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Radial symmetry of positive solutions

for semilinear elliptic equations in a disc
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ABSTRACT. Symmetry and monotonicity properties of positive solutions of the

problems Au +/(|x|, w) = 0 in D and u = 0 on dD are considered, where D is the unit

disc in R2. We give to D the Poincare metric and then employ the moving plane

method to obtain new theorems on symmetry. We also consider singular solutions.

1. Introduction

This paper is concerned with symmetry and monotonicity properties of
positive solutions of the problems

Γ4ιι+/( |x | , f i )=0 in D,

\u = 0 on dD,

and

'4ιι+/(|x|,ιι)=0 inD\{0},

(1.2) < w = 0 on dD,

lim ιι(x) = oo,

where D = {x e R2 : \x\ < 1}.
There is much current interest in the symmetry properties of solutions

of the problems (1.1) and (1.2). Assume that/(r,w) is decreasing in r. Then
according to Gidas-Ni-Nirenberg's theorem [5], any nonnegative solution
ueC2(D) of (1.1) is rotationally symmetric. Their proof is based upon
Alexandrov's moving plane method. Among other results, in [6], Lazer and
McKenna have proved the following: assume that
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where λi denotes the second eigenvalue of the Laplacian with Dirichlet
boundary conditions. Then all solutions u e C2(D) Π Cl(D) of (1.1) are radially
symmetric. See, also [1,4]. On the other hand, in [10], Veron considered the
rotationally symmetric properties of singular solutions of the equation

z
Δu + — u + h(u) =0 in D\{0},

\x\

where Z is a real number and h is a continuous function. For further studies
of symmetric properties of solutions of (1.1) and (1.2), we refer to [2, 3, 8, 9].

In this paper we give to D the Poincare metric and then employ the
moving plane method to obtain new theorems on symmetry properties of
positive solutions of (1.1) and (1.2). In Section 2 we state the main results.
In Section 3 we present some preliminary lemmas and in Sections 4 and 5 we
give the proofs of the theorems.

In a forthcomming paper, we shall study the higher dimensional version.

2. Statement of the results

2.1. First we consider the symmetric properties of positive solutions of
the problem

ΓAι+/(|x|,ιι)=0 inD,

I u = 0 on δD,

where D = {x e R2: \x\ < 1} and / E C^QO, 1] x [0, oo)). We obtain the fol-
lowing theorem which extends the result of [5, Theorem 1'].

THEOREM 1. Assume that (1 — r2)2/(r, M) is nonincreasing in r e (0,1)
for each fixed M 6 (0, oo). Let u€ C2(D)Γ\C(D) be a positive solution of
(2.1). Then u must be radially symmetric about the origin and u'(r) < 0 for
0 < r= \x\ < 1.

As a corollary of Theorem 1, we have the following.

COROLLARY 1. Let u e C2(D) Π C(D) be a positive solution o/(2.1), and let
MOO = max{w(x) : x e D}. Assume that f satisfies the following:

(i) (1 - r2)/w(r, ιι) < 8 for (r, ιι) e ([0,1] x [0, u*]);
(ii) There exist constants ΓQ e (0,1] and Cp > 0 such that

/r(r, 11) < C0r for (r, u) e ([0, r0] x [0, Woo]).

Then u must be radially symmetric about the origin.

PROOF. Let v(x) = ^(1 — |x|2) and w(x) = u(x) + Cv(x) for some con-
stant C > 0. Then w is positive in D and satisfies
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where D = {x e R2 : \x\ < 1} and / e Cl((Q, 1] x [0, oo)). We obtain the fol-
lowing.

THEOREM 2. Assume that (1 — r2)2/(r, w) is nonincreasίng in r e (0,1) for

each fixed u e (0, oo). Let u e C2(D\{0}) Π C(D \{0}) be a positive solution of
(2.2). Then u must be radially symmetric about the origin and u'(r) < 0 for

0 < r = |x| < 1.

This theorem is applicable to the problem investigated by [10]. We
obtain the following.

COROLLARY 2. Let u e C2(D\{0}) Π C(5\{0}) be a positive solution of

Z
Δu + r— u + h(u) = 0 in D\{0},

u = 0 on 3D,

lim u(x) = ao.

where Z is a nonnegative real number and h is a nonnegative continuous
function. Then u must be radially symmetric about the origin.

