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ABSTRACT. A generalized projection pursuit procedure which maximizes nonellipticity

is proposed. Behaviors of the maxima of a generalized moment index are investigated

under elliptically symmetric distributions. An approximation formula of the significant

level is derived. Examples which illustrate the present concepts and results are dis-

cussed. Performances of the maxima of the proposed index under certain interesting

structure are asymptotically evaluated.

0 Introduction

Exploratory projection pursuit aims to explore nonlinear structures of
high-dimensional data through its projection to a low-dimensional sub-
space. A basic component of projection pursuit is its projection index which
is a function of direction to which data is projected and is used to measure
the departure from normality (see Huber (1985)). Let X be a /7-dimensional
random vector and α a /^-dimensional unit vector. When we consider one-
dimensional exploratory projection pursuit, a function 7(α), which measures the
departure of u!X from normality is employed as a projection index, where the
prime stands for the transpose of a matrix. In the two-dimensional case, let
α and β be two unit vectors satisfying oc'β = 0. Then the nonnormality of
(u!X,β'X) is measured by /(α,/?), a function of α and β. Various types of
projection indices were discussed in Huber (1985), as functional satisfying
affine invariance property. Friedman (1987), Jones and Sibson (1987) and
Hall (1989) proposed projection indices based on the orthogonal polynomials.
Unified views of projection indices based on the orthogonal polynomials were
given by Cook, Buja and Cabrera (1993) and Iwasaki (1989). Sun (1993) gave
practical comparisons of Friedman index and Hall index. Friedman index and
Jones and Sibson index (the monent index) have been extended to the case of
two-dimensional projection pursuit, and recent work of Nason (1995) discussed
the moment index for the three-dimensional case. Further, Posse (1995)
proposed a new projection index for the two-dimensional case. Several other
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projection indices have been proposed for various purposes such as smoothing;
projection pursuit regression (PPR, Friedman and Stuetzle (1981)), projection
pursuit density estimation (PPDE, Friedman, Stuetzle and Schroeder (1984)).

We can see from their works that projection pursuit is one of the most powerful
exploratory data analysis procedures and includes some potential interest as a
computer intensive statistical method.

In this paper, we aim to generalize exploratory projection pursuit pro-
cedures. As mentioned in Friedman (1987), when we want to discover

interesting structures, elliptically symmetric structure is the least interesting,
and the framework that normal distribution is the least interesting is only due
to the computational tractability of the projection index. From this point of
view, we construct a projection index which maximizing nonellipticity. There

are several elliptically symmetric structures such as multivariate ί-distribution,
contaminated normal distribution, symmetric Kotz type distribution and
multivariate Pearson type distribution. The proposed pursuit procedure based
on a specified elliptically symmetric structure regards its structure as the least
interesting.

The index prososed in this paper, which is called a generalized moment
index, includes the moment index proposed by Jones and Sibson (1987) as a
special case. The moment index due to Jones and Sibson (1987) is based on
the weighted sum of squares of skewness and kurtosis, which is an approxi-
mation to simultaneously proposed entropy index and is called a summary
statistic for nonlinear structure. From a computational point of view, the
usual or general moment index seems to be attractive since they have simple
functional form. Another projection indices such as Friedman index, entropy
index and Hall index have somewhat more complicated form than the moment
index. Further, not only in computational and descriptive point of view but
also in an inferential point of view, the moment index seems to be tractable.

The inferential theory of exploratory projection pursuit has not been well
established yet. When "nonlinear structures" are discovered by some pro-
jection index 7(α), it is important to know whether these are really structured
or not. Projection pursuit is only a descriptive method unless we establish a

criterion to evaluate these structures. This argument may be found in Miller
(1985), Jones and Sibson (1987) and Friedman (1987). An approach to this
question is to evaluate performances of 7(α) under the least interesting
structure. Let a = maxα E yp-\ 7(α) be the maxima of a projection index 7(α)
from the observed data, where <?p~l is the unit sphere in Rp. If we can

calculate a P value

(α) > a\
J

pobs = P< max 7(α) > a (0.1)
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under the least interesting structure, it is possible to judge whether apparent

nonlinearity is due to just the effect of noise or not. (0.1) is called significance
level in projection pursuit (see Sun (1991)). Under the case that normality is

the least interesting, Sun (1991) derived an approximation formula of (0.1)
when 7(α) is Friedman index. Naito (1996) also derived an approximation
formula of (0.1) under when 7(α) is a higher order version of the moment

index. (0.1) can be evaluated by Monte Carlo methods, however, in this case
they are computationally expensive. Thus deriving an approximation formula
of (0.1) seems to be very useful. In conjunction with this problem, Sun
(1993)'s result for the tail probability of the maxima of Gaussian random field

may be noted. The result was established by using the tube method briefly
discussed in Johansen and Johnstone (1990). Practically, Sun's approximation
formula for Friedman index was derived by using the result. Since this
corresponds to obtaining the distribution of a goodness of fit test statistic under
null hypothesis, in this paper, behaviors of the index under the least interesting
structure will be called evaluating Null Behaviors.

