Hypersingular integrals and Riesz potential spaces

Dedicated to Professor Fumi-Yuki Maeda on the occasion of his sixtieth birthday

Takahide Kurokawa

(Received December 19, 1994)

Abstract

We introduce Riesz potential spaces and give the characterization in terms of hypersingular integrals.

1. Introduction and preliminaries

For a function $u(x)$ on the n-dimensional Euclidean space $R^{n}(n \geq 3)$, the difference $\Delta_{t}^{\ell} u(x)$ and the remainder $R_{t}^{\ell} u(x)$ of order ℓ with increment $t=\left(t_{1}, \ldots, t_{n}\right) \in R^{n}$ are defined by

$$
\begin{aligned}
\Delta_{t}^{\ell} u(x) & =\sum_{j=0}^{\ell}(-1)^{j}\binom{\ell}{j} u(x+(\ell-j) t), \\
R_{t}^{\ell} u(x) & =u(x+t)-\sum_{|y| \leq \ell-1} \frac{D^{\gamma} u(x)}{\gamma!} t^{\gamma}
\end{aligned}
$$

where γ is a multi-index $\left(\gamma_{1}, \ldots, \gamma_{n}\right), t^{\gamma}=t_{1}^{\gamma_{1}} \cdots t_{n}^{\gamma_{n}}, D^{\gamma}=D_{1}^{\gamma_{1}} \cdots D_{n}^{\gamma_{n}}\left(D_{j}=\partial / \partial x_{j}\right)$, $\gamma!=\gamma_{1}!\cdots \gamma_{n}!$ and $|\gamma|=\gamma_{1}+\cdots+\gamma_{n}$. Since $R_{t}^{\ell} u(x)$ is the remainder of Taylor's formula, we obviously see that

$$
\begin{equation*}
R_{t}^{\ell} u(x)=0 \text { for all } t \in R^{n} \Leftrightarrow u \text { is a polynomial of degree } \ell-1 \tag{1.1}
\end{equation*}
$$

for C^{∞}-functions u. We also have ([6: p. 1102])

$$
\begin{equation*}
\Delta_{t}^{\ell} u(x)=0 \text { for all } t \in R^{n} \Leftrightarrow u \text { is a polynomial of degree } \ell-1 \tag{1.2}
\end{equation*}
$$

for locally integrable functions u. Using the difference and the remainder, for $\alpha>0$ and a positive integer ℓ, we define the singular difference integral $D^{\alpha, \ell} u$

[^0]Key words and phrases. Hypersingular integrals, Singular difference integrals, Riesz potentials.
and the hypersingular integral $H^{\alpha, \ell} u$ as follows:

$$
\begin{aligned}
D^{\alpha, \ell} u(x) & =\lim _{\varepsilon \rightarrow 0} D_{\varepsilon}^{\alpha, \ell} u(x), \\
H^{\alpha, \ell} u(x) & =\lim _{\varepsilon \rightarrow 0} H_{\varepsilon}^{\alpha, \ell} u(x)
\end{aligned}
$$

where

$$
\begin{aligned}
D_{\varepsilon}^{\alpha, \ell} u(x) & =\int_{|t| \geq \varepsilon} \frac{\Delta_{t}^{\ell} u(x)}{|t|^{n+\alpha}} d t, \\
H_{\varepsilon}^{\alpha, \ell} u(x) & =\int_{|t| \geq \varepsilon} \frac{R_{t}^{\ell} u(x)}{|t|^{n+\alpha}} d t, \quad(\varepsilon>0)
\end{aligned}
$$

whenever the integrals and the limits exist.
The Schwartz space \mathscr{S} is the set of infinitely differentiable functions rapidly decreasing at infinity, and the Lizorkin space Φ is the subspace of \mathscr{S} consisting of functions which are orthogonal to any polynomial ([7: p. 475]). For $u \in \mathscr{S}^{\prime}$ (the dual of \mathscr{S}), we denote the Fourier transform of u by $\mathscr{F} u$. If u is an integrable function, then the Fourier transform $\mathscr{F} u$ is defined by

$$
\mathscr{F} u(\xi)=\int u(x) e^{-i x \cdot \xi} d x
$$

where $x \cdot \xi=\sum_{j=1}^{n} x_{j} \xi_{j}$.
We denote by N the set of nonnegative integers and by N_{2} the set of nonnegative even numbers. For $\alpha>0$, the Riesz kernel of order α is given by

$$
\kappa_{\alpha}(x)=\frac{1}{\gamma_{\alpha, n}} \begin{cases}|x|^{\alpha-n}, & \alpha-n \notin N_{2} \\ \left(\delta_{\alpha, n}-\log |x|\right)|x|^{\alpha-n}, & \alpha-n \in N_{2}\end{cases}
$$

with

$$
\gamma_{\alpha, n}= \begin{cases}\frac{\pi^{n / 2} 2^{\alpha} \Gamma(\alpha / 2)}{\Gamma((n-\alpha) / 2)}, & \alpha-n \notin N_{2} \\ (-1)^{(\alpha-n) / 2} 2^{\alpha-1} \pi^{n / 2} \Gamma(\alpha / 2)\left(\frac{\alpha-n}{2}\right)!, & \alpha-n \in N_{2}\end{cases}
$$

and

$$
\delta_{\alpha, n}=\frac{\Gamma^{\prime}(\alpha / 2)}{2 \Gamma(\alpha)}+\frac{1}{2}\left(1+2+\cdots+\frac{1}{(\alpha-n) / 2}-\mathscr{C}\right)-\log \pi
$$

where \mathscr{C} is Euler's constant. With the above normalizing constants $\gamma_{\alpha, n}$ and $\delta_{\alpha, n}$, we have

$$
\begin{equation*}
\mathscr{F} \kappa_{\alpha}(\xi)=\text { Pf. }|\xi|^{-\alpha} \tag{1.3}
\end{equation*}
$$

where Pf. stands for the pseudo function [8: section 7 in Chap. VII].

In §2 we investigate properties of the truncated integrals $H_{\varepsilon}^{\alpha, \ell} \kappa_{\alpha}(x)$ $\left(=\mu_{\varepsilon}^{\alpha, \ell}(x)\right)$ of the Riesz kernels. We write $\mu^{\alpha, \ell}(x)=\mu_{1}^{\alpha, \ell}(x)$.

For $f \in \mathscr{S}$ we define the Riesz potential U_{α}^{f} of f by

$$
U_{\alpha}^{f}(x)=\kappa_{\alpha} * f(x)=\int \kappa_{\alpha}(x-y) f(y) d y
$$

By (1.1) we have for $f \in \mathscr{S}$

$$
\begin{equation*}
\mathscr{F}\left(U_{\alpha}^{f}\right)(\xi)=\operatorname{Pf} .|\xi|^{-\alpha} \mathscr{F} f(\xi) \tag{1.4}
\end{equation*}
$$

Throughout this paper we assume $1<p<\infty$. We denote by L^{p} the space of all p th-power integrable functions with the norm

$$
\|f\|_{p}=\left(\int|f(x)|^{p} d x\right)^{1 / p}
$$

and L^{1} denotes the space consisting of all integrable functions. Further, for $1<p_{0}, p_{1}, \ldots, p_{\ell}<\infty$ we set

$$
W_{\ell}^{p_{0}, p_{1}, \ldots, p_{\ell}}=\left\{u ; D^{\gamma} u \in L^{p_{j}} \text { for }|\gamma|=j, j=0,1, \ldots, \ell\right\}
$$

In order to define the Riesz potentials of L^{p}-functions, we introduce the modified Riesz kernels $\kappa_{\alpha, k}(x, y)$: for an integer $k<\alpha$

$$
\kappa_{\alpha, k}(x, y)= \begin{cases}\kappa_{\alpha}(x-y)-\sum_{|y| \leq k} \frac{D^{\gamma} \kappa_{\alpha}(-y)}{\gamma!} x^{\gamma}, & 0 \leq k<\alpha \\ \kappa_{\alpha}(x-y), & k \leq-1\end{cases}
$$

We use the symbol C for a generic positive constant whose value may be different at each occurrence.

Proposition 1.1 ([2]). Let $f \in L^{p}$ and $k=[\alpha-(n / p)]$ be the integral part of $\alpha-(n / p)$.
(i) If $\alpha-(n / p)$ is not a nonnegative integer, then

$$
U_{\alpha, k}^{f}(x)=\int \kappa_{\alpha, k}(x, y) f(y) d y
$$

exists and satisfies

$$
\left(\int\left|U_{\alpha, k}^{f}(x)\right|^{p}|x|^{-\alpha p} d x\right)^{1 / p} \leq C\|f\|_{p}
$$

(ii) If $\alpha-(n / p)$ is a nonnegative integer, then both $U_{\alpha, k-1}^{f_{1}}$ and $U_{\alpha, k}^{f_{2}}$ exist
and satisfy

$$
\begin{aligned}
& \left(\int\left|U_{\alpha, k-1}^{f_{1}}(x)\right|^{p}|x|^{-\alpha p}(1+|\log | x \|)^{-p} d x\right)^{1 / p} \leq C\left\|f_{1}\right\|_{p} \\
& \left(\int\left|U_{\alpha, k}^{f_{2}}(x)\right|^{p}|x|^{-\alpha p}(1+|\log | x \|)^{-p} d x\right)^{1 / p} \leq C\left\|f_{2}\right\|_{p}
\end{aligned}
$$

where $f_{1}=\left.f\right|_{B_{1}}$ is the restriction of f to the unit ball $B_{1}=\{|x|<1\}$ and $f_{2}=$ $f-f_{1}$.