REMARK. In [10, Theorem 2.1], solutions are not assumed to be positive,

but additional hypotheses are needed to obtain the symmetric properties of
solutions.

Furthermore, we have the following corollary by the same argument as in
Subsection 2.1.

COROLLARY 3. Let u ε C2(D\{0}) ΓΊ C(5\{0}) be a positive solution of
(2.2). Assume that f satisfies the following assumptions:

(i) (1 - r2)/M(r, u) < 8 for (r, 11) e ((0,1] x [0, oo));
(ii) There exist constants ΓQ ε (0,1] and CQ > 0 such that

/r(r, 11) < C0r for (r, ιι) ε ((0, r0] x [0, oo)).

Then u must be radially symmetric about the origin.

3. Preliminaries

We give to D the Poincare metric ds% = (1 - r2)~2\dx\2. Then, the space
D is called the Poincare disc. First we need to introduce a few nota-
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|x|, w) = 0 in D and w = 0 on δD,

where

0(r,w)=/(r,w-Cι;(r))

We see that

Then, for sufficiently large C > 0, we have -r-{(l — r2)20(r, w)} < 0. Therefore,
or

Theorem 1 can be applied to conclude that w is radially symmetric, which
implies that u is radially symmetric. This completes the proof of Corol-
lary 1. Π

One might ask whether positive solutions u of the problem (2.1) are
necessarily radially symmetric — even if / does not satisfy the conditions in
Theorem 1 or Corollary 1. This is not the case in general. For example, we
show the following. Let

w(r,0) = Jι(λr)cosθ for (r,0) e ([0,1] x [0,2π]),

where J\ is the Bessel function of first kind and λ is the first zero of J\ (r) for
r > 0. (We see that λ = 3.83 . . . .) Then we observe that

Jw + /I2w = 0 in D and w = 0 on dD.

For small ε > 0, the function u(x) = 1 — |x|2 + εw(x) is positive in D and stisfies

Λu + λ2u + λ2(r2 - 1)+4 = 0 in D and u = 0 on δD;

but u is not radially symmetric. Define /(r,u) = λ2u + λ2(r2 — 1) + 4. Then
we see that

|;{(1 - r2)2/(r, u) = r(l - r2){-4(A2

M + 4) + 6A2(1 - r2)} > 0

near (r, u) = (0, 0), and that

(l-r2)/ t t(r,M) = ( l-r 2 μ 2 >8

near r = 0.

2.2. Next we investigate the symmetric properties of positive singular
solutions of the problem

•Λιι+/(|x|,ιι)=0 in D {0},

u = 0 on dD,(2.2)

lim w(x) = oo,
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tions. For each λ e (0, 1), let T^ be a geodesic which intersects xi-axis
orthogonally at (A,0), i.e.,

Define Σλ <= D by

For xeΣλ, let X A be the reflection of x with respect to Tχ, i.e.,

where ^ = ί — — — , 0 ) and J(x) = x/|x|2. From Lemma A.I in Appendix,

we have |x| < \xλ\ for xeΣ^.
The Laplace-Beltrami operator Ag of the Poincare disc D is defined with

Ag = (1 - r2)2J, where Λ = d^ + 32

2. Let w be a solution of the problem
(2.1). Then u satisfies

(3.1) ^M + (l- |x | 2) 2/(W,w) = 0 i n D .

We prepare the following lemma.

LEMMA 3.1. Assume that (1 — r2)2/(r, M) is nonincreasing in r e (0, 1) for
each fixed u e (0, oo). Let λ e (0, 1) and v(x) = u(x) - u(xλ) for x e Σλ. Then,
v satisfies

(3.2)

in Σfo where

(3.3) c(x) = / t t ( | x | , u(xλ) + t(u(x) - u

PROOF. We observe that

4gu(xλ) + (l-\xλ\2)2f(\xλ\,u(xλ)) =0 for xεΣλ.
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Then it follows from (3.1) that, for x e Σχ,

0 = Ag(u(x) - u(xλ)) + (1 - |x| V/(M, "(*)) - (1 - \xλ\2)2f(\Λ «(**))

:> 4,(u(x) - u(xλ)) + (1 - |x|2)2

where c(x) is the function in (3.3). Therefore, v satisfies (3.2) in

4. Proof of Theorem 1

We define

Λ = [λ e (0, 1) : M(X) - M(X A ) > 0 in Γ^ and ̂  < 0 on

where v is the unit outer normal of dΣχ. We define MOO and /Όo as follows:

MOO = max{M(x) : x e D} and
(4.1)

/oo - max{/M(r, M ) : 0 < r < l , 0 < M < MOO}.

