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ABSTRACT. Let C be a cone in a linear space. Under some weak regularity conditions
we show that every subadditive function p: C — R such that p(rx) < rp(x) for some
re(0,1) and all x € C must be positively homogenous. As an application we obtain
a new characterization of LP-norm. This permits us to prove among other things
the following converse of Minkowski’s inequality.

Let (2, X, u) be a measure space such that there exist disjoint sets 4, Be X
satisfying the condition u(B) = 1/u(A), u(A) #1. If ¢: R, - R, is an arbitrary bijec-
tion such that

¢“(J @o(x+ y)du) < ¢"<J po Xd#) + (p“‘(J po ydu)
Q Q 2

for all the p-integrable step functions x, y: 2 — R, then ¢ is a power function.

Introduction

Let R, R, and N denote respectively the set of reals, nonnegative reals
and positive integers.

For a measure space (2, 2, u) let S = S(, X, u) stand for the linear space
of all the u-integrable step functions x: 2 — R and let S, := {x e S: x > 0}.

It can be easily verified that for every bijection ¢: R, - R, such that
¢(0) = 0 the functional P,: S —» R, given by the formula

M Py(x):= <p'1<L¢°|x|du>, x €S,

is well defined. In [4] we have proved the following converse of Minkowski’s
inequality.
Let (2, 2, u) be a measure space with two sets A, Be X such that

) O<pud)<1l<puB)<
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and ¢: R, = R, a bijection such that (0) = 0. If ¢! is continuous at 0 and
(3) Pq)(x + )’) < P¢(x) + P,p(Y), X, y € S+,

then @(t) = @(1)t?, (t = 0), for some p > 1.

It has also been shown that condition (2) is essential. In this paper we
show that modifying the definition of P, one can eliminate the assumption
©(0) = 0. The remaining assumption of the continuity of @' at 0 plays a
key but technical role. We conjecture that the above result is valid without
this assumption. However it seems to be a difficult problem to get rid of
it completely.

In a recent paper [7] we have attempted to replace the continuity of
@~ at 0 by the following assumption: there exist disjoint sets C, De X of
positive measures such that u(C) + u(D) = 1. This approach leads to some
open problems in the theory of convex functions. Nevertheless we were able
to prove that in the case when u(C)= u(D) the continuity of ¢! at 0 is
superfluous.

In section 3 of the present paper we show that the continuity of ¢! at
0 together with assumption (2) can be replaced by one of the following
conditions:

(i) there exist ne N, n> 1, and A, Be X such that
1
ANB = g; u(A)=;; u(B) = n,

or
(i) there exist n, me N, n#m, n> 1, and A, B, Ce X such that

ANB=g w4 =25 pB=1;  wO=n

The proof of this theorem is based on the following characterization of L?-
norm which is the main result of section 2.

If (2,2, ) is a measure space with two disjoint sets A, Be X such that
wWA) = w(B)=1; a function ¢: R, — R, is bijective, inequality (3) holds and
there exists an re(0,1) such that P,(rx) <rP,(x) for all xe S, then ¢(t) =
o(1)t?, (t = 0), for some p = 1.

This is a partial generalization of a theorem in [5] where P, is supposed
to be positively homogeneous. A keystone of the proof is a recently obtained
theorem which roughly speaking states that (under some weak regularity
conditions) every real subadditive function p defined on a cone C in a linear
space satisfying condition that there exists an r € (0, 1) such that p(rx) < rp(x)
for every x e C must be positively homogeneous (cf. [8] and [9]). In the
preparatory section 1 we give a sketch of the proof of this result.
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1. Auxiliary results

Let X be a real linear space. A set C <X is said to be a cone in X
if C+CcC and tC < C for every t > 0.

LemMMA 1. Let X be a real linear space and C a cone in X. If p.C— R
satisfies the following conditions:

1°. p is subadditive ie. p(x + y) < p(x) + p(y) for all x, yeC;

2°.  for every x € C the function f.: (0, ©0) = R given by the formula

[.(®) == p(tx), t>0,

is bounded above in a neighbourhood of a point;
3°.  there exists an r € (0, 1) such that

p(rx) <rp(x), xeC,
then p is positively homogeneous i.e. p(tx) = tp(x) for all t >0, xe C.

Proor. (Sketch) Take an arbitrary x e C. By 1° the function f:= f,
is subadditive in (0, c0). This together with 2° implies that f is locally
bounded above, (i.e. bounded above on every compact subset of (0, o)), and,
consequently, locally bounded. Therefore (cf. [2], Theorem 7.6.1, p. 244 and
the remark coming after its proof; also [3], p. 407)

@ im, ., 7 = inf 7.

