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ABSTRACT. A family of Yang-Mills connections on 4-dimensional pseudo-Riemannian

spaces S4, S1 x S3, S2 x S2 of respective indices are constructed by a group theoretic

method. The index and the nullity of their second variations are calculated.

1. Introduction—A Review of Riemannian case

In this article we construct a family of Yang-Mills connections on 4-
dimensional pseudo-Riemannian spaces S4, S1 x S3, S2 x S2 equipped with
the indefinite Riemannian metrics of the index (4, 0), (1, 3), (2, 2) respectively
by a unified method. And then we study the index and nullity of their
second variations at the canonical connection. We are interested especially
in the compactified Minkowski space S1 x S3. On the Riemannian space S4

our connection is the BPST-instanton of the Hopf fibering S1 -> S4 (see Atiyah
[1], Chapter II and Chapter III, 2). We review this case first from a group
theoretic view point.

The BPST-instanton whose instanton number equals one can be con-
structed on Euclidean 4-space R4 (identified with the set H of quaternions)
according to the following diagram:

G = SL2(H) -^ K = Sp2

I
Sp2/SPί = SΊ

I 15P1

= K/M = Sp2/Spι x Spi = S

where we use the following notation. G = SL2(H) = \\ \ α, b, c, deH
l\c an

xι—>
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and the corresponding complex 4 x 4-matrix has determinant 1 >. The ele-

ment α + βj e H (α, β e C) corresponds to a complex 2 x 2-matrix

M2(C). The Iwasawa decomposition and its X-projection is denoted by
(fa 0 M 1

where K = Sp2, A = <(( Λ _χ αe/?, α > 0 > and N =
0 a-

1 0
xeH = MAN =

a 0

M =

e G f is a parabolic subgroup and

7X is the centralizer of A in

K. We use the decomposition NP c G (open dense). And Θ is the X-
invariant canonical connection of the bundle K -> K/M. i.e., Θ is a K-
invariant, m-valued 1-form on K, whose value at identity is the orthogonal
projection relative to the Killing form of I, Θe: ϊ = m + s -> m, where I, m
are the Lie algebras of K9 M and s is the orthogonal complement of m in I.

We equip the base space K/M with a positive definite X-invariant
Riemannian metric h induced by the negative of the Killing form. And we
equip the Lie algebra m of the structure group with a positive definite
invariant inner product. Laquer [10] considers the Yang-Mills functional
associated with principal bundles over homogeneous spaces and shows that
the canonical connection Θ in K -»K/M is a Yang-Mills connection relative
to the metric h. The embedding j is easily checked to be a conformal map
from the standard Euclidean 4-space R4 = H to an open dense subset of the
compact Riemannian space K/M — S4. The Yang-Mills functional or the
Hodge star operator * on 2-forms is conformally invariant over 4-dimensional
spaces. Therefore we get the finite-action Yang-Mills connection in R4 x
M ->• R4 of the pull-back bundle. Put u = K o i and compute the pull back
u*Θ. Then we have a m-valued 1-form on H

(u*Θ)(x) = the orthogonal projection of (u~ίdu)(x) to m

xdx
Im

l*l2

0

0

Im
xdx

Its projection to the second
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is an anti-self-dual connection which is a local form of the so called BPST
anti-instanton. This projection corresponds to a projection of the structure
group M = Spi x Sp1^Spl9 which reduces to the Hopf bundle S1 -*S4 as
above. (The projection to the first ^pί is a self-dual connection).

In the above diagram the group G = SL2(H) acts naturally on K,
K/M = S4 and N as follows. For g e G, k e K and H e N , we put

τg(k) = κ(gk\ τg(kM) = κ(gk)M and τ,(ϋ) = %ή)

where g = n(g)m(g)a(g)n(g) e NMAN is the decomposition of open dense

- Λ Asubset NMAN of G. Identifying //= N by xι— >nx = I 1, G-action on

H is

e G,

G-actions on K/M = S4 and N = H = R4 are conformal transformations.
Hence G acts on the space ty of all the Yang-Mills connections and the
space ®J~ of all the anti-self-dual connections in K -> K/M. Its action is
pulled back on H as

A (x) = n*(τ*β)M = J,(x

~ (τ*A)(x) modulo gauge group ,̂

where Jg(x) = m(gήx) = (ex + d)/\cx + d\ε M = Spίf The gauge equivalence
is valid at least on H\{-c~ld}. If g e X = Sp2 then τ*6> = Θ by the
K-invariance and hence the map g\-^τ(g~1)*Θ induces the smooth map

SL2(H)/Sp2 -> ΛΓ = flr-/Sί

where the right hand side is the moduli space of anti-instantons. Atiyah,
Hitchin, Singer [3] show that G = SL2(H) acts transitively on the moduli
space Jί~ and hence that the above map is an onto diffeomorphism. In
other words the Moduli space is a single G-orbit: Jί = G[0].

This group theoretic method using the structure of a semisimple conformal
transformation group G is available for the construction of Yang-Mills connec-
tions on the other pseudo-Riemannian 4-sρaces Λ1'3, /?2'2 or rather their
compactifications S1 x S3, S2 x S2, which are identified with appropriate ho-
mogeneous spaces G/P = K/K Π M of the conformal transformation group
G. For the group G we take SU(2, 2), SL4(R) and pick up a suitable parabolic
subgroup P = MAN whose ΛΓ-part is of dimension 4. Note that SL2(H),
517(2, 2) and SL4(R) are real forms of the complex Lie group SL4(C). In
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§2 and §3 we give detailed constructions for Rίt3 and R2'2 respectively and
study some related properties of G-orbit G[Θ~\. In §4 we study their second
variations at the canonical connection Θ by a method of homogeneous vector
bundle and representation theory of compact Lie groups.

2. The case of /?1>3—Minkowski space

Take G = 517(2, 2) = {g e 5L4(C)

ί A 0
parabolic subgroup P =

0 -A _ / 0 -/

/ 0 Γ~ \I 0
and the

C D
e G>, where g* is the transposed conjugate

matrix of 0. The Langlands decomposition is P = MAN where A =
al 0

0 α"1/

5LJ(C) and N =

A B

— B A

a > 0, a e R
,*-!

0 g
g e M2(C\ det g = ±1>~

/ 0

X I
XeM2(C),X = X*>. Let K =

+ B*B = /, A*B - B*A = 0, det k = 1 > = 5(l/2 x l/2) be the

r/0 oλl
maximal compact subgroup of G. Then H = K Π M = < 0*0 = /,

\0 qj\

det 0 = ±1 f~ 51/2*. In the subsequent sections we also use another

Ί 0 \ // 0

-/>βlθ -/y
Two realizations of 517(2,2) are connected by a Cayley transformation

realization of G = 517(2, 2) i.e., G = <0 6 SL4(C)

C = Ad-rl
x/2W

, e.g. the maximal compact subgroup K = S(U2 x U2) is

transformed by C
0

± iBε l/2, det (A- i5)Λ vι o
(A + iB) = 1. Let g, f, m, α, n and ί) be the Lie algebras of G, K, m, A, N
and // respectively and let g = ϊ 4- p be the Cartan decomposition. Then we
have the decomposition: G = K x exp(mΠp) x A x N (cf. [14], 1.2.4.11). Put
K: G -> KM = K x exp(m Π p) and k: G -» K be the corresponding projections.