We can choose r0 e (0, 1) so that there exists a function WQ satisfying

wo(x) > 0 on ΓQ < |x| < 1 and
(4.2)

o < 0 in ΓQ < |x| < 1.

Since M = 0 on dD, there exists ri e (ΓQ, 1) such that

(4.3) max{M(x) : r\ < |x| < 1} < min{M(x) : |x| < r0}.

LEMMA 4.1. We have [rι,l) cz A.

PROOF. For each λ > r\, let t (x) = M(X) — u(xλ). Define BQ = {xe D :
\x\ < ΓQ}. From (4.3), we have v > 0 in BQ. By Lemma 3.1, we obtain

Aυ + c(x)υ < 0 in

v > 0 on

v = 0 on

From (3.3) and (4.1), we find that c(x) < f^ in Σλ. Then the positive function
WQ stated above satisfies

c(x)w0 < 0 in
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Hence the maximal principle ([7, p. 73, Theorem 10]) implies that v > 0 in
ΣΛ\BQ. Then we conclude that v > 0 in Σχ because υ > 0 in BQ.

Since v satisfies (3.2) with v > 0 in Σ^\BQ and v = 0 on Tχ, the Hopf

boundary lemma applies here and we have — < 0 on Tχ. We find that
ov

du 1 dv

Therefore, we obtain λeΛ, which implies that [rι,l) <= Λ. Π

LEMMA 4.2. Let λ^eA. Then there exists ε > 0 such that
(λo - ε, λo] c Λ.

Without loss of generality, we may assume λ$ <r\. Let B\ =
{xeD : |x| < ri}. For convienience, we define

E(λi,λ2) = (J Tλ (= Σλ2\Σ^) for 0 < λl < λ2 < 1.

In order to prove Lemma 4.2, we prepare the following.

LEMMA 4.3. Let λ$ e A. Then there exist ε\ > 0 and σ > 0 swell fftαί, /or
eαcΛ A e (Ac - fiι,Λo),

(4.4) fi(x) - u(xλ) > 0, x e £(λ - σ, A) Π 5 .̂

PROOF. Let r2 e (ri, 1) and B2 = {x e D : \x\ < r2}. Since — < 0 on TAO,
we can find <5ι > 0 such that

(4.5) — < 0 in
(7V

There exists <52e(0, (5ι) such that

(4.6) xλ° E E(h, λQ + δι) Π B~2 for x e E(λQ - (52, AO) Π B[.

Define εi and σ as εi = σ = \bι. Let λ ε (Λ,o — ει,λo). We show that

(4.7) xλ € E(λ, λQ + δi) Π 5̂  for x e £(A - σ, /I) Π 5J".

Let x 6 E(Λ, — σ, /I) Π BI. Since E(λ — σ, A) c £(/l0 — ̂ 2, AQ) and (4.6) holds, we
have

We notice here that xeZ 1^ and x,xA° e J52. Then, by Lemma A.2, we have
X A e BΊ. Since XA° e Σ^+s19 by applying Lemma A.3 with μ = λo + δi, we get

. Thus, we conculude that (4.7) holds.
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Let λ 6 (λo - fii, λo) and x e E(λ - σ, λ) 0 5[. From (4.7), we notice that
x, xλ E E(λv — δι,λQ + δι) Π #2- By Lemma A.4, there exists an arc γ ex-
tending from x to xλ such that γ is contained in E(A$ — <5ι,Λ,o + <5ι) 01*2 and

intersects Tμ orthogonally if γ 0 Tμ Φ 0. Since — < 0 on y 0 Tμ, we have

t*(x) > u(xλ) by employing the line integration. Therefore, we conclude that
(4.4) holds. Π

PROOF OF LEMMA 4.2. Define F = Σ^-σ, where σ is a constant appearing
in Lemma 4.3. It follows from the assumption /L0 e A that

tι(x) - u(x**) > 0 on F 0 5Γ.