By induction from 3° we have

10 _fe

: o t>0;, neN.

Letting n — oo and making use of (4) we hence obtain for all t >0

O i 1O
t

f> 0=
which means that f(¢) = f(1)t for all t > 0. Now by the definition of f we
have
p(x) = fx(8) = f(©) = f()t = f(1)t = p(x)¢
which was to be shown.

REMARK 1. The same argument permits us to get more general result.
Namely, instead of 1° we can assume that for every x e C the function f, is
subadditive in (0, oo) and instead of 2° that for every x € C there is r, €(0, 1)
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such that every t >0 we have f.(r.tx) <r.f.(tx), (cf. [8] where a detailed
proof is given).

We quote the following result due to T. Swiatkowski and the present
author (cf. [6]).

LEMMA 2. Let f: R, » R, be a subadditive bijection. If f is continuous
at O then it is a homeomorphism of R..

REMARK 2. Let xeS. Then there exist disjoint A,, ..., A, € 2 and x,,
..., Xx € R such that

k
x= Y Xy HA)<ow,  (=1...K.

(xg denotes the characteristic function of a set E). For an arbitrary bijection
¢: R, > R, we have

k
@olx|= Zl O(1x)xa, + ©(0)x0-4,-

If ¢(0)=0 then xeS=¢o|x|eS, and, consequently, the functional P, is
well defined for every measure space (€2, Z, u).

It is easily seen that in the case when p(Q) < oo the functional P, is
well defined by the formula (1) even when the condition ¢(0) =0 fails to
hold. One can also avoid this assumption in the case p(2) = co modifying
the formula (1) as follows

P¢(x)t=fp"<f <p°|xldu), x €S,
Dx

where Q, = {we Q: x(w) #0}. Thus the assumption ¢@(0)=0 in [4] was
made to simplify the notations. From the next lemma it follows that it could
be done without any loss of generality.

LemMA 3. Let (Q, X, u) be a measure space with at least one set Ae X
of positive finite measure such that u(A)+# 1 and ¢: R, —» R, an arbitrary
bijection satisfying inequality (3). Then ¢(0) = 0.

ProOF. Let a:= u(4). Putting in (3) x = y:=ty,, t =0, we obtain
¢ (ag(20) < 2907 (ap(®), t=0,
which means that the function f:= ¢! o (ag) satisfies the inequality
f@en <2, t=0.

Since f is a bijection of R, there is a t,e R, such that f(t,) =0. From
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the above inequality we infer that f(2t,) = 0 and, consequently, f(2t,) = f(to).
Now the bijectivity of f implies that t, =0. Hence we get ¢ '(ap(0)) =0
and, since a # 1, ¢(0) =0. This completes the proof.

2. A characterization of L?-norm
In this section we prove the following

THEOREM 1. Let (2, 2, u) be a measure space with at least two sets A,
Be X such that

) ANB=, A =uB) =1,
and suppose that ¢: R, — R, is bijective. If
(6) P(x +) <P, +P(y), x yeS,,
and there exists an r € (0, 1) such that for every xeS,
™) P,(rx) < rP,(x)
then o(t) = o(1)t?, (t = 0), for some p > 1.
ProOF. To apply Lemma 1 put X := R?, C:= R? and define p: C — R by
P(X) == P,(x1 24 + X2X5) x = (x;, x,) € R2.

From (6) and (7) the assumptions 1° and 3° of Lemma 1 are satisfied. To
verify that condition 2° of this lemma is also fulfilled, we note that by the
definitions of p and P, and (5) we get

®) p(x) = 0 H(@(x1) + 0(x,)), x = (xy, X,) € R2.
As p is subadditive in C we have

e7H@lxy + y1) + @(xz + 32)) < 97N (x1) + @(x2)) + 07 H@(y1) + @(2))
for all nonnegative x,, x,, y;, ¥,. Since u(AUB) =2 it follows from Lemma
3 that ¢@(0) = 0. Therefore substituting y, = x, :=0 we obtain ¢ !(¢p(x,) +
o(y;)) < x; + y, or, equivalently,
&) P(x) = 07 (@(x,) + @(x2)) < Xy + X, Xy, X3 2 0.