Ί X\ }
j X* = Xϊ. Then we also have the decomposition ofLet N =

an open dense subset NP of G: NP = NxMxAxN denoted by g =
n(g)m(g)a(g)n(g).

LEMMA 2.1. The decomposition G = K x exp(mΠp) x A x N = KM x
A x N is given by the following: For
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n e G ; d e t0= 1> A*D-C*B = I,υ

A*C - C*A = B*D - D*B = 0,

A B\_( E fV*'1 0\/s/ 0 \ / / 0

c z v v - F E o Λ O S~ΊX i

s~l(A-BX) sB\ίsI 0 \ίl 0

sD0

where

s = det(B*B + D*D)~1/4 e R, h = s(B*B + D*D)1/2 € SLf(C)

the decomposition: NP = NxMxAxN is given by

A , \ f , BD-VD- 0
C D) VO / J\ C D

I B/rΛ/s-1!)*-1 U\fsl

0 / A 0 sDj\0

where s = det(D*Z))~1/4 e R. Π

We consider the principal M-bundle KM -> KM/M = K/K Π M = K/H
and the canonical X-invariant connection Θ. Θ is by definition a X-invariant
m-valued 1-form on KM whose value at identity is the projection Θe: s + m ->
m where the tangent space Te(KM) is identified with ί + m = s + m and

0 J?\
# = 5* V is the orthogonal complement of m in ϊ + m relative

,~B °>
to the Killing form of g. In other words, s and its left K and right M-
translates are horizontal subspaces in KM. The base space K/H = U2 is

homeomorphic to S1 x S3. The isometry K/H = U2 is given by I 1
\ — B AJ

(A — ίB)(A + IB)~1. We give a X-invariant (1, 3)-metric h as follows, ϊ =

1 A + A* = 0, tr A = 0, 5* = B > = s -h ί) is isomorphic to s(u2 x u2).
-5 4/ J

^ = ϊ Π m c± su2. We see ϊ = 3 + ϊx where 3 = RZ I Z = I j J is the

1-dimensional center of I which is contained in s and l^ = [I, ί] = I) 4-
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sιι2 x su2. Hence s = 3 + $Γ\lί is isomorphic to u2 as fy-module. The Kill-
ing form of ϊi ~ su2 x sιι2 is BpΓ, Y) = 4 tτ(XY) for X, Y e ϊ^ Define fe on
s = Tβ(X/H) as Λ(X, 7) = 4 tτ(XY), h(X, Z) = 0 for X, Y e s Π Ix and Z 6 3
with Λ(Z,Z)= -4trZ 2 = 16. Λ is (Ad #)-invariant, so that h is extended
to a K-invariant (1, 3) metric on K/H. Under the isometry K/H = U2 this
metric corresponds to h = — 4det(gΓ1ί/0), geU2. We give the Lie algebra
m = sI2(C) of the structure group M an indefinite inner product <JΓ, Y> =
Retr(Jfy). We can prove in the same way as Laquer [10]'s Riemannian
case that the canonical connection Θ is a Yang-Mills connection relative to
the invariant metric h (see [10], Theorem 3.1). Put H(2) = the space of all
2 x 2-Hermitian symmetric matrices. Take the coordinates on H(2) by X =

l ~ *2 ΪX3 ~ *4}. We give H(2) the (1, 3)-metric det dX = dx\ - dx2

2 -
X3-X4 X1+X2J

— dx% and regard it as the standard Minkowski space Jί1*3. Identify

H(2) = N by the map X\
/

Consider a diagram:

G = 517(2, 2) —κ—+ KM

The embedding j: N -> K/H = U2 has an open dense image and j(X) =

(I - iX)(I + iXY\ j*h = -4 detίΓ'Φ') = 16 det(/ + X^-^det dX). Since
16 det(/ H- X2)'1 > 0 on H(2) we might say that the map j is conformal.
Hence we get a finite-action Yang-Mills connection on Jt1'3. Put u = κoί
and compute the pull-back u*Θ on Λ 1 3 = /f(2). Then

PROPOSITION 2.2. The local form B of the canonical connection Θ is given
by the following m-valued ΐ-form on H(2).

B(X) = (u*Θ)(X) = Im(/ + X2)-1 XdX, x e H(2\

T (a b\ ί(a-d}/2 b _
where Im-part of a matrix means Im , = , , /Λ . The

\c dj \ c (d-a)/2
curvature form FB = dB + B Λ B is

FB(X) = (I + X2Yl
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PROOF. The canonical connection Θ in the bundle KM-^K/H is ex-
pressed as in the Riemannian case by

Θ = prqKiT1*!), w e KM,

where proj: g -> M2(C) is proj 1 = A, g =
-A* B\ Λ ((-A* B

c A; ' ° \\ c A - A*) =

0,C* = C, £* = £>, m =
-A* 0

by
-A* 0

0 A0
A. In fact let XeTu(KM), u = kmeKM and let u(t) = k(t)m(t) (fc(0) = k,
m(0) = m) be a C°°-curve in KM tangent to X at u. Then

XJί\ «*-(*}*••'*

in the matrix algebra. The value of the connection Θ(X) at M is in m and
given by

due to the left X-invariance and right M-equivariance of our connection

o
— A* B\

0, B* = B > and θ I = A. If we extend Θe to the map proj on
—B A]

g as above, we know that m~lΘe [ k~l ( — ) ) m = proj ( m~lk~l \-r\ m ) .
\ \<fr/o/ V V Λ / O /

Hence

= proj I M-1 ί - 1(0) 1 = proj(ιΓld«(X)).

Now by Lemma 2.1 we know that if u = K ° i and X ε H(2),
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(I + X2Γ112 X(I + X2)~l'2\ fs-^I + X2Γiβ 0

- X(I + X2Γ112 (I + X2Γ112 A 0 s(I + X2)1'2

s-^I + X2)-1 sX

X2Γl si

Therefore

«»-'=u,*' s-,(,7«-) *»-(: Msr"
Hence we get the pull-back connection on H(2):

X2)~lXdX.

The curvature form FB = dB + B Λ B is calculated by using the expression

B(X) = s~ldsl + (/ + X2Γ*XdX. D

The Yang-Mills equation dB*FB = Q is checked also by a direct calcula-
tion on /f 1 > 3 = H(2). We remark that FB does not satisfy the self-duality
condition: *Fβ = ±iFB (note *2 = -1 on Λ1'3). Its density function D(B)(X) =

<Fβ, FBy(X) is computed from <Fβ, FBydv — <Fβ Λ *Fβ>, dv = dx^ Λ dx2

 Λ

rfx3 Λ dx4 by a lengthy computation as follows:

The group G = S17(2, 2) acts naturally on KM, K/H = S1 x 53 and JV =
f/(2) as follows. For g e G, /ceK, m e M and n 6 TV, define

τg(km) = κ(gkm\ τg(kH) = κ(gk)M = k(gk)H and τg(n) = n(gn).