Taking Proposition 1.1 into account, we define the Riesz potential spaces R_{α}^{p} of L^{p}-functions as follows:

$$
R_{\alpha}^{p}= \begin{cases}\left\{U_{\alpha, k}^{f} ; f \in L^{p}\right\}, & \alpha-(n / p) \notin N \\ \left\{U_{\alpha, k-1}^{f_{1}}+U_{\alpha, k}^{f_{2}} ; f \in L^{p}, f_{1}=\left.f\right|_{B_{1}}, f_{2}=f-f_{1}\right\}, & \alpha-(n / p) \in N\end{cases}
$$

with $k=[\alpha-(n / p)]$. When $\alpha-(n / p)<0$, S. G. Samko [6: Theorem 4] gave the following characterization of the Riesz potential spaces in terms of the singular difference integrals.

Theorem A. Assume that $\alpha-(n / p)<0$ and $0<\alpha<2[(\ell+1) / 2](\alpha=\ell$ for $\alpha=1,3,5, \ldots)$. Then $u \in R_{\alpha}^{p} \cap L^{r}$ if and only if u satisfies the following two conditions:
(i) $u \in L^{r}$,
(ii) $D^{\alpha, \ell} u=\lim _{\varepsilon \rightarrow 0} D_{\varepsilon}^{\alpha, \ell} u$ exists in L^{p} for $p \leq r \leq p_{\alpha}$ with $\left(1 / p_{\alpha}\right)=(1 / p)-(\alpha / n)$.

The purpose of this paper is to give the following characterization of the Riesz potential spaces in terms of the hypersingular integrals.

Theorem B (Theorem 3.14). Let $k=[\alpha-(n / p)], \quad \ell-1<\alpha<$ $\min (2[(\ell+1) / 2], \ell+(n / p))$ and \mathscr{P}_{κ} be the set of all polynomials of degree k. Then $u \in\left(R_{\alpha}^{p}+\mathscr{P}_{k}\right) \cap W_{\ell-1}^{r_{0}, r_{1}, \ldots, r_{\ell-1}}$ if and only if u satisfies the two conditions:
(i) $u \in W_{\ell-1}^{r_{0}, r_{1}, \ldots, r_{\ell-1}}$,
(ii) $H^{\alpha, \ell} u=\lim _{\varepsilon \rightarrow 0} H_{\varepsilon}^{\alpha, \ell} u$ exists in L^{p}
for $p \leq r_{0} \leq p_{\alpha}$ in case of $\alpha-(n / p)<0$ and $p \leq r_{0}$ in case of $\alpha-(n / p) \geq 0$.

2. The estimate and total mass of $\mu^{a, \ell}$

As was defined in $\S 1$, for $\varepsilon>0$ we set

$$
\mu_{\varepsilon}^{\alpha, \ell}(x)=\int_{|t| \geq \varepsilon} \frac{R_{t}^{\ell} \kappa_{\alpha}(x)}{|t|^{n+\alpha}} d t
$$

and $\mu^{\alpha, \ell}(x)=\mu_{1}^{\alpha, \ell}(x)$. We note that $\mu^{\alpha, \ell}(x)$ is finite for $\alpha>\ell-1$ and $x \neq 0$. The following four lemmas are proved in [3].

Lemma 2.1 ([3: Lemma 3.5]). Let $\alpha>\ell-1$, and moreover assume that $\ell>\alpha-n$ in case $\alpha-n$ is a nonnegative even number. Then

$$
\mu_{\varepsilon}^{\alpha, \ell}(x)=\frac{1}{\varepsilon^{n}} \mu^{\alpha, \ell}\left(\frac{x}{\varepsilon}\right)
$$

Lemma 2.2 ([3: Corollary 2.2]). If $\ell>\alpha-n$, then for $|x| \geq 3|t| / 2$

$$
\left|R_{t}^{\ell} \kappa_{\alpha}(x)\right| \leq C|t|^{\ell}|x|^{\alpha-\ell-n} .
$$

Lemma 2.3 ([3: Lemma 2.13]). Let $\alpha>\ell-1$, and moreover assume that $\ell>\alpha-n$ in case $\alpha-n$ is a nonnegative even number. Then

$$
\mu^{\alpha, \ell}(x)=\frac{1}{|x|^{n}} \int_{|v| \leq|x|} R_{x^{\prime}}^{\ell} \kappa_{\alpha}(v) d v
$$

with $x^{\prime}=x /|x|$.
Lemma 2.4 ([3: Corollary 2.9]). (i) If $\ell-1<\alpha<\ell$, then $R_{t}^{\ell} \kappa_{\alpha}(x)$ is integrable as a function of x and for all $t \in R^{n}$

$$
\int_{R^{n}} R_{t}^{\ell} \kappa_{\alpha}(x) d x=0
$$

(ii) If ℓ is an odd number, then $R_{t}^{\ell+1} \kappa_{\ell}(x)$ is integrable on $\{|x| \geq \varepsilon\}(\varepsilon>0)$ and for all $t \in R^{n}$

$$
\lim _{\varepsilon \rightarrow 0} \int_{|x| \geq \varepsilon} R_{t}^{\ell+1} \kappa_{\ell}(x) d x=0
$$

Now we give an estimate of $\mu^{\alpha, \ell}$.
Proposition 2.5. If $\ell-1<\alpha<2[(\ell+1) / 2]$, then

$$
\left|\mu^{\alpha, \ell}(x)\right| \leq C \times \begin{cases}|x|^{\alpha-2[(\ell-1) / 2]-n}, & |x|<1 \\ |x|^{\alpha-[\alpha]-1-n}, & |x| \geq 1\end{cases}
$$

and hence $\mu^{\alpha, \ell} \in L^{1}$.
Proof. Let $|x|<3 / 2$. Since $\alpha<2[(\ell+1) / 2]$ implies $\ell>\alpha-n$, by Lemma 2.3 we have

$$
\begin{aligned}
\left|\mu^{\alpha, \ell}(x)\right| & =\left|\frac{1}{|x|^{n}} \int_{|v| \leq|x|} R_{x^{\prime}}^{\ell} \kappa_{\alpha}(v) d v\right| \\
& \leq \frac{1}{|x|^{n}} \int_{|v| \leq|x|}\left|\kappa_{\alpha}\left(v+x^{\prime}\right)\right| d v+\frac{1}{|x|^{n}} \sum_{|y| \leq \ell-1} \int_{|v| \leq|x|} \frac{\left|D^{\gamma} \kappa_{\alpha}(v)\right|}{\gamma!} d v
\end{aligned}
$$

We see that $\int_{|v| \leq|x|}\left|\kappa_{\alpha}\left(v+x^{\prime}\right)\right| d v \leq C|x|^{n}$ on $\{|x|<3 / 2\}$, and

$$
\begin{aligned}
& \int_{|v| \leq|x|}\left|D^{\gamma} \kappa_{\alpha}(v)\right| d v \\
& \quad \leq C \times \begin{cases}|x|^{\alpha-|y|}, & \alpha-n \notin N_{2}, \text { or } \alpha-n \in N_{2} \text { and }|\gamma|>\alpha-n, \\
(1+|\log | x| |)|x|^{\alpha-|y|}, & \alpha-n \in N_{2} \text { and }|\gamma| \leq \alpha-n .\end{cases}
\end{aligned}
$$

Note that if ℓ is an even number, then for $|\gamma|=\ell-1, \int_{|v| \leq|x|} D^{\gamma} \kappa_{\alpha}(v) d v=0$. Hence, we see that for $|x|<3 / 2$

$$
\left|\mu^{\alpha, \ell}(x)\right| \leq C|x|^{\alpha-2[(\ell-1) / 2]-n} .
$$

Let $|x| \geq 3 / 2$. First let $\ell-1<\alpha<\ell$. By Lemmas 2.3 and $2.4(\mathrm{i})$ we have

$$
\begin{aligned}
\mu^{\alpha, \ell}(x) & =\frac{1}{|x|^{n}} \int_{|v| \leq|x|} R_{x^{\prime}}^{\ell} \kappa_{\alpha}(v) d v \\
& =-\frac{1}{|x|^{n}} \int_{|v|>|x|} R_{x^{\prime}}^{\ell} \kappa_{\alpha}(v) d v .
\end{aligned}
$$

Since $|v|>|x| \geq 3 / 2=3\left|x^{\prime}\right| / 2$, by Lemma 2.2 we obtain

$$
\begin{aligned}
\left|\mu^{\alpha, \ell}(x)\right| & \leq \frac{C}{|x|^{n}} \int_{|v|>|x|}|v|^{\alpha-\ell-n} d v \\
& =C|x|^{\alpha-\ell-n}=C|x|^{\alpha-[\alpha]-1-n}
\end{aligned}
$$

on account of $\alpha<\ell$. Secondly let ℓ be an odd number and $\ell<\alpha<\ell+1$. Noting that $\int_{|v| \leq|x|} D^{\gamma} \kappa_{\alpha}(v) d v=0$ for $|\gamma|=\ell$, by Lemmas 2.3 and 2.4(i) we have

$$
\begin{aligned}
\mu^{\alpha, \ell}(x) & =\frac{1}{|x|^{n}} \int_{|v| \leq|x|} R_{x^{\prime}}^{\ell} \kappa_{\alpha}(v) d v=\frac{1}{|x|^{n}} \int_{|v| \leq|x|} R_{x^{\prime}}^{\ell+1} \kappa_{\alpha}(v) d v \\
& =-\frac{1}{|x|^{n}} \int_{|v|>|x|} R_{x^{\prime}}^{\ell+1} \kappa_{\alpha}(v) d v .
\end{aligned}
$$