Hence f.(t) := p(tx) = ¢ Y(@(tx,) + @(tx;)) < t(x; + x,) which shows that con-
dition 2° of Lemma 1 is fulfilled. According to this lemma we have p(tx) =
tp(x) for all xe C and ¢t > 0 which, in view of (8), can be written as

e Hp(txy) + @(txy)) = to H(@(x1) + @(X3)), X4, X, 20; t>0.
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Replacing here x; by ¢~ !(x;) and x, by ¢7'(x,) and making use of the
bijectivity of ¢ we obtain

Pt~ (x; + x2)) = @(tp~' (1)) + 0(t@7 (x2)), Xy, X220, t>0,

which means that for every t > 0 the function ¢ o (t¢~!) is additive. Since
@ o(tp~!) is nonnegative, it must be a linear function (cf. J. Aczél [1],
p. 34). Consequently, for every t > 0, there exists an m(t) > 0 such that

(10) ote™'(x)) =m()x, x>0

Note that this relation remains valid if we additionally define m(0) := 0. Take
arbitrary s, t > 0. Composing the functions ¢ o (s¢™') and ¢ o (t¢~!) and
making use of relation (10) we get

o(stp~(x)) = m(s)m(t)x, x=0.
On the other hand the same relation says that
o(sto™1(x)) = m(st)x, x=0.
Hence we infer that
m(st) = m(s)m(t), s, t=>0,
i.e. m is multiplicative, and, in view of (10), m is bijective and
el =0 Mm@, t>0.

! we have

Now from (8) and from the multiplicativity of m and m~
P(x) = m™(m(x,) + m(x,)), x = (x4, X;) € R3,
and, as p is subadditive,

(11)
m(m(x, + ;) + m(xz + y2)) < m~H(m(x,) + m(x;)) + m™ (m(y,) + m(y,))

for all x,, x,, y;, ¥, = 0. Setting here x, = y, := s and x, = y, :=t, we get
m~12m(s + t)) < 2m~Y(m(s) + m(t)), s, t=0.
From the multiplicativity of m™ we obtain
mt2)(s +t) < 2m~Y(m(s) + m(t)), s, t=0.
This implies that for s, t >0 and c:= m™1(2)/2 we have
em™ @) <m (s +1), ¢>0,

and, consequently,
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c¢-lim sup,_ o, m™*(t) < inf {m™*(s): s > 0}.
Since m is bijective it follows that
lim,,o m™(t) = 0 = m™*(0)
ie. the function m™ is continuous at 0. Setting in (11): x, :== m™1(s), y,:=
m(t), x, =y, :=0 we get

mis+)<mi(s)+m@), s t=0,

1 1

ie. m™! is subadditive in R,. By Lemma 2, m™' is a homeomorphism of
R,. Consequently (cf. J. Aczél [1], p. 41), there is a p > 0 such that m(t) = t?
for all t > 0. Hence ¢(t) = ¢(1)t?, (t = 0), which completes the proof.

REMARK 3. It is quite obvious that condition (7) of Theorem 1 is fulfilled
if there exists an r > 1 such that for every x € S,:

P,(rx) > rP,(x).

Moreover, according to Remark 1, both these conditions can be replaced by
more general ones.

Taking in Theorem 1 the measure space (22, 2, u) such that Q:= {1, 2};
2:=2% u({1}) = u({2}):=1 and making use of Remark 3 we obtain the
following

COROLLARY 1. Let ¢: R, - R, be a bijection such that

07 Ho(x; + y1) + 0(x2 + ¥,)) < 07 (@(x1) + 0(x2)) + 07 H@(y1) + @(¥2))

for all nonnegative x,, y,, X5, y,. If there exists an re (0, 1), (resp. r > 1),
such that

o7 prxy) + 0(rx,)) S re7Hp(x1) + @(x2)), Xy, X, =0,

(resp. the reversed inequality holds), then ¢(t) = @(1)t?, (t = 0), for some p > 1.
ReMARk 4. If a bijection ¢: R, — R, satisfies the functional equation
ort) = po®), >0,

for some positive r and p, r # p, then

@7 olrx,) + @(rx,)) = ro 7' (@(x,) + @(x2)), Xy, X, >0.
Indeed, we have @~ *(pt) = ro~*(t), (t > 0), and, therefore

@7 o(rx)) + @(rx;)) = 7' (pLo(x,) + @(x2)])

= r(p_l(go(xl) + @(x,)).
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3. A converse of Minkowski’s inequality

In the previous section we have proved that if the functional P, satisfies
the triangle inequality and a kind of substitute of the homogeneity condition,
(cf. e.g. (7)), then ¢ must be a power function. Now we assume that P,
satisfies only the triangle inequality.