Then we know that τg(kH) = τg(k)H, j o τg(n) = τg °j(n) and τg o u(E) —
(u o τg)(ή)m(gn) hold. Identifying H(2) = N9 G-action on H(2) is given by

τβ(X) = (AX + B)(CX + DΓ1, g = (* *\ e G, X e H(2).
\c i^/

G-actions on K/H = S1 x S3 and #(2) = R13 are checked to be conformal
transformations, i.e. τ*h = fgh, fg > 0, 6 C™(K/H). Hence we get a G-action
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on the space ^ of all Yang-Mills connections in KM -> K/H. The G-action
can be computed by pulling-back to H(2) as

PROPOSITION 2.3. Let ω be a connection in KM -> K/H and let A = u*ω

ί local form of <

and X e H(2) then

be a local form of ω which is a m-valued l-form on H(2\ If g = I 1 e G
UI

u*(τ*ω)(X) = Jg(XΓl(^A)(X)Jg(X) + Jg(XTldJg,

(l X\ —
where Jg(X) = m(gήx) = s~l(CX + D) e M = SLf(C), % = L J e W and

s = (det(CX + D)*(CAΓ + D))1/4 e /?. Hence τ*A zs gauge equivalent to a local
form of τ*ω on the open dense subset H(2)\{X\det(CX + D) = 0} of H(2).

PROOF. The formula: (τg o u)(n) = (u o τg)(ή)Jg(n) (Jg(n) = m(gn)) says that
the difference between two maps τg o u and u o τg is the right action of the
structure group given by Jg. N ->M. Let Y e TXN and let nt (n0 = ήx — X)
be a C°°-curve in N tangent to Y at X. Then we have

d ( τ β o U ) ( Y ) = (£) (τ,o „)(«,) = (£) (u o τβ)(nt)J9(n()
\αΓ/ t=0 \ai/t=Q

= d(u o τ.)(y)Jg(X) + (u o τβ)(X)dJβ(Y)

= d(u o τg)(Y)Jg(X) + (τ, o uXJOJ.W^^n Jβ(X)~l dJβ(Y) E m.

Hence

t/*(τ*ω)x(y) = ((τg o W)*ω)x(7) = ω((τ, o uj^y))

= ω(d(κ o τ,)(y)Jg(X)) + ω((τβ o u)(X)Jβ(X)'ldJg(Y))

= Jg(XYlω((u o Tg)JY))Je(X) + J.(X)-ldJβ(Y)

by the definition of the connection form. Π

Since Θ is a X-invariant Yang-Mills connection we have a map:

φ: G/K = SU(29 2)/S(U2 xU2)^Jt = 9/9, φ(gK) = [τ^^Γβ]

where ^ denotes the gauge group, Ji is the moduli space of all Yang-Mills
connections and [ω] denotes the class of a connection ω modulo .̂ Since
dim G/K = 8 we obtain an 8-dimensional family G[β] of Yang- Mills connec-
tions as seen in the following:
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PROPOSITION 2.4. The map φ is injectίve.

PROOF. If two connections coincide in M then the corresponding density
functions coincide. It suffices to show that if two density functions coincide:
D(τ(g~l}*B) = D(B) on H(2) then g e K. According to the decomposition
G = N x A x exp(m Π p) x K, set g = pk and p = nam. Then τ(g~1)*B =
τ(k-ίp-1)*B = τ(p-l)*τ(k-l)*B~τ(p-l)*Bmod<$9 by the K-invariance of θ.
We may put

m = ( Λ 1; A = A*, det A = 1 and A is positive definite, (2.1)
V 0 AJ

, ί>0 and (2.2)

(fA —t~1YA~1\ (A B\
Q rι^-ι )• For g = \c DJ E G '

τβ(X) = (XX + B)(CX + DΓ1 (X e H(2)) and τ*(det dX) = hg(X) det dX where
Λβ(X) = detμ-τg(X)Qdet(CX + DΓ1. We also have Fτ(g)*B = τ%FB and
D(τ*B)(X) = <τ*FB,τ*FB>(X) = <Fβ, Fβ>(τ,(X))^(X)2 = D(B)(τ,(X))fc,(*)2

Using these formula we get

D(τ(g-l)*B)(X) = -24ί8/det{/ + (t2AXA - Y)2}2.

We note that a positive function det(/ + X2) = 1 + tr X2 + det X2 on H(2)
attains its absolute minimum only at X = 0.

Suppose that D(B) = D(τ(g~l)*B). Then comparing absolute minima we
get -24= -24ί8, hence by (2.2) t= 1, i.e. a = I. We then have det{/ +
(AX A -Y)2} = det(/ + X2). Put X = 0. Then det(/ + Y2) = 1, hence Y =
0, i.e. ή = /. The identity reduces to det{/ + (AXA)2} = det(/ + AT2), hence
tτ(AXA)2 = tr(A2X)2 = tr X2 for all X e H(2). From this and the form of
matrix A (2.1), a direct calculation shows that A = /, i.e. m = I. Π

We shall compute the value of the Yang-Mills functional:

«UT(B)= \_D(B)dv.
JN

Since N c X/N is open dense the above integral gives the value of Yang-Mills
functional at Θ.

PROPOSITION 2.5. The value of WJl is equal to — 3π3 on the G-orbίt G[β].
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PROOF. Just a calculation. For the coordinates X = I .* 2 3 4

\ —IX3 — X4 Xx + X2

in H(2\ dv = d4x = dxίdx2dx3dx4 and det(/ + X2) = (1 - x? + x2

2 + x\ +
x2.)2 + 4x2. Put x = x1 and j;2 = x2 + x\ + x2

4. Then

D(B)(X) = -24/{(l + y2 - x2)2 + 4x2}2.