Hence by Lemma 2.2 we obtain

$$
\begin{aligned}
\left|\mu^{\alpha, \ell}(x)\right| & \leq \frac{C}{|x|^{n}} \int_{|v|>|x|}|v|^{\alpha-\ell-1-n} d v \\
& =C|x|^{\alpha-\ell-1-n}=C|x|^{\alpha-[\alpha]-1-n}
\end{aligned}
$$

since $\alpha<\ell+1$. Lastly let ℓ be an odd number and $\alpha=\ell$. Noting that
$\int_{\varepsilon \leq|v| \leq|x|} D^{\gamma} \kappa_{\ell}(v) d v=0$ for $|\gamma|=\ell$, by Lemmas 2.3 and 2.4(ii) we have

$$
\begin{aligned}
\mu^{\ell \ell}(x) & =\frac{1}{|x|^{n}} \int_{|v| \leq|x|} R_{x^{\prime}}^{\ell} \kappa_{\ell}(v) d v=\lim _{\varepsilon \rightarrow 0} \frac{1}{|x|^{n}} \int_{\varepsilon \leq|v| \leq|x|} R_{x^{\prime}}^{\ell} \kappa_{\ell}(v) d v \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{|x|^{n}} \int_{\varepsilon \leq|v| \leq|x|} R_{x^{\prime}}^{\ell+1} \kappa_{\ell}(v) d v=-\frac{1}{|x|^{n}} \int_{|v|>|x|} R_{x^{\prime}}^{\ell+1} \kappa_{\ell}(v) d v .
\end{aligned}
$$

Therefore by Lemma 2.2 we obtain

$$
\begin{aligned}
\left|\mu^{\ell \ell}(x)\right| & \leq \frac{C}{|x|^{n}} \int_{|v|>|x|}|v|^{\ell-(\ell+1)-n} d v \\
& =C|x|^{-1-n}=C|x|^{\alpha-[x]-1-n} .
\end{aligned}
$$

Thus, if $\ell-1<\alpha<2[(\ell+1) / 2]$, then $\left|\mu^{\alpha, \ell}(x)\right| \leq C|x|^{\alpha-[\alpha]-1-n}$ for $|x| \geq 3 / 2$, and so the proposition is proved.

Since $\mu^{\alpha, \ell}$ is integrable for $\ell-1<\alpha<2[(\ell+1) / 2]$ by Proposition 2.5, we denote the total mass of $\mu^{\alpha, \ell}$ by $a_{\alpha, \ell}$, namely

$$
a_{\alpha, \ell}=\int_{R^{n}} \mu^{\alpha, \ell}(x) d x, \quad \ell-1<\alpha<2[(\ell+1) / 2] .
$$

We show that $a_{\alpha, \ell} \neq 0$ by calculating the value of $a_{\alpha, \ell}$.
Lemma 2.6 ([3: Corollary 2.2(i)]). If $\varphi \in C^{\infty}$, then

$$
\left|R_{t}^{\ell} \varphi(x)\right| \leq|t|^{\ell} \sum_{|\gamma|=\ell} \frac{1}{\gamma!} \max _{y \in L_{x, x+t}}\left|D^{\gamma} \varphi(y)\right|
$$

where $L_{x, y}=\{s x+(1-s) y ; 0 \leq s \leq 1\}$.
Lemma 2.7. If $2[(\ell-1) / 2]<\alpha<2[(\ell+1) / 2]$, then

$$
\psi(\xi)=\lim _{\varepsilon \rightarrow 0, \delta \rightarrow \infty} \int_{\varepsilon \leq|t| \leq \delta} \frac{e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell-1}\left(t^{\gamma} / \gamma!\right)(i \xi)^{\gamma}}{|t|^{n+\alpha}} d t
$$

exists and

$$
\psi(\xi)=c_{\alpha, \ell}|\xi|^{\alpha}
$$

with

$$
c_{\alpha, \ell}=\frac{-2^{1-\alpha} \pi^{(n / 2)+1}}{\alpha \Gamma(\alpha / 2) \Gamma((n+\alpha) / 2) \sin (\pi \alpha / 2)} .
$$

Proof. We have

$$
\begin{aligned}
\psi(\xi)= & \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon \leq|t| \leq 1} \frac{e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell-1}\left(t^{\gamma} / \gamma!\right)(i \xi)^{\gamma}}{|t|^{n+\alpha}} d t \\
& +\lim _{\delta \rightarrow \infty} \int_{1<|t| \leq \delta} \frac{e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell-1}\left(t^{\gamma} / \gamma!\right)(i \xi)^{\gamma}}{|t|^{n+\alpha}} d t .
\end{aligned}
$$

If ℓ is odd, then

$$
\int_{\varepsilon \leq|t| \leq 1} \frac{e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell-1}\left(t^{\gamma} / \gamma!\right)(i \xi)^{\gamma}}{|t|^{n+\alpha}} d t=\int_{\varepsilon \leq|t| \leq 1} \frac{e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell}\left(t^{\gamma} / \gamma!\right)(i \xi)^{\gamma}}{|t|^{n+\alpha}} d t
$$

and, if ℓ is even, then

$$
\int_{1<|t| \leq \delta} \frac{e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell-1}\left(t^{\gamma} / \gamma!\right)(i \xi)^{\gamma}}{|t|^{n+\alpha}} d t=\int_{1<|t| \leq \delta} \frac{e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell-2}\left(t^{\gamma} / \gamma!\right)(i \xi)^{\gamma}}{|t|^{n+\alpha}} d t .
$$

Hence, since $e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell-1}\left(t^{\gamma} / \gamma!\right)(i \xi)^{\gamma}=R_{t}^{\ell} \varphi(0)$ with $\varphi(t)=e^{i t \cdot \xi}$, by Lemma 2.6 we see that for $2[(\ell-1) / 2]<\alpha<2[(\ell+1) / 2]$

$$
\lim _{\varepsilon \rightarrow 0, \delta \rightarrow \infty} \int_{\varepsilon \leq|t| \leq \delta} \frac{e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell-1}\left(t^{\gamma} / \gamma!\right)(i \xi)^{\gamma}}{|t|^{n+\alpha}} d t
$$

exists. Let $2[(\ell-1) / 2]<\alpha<2[(\ell+1) / 2]$. By the change of variables $|\xi| t=u$ we have

$$
\begin{aligned}
\psi(\xi) & =\lim _{\varepsilon \rightarrow 0, \delta \rightarrow \infty} \int_{\varepsilon|\xi| \leq|u| \leq \delta|\xi|} \frac{e^{i(u /|\xi|)^{\xi}}-\sum_{|\gamma| \leq \ell-1}(1 / \gamma!)(u /|\xi|)^{\gamma}(i \xi)^{\gamma}}{|u /|\xi||^{n+\alpha}} \frac{d u}{|\xi|^{n}} \\
& =\lim _{\varepsilon \rightarrow 0, \delta \rightarrow \infty}|\xi|^{\alpha} \int_{\varepsilon \leq|u| \leq \delta} \frac{e^{i u \cdot \xi^{\prime}}-\sum_{|\gamma| \leq \ell-1}\left(u^{\gamma} / \gamma!\right)\left(i \xi^{\prime}\right)^{\gamma}}{|u|^{n+\alpha}} d u \\
& =|\xi|^{\alpha} \psi\left(\xi^{\prime}\right) .
\end{aligned}
$$

Moreover, since

$$
\sum_{|\gamma| \leq \ell-1} \frac{u^{\gamma}}{\gamma!}\left(i \xi^{\prime}\right)^{\gamma}=\sum_{j=0}^{\ell-1} \frac{i^{j}}{j!}\left(u \cdot \xi^{\prime}\right)^{j}
$$

we see that $\psi\left(\xi^{\prime}\right)$ is a constant $c_{\alpha, \ell}$ on $\left|\xi^{\prime}\right|=1$. Thus $\psi(\xi)=c_{\alpha, \ell}|\xi|^{\alpha}$. In order
to compute the constant $c_{\alpha, \ell}$, we take $\xi^{\prime}=(1,0, \ldots, 0)$. We have

$$
\begin{aligned}
c_{\alpha, \ell}= & \lim _{\varepsilon \rightarrow 0, \delta \rightarrow \infty} \int_{\varepsilon \leq|t| \leq \delta} \frac{e^{i t_{1}}-\sum_{j=0}^{\ell-1}\left(i^{j} / j!\right) t_{1}^{j}}{\left(t_{1}^{2}+t_{2}^{2}+\cdots+t_{n}^{2}\right)^{(n+\alpha) / 2}} d t \\
= & \lim _{\varepsilon \rightarrow 0, \delta \rightarrow \infty} \lim _{\eta \rightarrow 0} \int_{\eta \leq\left|t_{1}\right| \leq \delta}\left(e^{i t_{1}}-\sum_{j=0}^{\ell-1} \frac{i^{j}}{j} t_{1}^{j}\right) \\
& \times\left(\int_{\substack{\left(\varepsilon / t_{1}\right)^{2}-1 \leq\left(t_{2} / t_{1}\right)^{2}+\cdots \\
\left(\left(t_{n} / t_{1}\right)^{2} \leq\left(\delta / t_{1}\right)^{2}-1\right.}} \frac{1}{\left|t_{1}\right|^{n+\alpha}\left(1+\left(t_{2} / t_{1}\right)^{2}+\cdots+\left(t_{n} / t_{1}\right)^{2}\right)^{(n+\alpha) / 2}}\right. \\
& \left.\times d t_{2} \cdots d t_{n}\right) d t_{1} .
\end{aligned}
$$

