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Linearized oscillations for neutral equations II: Even order
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ABSTRACT. We consider a nonlinear neutral delay differential equation of the form

dn

— [x(ή - p(t)g((t - τ))] = q(t)h(x(t - δ)), t ̂  ί0 with p(t), q(t) continuous, τ > 0, δ > 0

and n even. We obtain sufficient conditions for oscillation of all bounded solutions

for the case when p(t) takes values outside (0,1), and thereby establish some criteria as

proposed in an earlier open problem.

1. Introduction

In this paper we consider the nonlinear neutral delay differential equation

^ [x(ί) - p(t)g(x(t - τ))] = q(t)h(x(t -δ)), t>t0 (1.1)

where n is an even integer,

p,ίeC([ίb,oo),Λ), g,heC(R,R), τ>0 and δ > 0. (1.2)

Recently, the linearized oscillation theory for nonlinear neutral delay
differential equations has been extensively developed, for example see [1-3, 5-
10]; in particular, [3] deals with the case when n is odd. Roughly speaking,
it has been proved that, under appropriate hypotheses, certain nonlinear
neutral delay differential equations have the same oscillatory character as an
associated linear equation. The following linearized oscillation result for the
equation (1.1) was obtained in [7] (see also [5]):

THEOREM A. Assume that (1.2) holds,

lim sup p(i) = PO e (0,1), liminf p(t) = po e (0,1),
f->αo '-*00

lim «(ί) = «oG(0,oo), (1.3)
ί—»oo
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0 < fίίίl <; 1 for u Φ 0, lim ̂  = 1, (1.4)
M w->0 M

uΛ(tι) > 0 for u^Q and lim -̂  = 1. (1.5)v y M-+O w v

Suppose that every bounded solution of the linearized equation

dn

-7^ \y(t) - Poy(t ~ τ)] = 4oy(t - δ) (1.6)

oscillates. Then every bounded solution of (1.1) α/so oscillates.

The question naturally arises as to how one may establish the corre-

sponding linearized oscillation results of (1.1) for the case when the coefficient

p(t) takes values outside the interval (0,1). Also see the open problem 10.10.4

in [5]. Our aim in this paper is to consider this problem.

Let p = max{τ,δ} and let φ e C([fo — ρ,t$},R). By a solution of (1.1) we

mean a function x e C([t\ — p, oo),/?) for some t\ > ίo such that x(t) = φ(t) on

[ίo — p, ίo] and x(t) — p(t)g(x(t — τ)) is n times continuously differentiable on

[ίι,oo) and such that (1.1) is satisfied for t > t\.

Throughout this paper, we set

liminf p(t) = p0 e R, lim q(i) = q^e (0, oo)
t—KX> ί—KDO

Eι(t) = {s>t: p(s) < 0}, E2(t) = {s>t: p(s) > 0}.

2. The case pQ < -1

In this section we give a linearized oscillation result of (1.1) for the case

po < — 1. This result can be applied to the case when p(t) itself is oscillatory.

THEOREM 2.1. Assume that (1.2) holds and that there exists T > ί0 such

that

(2.1)

Suppose that

p(t) is bounded and po < — 1 (2.2)

ug(u) > 0 for u Φ 0 and lim ̂  = 1 (2.3)
M-)Ό U

ιιΛ(ιι) > 0 for u Φ 0 and lim ̂  = 1 (2.4)
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and that every bounded solution of the linearized equation

^[y(0-poXt-τ)] = βoy(t-a) (2.5)

oscillates. Then every bounded solution of (1.1) also oscillates.

Note the fact that if p(t) < 0 eventually, then (2.1) holds automati-
cally. We immediately have the following corollary.

COROLLARY 2.2. Assume that (1.2), (2.2), (2.3) and (2.4) hold. If

p(t) < 0 for large t, (2.6)

then the oscillation of all bounded solutions of (2.5) implies the oscillation of all

bounded solutions of (1.1).

Before we prove Theorem 2.1, let us first examine the following two
examples:

EXAMPLE 2.1. Consider the second order nonlinear neutral delay differen-
tial equation

Γ Ί ff

/ x x(t — π) x(t — 2π) . /Λ _xhc(ί)-sιnί - rA - 7- - r = « — -^ - TΓ-τ, t>0. (2.7)
[ v ; 1 + \ sin x(t - π)J l + x 2 (f-2π)' v '

Let T = π. Then (2.1) is satisfied. The linearized equation of (2.7) takes the
form

[y(t)+y(t-π)Γ = Xt-2π). (2.8)

It is not difficult to prove that every bounded solution of (2.8) is oscillatory.
Therefore, by Theorem 2.1 every bounded solution of (2.7) is also oscillatory.