Hence,

= -24 f 2^2 )2+ 4 χ2|2

f0 0 Γ00 /dxdy / J 4 2 J , J ,= -192π 7- ^—5-i—-̂ ^ (d4x = y2dxdydσ)
Jo Jo {(l+;μ 2-x 2) 2 + 4x2}2

Γ00 Γπ/2 r2 sin2 θrdrdθ
= ~192π 7i ^Γ2 ΊΪ 2-̂ 2 (x = rcosθ,y = r sin θ)

Jo Jo (1 +2r2 + 44cos220)2

^ Γ00 j Γπ/2 sin2θdθ / 2x= -96π sds = 2——2 (s = r2)
Jo Jo (1 + 2s + s2 cos2 20)2

Put

θdθ
/(s)

_ Γ"/2 sin2

"Jo (1 + 25 + :52 COS2 20)2

1 fπ / 2 (1 - cos 2θ)dθ 1 fπ / 2 dθ
(! + 2s + s2cos220)2'

Putting ί = tan 0, we then have

1 f°°(t2 + l)Λ

= wτw Jo FT^F lwhere α =
i Γ00 /_j b \dt L = s2 \
f 2 s ) 2 J o V2 + «2 (ί2 + ̂ 2)2/ f V 1+2V2(1

1 / π bπ λ π s2 + 4s + 2

2(1 + 2s)2 \2α 403/ 8(1+ 25)
3/2(5 -f I)3'

Therefore

2)Γ00 s(s2 + 4s + 2

Jo (1 + 2s)3/2(s +

00 (M2 - l)(u4 + 6u2 + 1)

1 M2(M2 + I)3 '
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ί °° /
1i \ u2 + 1 (u2 + I)2

+

Conformal transformations τ(g) (g e G) leave the functional
thus the value of WJt is -3π3 on our G-orbit G[<9].

invariant,

Π

3. The case of R2*2

Take the group G = SL4(R). Let P = MAN =

bolic subgroup, where A =
al 0

0 a~Ί
aeR, 0 > 0 > , M =

E G > be a para-

A 0N

0

det B = ± U and N =
/ 0

X I
XeM2(R)f. We take the identity compo-

nent PO = M0AN instead of P itself, for G/P0 = SOJSO2 x SO2 = S2 x S2.
Let X = SO4 be a maximal compact subgroup of G. Then the diagram is

G = XMn = KM

M0=SL2(*)xSL2(J?)

X/K Π MO = SOJSO2 x 502 = S2 x 52

where M2(R) = N is identified with Λ2 '2 by the metric det
-x,

E M2(R). Then det dX = dx\ — dx\ + dx\ —

Let X =

Put

u = K o i. Then a Yang-Mills connection on /?2'2 is obtained by the pull-back:

0

0
€ m

where m = s!2(/?) + s!2(/?) and *X is the transposed matrix of X. The projec-
tion to the second sI2(/?):

B(X) = Im(/ + 'JfJiQ'1*^

is a self-dual connection (*Fβ = FB on /?2'2) and that to the first sI2(/?) is
anti-self-dual. The curvature form and its density function are
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FB(X) = (/ + 'JΠQ-1 </'*(/ + X*X)-*dX and

G-actions on N and K/KΓ\M0 are conformal transformations. Hence
we get a map:

G/K = SL4(R)/S04 ^Jt+ = W+l® by gK ι-> [τ(g~l )*<9]

where ^+ is the moduli space of self-dual connections. This map is proved
to be injective by the investigation of the density function D(τ*B)(X). Since
dim G/K = 9 we then obtain a 9-dimensional family G[Θ~\ of self-dual Yang-
Mills connections on S2 x S2. The value of the functional tyjtt on this G[Θ~\
is computed to be 8π2.

4. Nullity and index of the second variation

In this section we compute the nullity and the index of the second
variation at the canonical connection of the pseudo-Riemannian spaces. We
recall general facts on the second variation of a Yang-Mills functional (see
[2], 3 and 4). Let P -> M be the principal bundle with structure group G
and compact oriented pseudo-Riemannian base space M. This adjoint bundle
gp = p x g is by definition the bundle associated with P via the adjoint

Ad

action of the structure group G on its Lie algebra g. A fixed pseudo-
Riemannian metric and a fixed orientation on M define the Hodge ^-operator
in the space ΩP(M) of p-forms by

θ Λ *η = <θ, ηydυ for θ, η e ΩP

9

where < , > denotes the natural pseudo-Riemannian structure on ΩP(M\ and
dv is the volume form of M. Then the inner product < , > on g and the
Riemannian metric of M combine to give the space Ω*($P) = Γ™( Λ T*M (g) gp)
of g^-valued forms a natural inner product ( , ) which possibly has an
indefinite index:

=[
JM

(θ, φ)=\ <0 Λ *(?>.
JM

We shall equip the space Ω*(QP) = Γ°°( Λ T*M (x) gp) with the Frechet space
δ topology which is defined by the collection of supremum norms of a section
and each of its derivatives measured by a fixed norm in fibers of Λ T*M (x) gp.
The convergence θn^θ in ^-topology implies that (0Π, φ) -> (θ, φ) for any φ
and (θn,θn)-+(θ,θ).
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The space of connections J P̂ has an affine structure with associated
vector space Ω1^). The Yang-Mills equation is the first variational equation
of the Yang-Mills functional on stfp\

JM
= (FA, FA) = D(A)dv,

JM

where FA = a A + \\_A Λ A] e Ω2($P) is the curvature form of the connection
A and D(A)(X) = (FA, FAy(X) is the density function. D(A) and <yj((A} are

not necessarily positive on pseudo-Riemannian manifolds. Because s4P is an
affine space we can vary A along lines

Then the curvature Ft of At is given by

where dA is the covariant exterior derivative of the connection A. Taking
the inner product in Ω2(§P\

(Ft9 Ft) = (FA, FA) + 2t(dAη, FA) + t2{(dAη, dAη) + (FA, [i, Λ ,,])} + 0(ί3).

Hence at an extremum (dAη, FA) = 0, or equivalently (η, δAFA) = 0, for all
ηeΩl(§P). Hence at an extremum δAFA = Q. Here δA is the adjoint of dA

relative to the inner product on Ω*(QP) and just as in the usual Hodge theory

δA= ± *dA*. Therefore the first variational equation of QJJt is

The above expansion also yields the Hessian β of ®JJl at an extremum

A. β is a quadratic form on the tangent space to stfp at A, which is presicely
Ωl($P). Thus the second variational formula of WJi is

βfa , n) = (
Here we write 3FA for the endomorphism of ΩI(QP)

&A.η^(-\Y*l*FAΛη] (4.1)

where (p, q) is the index of the metric on M. 3FA is also characterized by

,, ξ) = (FA, [_η Λ {])

and is therefore self-adjoint. The functional tyJt is invariant under the action
of the group ^ of gauge transformations. The tangent space TA<& is identified
with Im dA of Ω°($P) in TA^P = Ωl(§P). Hence δAdAη + ̂ Aη = 0 if η e Im dA.

We shall define the nullity and the index of A as follows.
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DEFINITION. The nullity of a Yang-Mills connection A is the dimension
of the null space of the operator δAdA + &A in the quotient space Ω1(gP)/Im dA.
The index of A is the dimension of the negative eigenspaces of the operator

S* + & in

When the Riemannian metric on the base space and the inner product
on g are positive definite, and the space ( , ) in Ω*(gP) is also positive definite
and the space Ω1^) has the orthogonal decomposition:

β^flp) = Ker δA Θ Im dA, (4.2)

relative to the inner product (cf. [13] 5.8.10 for the case where gp is a
homogeneous vector bundle). This implies that the spaces Ker δΛ and Im dA

are closed in ΩI(QP) with respect to the topology defined by the inner product
( , ). Hence they are also closed with respect to our <f -topology. Thus
Ω1(QP)βmdA is identified with Ker δA. Define the Jacobi operator SA and
the quadratic form β by

SA = AA + ̂ A = dAδA + δAdA + ̂  and βfa, η) = (SAη, η).