Since F0#i is compact, we can find ε2e(0, σ) such that, if \λ — A$\ < 62,
then

(4.8) ιι(x) - u(xλ) > 0 on F0 B[.

Let ε = min{ει,ε2} and λe(λo-ε,λo], where εi is a constant appearing in
Lemma 4.3. From (4.4) and (4.8), we have

(4.9) tι(x) - u(xλ) > 0 in Σλ 0 5̂ .

Now for each λ e (Λo - e,Λo], let ι (x) = w(x) - M(XA). Then, i; satisfies

Av + c(x)t; < 0 in

ι;>0 on

i; = 0 on

Since B\ => BQ, the maximum principle ([7, p. 73 Theorem 10]) implies that
Ό > 0 in 27λ\5Γ, i.e., w(x) - u(xλ) > 0 in Σλ\B^. Then, by (4.9), we conclude
that M(X) — u(xλ) > 0 in Σχ. Since υ satisfies (3.2) with υ > 0 in Σ^ and υ = 0

on Tχ, we have — < 0 on T^ by the same argument as in the proof of Lemma
ov

4.1. Therefore, λeA. This implies that (Λ.o — ε, Λ,Q] c: ^ί. Q

For x = (xι,X2) e D, we define x° = (—xι,X2) Let D+ -
D:x1> 0}.

LEMMA 4.4. We have either

u(x) = u(xλί) for some λ\ > 0 and

(4'10) β i Λ ^ , a n ^— < 0 on Tλ for λe (λ\, 1)
£7V
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or

u(x) > u ( x λ ί ) for xe D+ and

(4 n) du
— <0 on Tλfor Λ e ( 0 , l ) .

PROOF. Let

(4.12) λι = inf{/l > 0 : (/1,1) c A}.

We distinguish the following two cases: (i) λ\ > 0; (ii) λ\ = 0.

(i) The case where λ\ > 0. From the continuity of w, we have

υ(x) = u(x) - u(xλl) > 0 in Σλί.

It follows from Lemma 3.1 that

Av + c(x)υ < 0 in 27^,

v = 0 on dΣ^, and v > 0 in Σ^.

Hence, we have that either

(4.13) 17 = 0 in Σλί, i.e., u(x)=u(xλί) in Σλί,

or

(4.14) u > 0 in Σλl, i.e., u(x) > u(xλl) in Σλί.

du
If (4.13) occurs, we have — < 0 on Ύχ since λeA for Λ , e ( Λ ι , l ) . Thus we

^v 5w
obtain (4.10). On the other hand, if (4.14) occurs: then we have — < 0 on T^

in a similar fashion as the proof of Lemma 4.1. Thus, λ\ e A. By Lemma 4.2,
there exists ε > 0 such that (λ\ - ε, λ\) c A. This contradicts (4.12). Therefore,
(4.14) cannot happen.

(ii) The case where λ\ = 0. From the continuity of u, we have

u(x) > M(X°) in D+. Since λ 6 A for A € (0,1), we have -^ < 0 on Tλί. Thus,
(4.11) holds.

Therefore, we have either (4.10) or (4.11). Π

PROOF OF THEOREM 1. If (4.11) occurs in Lemma 4.4, we can repeat the
previous Lemmas 4.1-4.4 for the negative xi -direction to conclude that either
u is symmetric in the xi direction about some hyperplane in the Poincare
disc or

(4.15) M(X)<M(X°) for xeD+.
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If (4.15) occurs, from (4.11) we have u(x) = u(x°) for xeD+. Therefore, u
must be symmetric in the xi -direction about some hyperplane, and be strictly
decreasing away from the hyperplane in the Pincare disc. Since the equation
in (2.1) is invariant under rotation, we may take any direction as the xi-
direction and conclude that u is radially symmetric about some point XQ e D in
the Poincare disc. Since the equation is invariant under rotation, the point XQ
must be the origin. Therefore, u must be radially symmetric about the origin
and ur < 0 for r = \x\ > 0. Π

5. Proof of Theorem 2

Let

A = ίλ e (0, 1) : M(X) - u(xλ) > 0 in Σλ\{Q} and ̂  < 0 on Tλ\.