EXAMPLE 2.2. For the delay equation

[x(ί) - (-1 + sin t)(x(t - τ) + sin x(t - τ))]" = 1 - e'x(t^ (2.9)

set p(f) = 2(-l + sinf), q(t) = 1, g(x) = \(x + sin x), h(x) = 1 - e~x. Then
the conditions (2.2), (2.3) and (2.4) are satisfied. The corresponding linearized
equation is

4y(t-τ)]" = y(t-δ). (2.10)

Thus by Corollary 2.2, if every bounded solution of (2.10) oscillates, then every
bounded solution of (2.9) also oscillates.

PROOF OF THEOREM 2.1. Assume, for the sake of contradiction, that (1.1)
has a bounded nonoscillatory solution x(t). We assume that x(t) is even-
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tually positive. The case where x(ί) is eventually negative is similar and is
omitted. Let t\ > T and M > 0 be such that

0 < x(t - p) < M, p(t) > 2p0 and q(t) > 0 for t > tι (2.11)

where p = max{τ, δ}. Set

z(ή = x(ή-p(t)g(X(t-τ)). (2.12)

Then z(t) is bounded from above. By (1.1), we have

zM(ί) = q(t)h(x(t - <5)) > 0 for t > ίi (2.13)

which means that the consecutive derivatives of z(ί) of order up to n — 1 are
strictly monotonic functions eventually. Since z(t) > 0 for t e £ι(fι), it follows
that z(t) is eventually positive. Thus, we have eventually

< 0, z(n~2\t) > 0, . . . ,z"(ί) > 0, z'(ί) < 0, z(ί) > 0. (2.14)

Now set

α= sup »W and ^= inf

0<M<M W 0<«<M M

In light of (2.3) and (2.4), we see that

1 < α < oo and 0 < β < 1.

Thus, we obtain by (2.11)

g(x(t - τ)) < αx(ί - τ) and h(x(t - δ)) > βx(t -δ),t> tι. (2.15)

Integrating (2.13) from ίi to oo, we find

Γq(i)h(x(t-δ))dt«x>
Jίi

which, together with (2.15), implies

J OO

q(t)x(t - δ)dt < oo.
Jίi

Noting q(t) — > q$ e (0, oo) as ί — * oo, we get

f°°
x(t-S)dt< oo.

Jίi

By (2.15), we have
oo

oo.ΓJίi
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This yields by (2.2) that

Γ-p(ήg(x(t-τ))dt
Jtl

< 00

Jίi

and hence
ΛOO

it < oo.
ΛOO

Z(t)dt
J t\

Since z(t) is eventually positive and eventually decreasing, it follows that
lim^oo z(t) = 0. Next we will prove

lim x(ί) = 0.
ί->oo

First since for teE\(t\),

x(ή=z(ή+p(ήg(x(t-τ))<z(ή

we get

lim x(t) = 0. (2.16)

ί->00

From (2.1), ί e E 2 ( f ι + Ό implies ί-τeEι(ίι). Thus, we have

lim g(x(t - τ)) = 0
ίe£2(ίι+τ)

and hence

tjim^ p(ί)flf(x(ί-τ))=0
t-κ»

which implies that

lim x(ί) = lim [z(ί) + p(t)g(x(t - τ))] - 0. (2.17)
ίe£2(ίι+τ) ίe£2(ίι-|-τ)

ί->oo ί-^co

Since £ι(ίι)U£2(ίι H-τ) 2 [ίi +τ, oo), it follows from (2.16) and (2.17) that

lim x(ί) = 0. (2.18)

Set

p*(ή = -p(ήg(x(t - τ))/x(ί - τ), q*(t) = q(t)h(x(t - δ))/x(t - δ).

Then (1.1) becomes
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In view of (2.3), (2.4) and (2.18), we have

limsup p*(ή = -po, lim q*(t) = qQ. (2.20)
ί->oo t^co

By the definition of z(ί), (2.19) reduces to

z (t) + p*(t- δ ) z ( » \ t - τ) = q*(t)z(t- δ). (2.21)

For any ε e (0, ίjo), let β = β(ε) e (0, 1) be sufficiently near to 1 and such that

β<lo > <?o — 6 Also choose α = α(ε, β) > 1 to be near to 1 such that βqo >
<x(qo - ε). By (2.20),

Then there exists £2 > * i 4- δ such that

Substituting this into (2.21), we have

zW(t) + (-Λ + β)zW(t-τ)>^z(t-ί), »Sίt2. (2.22)
(X

Now set

β(ί) = (zW(t) + (-pd + e)zW(t - τ))/z(t - ί). (2.23)

Then by (2.22), we have

β(t) > — for ί > ί2. (2.24)
(X

Rewrite (2.23) as

^(n)(ί) + (-Λ + ε)z^(ί - τ) = β(ί)z(ί - (5). (2.25)

Clearly, limt_>oo z(<) (0 = 0, for i = 0, 1, . . . , n - 1. Integrating (2.25) from ί to
infinity n — 1 times and recalling that n is even, we get

(s - t)" 2GWΦ - <5)<fc = 0. (2.26)

In what follows, for the sake of convenience, we set

Pi = -Po + ε, β*(t) = (s - O^eWzίs - S)ds. (2.27)
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Then (2.26) becomes

z'(ί)+Λz'(t-τ) + ρ'(t)=0.