Then SA = δAdA + &*A on Ker δA9 SA = dAδA on Im dA9 and hence β is strictly
positive definite on Im dA. Thus in the Riemannian case we may define the
nullity of A as the nullity of SA on Ker δA and define the index of A as the
index of the quadratic form β on Ker δA, i.e. the dimension of a maximal
subspace on which β is strictly negative definite. And they are equal to the
index and the nullity of SA on all of Ω^cjp). The ellipticity of the operator
SA = ΔA + 2FA implies that they are finite. When the metric on base space
and the inner product on g are indefinite, these nullity and index are possibly
infinite. Furthermore the above decomposition (4.2) does not hold in general
(see Lemma 4.4 below), but the spaces Ker δA and Im dA are closed with
respect to ff -topology because the space Im dA is invariant under the change
of metric. Hence the quotient space Ωί(QP)/ImdA is a Hausdorff, locally
convex, topological vector space.

We are concerned with the canonical connection Θ for principal M-
bundles of the form P: KM -> KM/M = K/H where K, M and H = KΓiH
are subgroups of a larger group G and KM = {km\keK9 meM} is a sub-
manifold of G. This bundle is an associated principal bundle of the principal
bundle K -> K/H via the inclusion homomorphism H = K Π M -> M , i.e.

P~KxM = Kx M/(kh, m) - (fc, hm\ keK9 heH, meM.
H

This construction effects a change of the structure group. The adjoint bundle
mp is a homogeneous vector bundle:
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tnp ~ K x m
H

via the adjoint representation of H on m. The space Ωp(mP) = Γ™(K x
H

( ΛPS* ® m)) of trip-valued p-forms is naturally isomorphic to a K-module of
the induced representation C# (K, ΛPS* (x) m).

We review basic facts on induced representations and homogeneous differ-
ential operators (cf. [4] or [13], 5.3 and 5.4). Let H be a closed subgroup
of a compact group K and let (σ, V) be a finite dimensional complex represen-
tation of H. Suppose that V has an H-invariant, nondegenerate, Hermitian
inner product < , > which possibly has an indefinite index. The induced
representation p = Ind# V is the function space:

CS(K, V) = {/: K 5 V\f(gh) = σ(hΓf(g\ geK,hεH}

with the K-representation p\

This space has a K-invariant Hermitian inner product:

(/ι>/2)= </ι(0)>/2(0)>d0, dg is a Haar measure on K,

where fl9 f2 e C^(K, V). ( , ) is nondegenerate and possibly has an indefinite
index. Nondegeneracy of ( , ) is easily seen from the eigenspace decomposi-
tion of V with respect to the Hermitian form < , >. We shall equip the
function space C# (K, V) with the Frechet space $ topology which is defined
by the collection of supremum norms of a function and each of its derivatives
measured by a fixed norm in V. Frobenius reciprocity theorem states that

Homκ(W, Ind| V) = HomH(^|H, V\

where W is a ^-representation and W\H is its restriction to H. Let U (ϊ) be
the universal envelopping algebra of ϊc, the complexification of ϊ. Then U(l)
is identified with the ring of left invariant differential operators on K. Let
(σ, V) and (τ, W) be finite dimensional complex representations of H. If
X e U(ϊ) and if L: V -> W is a linear map then define a differential operator
X ® L: C°°(K, V) -> C°°(X, HO by

(X ® L)f(g) = L(Xf(g)) f e C°°(K, K), 4 e K.

The product of such operators is given by (Xl ®L^)(X2 ®L2) = X\X^ ®
LXL 2. The differential operator D is called a homogeneous differential oper-
ator if it commutes with X-actions. We know that a differential operator
D: CH(K, K)->CH(K, W) is homogeneous if and only if D has an expression
as above such that D e (17(1) ® Hom(K, W))H.
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In the case of the Riemannian base space S4 the index and the nullity
of the canonical connection Θ are, respectively, the number of negative and
zero eigenvalues of the Jacobi operator Sθ of θ on Ωl(mP). T. Laquer [10]
computes these numbers for all compact irreducible symmetric space. For
S4 = Sp2/Sp1 x Sp! (or S05/S04) the index is equal to 0 and the nullity is
10 (see [10], 5, Table II). The index and the nullity of the (anti-) self-dual
part of the canonical connection are 0 and 5, respectively.

For the (1, 3)-Riemannian space S1 x S3 we determine the nullity and
the index of the canonical connection Θ. We treat the space of trip-valued
p-forms:

Ωp(mP) = Γ™(K x ( ΛPS* ® m)) = C£(K, ΛPS* ® m), p = 0, 1, 2.
H

We first note that the vector space ΛPS* (x) m has a complex structure induced
from that of m = $12(C) and has an (Ad H)-in variant indefinite Hermitian
inner product induced from h on s = T0(K/H) and (X, Y) = tr(XY*) on m. So
Ωp(mP) is a complex vector space on which K acts naturally by the induced
representation. The covariant exterior derivatives of invariant connection Θ
are denoted by

Ω°(mP) Λ fl^ntp) -i Ω2(mP).

(Hereafter all covariant operators are relative to the connection Θ, so we
omit subscripts in the symbols). They commute with the X-action, hence
homogeneous differential operators. Hence their formal adjoint <5, the opera-
tors 3F of (4.1), δd + 3F and S are also homogeneous. We find the explicit
form of these operators as follows. We realize the Lie algebras of K =
S(U2 x U2) and H = SUf as

f i i n. v/ \ _, i I / - 1 - ' v \ ^
& = 1 L jΛeβu 2 ^ β u 2 , β = ^ n n ) |βeu 2

We take the orthonormal basis (ί/α)^=0 °f I relative to the inner product h
as follows:

^-4(0 J ^-ϊU «2;' - ~ 4 V o «3

where



64 Hiroshi KAJIMOTO

-*- -,• - -
Then /?£/0 is the center of ϊ which is contained in s, (l/0, l/l9 I/2, (73) is a
basis of s, (1/4, U59 U6) is that of t). We have fc(E/0, l/0) = 1, h(U09 £/,) = 0,
&(£/;, U,.)= -<50.(1< U< 6). Let (μα)α

6

=0 be the dual basis of (UΛ)
6

Λ=0. Then
the covariant exterior derivative d and its formal adjoint δ are given by

d = Σ 17. ® ε(μα), δ = - l/o ® i(l/0) + Σ ^ ® TO (4 4)
α=0 β=l

where ε(μ): ΛPS* ® m -» ΛP+IS* ® m, i(U): ΛPS* (x) m ->• AP-IS* ® m (μ e s*,
C7 e s) are, respectively, the exterior and the interior products on Λ s* tensoring
with identities on m (cf. [10], 3). Let C = Σα=ι ^42 be the negative of Casimir
element of [I, I] = su2 x sιι2. Then we have