This paper is divided into two parts. Part I of this paper is mainly Null
Behaviors of a generalized moment index. The definition of a generalized
moment index and its asymptotic behaviors under the least interesting structure

(ellipticity) are discussed in Section 1. Using the result of Sun (1993), we will
derive an approximation formula of (0.1) for a generalized moment index in

Section 2. Section 3 gives some examples for elliptically symmetric distri-
butions and the quantities included in the theoretical results established in

Sections 1 and 2. A simple comparison of a generalized moment index with
the usual moment index through real data is given in conjunction with the
efficiency of pursuing nonellipticity. Monte Carlo experiments to check the
accuracy of the approximation formula under some elliptical structures are also
made in Section 3. Section 4 devotes to proofs and related calculations for

Sections 1 and 2.
Part II of this paper is concerned with the behaviors of a generalized

moment index under interesting structure. That is, the performances of the
index when a specified elliptical structure X is the least interesting are

investigated under another elliptical structure X* satisfying certain condi-

tions. We call the behaviours Nonnull Behaviors. In Section 5, asymptotic
results of Nonnull Behaviors will be presented. Under certain conditions, it
will be shown that the proposed index converges weakly to a Gaussian random
field on <?p~l. This result implies that the methods applied to Null Behaviors
can also be applied to Nonnull Behaviors. Proofs and the related calculations
for the results in Section 5 are presented in Section 6.
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Part I Null Behaviors

1 A generalized moment index

1.1 Construction of the index

In this subsection, we construct a generalized moment index as a pro-
jection index. From an inferential point of view, it is important to know the
magnitude of the departure from normality of high-dimensional data in
hand. These may be near from normality, on the other hand, these may be far
away from normality even if we transpose the data. When a data set seems
to be distributed nearly as normal, giving some information about the position
of the data in the family of elliptically symmetric distributions is useful, since
we may deal the data set as a random sample from an elliptically symmetric
distribution. Thus, the projection index should have the property that if a
data set is nearly normal, then it detects some elliptically symmetric distri-
bution, and if it is not, then it detects some nonlinear structure. These
consideration motivates us to construct the index which maximizes non-
ellipticity. Further, as noted in Section 0, some simple functional form is
desirable to the index, since we want to establish the distributional results
simultaneously. From these considerations, we proceed to generalize the
moment index proposed by Jones and Sibson (1987) to maximize nonellipticity.

Let X\,..., XN be N independent observations on X with mean μ and
nonsingular covariance matrix Σ. As usual, before imprementing the pro-
jection pursuit, we make to sphere the data by S~l/2(Xj — X) foτj= 1 , . . . , N,
where X and S are the sample mean vector and the sample covariance matrix,
respectively, and S~1/2 is a square root of S~l. Let

be the fc-th order Hermite polynomial. The moment index proposed by Jones
and Sibson (1987) is defined as

which evaluates nonnormality in terms of up to forth moment (cumulant).
Define that θk = E[Hk(ocfΣ~l/2(X - μ))] for Λ; = 3,4, where the expectation

is taken under the hypothesis that X has an elliptically symmetric distribution
with mean vector μ and covariance matrix Σ. It is easy to see that #3 = 0 and
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where m4 = E[{(X - μ)'Σ~\X - μ)}2]. Let