Integrating this from t to oo again, we have

ΓOO

z(ί)+pιz(ί-τ) = Q*(s)ds
Jί

or equivalently

z(t) = -lz(ί + τ) +- Γ β*(s)<fs. (2.28)
Pi Pi Jί+τ

By iteration, we have

*w = ΣC-^PΓ' Γ e*MΛ+ (-i)"vχί+™)
i=l Jί+*

Since pi > 1 and z(ί) — > 0 as C — ̂  oo, we let m — » oo to obtain

ί+(i+l)τoo f

^ΣD-^W
1̂1 ;=ι Jt

oo ft+(i+l)τ t= Σ T
^Jt+iτ 1-HPl

m

where [•] denotes the greatest integer function. From (2.24),

β*(ί) > 7̂ -%^ ί°°(s - ί)Π"2z(s - ̂  f ̂  t
(n- 2)!α J t

Thus, we obtain

(2.29)

Since every bounded solution of (2.5) oscillates, it follows by [5] or [6] that the
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characteristic equation of (2.5)

f ( λ ) = -Γ(l - PQe-λτ) + qQe-λδ = 0

has no negative real roots. Consequently

τ < δ. (2.30)

Next we will need the following claim, which can be proved by a slight

modification in the proof of Lemma 5 of [7].

Claim: There exists εo > 0 such that for every η e [0, εo] every bounded
solution of the equation

[y(0 + (-PO + η)y(t - τ)] = (qo - η)y(t - δ) (2.31)

also oscillates.

We choose the above ε > 0 to be in (0, εo]. Our aim is to prove that the
equation

ε)y(t - τ)] = (ίo - ε)y(t - δ)

has a bounded positive solution. To this end, we consider the Banach space X

of all bounded and continuous functions defined on fa + τ — <5, oo) with the
sup-norm. Let

A = {w e X : 0 < w(ί) < 1 for t > t2 + τ - δ}.

Then A is a bounded, closed and convex subset of X. Define a mapping
5: A — » X as follows:

x Γ(ιι - s)n~2z(u - (5)w(W -
J s

δ)duds, t > t2

where h = ln(2 - β)/(δ - τ) > 0.
We first show that S maps A into itself. It is easy to see by (2.29) that

for any w 6 A

0 < (Sw)(ί) < 1 for t > t2 + τ - δ

and (Sw)(t) is continuous on [ί2 + τ — (5, tτ\. We will prove that (Sw)(t) is
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continuous on [£2, oo). In fact, for any sι,S2 e [ί2, oo),

|Z(s1)(Sw)(s1)-z(s2)(Sw)(s2)|

581

x f (« - s)"~2z(u - δ)w(u - δ)duds
is

_ Γ (i _ (_pl)-[(s-*)Λ]) ί (u _ S)»-2Z(U _ s)w(u _ §)duds
Js2+τ Js

ΛΠ _ g I Γs2+τ roo

— -̂ —T (u- s)n~ z(u- δ)w(u- δ)duds
(l+pl)(n-2)11},^}, v

- ^(-piΓ Γ ' T Γ(u - s)n~2z(u - ί)w(u - δ)duds

oo ps2+(i-l-l)τ poooo ps2+(ι+l)τ FCC

^-^)"1 MM s) Z(M - ^)W(M -
i=l Js2+it Js

sι+(i+l)τ

si+iτ

ί
S2+(i+l)τ poo

(u - s)n~2z(u -
S2+iτ Js

I rs2+τ poo

+ (w - s)n~2z(M - <5)
I Jsi+τ Jssi+τ

* '

si+iτ

x f °°(u - s)"-2z(" - *)w(u -
Js

ί
S2+(ϊ+l)τ poo

(ii - 5)n~2z(w - 5)
sι+(i+l)τ Js

s2+τ poo

\ (u- s)n~2z(u - 5)w(ιι
i+τ Js

- δ)duds\
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f (u-t2)
n-2z(u-δ)w(u->

it.