By the change of variables $u_{2}=t_{2} / t_{1}, \ldots, u_{n}=t_{n} / t_{1}$, we obtain

$$
\begin{aligned}
c_{\alpha, \ell}= & \lim _{\varepsilon \rightarrow 0, \delta \rightarrow \infty} \lim _{\eta \rightarrow 0} \int_{\eta \leq\left|t_{1}\right| \leq \delta}\left(\frac{e^{i t_{1}}-\sum_{j=0}^{\ell-1}\left(i^{j} / j!\right) t_{1}^{j}}{\left|t_{1}\right|^{n+\alpha}}\right) \\
& \times\left(\int_{\left(\varepsilon / t_{1}\right)^{2}-1 \leq u_{2}^{2}+\cdots+u_{n}^{2} \leq\left(\delta / t_{1}\right)^{2}-1} \frac{\left|t_{1}\right|^{n-1}}{\left(1+u_{2}^{2}+\cdots+u_{n}^{2}\right)^{(n+\alpha) / 2}} d u_{2} \cdots d u_{n}\right) d t_{1} \\
= & \lim _{\eta \rightarrow 0, \delta \rightarrow \infty} \int_{\eta \leq\left|t_{1}\right| \leq \delta} \frac{e^{i t_{1}}-\sum_{j=0}^{\ell-1}\left(i^{j} / j!\right) t_{1}^{j}}{\left|t_{1}\right|^{1+\alpha}} d t_{1} \\
& \times \int_{R^{n-1}} \frac{1}{\left(1+u_{2}^{2}+\cdots+u_{n}^{2}\right)^{(n+\alpha) / 2}} d u_{2} \cdots d u_{n}
\end{aligned}
$$

An elementary computation shows

$$
\int_{R^{n-1}} \frac{1}{\left(1+u_{2}^{2}+\cdots+u_{n}^{2}\right)^{(n+\alpha) / 2}} d u_{2} \cdots d u_{n}=\frac{\pi^{(n-1) / 2} \Gamma((\alpha+1) / 2)}{\Gamma((n+\alpha) / 2)}
$$

Moreover, since $2[(\ell-1) / 2]<\alpha<2[(\ell+1) / 2]$, by integration by parts we have

$$
\begin{aligned}
& \lim _{\eta \rightarrow 0, \delta \rightarrow \infty} \int_{\eta \leq\left|t_{1}\right| \leq \delta} \frac{e^{i t_{1}}-\sum_{j=0}^{\ell-1}\left(i^{j} / j!\right) t_{1}^{j}}{\left|t_{1}\right|^{1+\alpha}} d t_{1} \\
& \quad=\lim _{\eta \rightarrow 0, \delta \rightarrow \infty} \int_{\eta}^{\delta} \frac{e^{i t_{1}}+e^{-i t_{1}}-\sum_{j=0}^{\ell-1}\left(i^{j} / j!\right)\left(t_{1}^{j}+\left(-t_{1}\right)^{j}\right)}{t_{1}^{1+\alpha}} d t_{1} \\
& \quad=2 \int_{0}^{\infty} \frac{\cos t_{1}-\sum_{0 \leq m \leq(\ell-1) / 2}\left((-1)^{m} t_{1}^{2 m}\right) /(2 m)!}{t_{1}^{1+\alpha}} d t_{1} \\
& \quad=\frac{-\pi}{\Gamma(\alpha+1) \sin (\pi \alpha / 2)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
c_{\alpha, \ell} & =\frac{-\pi}{\Gamma(\alpha+1) \sin (\pi \alpha / 2)} \frac{\pi^{(n-1) / 2} \Gamma((\alpha+1) / 2)}{\Gamma((n+\alpha) / 2)} \\
& =\frac{-2^{1-\alpha} \pi^{(n / 2)+1}}{\alpha \Gamma(\alpha / 2) \Gamma((n+\alpha) / 2) \sin (\pi \alpha / 2)} .
\end{aligned}
$$

This completes the proof of the lemma.
Lemma 2.8 ([3: Proposition 3.4]). Let $\ell-1<\alpha<\ell+(n / p), k=[\alpha-(n / p)]$ and $f \in L^{p}$.
(i) If $\alpha-(n / p)$ is not a nonnegative integer, then

$$
H_{\varepsilon}^{\alpha, \ell} U_{\alpha, k}^{f}(x)=\int \mu_{\varepsilon}^{\alpha, \ell}(y) f(x-y) d y
$$

(ii) If $\alpha-(n / p)$ is a nonnegative integer, then

$$
H_{\varepsilon}^{\alpha, \ell}\left(U_{\alpha, k-1}^{f_{1}}+U_{\alpha, k}^{f_{2}}\right)(x)=\int \mu_{\varepsilon}^{\alpha, \ell}(y) f(x-y) d y
$$

with $f_{1}=\left.f\right|_{B_{1}}$ and $f_{2}=f-f_{1}$.
Corollary 2.9. Let $\ell-1<\alpha<2[(\ell+1) / 2]$ and $f \in \mathscr{S}$. Then $H_{\varepsilon}^{\alpha, \ell} U_{\alpha}^{f}$ converges to $H^{\alpha, \ell} U_{\alpha}^{f}=a_{\alpha, \ell} f$ in L^{1} as ε tends to 0 .

Proof. By the condition $\ell-1<\alpha<2[(\ell+1) / 2]$, there exists $p>1$ such that $\ell-1<\alpha<\ell+(n / p)$ and $\alpha-(n / p)$ is not a nonnegative integer. Since $f \in L^{p}$, it follows from Lemma 2.8 that

$$
H_{\varepsilon}^{\alpha, \ell} U_{\alpha, k}^{f}=\int \mu_{\varepsilon}^{\alpha, \ell}(y) f(x-y) d y
$$

with $k=[\alpha-(n / p)]$. Moreover, since $\ell>\alpha-(n / p)$, by (1.1) we have $H_{\varepsilon}^{\alpha, \ell} U_{\alpha, k}^{f}=H_{\varepsilon}^{\alpha, \ell} U_{\alpha}^{f}$. Therefore it follows from Proposition 2.5 that $H_{\varepsilon}^{\alpha, \ell} U_{\alpha}^{f}$ converges to $a_{\alpha, \ell} f$ in L^{1} as ε tends to 0 since $f \in L^{1}$.

Remark 2.10. N. S. Landkof ([5: §1 in Chap. I]) shows that in case of $2 m \leq \alpha<2 m+2$, for any infinitely differentiable function $\bar{\varphi}$ with compact support, the limit

$$
H^{\alpha, 2 m+1}(x)=\lim _{\varepsilon \rightarrow 0} \int_{|t| \geq \varepsilon} \frac{\varphi(x+t)-\sum_{k=0}^{m} H_{k} \Delta^{k} \varphi(x)|t|^{2 k}}{|t|^{n+\alpha}} d t
$$

exists, where $H_{k}(k=0, \cdots, m)$ are suitable constants.

Corollary 2.11. For $\ell-1<\alpha<2[(\ell+1) / 2]$, $a_{\alpha, \ell}=c_{\alpha, \ell}$. In particular, $a_{\alpha, \ell} \neq 0$.

Proof. In §1 we defined the Lizorkin space Φ. We take a nonzero element $f \in \Phi$. Then $u=U_{\alpha}^{f}$ belongs to Φ (see [7: Theorem 25.1]). We have

$$
\begin{aligned}
\mathscr{F}\left(H_{\varepsilon}^{\alpha, \ell} u\right)(\xi)= & \int\left(\int_{|t| \geq \varepsilon} \frac{u(x+t)}{|t|^{n+\alpha}} d t\right) e^{-i x \cdot \xi} d x-\sum_{|\gamma| \leq \ell-1} \int\left(\int_{|t| \geq \varepsilon} \frac{D^{\gamma} u(x) t^{\gamma}}{\gamma!|t|^{n+\alpha}} d t\right) e^{-i x \cdot \xi} d x \\
= & \int_{|t| \geq \varepsilon} \frac{1}{|t|^{n+\alpha}} \int u(x+t) e^{-i x \cdot \xi} d x d t \\
& -\sum_{|\gamma| \leq \ell-1} \int_{|t| \geq \varepsilon} \frac{t^{\gamma}}{\gamma!|t|^{n+\alpha}} d t \int D^{\gamma} u(x) e^{-i x \cdot \xi} d x \\
= & \int_{|t| \geq \varepsilon} \frac{e^{i t \cdot \xi \mathscr{F} u(\xi)}}{|t|^{n+\alpha}} d t-\sum_{|\gamma| \leq \ell-1} \int_{|t| \geq \varepsilon} \frac{t^{\gamma}(i \xi)^{\gamma} \mathscr{F} u(\xi)}{\left.\gamma!| |\right|^{n+\alpha}} d t \\
= & \mathscr{F} u(\xi) \int_{|t| \geq \varepsilon} \frac{e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell-1} \frac{t^{\gamma} \gamma!}{\mid t \xi)^{\gamma}}}{|t|^{n+\alpha}} d t .
\end{aligned}
$$

By Corollary $2.9 \mathscr{F}\left(H_{\varepsilon}^{\alpha, \ell} u\right)(\xi)$ converges to $a_{\alpha, \ell} \mathscr{F} f(\xi)$ as ε tends to 0 for all ξ. On the other hand, since $\ell-1<\alpha<2[(\ell+1) / 2]$, by Lemma 2.7 we obtain

$$
\mathscr{F} u(\xi) \int_{|t| \geq \varepsilon} \frac{e^{i t \cdot \xi}-\sum_{|\gamma| \leq \ell-1} \frac{t^{\gamma}}{\gamma!}(i \xi)^{\gamma}}{|t|^{n+\alpha}} d t \rightarrow c_{\alpha, \ell}|\xi|^{\alpha} \mathscr{F} u(\xi) \quad(\varepsilon \rightarrow 0)
$$

Consequently, by (1.2) we have

$$
a_{\alpha, \ell} \mathscr{F} f(\xi)=c_{\alpha, \ell}|\xi|^{\alpha} \mathscr{F} u(\xi)=c_{\alpha, \ell}|\xi|^{\alpha} \text { Pf. }|\xi|^{-\alpha} \mathscr{F} f(\xi)=c_{\alpha, \ell} \mathscr{F} f(\xi) .
$$

Since $f \neq 0$, we obtain $a_{\alpha, \ell}=c_{\alpha, \ell}$.