σ\ = A - VarfotfS-Wfr - X))],

σ2

4=A- Var(H^'S-^(Xλ - Γ))],

where A — Var designates the asymptotic variance which is taken under the

ellipticity hypothesis. A generalized moment index is defined as

If X ~ Jf(μ,Σ\ /?-variate normal distribution with mean μ and covariance
matrix Σ, then 04 = 0 and σ£ = k\ for k = 3, 4 which imply #ΛfT./ = ̂ ,/. So
that we say ^Jt*?, a generalized moment index, throughout this paper. From
the definition of yjt<$, we may see that this index also simultaneously
evaluates nonellipticity via the weighted sum of squares of skewness and

kurtosis.
From an inferential point of view, as noted in Section 0, it is important to

judge whether the apparent structure based on ΉJt,? is real or due to some
sample fluctuation. For this, we evaluate

s = P{ max <yjtS(u) >z\,
Ue^-1 7

pobs = P{ max <yjtS(u) >z, (1.2)
-

where z is the maxima of ^Jί^ for the observed data set. In the following,
we get an approximation formula of (1.2). However, it is difficult to get the

exact formula of (1.2) in finite sample size N. Therefore, we attempt to derive
some asymptotic results for the maxima of ΉJt^ as N tends to infinity. We
proceed asymptotic theory for the maxima of ΉJίJ in the next subsection.

1.2 Asymptotic theory

Throughout this subsection we assume that the distribution of X is

elliptically symmetric with center μ and ellipticity matrix A, that is, X is
distributed as μ + A' Y, where A is a nonsingular p x /7-matrix satisfying
A' A — A and Y is a random vector having spherically symmetric distribu-
tion. Further we assume P(X = μ) = 0. Since the maxima of ΉJtJ is
invariant under affine linear transformations of the data, we may assume

without loss of generality that X is distributed as a spherically symmetric with
E[XX'} = Ip. This implies that £[|AΊ2] = p, where | | stands for the Euclidean
norm. Generally, we define m^ = E[\X\k], for k > 1.
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this subsection, we investigate asymptotic behaviors of the maxima of
under the least interesting structure (ellipticity). For this, asymptotic
for some kind of random fields defined on £fp~λ are needed. Let

~l) be the separable Banach space of R2 valued continuous functions
on yp~l, endowed with the supremum norm. In what follows,

> V( ] means that the distribution of random element VN( ) of
!) converges weakly to the distribution of a random element V( ) of
*). Let us introduce random fields

WW(CL)/GS

^4,Λτ(α)/σ4
Z4)Λr(α)/σ4

Z4)Λr(α)

(1.3)

(1.4)

where

N
- X)),

-

VN^ 1!

From the definition of ^Ji^, we see that

αΆ})2 - 1}].

1̂  σ4

(L5)

We present some asymptotic results in the following. Proofs are all given in
Section 4.

LEMMA 1.1 Let X have a spherically symmetric distribution with unit
covariance matrix such that rag < oo. Then

sup (α)- WN(Λ)\— -> 0

as N ^^ oo.
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From Lemma 1.1, we see that

519

where ^jv(α) converges to zero, as a member of Cι(£fp~1}, in prob-

ability. Therefore, it suffices to investigate the asymptotic performances of
ZΛΓ( ) for our purpose. Note that

for α E Sfp~l . Further, by direct computations, we can see that the covariance
functions of Z^N and Z^N are respectively given as

t?3(α,α) =

( ,_,3(αα) +9 1-

ι;4(α,α) =

-(α'α)4

-72

+ 9

,

for a, ae^"1, where

24w8

, ,_,
(α;α)

(1.6)

-+-

(1.7)
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. + ̂ 4

4m4m6 4/n| m\

6)

Further

£[Z3Λ(α)Z4Λ(δ)] = 0, (1.8)

for α, α e ί^"1. Lemma 1.1 also gives the following formulas for 03 and σ\:

σl=A- Var[H3(a!S-V2(Xι - X))} = 1*3(01, α) = τ3,ι + τ3,2, (1.9)

σ^ - A - Var[H4(<x'S-V2(Xι - X))} = »4(α, α) = τ4,ι + τ4,2 + τ4,3. (1.10)

Then the covariance functions of Z3>Λr and Z^n are given as

c3(α,α) = £[Z3Λ(α)Z3lW(δ)] = »3(α,α)/4 (1.11)

c4(α, α) Ξ £[Z4jΛf(α)Z4)Λr(α)] = »4(α, α)/σ^. (1.12)

THEOREM 1.2 Under the conditions of Lemma 1.1, there exists a zero-
mean Gaussian random field Z(α),α e Sfp~l, with continuous sample paths and
covariance kernel

i(α,α) 0

/or α, αe^"1 JMC/Z

ZN( ) => Z( ).

=> z( ).
From the equations (1.3) and (1.4), we see that

WN(.) = 9WN( ), ZN( ) =

where & = diag{\/στ>, \/a*}. So we get the following result.