We define MOO and f^ as follows:

and|w(x):-

(5.1)

/oo = maxj/u(r,u) : - < r < 1,0 < u < u^ \.

We can choose ΓQ 6(^,1) so that there exists a function WQ satisfying (4.2).
There exists r\ e (ΓQ, 1) such that (4.3) holds.

By the same argument as in the proof of Lemma 4.1, we obtain the
following.

LEMMA 5.1. We have [n,l) a A.

LEMMA 5.2. Let λ0eA. Then there exists ε > 0 such that
(λ0 - ε, λo] c A.

PROOF. Let B\ = {x e D : \x\ < ri}. By the same argument as in the
proof of Lemma 4.3, we obtain the following: there exist εi > 0 and σ > 0
such that (4.4) holds for each λ e (λo — eι,J0).

We can choose r3 e (0, /lo — σ) so small that

(5.2) min{w(x) : |x| < r3} > max{ι/(x) : x 6

Let B3 = {x E D : \x\ < r3}. We define F' = Γ^_σ\B3. It follows from the
assumption AQ e A that

M(X)-M(X A °) >0 on F'flSΓ.

Since F' Π B[ is compact, we can find ε2 e (0, σ) such that, if \λ - λo\ < ε2, then

(5.3) w(x) - u(xλ) > 0 on F' Π B[.
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By virtue of (5.2), we find that ιι(x) - u(xλ) > 0 in ϊ*3\{0}. Therefore, we
have, if \λ - AO| < β2,

(5.4) u(x) - u(xλ) > 0 in ΣVΛ{0} Π B[.

Let ε = min{ει,ε2} and λ e (Ao - ε, A0]. From (4.4) and (5.4), we conclude that

(5.5) u(x) - u(xλ) > 0 in Σλ\{Q} Π B[.

Then, by the same argument as in the proof of Lemma 4.2, for any

λ € (Ao - ε, AO], we have ιι(x) - u(xλ) > 0 in ZΆ\{0} and -^ < 0 on Tλ. There-
fore, (Ao - ε,Ao] c= A. Π

LEMMA 5.3. We have

(5.6) ιι(x) > w(x°) for x e D+ and ^ < 0 on ΓA /or A e (0, 1).

PROOF. Define λ\ as (4.12). We show that λ\ = 0. Assume to the
contrary that λ\ > 0. We observe that Ό(X) = u(x) - u(xλί) satisfies

Av + C(X)Ό < 0 in ΓAl\{0},

v = 0 on dΣλί, r > 0 in ZΆΛ{0}, and

lim t?(x) = oo.
IxHo v ;

Hence, the maximal principle implies that

(5.7) t ;>0 inZΆΛίO}. "-, u(x) > u(xλ>) in Σλl\{0}.

du
Then we have — < 0 on Tχ. by the same argument as in the proof of Lemma

ov
4.1. Then, λ\eΛ. By Lemma 5.2, there exists ε > 0 such that (λ\ - ε, λ\) cz
A. This contradicts the definition of AI. Thus, we conclude that AI =0.

From the continuity of M, we have u(x) > M(X°) in D+. Since λε A for
δw

A e (0, 1), we have — < 0 on Tλ. Π

PROOF OF THEOREM 2. We can repeat the previous Lemmas 5.1-5.3 for
the negative x\ -direction to conclude that

ιι(x) < w(x°) for xeD+.

Hence, from (5.6), u must be symmetric in xi-direction about the line xi = 0,

and — < 0 on Ύχ for A e (0, 1). We may take any direction as the xi -direction
ov

and conclude that u is symmetric in every direction. Therefore, u must be
radially symmetric about the origin and ur < 0 for r = \x\ > 0. Π
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Appendix

Let D = {xe R2 : \x\ < 1}. We give to D the Poincare metric ds% =
(1 — r2)~2\dx\2, where r = \x\. Then the space D is called the Poincare disc.