The main result of this section reads as follows.

THEOREM 2. Let (R, 2, u) be a measure space such that there exist A, B,
Ce 2 and m, ne N, m # n, satisfying the following conditions:

ANB = &, u(A)=§; u(B)=%; u(C) = n.

If @: R, > R, is a bijection such that
P¢(x+y)<P¢(x)+P,p(y), X, yes+a
then o(t) = e(1)t?, (t = 0), for some p > 1.

ProoF. By Lemma 3 we have ¢(0) =0. Hence, substituting in the as-
sumed triangle inequality

o -1f S . ey
xX=¢ mb, y=9 mh’

P+ )< o)+ o7, s t20,

we get

ie. ¢! is subadditive. By induction we have for every ke N
e+ H )< @THE) o+ 07 ), by s B 20,
Setting here ¢, = - =t,:=t we get ¢ '(kt) < ko ~'(t) and, consequently,
o '(ko(®)) <kt, keN, t>0.

This implies that for every ke N the function ¢! o (kg) is continuous at
0. Substituting in the triangle inequality in turn

X =5f4> V= Yas X = S8(p, Y:=1As; X = SXc, Y:=1Itxc,

. . m n _
we infer that the functions (p‘lo<—(p>, qo‘lo<—(p> and ¢ !o(ng) are
n m
subadditive in R,. From Lemma 2 it follows that ¢! o (n¢) is a homeomor-
phism of R,. Since the composition of an increasing subadditive function
and subadditive one is subadditive, the relation
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9710 (mg) = (97" o (ng)) o (q»-‘ ° (g(p))

implies that ¢~ o (mp) is subadditive and, by Lemma 2, a homeomorphism
1
of R,. The function ¢ o (qu) being the inverse of ¢! o (ngp) is a homeo-

morphism of R,. Now the relation

¢7to (%p) =(¢7" o (mg)) o <tp“ <%¢>)

. _ m - _ n .
implies that @10 (;(p) and its inverse ¢ 10(;"’) are homeomorphisms.

Because these functions are inverses of one another and subadditive, they
must be superadditive and, consequently, additive. Therefore (cf. J. Aczél [1],
p. 34) there exists an r > 0 such that

o (gfp(t)) =rt, t>0.
. m
Denoting a := u(A) = o we hence get

(12) ap(t) = o(rt), ¢ '(a)=re7'(®), =0

Setting in the triangle inequality

X=Xy X4+ X2XB> Y'=YiXa ¥ Y2X8; Xy, X3, Y15 Y2 20,

1
and taking into account that ANB = & and u(B) = 5 e obtain
. 1 . 1
@7 | a0(x1 +y1) + - 0(x2 +y2) | S 07| ag(xy) + —0(x,)

+ 07 (a0 + o).

Applying (12) we can write this inequality as follows

1 1 1
ot <¢>(rx1 +ry) + w(;Xz + ;y2>> <ot <(p(rx1) + (p(;xz))
1
+o7! <<p(ry1) + w(;n))-

Replacing here rx,, r 'x,, ry,, r "y, resp. by x,, x,, y;, y, we get
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@7 Helxy + y1) + @(x2 + y2)) < 07H@(x1) + 9(x2)) + 07 @(y1) + @(2))
for all nonnegative x,, x,, ¥, y,. Applying once more (12) we obtain
¢ He(rx,) + @(rx,)) = ¢~ @p(x,) + ag(x,))
= ¢ (alo(x1) + @(x2)])
=ro 7 (@(x) + 9(x2))-

Now our theorem results from Corollary 1 because, clearly, r # 1.
If in the above theorem n =1 we can take C = B. Therefore we have
the following

COROLLARY 2. Let (2,2, u) be a measure space such that there exist A,
Be X and me N, m # 1, satisfying the following conditions:

ANB=g5  u)=m  uB)=.

If p:R, - R, is a bijection such that
Py(x + y) < P(x) + P, (y), x, yeS,,
then o(t) = o(1)t?, (t = 0), for some p > 1.

Finally let us note that using Lemma 3 we can write the converse of
Minkowski’s inequality quoted in the introduction in a little more general
form (cf. [4]).

THEOREM 3. Let (2, 2, u) be a measure space with at least two sets A,
Be X such that 0 < u(A) <1 < u(B) < 0. If @: R, — R, is a bijection such
that ¢! is continuous at 0 and

Pa)(x + }’) < P¢(x) + an(}’), X, .V € S+s
then @(t) = o(1)t?, (t = 0), for some p = 1.
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