3. The characterization of the Riesz potential spaces

In this section we study the equivalence of the following two conditions (I) and (II):

$$
\begin{equation*}
u \in\left(R_{\alpha}^{p}+\mathscr{P}_{k}\right) \cap W_{\ell-1}^{r_{0}, r_{1}, \ldots, r_{\ell-1}}, \quad k=[\alpha-(n / p)] \tag{I}
\end{equation*}
$$

(1) $u \in W_{\ell-1}^{r_{0}, r_{1}, \ldots, r_{\ell-1}}$,
and
(2) $\lim _{\varepsilon \rightarrow 0} H_{\varepsilon}^{\alpha, \ell}$ exists in L^{p}.

We note that, if $u \in W_{\ell-1}^{r_{0}, r_{1}, \ldots, r_{\ell-1}}$ and $\alpha>\ell-1$, then $H_{\varepsilon}^{\alpha, \ell} u(x)$ exists for almost every x.

Lemma 3.1 ([4: Corollary 2.3]). If $|\gamma|<\alpha$ and $m>\alpha-|\gamma|-n$, then for $|x| \geq 2 m|h|$

$$
\left|\Delta_{h}^{m} D^{\gamma} \kappa_{\alpha}(x)\right| \leq C|h|^{m}|x|^{\alpha-|\gamma|-m-n} .
$$

Lemma 3.2 ([4: Lemma 4.2(i)]). Let $\varepsilon>0$ be fixed and $m>\alpha-n$. Then

$$
\int_{|x-y| \geq \varepsilon} \frac{\left|\Delta_{h}^{m} \kappa_{\alpha}(y)\right|}{|x-y|^{n+\alpha}} d y \leq C(1+|x|)^{\max (-\alpha, \alpha-m)-n}
$$

Lemma 3.3. (i) If $u \in L^{r}(r>1)$ and $m>\alpha-(n / r)$, then

$$
I=\int\left|\Delta_{h}^{m} \kappa_{\alpha}(y)\right|\left(\int_{|t| \geq 1} \frac{|u(y+t)|}{|t|^{n+\alpha}} d t\right) d y<\infty
$$

(ii) If $v \in L^{s}(s>1)$ and $m>\alpha-(n / s)$, then

$$
J(x)=\int\left|\Delta_{h}^{m} \kappa_{\alpha}(x-y) v(y)\right| d y<\infty
$$

for all x in case of $\alpha-(n / s)>0$, and for almost every x in case of $\alpha-(n / s) \leq 0$.
Proof. (i) By the change of variables $z=t+y$ and Fubini's Theorem, we have

$$
\begin{aligned}
I & =\int\left|\Delta_{h}^{m} \kappa_{\alpha}(y)\right|\left(\int_{|z-y| \geq 1} \frac{|u(z)|}{|z-y|^{n+\alpha}} d z\right) d y \\
& =\int|u(z)|\left(\int_{|z-y| \geq 1} \frac{\left|\Delta_{h}^{m} \kappa_{\alpha}(y)\right|}{|z-y|^{n+\alpha}} d y\right) d z
\end{aligned}
$$

By Lemma 3.2 and Hölder's inequality we obtain

$$
\begin{aligned}
I & \leq C \int|u(z)|(1+|z|)^{\max (-\alpha, \alpha-m)-n} d z \\
& \leq C\|u\|_{r}\left(\int(1+|z|)^{(\max (-\alpha, \alpha-m)-n) r^{\prime}} d z\right)^{1 / r^{\prime}}<\infty
\end{aligned}
$$

on account of the assumptions $u \in L^{r}$ and $m>\alpha-(n / r)$ where $(1 / r)+\left(1 / r^{\prime}\right)$ $=1$.
(ii) We have

$$
\begin{aligned}
J(x) \leq & \int_{|x-y| \geq 2 m|h|}\left|A_{h}^{m} \kappa_{\alpha}(x-y) v(y)\right| d y \\
& +\sum_{i=0}^{m}\binom{m}{i} \int_{|x-y|<2 m|h|}\left|\kappa_{\alpha}(x-y+(m-i) h) v(y)\right| d y \\
= & J_{1}(x)+J_{2}(x) .
\end{aligned}
$$

By Lemma 3.1 and Hölder's inequality, $J_{1}(x)$ is finite by the assumption $m>$ $\alpha-(n / s)$. Since v is locally integrable, $J_{2}(x)$ is finite for almost every x, and in particular, by Hölder's inequality $J_{2}(x)$ is finite for all x in case of $\alpha-(n / s)>0$.

Lemma 3.4. (i) If $u \in L^{r}$ and $\ell-1<\alpha<2[(\ell+1) / 2]$, then

$$
K(x)=\int|u(y)|\left|\int_{|t| \geq 1} \frac{R_{t}^{\ell} \kappa_{\alpha}(x-y)}{|t|^{n+\alpha}} d t\right| d y<\infty
$$

for all x in case of $2[(\ell-1) / 2]<\alpha-(n / r)$, and for almost every x in case of $2[(\ell-1) / 2] \geq \alpha-(n / r)$.
(ii) ([3: Theorem 2.15]) If $u \in L^{r}$ and $\ell-1<\alpha<\ell+(n / r)$, then

$$
\int|u(y)|\left(\int_{|t| \geq 1} \frac{\left|R_{t}^{\ell} \kappa_{\alpha}(x-y)\right|}{|t|^{n+\alpha}} d t\right) d y<\infty
$$

for all x in case of $\ell-1<\alpha-(n / r)$, and for almost every x in case of $\ell-1 \geq$ $\alpha-(n / r)$.

Proof. (i) From Proposition 2.5 it follows that

$$
\begin{aligned}
K(x)= & \int\left|u(y) \mu^{\alpha, \ell}(x-y)\right| d y \\
\leq & C \int_{|x-y| \geq 1}|u(y)||x-y|^{\alpha-[\alpha]-1-n} d y \\
& +C \int_{|x-y|<1}|u(y)||x-y|^{\alpha-2[(\ell-1) / 2]-n} d y \\
= & K_{1}(x)+K_{2}(x)
\end{aligned}
$$

Since $\alpha-[\alpha]-1<0, K_{1}(x)$ is finite for all x by Hölder's inequality. Since $\alpha-2[(\ell-1) / 2]>0, K_{2}(x)$ is finite for almost every x, and in particular, in case $\alpha-2[(\ell-1) / 2]>n / r, K_{2}(x)$ is finite for all x by Hölder's inequality.

Lemma 3.5. Let $u \in L^{r}, D^{\gamma} u \in L^{s}$ and $\varphi \in C^{\infty}$. If

$$
\begin{equation*}
\left|D^{\delta} \varphi(y)\right| \leq C(1+|y|)^{d-|\delta|-n} \quad \text { for } \delta \leq \gamma \tag{3.1}
\end{equation*}
$$

and $d<\min \left(\frac{n}{r}, \frac{n}{s}\right)$, then

$$
\int D^{\gamma} u(y) \varphi(y) d y=(-1)^{|\gamma|} \int u(y) D^{\gamma} \varphi(y) d y .
$$

Proof. There exists a sequence $\left\{\eta_{j}\right\} \subset \mathscr{D}$ (the space of infinitely differentiable functions with compact support) such that $0 \leq \eta_{j} \leq 1, \eta_{j}(x)=1$
on $|x| \leq j$ and $\left|D^{\delta} \eta_{j}(x)\right| \leq M_{\delta}(j=1,2, \ldots)$ ([1: p. 54$]$). We put $\varphi_{j}(y)=$ $\varphi(y) \eta_{j}(y)$. Since $\varphi_{j} \in \mathscr{D}$, we have

$$
\int D^{\gamma} u(y) \varphi_{j}(y) d y=(-1)^{|\gamma|} \int u(y) D^{\gamma} \varphi_{j}(y) d y .
$$

By the conditions (3.1), $d<n / s$ and $D^{\gamma} u \in L^{s}$, we obtain

$$
\int D^{\gamma} u(y) \varphi_{j}(y) d y \rightarrow \int D^{\gamma} u(y) \varphi(y) d y \quad(j \rightarrow \infty)
$$

By the Leipniz formula we have

$$
D^{\gamma} \varphi_{j}(y)=\left(D^{\gamma} \varphi\right) \eta_{j}+\sum_{\delta<\gamma}\binom{\gamma}{\delta} D^{\delta} \varphi D^{\gamma-\delta} \eta_{j}
$$

where $\binom{\gamma}{\delta}=\binom{\gamma_{1}}{\delta_{1}} \ldots\binom{\gamma_{n}}{\delta_{n}} . \quad$ By the conditions (3.1), $d<n / r$ and $u \in L^{r}$, for $\delta<\gamma$ we have

$$
\int u(y) D^{\delta} \varphi(y) D^{y-\delta} \eta_{j}(y) d y \rightarrow 0 \quad(j \rightarrow \infty)
$$

and moreover,

$$
\int u(y) D^{\gamma} \varphi(y) \eta_{j}(y) d y \rightarrow \int u(y) D^{\gamma} \varphi(y) d y \quad(j \rightarrow \infty) .
$$

Hence

$$
\int u(y) D^{\gamma} \varphi_{j}(y) d y \rightarrow \int u(y) D^{\gamma} \varphi(y) d y \quad(j \rightarrow \infty)
$$

Thus we obtain the lemma.
Let τ be a nonnegative function belonging to \mathscr{D} and having the properties

$$
\begin{equation*}
\tau(x)=0 \quad \text { for } \quad|x| \geq 1 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\int \tau(x) d x=1 \tag{ii}
\end{equation*}
$$

For $\varepsilon>0$, let $\tau_{\varepsilon}(x)=\frac{1}{\varepsilon^{n}} \tau\left(\frac{x}{\varepsilon}\right)$ and $k_{\varepsilon}^{\alpha, \gamma, m, h}=\Delta_{h}^{m} D^{\gamma} \kappa_{\alpha} * \tau_{\varepsilon}$.
Lemma 3.6. Let $\chi_{\alpha}(x)=|x|^{\alpha-n}$, and for $\alpha \geq n$, let $\eta_{\alpha}(x)=|\log | x| ||x|^{\alpha-n}$.