LEMMA 4.1. (1) For φeΩQ(mP) which is a m-valued function on K, we
have

(4.5)

i.e. δd = (- t/o2 + C + i) ® / e l/(f) ® End m, on ί2°(mp).
(2) For ηεΩί(mP), we have

(4.6)

i.e. S = (- ί/o2 + C + i) ® / e 17(1) ® End(s* ® m), on

PROOF. We follow the arguments in Appendix of [10] adapted to our
(1, 3)-Riemannian case. We first note three facts. If U e s* and μ e s* we
have ε(μ)i(U) + i(U)ε(μ) = <μ, [/>/ on AS* (x) m. If (σ, K) is a //-representa-
tion and if U e I), L e Hom(7, W) then for /e C£(K, K), 0 e K,

(U ® L)f(g) = L(i-\ f(g ext ί 17) = L - σ(exp - ί l/)/(0)
\W t=o / \\*Λ=o

= -L(σ(l^/(^))= -(/®Lσ(tO)/(flf)

We know that a value of the Casimir element Σ*=4 ^42 °f ί) ^s ad(Σfe=4 ^42) =

(-1/2)7 on m and on [I, ϊ].
For the identity (1), the operator δd has the following form on ί2°(mp) =

CS(K, m).
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u0®i(u0)+ Σ uβ®i(vβ)\ Σ ι/.
0=1 J tr=0

Σ {-t/0t/.®i(l/o)e(μβ)+ Σ l/,l4®»
α=0 0=1

-t/o2+ Σ ί
0=1

/ 6 \
because i(Uβ)ε(μa) = δμ on m and -££=4 t/k

2 ® / = -7® adί Σ C/k

2 1 =
\k=4 /

(1/2)/.
For the identity (2), we know that the curvature form F of the canonical

connection Θ is

Σ [f..
α,0=l

μ.

See [10], (3.3) or if we use the Ricci formula: dAdAω = [FA Λ ω] for definition

of curvature, we have

dd= Σ
α = 0

= Σ [£4. t//r] ® ̂ α Λ μ') = / ® (- Σ e(μ" A μ') ad[C/β, t/,])
Λ<β \ Λ<β /

-J Σ

since ε(μβ)ε(μ*) = -ε(μα)ε(μ^) = -ε(μα Λ μ^) and [l/β, I/^] e I), [l/0, t/J = 0.

This shows that F = — iΣ«,0=ι C^α* ^]^α Λ M^ From (4.1) we get a formula
for the operator 3F'.

The operator dδ + ίrf has the following form on Ωl(mP) = C#(K, s* (x) m).

=Σ UΛ®ε(μ*)\-U0®i(U0)+ Σ
α=0 ( 0=1

3 } 3

Σ ^0®^0)r Σ ^α
0=1 J α=0
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-UΛU0®ε(μ*)i(U0) + Σ UxUβ®ε(μ*)i(Uβ)
α=0

Σ i-t/0t4®'WoM/O + Σ UβUx®i(Uβ)ε(μ")
tt=0

= Σ -V0
α=0

Σ
β=ι

Σ
a,β=l

= - 170

2 + c - Σ uϊ) ® i + Σ LU., υβ-\ ® ε(μ")i(uβ)
6

= - L/o2 + C ® I - I ® ad

- / < 8 > ( Σ β(μW,)ad[l7.,l/,]],
Λ,β =

since UxUβ = Uβ Ux + ίUx, [/„] and ε^")^) + i(Uβ)ε(μ*) = δ*f. Here we
note that operators -ad(Σ! t/fc

2), -Σ^=ι«(^)i(^) adCt/,, L^] and & =

-Σϊ,β=ι £(VX) adCt/^, Uβ]i(Uβ) act on s* (g) m. If v ® X e s* ® m,

α, I/,], X].

ε(μ")ί(Uβ)adίUx,Uβl(v®X)

= - Σ ^ ® «ad[C/a, l/p] v, I/^Λ + <v, [̂[I/., I/,], JQ)

= Σ , Σ ad I/,2 l/ μα ® X

= ~ Σ <V> ^>/^α

α=l

since Σl=ιac^ ^2 = ~(V^)^ on [1,1]. And we have
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6
-ad £ U?(v

= - Σ ί(ad uk)v ® x + 2(ad ί/fc)v (x) [14, AT] + v

= J Σ <v,l/a

Since

(ad C/t)v = Σ <(ad Uk)v, U^μ" = - f <v, [I/*, 1
α=0 α=l

3 3

= — Σ <Λ Uβy(μβ, [£7fc, I7α]>μα = — Σ

l/p], l/fc) = </Λ [14,

where B is the Killing form, we have

- Σ (ad Uk)v ® \Uk, X] = Σ
)t=4 α,^=

= Σ
α,^ = l

Hence -ad(Σf=4l4
2)(v® X) = ΐΣα=ι <v, Uayμ*®X + 2&(v®X) +

These show that άb + δd = (- 1/0

2 + C) ® I + (1/2)7 - &. Therefore

Let K be the set of all equivalence classes of irreducible, finite dimensional
unitary representations of K. Decompose the induced representations:

Ω°(mP) = Σ θ Wλ°, Ω1(mP)=Σ®Wλ

1 and Ω2(mP) = Σ Φ W?.
A e X λeK λeK

to X-primary components. Here /Ucomponent Wf of ί2p(mp) is precisely the

subspace under which K transforms according to the irreducible representation

λeK and by the notation £A 0 Wf we means that the algebraic sum £A ^7
is direct and dense in Ωp(mP) with respect to the Frechet <ί topology (cf.
[6], pp. 553, Theorem 3.5(iii)). Each primary component is finite dimensional
and has an indefinite, nondegenerate inner product induced from ( , ) and
distinct components are mutually orthogonal with respect to ( , ). We see
that homogeneous differential operators d and δd + 3F are continuous and

W? -̂  wλ ^ Wϊ, δd + ̂ : W{ -> W{.
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Hence we get a decomposition of locally convex spaces:

Ωl(mP)/lm d = £ 0 Wλ

l/lm d Π W£.
λeK

We shall determine the nullity Nλ on each Wχ i.e.

Nλ = άimR Ker(<5d + ^\Wλ

l/lm d Π

Then the whole nullity N is the sum of Nλ if it is finite: N = ^λe^Nλ. From
lemma 4.1 we know that δd and 5 = dδ + δd + OF are the same scalar opera-
tors on A-primary component, i.e.

δd = c(λ)I on JFλ° and S = c(λ)I on W/.

Here the scalar constant c(λ) is evaluated below. Put Kerλ δ = Ker δ Π W/
and ImA d = Im dΠ W£. Then we have

LEMMA 4.2. (1) // c(Λ) ̂  0 then W£ = KerΛ δ 0 Imλ d (orthogonal direct
sum) and the nullity Nλ = 0. (2) // c(λ) = 0 then Imλ d c Kerλ <5 and JVλ >
dim* W/ - 2 dim* P °̂. (3) // c(λ) = 0 and furthermore the map d: W? -> Wλ

l

is ίnjective, then Nλ = dim* W£ — 2 dim* W®.