For each Λ,e(0, 1), let Ύχ be a geodesic which intersects xi-axis ortho-
gonally at (Λ,0), i.e.,

We define .Tj as

For xeΣχ, let x^ be a reflection of x with respect to Ύχ, i.e.,

1 - Λ2V
-7- J(^-^),

where e^ = ( — — — ,0 I and J(x) = x/|x|2. Here we notice the following: we

identify R2 with C in such a way that (xi, xι) e R2 is xi H- 1x2 e C. Then, for
ze^(zeC), zλ is represented as

_ =
2λz - (1 + A2) '

Let H = {z e C : Im z > 0}. We give to if the Poincare metric ds^ =
\dx\2/x\. Define Π : D -> H as

D.

Then, 77 is one-to-one and onto mapping.
For a subset E of D, we define Π(E) as

77(E) = {z E H : z = 77(x), x e E}.

Then, we observe that

and

For x ε Σλ, let z = 77(x) and Z A = Π(xλ). Then,

= |z eH :
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Hence, z and zλ are on an Euclidean line containing the origin and satisfy

LEMMA A.I. For xeΣχ, we have \x\ < \xλ\.

PROOF. For x = (xι,x2) eΣλ, let r0 = (x\ + x\Ϋ12 and x° = (-xι,X2).
Define Z,Z A , and z° as

z = 77(x), zλ = Π(xλ), and z° = 77(x°),

respectively. Then, z, zλ, and z° are on an Euclidean line containing the origin
and satisfy

Λand

Hence, we have

(A.I) |ZA | < |z°| and |zλ| < |z|.

Let BO = {y e D : \y\ < r0}. Then, x, x° e ΘBQ and z, z° e dΠ(B0). Since
Π(BQ) is an Euclidean circular disc, Π(BQ) includes a line segment zz°. Then,
from (A.I), zλ φ Π(5ό). This implies that xλ φ (ϊfo), i.e., |xλ | > r = |x|. Q

Hereafter, we use the notation B as

B = {y E D : \y\ < r} for some r e (0, 1).

LEMMA A.2. Let 0 < Λ , < λ o < l . Assume that xeΣ^(c:Σχ0) and
x,xλ° εB. Then xλ e B.

PROOF. Define z, Z A , and ZA° as

(A.2) z = 77(x), zλ = Π(xλ), and zA° = 77(xA°),

respectively. Then, z, zλ, and zλ° are on an Euclidean line containing the
origin and satisfy \zλ\ < \z\ and

w
Hence we obtain |z| > \zλ\ > |ZA°|, which implies that zλ is between z and
ZA°. By the assumption, we find that z,zλ°εΠ(B). Since Π(B) is an
Euclidean circular disc, we have zλ e Π(B), i.e., xλ e B. Q

LEMMA A.3. Lef 0 < λ < λ$ < \, and let x e Σχ( c Σ^}. Assume that
xλ° E Σμ for some μ e (/t0, 1). Then xλ e Σμ.
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PROOF. Define z, zλ, and zλ° as (A.2), respectively. Then, from (A.3), we

have \zλ\ > \zλ°\. By virtue of zλ°eΠ(Σμ), we have |zA° |>- — -. Then,
1 — u 1 + μ

\zλ\ > - — -. This implies that zλ e Π(Σμ\ i.e., xλ e Σμ. Π
1 ~Γ /•*

LEMMA A.4. Let 0 < μl < λ < μ2 < 1. Define

μ2)= (J Tμ.

Let xeΣχ. Assume that x,xλ eEΓ\B. Then, there exists an arc y extending
from x to xλ such that y is contained in EΓ\B and intersects Tμ orthogonaly if
yΠTμ^ΰ.

PROOF. Define z and zλ as z = Π(x) and zλ = Π(xλ), respectively.
Then, z and zλ are on an Euclidean line containing the origin. Let Γ be an
Euclidean line segment zzλ in H. We find that Γ and Π(Tμ) intersect
orthogonally if ΓΓ\Π(Tμ) Φ 0.

By virtue of Π(E) = (w e H : \^λ < |w| < Iz ̂ 1 I we have Γ cv ' ' '
Since /7(5) is an Euclidean circular disc and z, zλ e Π(B), we see that

Γ c= 77(5). Therefore, we have Γ <=. Π(E)Γ\Π(B).
Let y = {y e D : w = 77(y), we/"}. Then 7 is an arc extending from x to

xλ such that y c EΓ\B. Since 77 is conformal, y intersects Tμ orthogonally if

γnτμ*Q. Π
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