Then for $0<\varepsilon<1$,

$$
\chi_{\alpha} * \tau_{\varepsilon}(x) \leq C \times \begin{cases}\chi_{\alpha}(x), & \alpha \leq n, \tag{i}\\ \max \left(\chi_{\alpha}(x), 1\right), & \alpha>n .\end{cases}
$$

(ii) $\quad \eta_{\alpha} * \tau_{\varepsilon}(x) \leq C \times \begin{cases}\max \left((1+|\log | x| |)|x|^{\alpha-n}, 1\right), & \alpha>n, \\ \max \left(1+|\log | x| |,|x|^{-\beta}\right), & \alpha=n .\end{cases}$
for any fixed $\beta>0$.
Proof. We give a proof of (i) in the case $\alpha \leq n$. It suffices to prove (i) with $\varepsilon=1$. Indeed, if (i) is true for $\varepsilon=1$, then

$$
\begin{aligned}
\chi_{\alpha} * \tau_{\varepsilon}(x) & =\int \tau_{\varepsilon}(y) \chi_{\alpha}(x-y) d y \\
& =\int \tau(y) \chi_{\alpha}(x-\varepsilon y) d y \\
& =\varepsilon^{\alpha-n} \int \tau(y) \chi_{\alpha}\left(\frac{x}{\varepsilon}-y\right) d y \\
& \leq C \varepsilon^{\alpha-n} \chi_{\alpha}\left(\frac{x}{\varepsilon}\right) \\
& =C \chi_{\alpha}(x) .
\end{aligned}
$$

For $|x| \geq 2$ we have

$$
\begin{aligned}
\chi_{\alpha} * \tau(x) & =\int_{|x-y| \leq 1}|y|^{\alpha-n} \tau(x-y) d y \\
& \leq(|x| / 2)^{\alpha-n} \int \tau(x-y) d y=2^{n-\alpha}|x|^{\alpha-n} .
\end{aligned}
$$

Moreover, for $|x|<2$ we obtain

$$
\begin{aligned}
\int|y|^{\alpha-n} \tau(x-y) d y & \leq(\max \tau) \int_{|y|<3}|y|^{\alpha-n} d y=(\max \tau) \frac{3^{\alpha} \sigma_{n}}{\alpha} \\
& \leq(\max \tau) \frac{3^{\alpha} 2^{n-\alpha} \sigma_{n}}{\alpha}|x|^{\alpha-n}
\end{aligned}
$$

where σ_{n} is the surface area of the unit sphere.
Lemma 3.7. Let $|\gamma|<\alpha$ and $0<\varepsilon<1$.
(i) If $|\gamma|>\alpha-n$, then

$$
\left|k_{\varepsilon}^{\alpha, \gamma, m, h}(x)\right| \leq C \sum_{i=0}^{m}|x+(m-i) h|^{\alpha-|\gamma|-n},
$$

if $|\gamma|=\alpha-n$, then

$$
\left|k_{\varepsilon}^{\alpha, \gamma, m, h}(x)\right|
$$

$$
\leq C \times \begin{cases}1, & \alpha-n \notin N_{2} \\ \sum_{i=0}^{m} \max \left(1+|\log | x+(m-i) h| |,|x+(m-i) h|^{-\beta}\right), & \alpha-n \in N_{2}\end{cases}
$$

for any fixed $\beta>0$, and if $|\gamma|<\alpha-n$, then

$$
\left|k_{\varepsilon}^{\alpha, \gamma, m, h}(x)\right|
$$

$$
\leq C \times \begin{cases}\sum_{i=0}^{m} \max \left(|x+(m-i) h|^{\alpha-|\gamma|-n}, 1\right), & \alpha-n \notin N_{2} \\ \sum_{i=0}^{m} \max \left((1+|\log | x+(m-i) h| |)|x+(m-i) h|^{\alpha-|\gamma|-n}, 1\right), & \alpha \in N_{2}\end{cases}
$$

(ii) For $|x| \geq 2 m|h|+2$ and $m>\alpha-|\gamma|-n$,

$$
\left|k_{\varepsilon}^{\alpha, \gamma, m, h}(x)\right| \leq C(1+|x|)^{\alpha-m-|\gamma|-n}
$$

In (i) and (ii) the constants C are independent of ε.
Proof. Assertion (i) follows from Lemma 3.6. We show (ii). Let $|x| \geq 2 m|h|+2$ and $0<\varepsilon<1$. Since $|x| \geq 2 m|h|+2$ and $|x-y|<1$ imply $|y|>2 m|h|$, by Lemma 3.1 we have

$$
\begin{aligned}
\left|k_{\varepsilon}^{\alpha, \gamma, m, h}(x)\right| & \leq \int_{|x-y|<1}\left|\Delta_{h}^{m} D^{\gamma} \kappa_{\alpha}(y)\right| \tau_{\varepsilon}(x-y) d y \\
& \leq C \int_{|x-y|<1}|y|^{\alpha-|y|-m-n} \tau_{\varepsilon}(x-y) d y
\end{aligned}
$$

Moreover, since $|x| \geq 2$ and $|x-y| \leq 1$ imply $|y| \geq \frac{1}{3}(1+|x|)$, we see

$$
\begin{aligned}
\left|k_{\varepsilon}^{\alpha, \gamma, m, h}(x)\right| & \leq C \frac{1}{3}(1+|x|)^{\alpha-|\gamma|-m-n} \int \tau_{\varepsilon}(x-y) d y \\
& =C(1+|x|)^{\alpha-|\gamma|-m-n}
\end{aligned}
$$

Thus we obtain (ii).
Lemma 3.8. If $v \in L^{q},|\gamma|<\alpha$ and $m>\alpha-|\gamma|-(n / q)$, then

$$
\int v(x-y) D^{\gamma}\left(\Delta_{h}^{m} \kappa_{\alpha} * \tau_{\varepsilon}\right)(y) d y \rightarrow \int v(x-y) \Delta_{h}^{m} D^{\gamma} \kappa_{\alpha}(y) d y \quad(\varepsilon \rightarrow 0)
$$

for all x in case of $|\gamma| \leq \alpha-n$, and for almost every x in case of $|\gamma|>\alpha-n$.
Proof. We define the function $G^{\alpha, \gamma, m, h}(x)$ as follows: if $|x| \geq 2 m|h|+2$, then

$$
G^{\alpha, \gamma, m, h}(x)=(1+|x|)^{\alpha-m-|\gamma|-n}
$$

and if $|x|<2 m|h|+2$, then for $|\gamma|>\alpha-n$

$$
G^{\alpha, \gamma, m, h}(x)=\sum_{i=0}^{m}|x+(m-i) h|^{\alpha-|y|-n},
$$

for $|\gamma|=\alpha-n$

$$
G^{\alpha, \gamma, m, h}(x)= \begin{cases}1, & \alpha-n \notin N_{2} \\ \sum_{i=0}^{m}|x+(m-i) h|^{-\beta}, & \alpha-n \in N_{2}\end{cases}
$$

with $\beta<n / q^{\prime}$, and for $|\gamma|<\alpha-n$

$$
G^{\alpha, \gamma, m, h}(x)=1 .
$$

Then by Lemma 3.7 we have

$$
\left|v(x-y) D^{\gamma}\left(\Delta_{h}^{m} \kappa_{\alpha} * \tau_{\varepsilon}\right)(y)\right| \leq C|v(x-y)| G^{\alpha, \gamma, m, h}(y)
$$

and moreover, since $v \in L^{q}$ and $m>\alpha-|\gamma|-(n / q)$,

$$
\int|v(x-y)| G^{\alpha, \gamma, m, h}(y) d y<\infty
$$

for all x in case of $|\gamma| \leq \alpha-n$, and for almost every x in case of $|\gamma|>$ $\alpha-n$. Since $D^{\gamma}\left(\Delta_{h}^{m} \kappa_{\alpha} * \tau_{\varepsilon}\right)(y)$ converges to $\Delta_{h}^{m} D^{\gamma} \kappa_{\alpha}(y)$ as ε tends to 0 for $y \neq-(m-i) h(i=0,1, \ldots, m)$, the dominated convergence theorem gives the lemma.