PROOF. Wχ is a finite dimensional complex vector space equipped with
a nondegenerate Hermitian inner product ( , ). With respect to ( , ) we
see that

KerA δ = (Imλ d)1 and dim Wχ = dim Kerλ δ + dim Imλ d.

For the claim (1), suppose that β e KerA δ Π ImA d. Then Sβ = dδβ +
(δd + ^)β = 0 since δd + & = 0 on Im d. On the other hand Sβ = c(λ)β
and c(Λ,) 7^ 0. Hence β = 0. So KerA (5 Π Imλ d = 0. By dimension counting
we know that

W£ = Kerλ δ 0 Imλ d (orthogonal direct sum).

Let β e Wf\Im d and ((5d + ^)β = 0. Then j? is decomposed as β = & +
j82 (ft e KerA δ, ft, e Imλ d). We have 0 = (δd + J^j? = (£d + J^)ft = SjSi =
c(/l)ft. Hence ft = 0: a contradiction.

For the claim (2), let c(λ) = 0. Then we know that δd = 0 on W? and
hence Imλ d c KerΛ (5. We know that if j5 € W/ then

Q = Sβ = dδβ + (δd + ^)ft

Hence, that β e Kerλ ^ implies that (δd + J^)jS = 0. Thus we know that
Nλ > dim* Kerλ δ — dim* ImA d, dim* W® > dim* Imλ d and dim* W/ =
dim* KerA δ + dim* ImA d. From these we obtain that Nλ > dim* Wχ —
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For (3), we know that βeKeτλδ if and only if (δd
since d is injective. Hence that Nλ = dim* KerA δ — dimR Imλ d, dim* Wλ =
dimR lmλ d and dim* W£ = dim* KerA δ + dimR lmλ d. These imply that
Nλ = dimR W£ - 2 dim* Wj>. D

To decompose the induced representation we study irreducible representa-
tions of K = S(U2 x U2) and H = SU} (cf. [12] and [13] 4.6.12 for exam-
ple). We realize both groups as

= S(U2x U2) = & 6 l / 2 , d e t 0 Λ = l and

H = SUf =

'
h 0

0 h
heU2,dQth = ±1

Both representations are constructed from irreducible representations of SU2.
Let (ππ, Vn) be the irreducible unitary representation of SU2 of dimension
n + 1, (n > 0). Then we know that the Casimir element Ω = -(ul + u2 + ιιf )/8
of SU2 acts on Fw as the scalar operator: πn(Ω) = n(n + 2)/8. Let Z0 = exp /?Z

Z = ί 1 1 be the identity component of the center of K. Then we

know that K = Z0(SU2 x SU2). Equivalence classes K of irreducible unitary
representations of K are parametrized by

K = {λ = (fc, /, m) 6 Z x N x N\k - (I + m) e 2Z),

where Z denotes the set of integers and N denotes the set of nonnegative
integers. The representation (π(λ), V(λ)) = (π(fe, /, m), K(fc, /, m)) corresponding
to λ = (fe, /, m) is determined by the following three conditions:

V(k, /, m) = Vl ® Km. (4.8)

π(fe, /, m)|St/2 x Sl/2 = πι Ξπm i.e. for gf, h e SU2,

π(/c, /, m) ) = πι (flf) ® πm(Λ) on ^ (x) Km. (4.9)
\° h/

π(/c, /, m)|Z0 are scalar operators with the differential

dπ(k9l9m)(Z) = (ik)L (4.10)

Hence for λ = (fc, l,m)e K we get

1lo
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dπ(λ)(C) =—{/(/ + 2) + m(m + 2)}.
O

Thus by lemma 4.1 we have the value of c(λ):

LEMMA 4.3. c(λ) = ̂  - I{1(1 + 2) + m(m + 2)} + 1
16 o 2

On the other hand H has two connected components: H = Sl/ί = SU2 U

If p is an irreducible unitary representation of H its restriction
0 ί y

to the identity component p\SU2 is also irreducible, hence coincides with

some πn. The value of ρ( . ) which is a scalar by Schur's lemma is
\ /

sufficient to determine the representation p. Equivalence classes H of irreduc-
ible unitary representations of H are

H = {«, Ol« 6 N} U {(π~, V-)\n € N}.

Here the representation (π±, V^) is determined by the following:

V* = Vn (4.11)

= π. (4.12)

0\ Γ±/ i f « e 2 Z
0 i/ (±ι7 i f n e 2 Z + l .

The inclusion map H^K is /II-M,, . ). Thus the restriction of π(fe, /, m)
\0 h/

to H is given by the Clebsch-Gordan formula:

π(k, /, m)\H = (π1 ® πm)± = (π|,_m, + π|Z_m |+2 + + π/ + m_2 + πί+ J±

where the sign ± is determined by (k, /, m);

, il . „».
Here note that = Q Q tf = Q exp(-πZ/2).

LEMMA 4.4. Tfe map d: ί2°(mp)->>ί21(mp) is injectίve.

PROOF. We know that Ker d = Σ 0Ae^ P °̂ Π Ker d. Let PFλ° Π Ker d φ
0 for λ = (k, /, m) and take φ e P^0 Π Ker d, φ ̂  0. We get that UΛφ =

= 0 ( 0 < α < 3 ) by (4.4). Hence
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£5(ad Uk)
2φ = -(l/2)φ. On the other hand we know dπ(λ)(C) = -{1(1 + 2) +

m(m + 2)}/8. Hence we get that /(/ + 2) + m(m + 2) = 4, but there is no such

(/, m) e TV x N. Π

To determine the nullity we have to search for λ = (fc, l,m)eK such that
c(λ) = 0 and to count dimR Wχ — 2 dimR Wζ. Note that as //-representation:

m®5* = sI2(C)®(CZ + sI2(C)) = K2

+<g>(70

+ + ^2+) = V0

++ 2V2

++ Vf.
By the Frobenius reciprocity theorem K(fc, /, m) occurs in Ω1(mP) if and only
if | / — m| = 0, 2, 4, /c is even and 2/ — fe = 0 (mod 4). Among these A's
only two representations /I = (±2, 1, 1) satisfy c(A) = 0. For λ = (±2, 1, 1),
dimΛ V(λ) = 2 dimc V(λ) = 8 and F(Λ,)|// = V0

+ + F2

+. By the Frobenius reci-
procity again we see that each V(λ) occurs 3-times in Ωl(mP) i.e. Wχ = 3V(λ).
We know similarly that W? = V(λ) for λ = (±2,1, 1). By Lemma 4.2(3), we

get Nλ = (3 - 2) x 8 = 8 for λ = (±2, 1,1). Thus the whole nullity N of Θ
is counted to be 2 x 8 = 16. We next show that the index of Θ is infinite.
We know by Lemma 4.1(1) that if c(λ) < 0 then W£βmλ a = Kerλ δ and S =
δd + 2F = c(λ)I on this space. So for each λ e K such that c(λ) < 0 we have
a negative eigenspace of δd + 3F of dimension: dim^ W^βmλ d = dimΛ W£ —
dim j Wζ. It suffices to consider a series λ = (0, /, /), / > 2. Then c(λ) < 0
and dimR W£ - dimR W? = 6(1 + I)2, / > 2. Thus we see that the index of
Θ is infinite.

