)\right)
$$

implies that $\varphi^{-1} \circ(m \varphi)$ is subadditive and, by Lemma 2 , a homeomorphism of \boldsymbol{R}_{+}. The function $\varphi^{-1} \circ\left(\frac{1}{n} \varphi\right)$ being the inverse of $\varphi^{-1} \circ(n \varphi)$ is a homeomorphism of \boldsymbol{R}_{+}. Now the relation

$$
\varphi^{-1} \circ\left(\frac{m}{n} \varphi\right)=\left(\varphi^{-1} \circ(m \varphi)\right) \circ\left(\varphi^{-1} \circ\left(\frac{1}{n} \varphi\right)\right)
$$

implies that $\varphi^{-1} \circ\left(\frac{m}{n} \varphi\right)$ and its inverse $\varphi^{-1} \circ\left(\frac{n}{m} \varphi\right)$ are homeomorphisms. Because these functions are inverses of one another and subadditive, they must be superadditive and, consequently, additive. Therefore (cf. J. Aczél [1], p. 34) there exists an $r>0$ such that

$$
\varphi^{-1}\left(\frac{m}{n} \varphi(t)\right)=r t, \quad t \geqslant 0 .
$$

Denoting $a:=\mu(A)=\frac{m}{n}$, we hence get

$$
\begin{equation*}
a \varphi(t)=\varphi(r t), \quad \varphi^{-1}(a t)=r \varphi^{-1}(t), \quad t \geqslant 0 . \tag{12}
\end{equation*}
$$

Setting in the triangle inequality

$$
x:=x_{1} \chi_{A}+x_{2} \chi_{B}, \quad y:=y_{1} \chi_{A}+y_{2} \chi_{B} ; \quad x_{1}, x_{2}, y_{1}, y_{2} \geqslant 0
$$

and taking into account that $A \cap B=\varnothing$ and $\mu(B)=\frac{1}{a}$ we obtain

$$
\begin{aligned}
\varphi^{-1}\left(a \varphi\left(x_{1}+y_{1}\right)+\frac{1}{a} \varphi\left(x_{2}+y_{2}\right)\right) \leqslant & \varphi^{-1}\left(a \varphi\left(x_{1}\right)+\frac{1}{a} \varphi\left(x_{2}\right)\right) \\
& +\varphi^{-1}\left(a \varphi\left(y_{1}\right)+\frac{1}{a} \varphi\left(y_{2}\right)\right) .
\end{aligned}
$$

Applying (12) we can write this inequality as follows

$$
\begin{aligned}
\varphi^{-1}\left(\varphi\left(r x_{1}+r y_{1}\right)+\varphi\left(\frac{1}{r} x_{2}+\frac{1}{r} y_{2}\right)\right) \leqslant & \varphi^{-1}\left(\varphi\left(r x_{1}\right)+\varphi\left(\frac{1}{r} x_{2}\right)\right) \\
& +\varphi^{-1}\left(\varphi\left(r y_{1}\right)+\varphi\left(\frac{1}{r} y_{2}\right)\right)
\end{aligned}
$$

Replacing here $r x_{1}, r^{-1} x_{2}, r y_{1}, r^{-1} y_{2}$ resp. by $x_{1}, x_{2}, y_{1}, y_{2}$ we get

$$
\varphi^{-1}\left(\varphi\left(x_{1}+y_{1}\right)+\varphi\left(x_{2}+y_{2}\right)\right) \leqslant \varphi^{-1}\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right)+\varphi^{-1}\left(\varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)\right)
$$

for all nonnegative $x_{1}, x_{2}, y_{1}, y_{2}$. Applying once more (12) we obtain

$$
\begin{aligned}
\varphi^{-1}\left(\varphi\left(r x_{1}\right)+\varphi\left(r x_{2}\right)\right) & =\varphi^{-1}\left(a \varphi\left(x_{1}\right)+a \varphi\left(x_{2}\right)\right) \\
& =\varphi^{-1}\left(a\left[\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right]\right) \\
& =r \varphi^{-1}\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right)
\end{aligned}
$$

Now our theorem results from Corollary 1 because, clearly, $r \neq 1$.
If in the above theorem $n=1$ we can take $C=B$. Therefore we have the following

Corollary 2. Let (Ω, Σ, μ) be a measure space such that there exist A, $B \in \Sigma$ and $m \in N, m \neq 1$, satisfying the following conditions:

$$
A \cap B=\varnothing ; \quad \mu(A)=m ; \quad \mu(B)=\frac{1}{m}
$$

If $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$is a bijection such that

$$
\boldsymbol{P}_{\varphi}(x+y) \leqslant \boldsymbol{P}_{\varphi}(x)+\boldsymbol{P}_{\varphi}(y), \quad x, y \in S_{+}
$$

then $\varphi(t)=\varphi(1) t^{p},(t \geqslant 0)$, for some $p \geqslant 1$.
Finally let us note that using Lemma 3 we can write the converse of Minkowski's inequality quoted in the introduction in a little more general form (cf. [4]).

Theorem 3. Let (Ω, Σ, μ) be a measure space with at least two sets A, $B \in \Sigma$ such that $0<\mu(A)<1<\mu(B)<\infty$. If $\varphi: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$is a bijection such that φ^{-1} is continuous at 0 and

$$
\boldsymbol{P}_{\varphi}(x+y) \leqslant \boldsymbol{P}_{\varphi}(x)+\boldsymbol{P}_{\varphi}(y), \quad x, y \in S_{+}
$$

then $\varphi(t)=\varphi(1) t^{p},(t \geqslant 0)$, for some $p \geqslant 1$.

References

[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York and London, 1966.
[2] E. Hille, R. S. Phillips, Functional Analysis and Semigroups, AMS Colloquium Publications XXXI, AMS, Providence, R. I., 1957.
[3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers and Silesian University, Warszawa-Kraków-Katowice, 1985.
[4] J. Matkowski, The converse of the Minkowski's inequality theorem and its generalization, Proc. Amer. Math. Soc. 109 (1990), 663-675.
[5] J. Matkowski, On a characterization of L^{p}-norm, Ann. Polon. Math. 50 (1989), 137-144.
[6] J. Matkowski, T. Świątkowski, Quasi-monotonicity, subadditive bijections of R_{+}, and characterization of L^{p}-norm, J. Math. Anal. Appl. 154 (1991), 493-506.
[7] J. Matkowski, On a-Wright convexity and the converse of Minkowski's inequality, Aequationes Math. 43 (1992), 106-112.
[8] J. Matkowski, Subadditive functions and a relaxation of the homogeneity condition of seminorms, Proc. Amer. Math. Soc. 117 (1993), 991-1001.
[9] J. Matkowski, Remark on the definition of seminorm and its application to a characterization of the L^{p}-norm, The Twenty-eight International Symposium on Functional Equations, August 23-September 1, 1990, Graz-Mariatrost, Austria, Report of the Meeting, in Aequationes Math. 41 (1991), 266-267.

Department of Mathematics
Technical University
PL-43-309 Bielsko-Biala
Poland

[^0]: 1991 Mathematics Subject Classification. 46E30, 26D15, 39B72.
 Key words and phrases. Subadditive functions on a cone, homogeneity, measure space, characterization of L^{p}-norm, power function.