Lemma 3.9. If $u \in L^{r}, D^{\gamma} u \in L^{s},|\gamma|<\alpha$ and $m>\max (\alpha-(n / r), \alpha-(n / s))$, then

$$
\int D^{\gamma} u(x-y) \Delta_{h}^{m} \kappa_{\alpha}(y) d y=\int u(x-y) \Delta_{h}^{m} D^{\gamma} \kappa_{\alpha}(y) d y
$$

for all x in case of $\alpha-|\gamma| \geq n$, and for almost every x in case of $\alpha-|\gamma|<n$.
Proof. By Lemma 3.7(ii), for $|\delta|<\alpha$ we have

$$
\left|D^{\delta}\left(\Delta_{h}^{m} \kappa_{\alpha} * \tau_{\varepsilon}\right)(x)\right|=\left|k_{\varepsilon}^{\alpha, \delta, m, h}(x)\right| \leq C_{\varepsilon}(1+|x|)^{\alpha-m-|\delta|-n}
$$

Hence Lemma 3.5 implies

$$
\int D^{\gamma} u(x-y) \Delta_{h}^{m} \kappa_{\alpha} * \tau_{\varepsilon}(y) d y=\int u(x-y) D^{\gamma}\left(\Delta_{h}^{m} \kappa_{\alpha} * \tau_{\varepsilon}\right)(y) d y
$$

by the assumptions $u \in L^{r}, \quad D^{\gamma} u \in L^{s}$ and $\alpha-m<\min (n / r, n / s)$. Since $D^{\gamma} u \in L^{s}$ and $m>\alpha-(n / s)$, by Lemma 3.8 the left-hand side converges to $\int D^{\gamma} u(x-y) \Delta_{h}^{m} \kappa_{\alpha}(y) d y$ as ε tends to 0 for all x in case of $\alpha \geq n$, and for almost
every x in case of $\alpha<n$. Since $u \in L^{r},|\gamma|<\alpha$ and $m>\alpha-|\gamma|-(n / r)$, by Lemma 3.8 the right-hand side converges to $\int u(x-y) \Delta_{h}^{m} D^{\gamma} \kappa_{\alpha}(y) d y$ as ε tends to 0 for all x in case of $|\gamma| \leq \alpha-n$, and for almost every x in case of $|\gamma|>\alpha-n$. Hence we obtain the lemma.

Proposition 3.10. If $u \in W_{\ell-1}^{r_{0}, r_{1}, \ldots, r_{\ell-1}}, \ell-1<\alpha<\max (2[(\ell+1) / 2], \ell+$ $\left.\left(n / r_{0}\right)\right)$ and $m>\max _{i=0,1, \ldots, \ell-1}\left(\alpha-\left(n / r_{i}\right)\right)$, then

$$
\Delta_{h}^{m} \kappa_{\alpha} * H_{\varepsilon}^{\alpha, \ell} u(x)=\Delta_{h}^{m} u * \mu_{\varepsilon}^{\alpha, \ell}(x)
$$

for all x in case of $\alpha-n \geq \ell-1$, and for almost every x in case of $\alpha-n<\ell-1$.
Proof. Since $u \in W_{\ell-1}^{r_{0}, r_{1}, \ldots, r_{\ell-1}}, \ell-1<\alpha$ and $m>\max _{i=0, \ldots, \ell-1}\left(\alpha-\left(n / r_{i}\right)\right)$, by Lemma 3.3 we have

$$
\begin{aligned}
I(x)= & \Delta_{h}^{m} \kappa_{\alpha} * H_{\varepsilon}^{\alpha, \ell} u(x) \\
= & \int \Delta_{h}^{m} \kappa_{\alpha}(x-y)\left(\int_{|t| \geq \varepsilon} \frac{u(y+t)-\sum_{|\gamma| \leq \ell-1}\left(D^{\gamma} u(y) / \gamma!\right) t^{\gamma}}{|t|^{n+\alpha}} d t\right) d y \\
= & \int \Delta_{h}^{m} \kappa_{\alpha}(x-y)\left(\int_{|t| \geq \varepsilon} \frac{u(y+t)}{|t|^{n+\alpha}} d t-\sum_{|\gamma| \leq \ell-1} \int_{|t| \geq \varepsilon} \frac{D^{\gamma} u(y) t^{\gamma}}{\gamma!|t|^{n+\alpha}} d t\right) d y \\
= & \int \Delta_{h}^{m} \kappa_{\alpha}(x-y)\left(\int_{|t| \geq \varepsilon} \frac{u(y+t)}{|t|^{n+\alpha}} d t\right) d y \\
& -\sum_{|\gamma| \leq \ell-1} \frac{1}{\gamma!} \int \Delta_{h}^{m} \kappa_{\alpha}(x-y) D^{\gamma} u(y) d y \int_{|t| \geq \varepsilon} \frac{t^{\gamma}}{|t|^{n+\alpha}} d t \\
= & I_{1}(x)
\end{aligned}
$$

for all x in case of $\alpha-\left(n / r_{i}\right)>0(i=0,1, \ldots, \ell-1)$, and for almost every x otherwise. Since $u \in L^{r_{0}}$ and $m>\alpha-\left(n / r_{0}\right)$, Lemma 3.3(i) and Fubini's theorem give

$$
\begin{aligned}
& \int \Delta_{h}^{m} \kappa_{\alpha}(x-y)\left(\int_{|t| \geq \varepsilon} \frac{u(y+t)}{|t|^{n+\alpha}} d t\right) d y \\
& \quad=\int \Delta_{h}^{m} \kappa_{\alpha}(x-y)\left(\int_{|z-y| \geq \varepsilon} \frac{u(z)}{|z-y|^{n+\alpha}} d z\right) d y \\
& \quad=\int u(z)\left(\int_{|z-y| \geq \varepsilon} \frac{\Delta_{h}^{m} \kappa_{\alpha}(x-y)}{\left.|z-y|^{n+\alpha} d y\right) d z}\right. \\
& =\int u(z)\left(\int_{|t| \geq \varepsilon} \frac{\Delta_{h}^{m} \kappa_{\alpha}(x-z-t)}{|t|^{n+\alpha}} d t\right) d z
\end{aligned}
$$

Further, since $u \in W_{\ell-1}^{r_{0}, r_{1}, \ldots, r_{\ell-1}}, \ell-1<\alpha$ and $m>\max _{i=0, \ldots, \ell-1}\left(\alpha-\left(n / r_{i}\right)\right)$, by Lemma 3.9 we have

$$
\int \Delta_{h}^{m} \kappa_{\alpha}(x-y) D^{\gamma} u(y) d y=\int \Delta_{h}^{m} D^{\gamma} \kappa_{\alpha}(x-y) u(y) d y, \quad|\gamma| \leq \ell-1
$$

for all x in case of $\alpha-(\ell-1) \geq n$, and for almost every x in case of $\alpha-(\ell-1)<n$. Therefore

$$
\begin{aligned}
I_{1}(x)= & \int u(y)\left(\int_{|t| \geq \varepsilon} \frac{\Delta_{h}^{m} \kappa_{\alpha}(x-y+t)}{|t|^{n+\alpha}} d t\right) d y \\
& -\sum_{|y| \leq \ell-1} \frac{1}{\gamma!} \int u(y) \Delta_{h}^{m} D^{\gamma} \kappa_{\alpha}(x-y) d y \int_{|t| \geq \varepsilon} \frac{t^{\gamma}}{|t|^{n+\alpha}} d t \\
= & \int u(y)\left(\int_{|t| \geq \varepsilon} \frac{\Delta_{h}^{m}\left(R_{t}^{\ell} \kappa_{\alpha}(x-y)\right)}{|t|^{n+\alpha}} d t\right) d y=I_{2}(x)
\end{aligned}
$$

holds for all x in case of $\alpha-(\ell-1) \geq n$ and for almost every x in case of $\alpha-(\ell-1)<n$. Moreover, since $\ell-1<\alpha<\max \left(2[(\ell+1) / 2], \ell+\left(n / r_{0}\right)\right)$, by Lemma 3.4 we obtain

$$
\begin{aligned}
I_{2}(x) & =\int u(y)\left(\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} \int_{|t| \geq \varepsilon} \frac{R_{t}^{\ell} \kappa_{\alpha}(x-y+(m-i) h)}{|t|^{n+\alpha}} d t\right) d y \\
& =\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} \int u(y)\left(\int_{|t| \geq \varepsilon} \frac{R_{t}^{\ell} \kappa_{\alpha}(x-y+(m-i) h)}{|t|^{n+\alpha}} d t\right) d y \\
& =\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} \int u(x-z+(m-i) h)\left(\int_{|t| \geq \varepsilon} \frac{R_{t}^{\ell} \kappa_{\alpha}(z)}{|t|^{n+\alpha}} d t\right) d z \\
& =\int \Delta_{h}^{m} u(x-z) \mu_{\varepsilon}^{\alpha, \ell}(z) d z \\
& =\Delta_{h}^{m} u * \mu_{\varepsilon}^{\alpha, \ell}(x)
\end{aligned}
$$

for all x in case of $\alpha-\left(n / r_{0}\right)>\ell-1$, and for almost every x in case of $\alpha-\left(n / r_{0}\right) \leq \ell-1$. Thus

$$
I(x)=\Delta_{h}^{m} u * \mu_{\varepsilon}^{\alpha, \ell}(x)
$$

for all x in case of $\alpha-(\ell-1) \geq n$, and for almost every x in case of $\alpha-$ $(\ell-1)<n$. This completes the proof of the proposition.

Lemma 3.11 ([4: Lemma 4.8]). Let $f \in L^{p}, k=[\alpha-(n / p)]$ and $\ell \geq k+1$.
(i) If $\alpha-(n / p)$ is not a nonnegative integer, then

$$
\Delta_{h}^{m} U_{\alpha, k}^{f}=\Delta_{h}^{m} \kappa_{\alpha} * f
$$

(ii) If $\alpha-(n / p)$ is a nonnegative integer, then

$$
\Delta_{h}^{m}\left(U_{\alpha, k-1}^{f_{1}}+U_{\alpha, k}^{f_{2}}\right)=\Delta_{h}^{m} \kappa_{\alpha} * f
$$

with $f_{1}=\left.f\right|_{B_{1}}$ and $f_{2}=f-f_{1}$.
Lemma 3.12. If $m>\alpha-(n / p)$, then $\Delta_{h}^{m} \kappa_{\alpha} \in \bigcup_{1<s<p^{\prime}} L^{s}$.
Proof. Since $m>\alpha-(n / p)$ implies $\max \left(\frac{1}{p^{\prime}}, 1-\frac{\alpha}{n}\right)<\min \left(1,1+\frac{m-\alpha}{n}\right)$, there exists a real number s such that $\max \left(\frac{1}{p^{\prime}}, 1-\frac{\alpha}{n}\right)<\frac{1}{s}<\min \left(1,1+\frac{m-\alpha}{n}\right)$. Using Lemma 3.1 we can easily check that for such $s, \Delta_{h}^{m} \kappa_{\alpha} \in L^{s}$. Hence we obtain the lemma.