Finally for the (2, 2)-Riemannian space S2 x S2 we show that the nullity
and the index of self-dual part of the canonical connection are both infinite.

For a technical reason we use a local isomorphism: o4 = o3 x o3 = sιι2 x sιι2.

SU2 x SU2/Z2 > S04

T-xT+/Z2 SO2xS02-

S2 x S2 = SC/2/Γ_ x S(72/Γ+ > SO4/S02 x S02

1 0

έ?-ίί

{±(/,/)}. This local isomorphism is given by

SU2 x SU2 < Sp1 x Sp1 > S04 = SO(H)

where Γ+ = < ta = θ E R > is a maximal torus of SU? and Z, =

ι(^y)^
\ \ — P α/ \—^ y / /

hence,
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where x = α + /?/', y = γ + δj e //, Lx and

by x in H and R(θ) =
sin θ cos θ

S02 x SO2

R(θ -η) 0

0 R(θ + η\

are left and right multiplications

In the Lie algebra level,

su x

X2

-*ι+,

*2~.

-x2 -X3+J3

and hence,

ix 0

0 -i

t_ X t+ • ->• 02 X

ϊy
-ι>

0 -
0

0 -x-y

x + y 0
(4.14)

We give I± an invariant bilinear form h± such

Put K = X_ x K+/Z2, K± = SU2 and H = T_ x T+/Z2. Their Lie algebras
are I = I_ x ϊ+ = sιι2 x su2 and I) = t_ x t+. Then I± = t± + s+ where s± =

0 x2 + i

— x2 + ix3 0
that h±(X, Y)= +(the Killing form) = +4 tτ(XY) for X, 7el+ and give
δ_ x s+ = T0(K/H) the restricted (2, 2)-inner product. Then S2 x S2 = K/H
has the invariant (2,2)-Riemannian metric. And we give the Lie algebra
m = m1 4- m2 of the structure group M0 = SL2(R) x SL2(R) an indefinite inner
product: <ΛΓ, 7> = tτ(XY). We proceed as in the (1, 3)-Riemannian case and
use the notations in (4.3). Let (U?9 U}9 Uf) = (uj<fi9 u2/^β, 113/^/8) be the

orthonormal basis of 1+= su2 such that t^+eϊ+ and Uj~ et_. Then we
define negative of the Casimir element C± of ϊ± by

c± = (t/f)2 + (uf)2 + (uf)2.
Given an H-representation (p, V\ we let Γ^ be the operator:
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and let 1+: s = s_ x s+ ->s+ be the projection. Then we have

LEMMA 4.5. δd = (- C+ + C~) ® / + / ® (Γ+ - Γ~) on Ω°(mP)

S = (-C+ + C") (8) / + / ® CC - Γ~ + 1+ + 2Γ5

+ - 1_ - 2Γ~) on β^ntp).

The set K of equivalence classes of irreducible unitary representations of
K = SU2 x SU2/Z2 is parametrized by

K = {/I = (k, /) 6 TV x 7V|fe + / e 2Z}.

For A = (fe, /) e K, the corresponding representation is given by the exterior
tensor product of two representations of SU2: (π(/c, /), V(k, /)) = (πk\E\πl9 Vk®
VJ. The irreducible unitary representations of an Abelian group H = 71 x
T+/Z2 are all one dimensional and parametrized by

H = {(n, m)εZ x Z\n + me 2Z}.

Let (χn, Cn) be the one dimensional representation of the torus T given
by χn(te) = einθ Then for (n, m) e H, the corresponding representation is
(Ύ r \ — (Ύ fo y Γ 6δ C \ i e y (t t } — pinθpimι\Xn,m> ^n,m) ~ \λn *& Am? *^n ̂  ̂ mΛ 1 c Λn,mU0? Lη) ~ * *

We have Ωp(mP) = Ωp(mp) + Ωp(πip\ We prefer to treat its complexifica-
tion: Ωp(mP)

c = Ωp(mp)c + Ωp(mp)c and decompose Ωp(rrip)c. As H-represen-
tation, (m1)0 = «I2(C) = C0,0 + C2,_2 + C_2>2, (m2)c = C0,0 + C2>2 + C_2 >_2

by (4.14) and sc = s? x βj = (C2>0 + C_2>0) + (C0f2 + C0,_2). Hence
(τn2®s*)c = 2(C2)0 + C0>2 + C_2s0 + C0,_2) + C4,2 + C2Λ + C_4,_2 +
C_2 >_4. We know that F(fe, l)\H = @Π,mCΠ>m where (n, m) runs over |n| < fe,
|m| < / satisfying n = fc, m = 1 (mod 2) and that dim V(k, 1) = (k + /)(/ + 1).
Hence we know that F(/c, /) (k and / are odd) cannot occur in Ωl(rt\p)c. And
we see that F(0, 0) occurs once in ί2°(mp)c but it cannot occur in Ωl(mp)c.
Hence the map d:O0(ntp)c->O1(mp)c is not injective. We estimate the
nullity from below. Put Γ±m = Γ^m. Then Γ+m = χn,m(UΪ)2/% = -m2/8 and
Γ~m = -n2/8. So we get that Γ+ - Γ~ = 0 and (1 + 2Γ5)± = 0. Hence we
have δd = -C+ + C" = c(A)/ on ^A° and S = -C+ + C~ = c(A)/ on ϊ^1

where c(λ) = {-k(k + 2) + /(/ + 2)}/8 for A = (fc, /). Thus c(k, I) = 0 if and
only if fe = /. Hence V(2k,2k) (k > 1) occur in DHmJ)67 and satisfy that
c(2fc, 2/c) = 0. Reciprocity shows that for k > 2, 7(2fc, 2fc) occurs 12-times in
β1(mp)c and 3-times in ί2°(m|)c. Hence by Lemma 4.2(2), we have for k > 2,

the nullity in Wl(2k, 2k) > (12 - 2 x 3) x (2/c + I)2

= 6(2fc + I)2.
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This shows that the nullity of Θ and its self-dual part are infinite. The index
of Θ is checked to be infinite by a similar argument involving Lemma 4.2(1).

The following table summarizes the local form B of canonical connections
or its (anti-) self-dual parts pulled back on 4-dimensional flat spaces, the value

tyJt(B) of their Yang-Mills functionals, their nullities and indices, on these
pseudo-Riemannian spaces S4, S1 x S3 and S2 x S2.

THEOREM.

space

S4

S1 xS3

S2xS2

B

xdx
Tm1111 t , ι 1 21 + |x|2

Im(I + X2)-1 XdX

Im(I + tXX)-lίXdX

<StJt(B)

π2/6

-3π3

8π2

nullity

5

16

infinite

index

0

infinite

infinite
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