/•oo

X

Jt2

< 4o-ε

which shows that z(ί)(5w)(ί) is continuous on fe, oo) and so (5w)(ί) is
continuous on [ί2, oo). Hence S maps ^ into A.

Next we prove that S is a contraction on A. In fact for any wi, W2 e A
and £ > £2, we have

ί (u - s)"~2z(u - ί)|wι(u - δ) - w2(u - δ)\duds
Js

x

f 00

X ί (||_s)"-2z(ll-

Js

l_W2||ίfc£) (by (2.29))

and for ί2 + τ - ί < ί < f2,

|(SwO(0 - (Sw2)(OI = |(SwO(t2) - (Sw2)(ί2)| < β\\Wl - w2\\.

Hence

||Swι-Sw2||= sup |(SwO(ί)-(Sw-2)(0|
t>tι+τ-δ

<β\\W1-W2\\.

Since 0 < β < 1, this shows that S is a contraction on A. By the Banach
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contraction principle, S has a fixed point w e A. That is

O - β f°° r , r[(-t)/τK

(n-2)!z(ί)J ί+τ

l l Pl j j

w(t)=V /

4o -•

ί
oo

(u - s)n~2z(u - <5)w(w - δ)duds, t > t2
s

r oo

X

Js

(2.32)

Clearly, w(ί) > 0 for t2 + τ - δ <t <t2. We now are going to prove that
w(ί) > 0 for all t > t2. In fact, if there exists ί* E [ί2, ί2 - τ + 5) such that
w(ί*) = 0, then by (2.32), w(ί) s 0 for ί > ί* + τ - <5. Since ί* + τ - δ E
[t2 + τ — <5, £2)5 it follows that w(ί* + τ — <5) > 0, which is a contradiction.
Therefore, w(ί) > 0 for t2 < t < t2 — τ + δ. In general, by induction we have
w(ί)>0 for fe[ί 2-i(τ-δ),ί 2-(i+l)(τ-5)), i = 0,1,2,... which shows
that w(ί) > 0 for all ί > ί2 + τ - δ. Set

t2.

= w(ί)z(ί).

Then y(£) is a positive and continuous function on [ί2 + τ — δ, oo) and satisfies

yW = n ^ f w ' 2V Γ (i - (-pι)-[(s-ί)A1) f "(« - *Γ2y(u - *)duds, t(l+pι)(n-2)l Jt+τ )s

From this, we get

y(t) + Ply(t - τ) = ̂ L^j" |"(« - s)"-2y(« - ί)duώ, ί > t2 + τ.

Differentiating both sides n times, we have

^ b(0 + (-PO + e)y(t - τ)] = (ίβ - ε)y(t -δ), t>t2 + τ

which contradicts the claim and hence the proof of Theorem 2.1 is complete.

3. The case po > 1

In this section we discuss the case po > l The main result is

THEOREM 3.1. Assume that (1.2) holds and

Po > 1 and p(t) is bounded. (3.1)
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— > 1 for u Φ 0 (3.2)

uh(u) > 0 for u Φ 0. (3.3)

Then every bounded solution of (1.1) oscillates.

PROOF. Let x(ί) be a bounded nonoscillatory solution of (1.1). We
assume that x(t) is eventually positive. Choose t\ > ίo and M > 0 to be such
that

0<x(ί-p)<M, q(ή>0 f o r ί > ί ι . (3.4)

Set

y(ή = x(t)-p(ήg(x(t-τ)). (3.5)

Then y(t) is bounded from above. Since

y(n)(t)=q(ήh(x(t-δ))>0, ί>ίι

the consecutive derivatives of y(t) of order up to n — 1 are strictly monotonic.
There are two cases to consider:

CASE 1: y(t) > 0 eventually, i.e.,

x(t)>p(i)g(x(t-τ)}

which, together with (3.1) and (3.2), implies that there exist t2 > h and N > 0
such that x(ή > N for t > t2. Set

α = inf h(u).
N<u<M ^ '

Clearly, α > 0. Thus, we get

h(x(t -δ))>a for ί > ί2 + δ

and so

y(n}(t) ><*q(t) for t>t2 + δ

which implies

y(t) -^ao as ί -^ oo.

This is a contradiction.

CASE 2: y(ί) < 0 eventually.
For this case, y(t) must be eventually decreasing. Therefore, there exists
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is > ίi such that

y(t) <Xίa) <0 for t>t3.

That is

x(ί) - p(ήg(x(t - τ)) < y(t3) for ί > ί3.

Since p(ί) is bounded, it follows that there exists m > 0 such that

g(x(t - τ)) > m, ί > ί3

and so there exists mo > 0 such that x(t — τ) > mo, for ί > fa. By using a
similar argument as in Case 1, we can easily derive a new contradiction. The

proof is complete.
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