For a real number r and $p>1$, we write

$$
L^{p, r}=\left\{u: \int|u(x)|^{p}(1+|x|)^{p r} d x<\infty\right\}
$$

and

$$
L^{p, r, \log }=\left\{u: \int|u(x)|^{p}(1+|x|)^{p r}(\log (e+|x|))^{-p} d x<\infty\right\} .
$$

Lemma 3.13. (i) $L^{r} \subset L^{p,-\alpha}$ for $r \geq p$ in case of $\alpha-(n / p) \geq 0$, and for $p \leq r<p_{\alpha}$ in case of $\alpha-(n / p)<0$.
(ii) If $\alpha-(n / p)<0$, then we have $L^{p_{\alpha}} \subset L^{p,-\alpha, \log }$.

Proof. This lemma follows from Hölder's inequality.
Now we give our main theorem.
Theorem 3.14. (i) If $\ell-1<\alpha<\min (2[(\ell+1) / 2], \ell+(n / p))$, then (I) implies (II).
(ii) If $\ell-1<\alpha<2[(\ell+1) / 2]$, then (II) implies (I) for $r_{0} \geq p$ in case of $\alpha-(n / p) \geq 0$, and for $p \leq r_{0} \leq p_{\alpha}$ in case of $\alpha-(n / p)<0$.

Proof. (i) We assume that $u \in\left(R_{\alpha}^{p}+\mathscr{P}_{k}\right) \cap W_{\ell-1}^{r_{0}, r_{1}, \ldots, r_{\ell-1}}$. Since (II)(1) is trivial, we shall show (II)(2). By the condition $u \in R_{\alpha}^{p}+\mathscr{P}_{k}$, we have

$$
u(x)= \begin{cases}U_{\alpha, k}^{f}+\sum_{|\gamma| \leq k} a_{\gamma} x^{\gamma}, & \alpha-(n / p) \notin N, \\ U_{\alpha, k-1}^{f_{1}}+U_{\alpha, k}^{f_{2}}+\sum_{|\gamma| \leq k} a_{\gamma} x^{\gamma}, & \alpha-(n / p) \in N\end{cases}
$$

where $f \in L^{p}, f_{1}=\left.f\right|_{B_{1}}, f_{2}=f-f_{1}$ and $a_{\gamma}(|\gamma| \leq k)$ are constants. By the
condition $\ell-1<\alpha<\ell+(n / p),(1.1)$ and Lemma 2.8, we obtain

$$
\begin{aligned}
H_{\varepsilon}^{\alpha, \ell} u & = \begin{cases}H_{\varepsilon}^{\alpha, \ell} U_{\alpha, k}^{f}, & \alpha-(n / p) \notin N \\
H_{\varepsilon}^{\alpha, \ell}\left(U_{\alpha, k-1,}^{f_{1}}+U_{\alpha, k}^{f_{2}}\right), & \alpha-(n / p) \in N\end{cases} \\
& =\mu_{\varepsilon}^{\alpha, \ell} * f .
\end{aligned}
$$

Hence it follows from $\ell-1<\alpha<2[(\ell+1) / 2]$, Lemma 2.1 and Proposition 2.5 that $H_{\varepsilon}^{\alpha, \ell} u=\mu_{\varepsilon}^{\alpha, \ell} * f$ converges to $a_{\alpha, \ell} f$ in L^{p} as ε tends to 0 . Thus we obtain (II) (2).
(ii) We assume that (II)(1), (2) and $\ell-1<\alpha<2[(\ell+1) / 2]$. We take an integer m such that $m>\max \left(\alpha-\left(n / r_{0}\right), \ldots, \alpha-\left(n / r_{\ell-1}\right), \alpha-(n / p)\right)$. By Proposition 3.10 we have

$$
\Delta_{h}^{m} \kappa_{\alpha} * H_{\varepsilon}^{\alpha, \ell} u=\Delta_{h}^{m} u * \mu_{\varepsilon}^{\alpha, \ell} .
$$

Since $\ell-1<\alpha<2[(\ell+1) / 2]$ and $u \in L^{r_{0}}$, it follows from Proposition 2.5 that $\Delta_{h}^{m} u * \mu_{\varepsilon}^{\alpha, \ell}$ converges to $a_{\alpha, \ell} \Delta_{h}^{m} u$ in $L^{r_{0}}$ as ε tends to 0 . By $m>\alpha-(n / p)$ and Lemma 3.12, we obtain $\Delta_{h}^{m} \kappa_{\alpha} \in L^{s}$ for some s such that $1<s<p^{\prime}$. Hence by the condition (II)(2) and Young's inequality we see that $\Delta_{h}^{m} \kappa_{\alpha} * H_{\varepsilon}^{\alpha, \ell} u$ converges to $\Delta_{h}^{m} \kappa_{\alpha} * f$ in L^{q} as ε tends to 0 where $(1 / q)=(1 / s)+(1 / p)-1$ and $f=H^{\alpha, \ell} u \in L^{p}$. Hence

$$
a_{\alpha, \ell} \Delta_{h}^{m} u=\Delta_{h}^{m} \kappa_{\alpha} * f .
$$

Consequently, by Corollary 2.11, Lemma 3.11 and (1.2)

$$
u= \begin{cases}U_{\alpha, k}^{f / a_{\alpha, \ell}}+P, & \alpha-(n / p) \notin N \\ U_{\alpha, k-1}^{f_{1} / a_{\alpha, \ell}}+U_{\alpha, k}^{f_{2} / a_{\alpha, \ell}}+P, & \alpha-(n / p) \in N\end{cases}
$$

where $f_{1}=\left.f\right|_{B_{1}}, f_{2}=f-f_{1}$ and P is a polynomial of degree $m-1$. Since $u \in L^{r_{0}}$, and $r_{0} \geq p$ in case of $\alpha-(n / p) \geq 0, p \leq r_{0} \leq p_{\alpha}$ in case of $\alpha-(n / p)<0$, by Proposition 1.1 and Lemma 3.13 we have

$$
P \in \begin{cases}L^{p,-\alpha}, & \alpha-(n / p) \notin N \text { and } r_{0} \neq p_{\alpha} \\ L^{p,-\alpha, l o g}, & \alpha-(n / p) \in N \text { or } r_{0}=p_{\alpha}\end{cases}
$$

Therefore the degree of P is at most k, and hence $u \in R_{\alpha}^{p}+\mathscr{P}_{k}$. This completes the proof of the theorem.

Remark 3.15. Let $\alpha-(n / p)<0$. Then by the Hardy-LittlewoodSobolev theorem ([10: §1 in Chap. V]) we have

$$
R_{\alpha}^{p} \subset W_{\ell-1}^{p_{\alpha}, p_{\alpha-1}, \ldots, p_{\alpha-(\ell-1)}}
$$

Hence Theorem 3.14 shows that $u \in R_{\alpha}^{p}$ if and only if u satisfies the following two conditions:

$$
\begin{equation*}
u \in W_{\ell-1}^{p_{\alpha}, p_{\alpha-1}, \ldots, p_{\alpha-(\ell-1)}} \tag{i}
\end{equation*}
$$

(ii)

$$
\lim _{\varepsilon \rightarrow 0} H_{\varepsilon}^{\alpha, \ell} u \text { exists in } L^{p}
$$

for $\ell-1<\alpha<\min (2[(\ell+1) / 2],(\ell+(n / p)) / 2)$.
Remark 3.16. E. M. Stein ([9]) characterized the Bessel potential spaces \mathscr{L}_{α}^{p} as follows. Suppose $0<\alpha<2$. Then

$$
u \in \mathscr{L}_{\alpha}^{p} \Longleftrightarrow u \in L^{p} \quad \text { and } \quad \lim _{\varepsilon \rightarrow 0} H_{\varepsilon}^{\alpha, 1} u \text { exists in } L^{p} .
$$

Hence Theorem 3.14 implies that for $0<\alpha<\min (2,1+(n / p))$

$$
\left(R_{\alpha}^{p}+\mathscr{P}_{k}\right) \bigcap L^{p}=\mathscr{L}_{\alpha}^{p}
$$

with $k=[\alpha-(n / p)]$.

References

[1] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975.
[2] T. Kurokawa, Riesz potentials, higher Riesz transforms and Beppo Levi spaces, Hiroshima Math. J. 18 (1988), 541-597.
[3] T. Kurokawa, On hypersingular integrals, Osaka J. Math. 27 (1990), 721-738.
[4] T. Kurokawa, Singular difference integrals and Riesz potential spaces, Vestnik of Friendship of Nations Univ. of Russia. Math. Series, 1 (1994), 117-137.
[5] N. S. Landkof, Foundation of modern potential theory, Springer-Verlag, Berlin, 1972.
[6] S. G. Samko, On spaces of Riesz potentials, Math. USSR Izv. 10 (1976), 1089-1117.
[7] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Sci. Publ., 1993.
[8] L. Schwartz, Théorie des distribution, Herman, Paris, 1966.
[9] E. M. Stein, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102-104.
[10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.

Department of Mathematics
College of Liberal Arts
Kagoshima University
Kagoshima, 890 Japan

[^0]: 1991 Mathematics Subject Classifications. 31B15, 42B20, 46E35.