COROLLARY 1.3 Under the conditions of Lemma 1.1, there exists a zero-
mean Gaussian random field Z(α) = ^Z(α), α e £fp~l, with continuous sample
paths and covariance kernel

c3(α,ά) 0

0 c4(α,α)



A generalized projection pursuit 521

such that

Therefore
WN( ) =» Z( ).

From the affine invariance property of the maxima of ΉJiJ and the
continuous mapping theorem, we obtain the next theorem.

THEOREM 1 .4 Let X have an elliptically symmetric distribution with mean μ
and covariance matrix Σ such that

E[{(X-μ)'Σ-\X-μ)γ\«x>.

Then
max N<#JIS(<*) =» max |Z(α)|2

α e Sep~l α e 9*-1

as N — > oo, where Z( ) is the Gaussian random field given in Corollary 1.3, and
included in (1.11) and (1.12) is given by

for k = 2,3,4.

We have established an asymptotic result for the maxima of ΦJty in the
above theorem. Here, we note σ% and σ^ included in <§MJ. These values
may be determined, as noted in the equations (1.9) and (1.10), from the
formulas

(1-14)

Practically, it may be considered to use the natural estimators aί\ and σ\ given
by

*t= , ,,- + 9, (1.15)3 2) v ;

105/Mg 180/M4/TZ6

™*L ^L_, (1.16)
3 / . /%\ J 1 / . Λ \ .Z ' v '
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instead of σ\ and σ\, respectively, where

Λ* - jj ΣίΦ ~ Z)'s-\Xj
7=1

for k = 2,3,4. By using these, we may propose another index

N ^\
. 7=1 l

(1.17)

Since W2A: converges almost surely to rri2k for £ — 2,3,4, σ^ and σj converge
almost surely to σ\ and σ%, respectively. This implies that Theorem 1.4 holds
also for <8JtJ*, that is

max N<SJIS*(*)=* max |Z(α)|2 (1.18)
α e &P~λ α e ί̂ 1

as N — > oo.
Further, relating to the approximation formula of (1.2), we consider the

following index

«•»>
where <τ| = max{σ|,σ|} for fc = 3,4. Also for ΉJt^, it holds that

max N<3J(rf(v) ^ max |Z(α)|2 (1.20)
-

as TV — > oo. From (1.20) and the fact that σ\ is alway greater than or equal to
<T£, we see that the maxima of N*3Jί^ has the same limiting distribution as
that of N^Jt,/*, however, its convergence satisfies ΉJt^ < ΉJiJ* in any
N. Monte Carlo experiments in Section 3 show that the accuracy of the
approximation formula derived in Section 2 for ΉJtJ^ is better than the ones
for yj(J and <3JtJ\

In the rest of this Section, we give a representation of the limiting
Gaussian random field. Note that for a fixed α e £fp~l, Z(α) ~ ^Γ(0,/2), the
bivariate standard normal distribution. Let us define a new random field
derived from |Z( )| as

£(*,/?) =/?'Z(α), (1.21)

for α e £fp~l and β = (βι,β2) e y1. It has been shown that Z( ) is a Gaussian
random field and hence |Z( )|2 is a chi-square random field. From Theorem
1 .4, our problem becomes to investigate performances of the maxima of a chi-
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square random field. However, this problem can be reduced to investigate that
of the Gaussian random field by the device

|Z(α)| = max jS'Z(α) = max ξ ( κ , β ) .

An important property of the Gaussian random field £(α,/?) derived from |Z( )|
is that it has a finite Karhunen-Loeve expansion.

PROPOSITION 1.5 The limiting Gaussian random field ξ(ct,β), αeί^"1,
β e c^1, can be represented in the form

v(3) v(l)

v(4) v(2)

(1.22)

where

13,1 =

1 -
2m4

24

144
• + -

2)}
4 '

* lΊ

7VΌ; {-^V/,jt ^ = 1, - - , v(/), / = 1,2,3,4} are independent standard normal random
variables and {£/£ : k = 1 , . . . , v(/), / = 1,2,3,4} are linearly independent surface

harmonics of degree 1(1= 1,2,3,4) respectively, being orthonormal with respect
to the uniform distribution on 5fp~l, where

v(l)=p, v(2)= v(3) =
p(p-l)(p + 4)

and

v(4) =
p(p-l)(p+\)(p

24
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2 Approximation formula

The purpose of this section is to derive an approximation formula of (1.2)
under elliptically symmetric distributions. The fact that the limiting random
field derived from ΉMJ is Gaussian with mean zero and unit variance as
shown in Theorem 1.4 and Proposition 1.5 motivates us to utilize the following
theorem established by Sun (1993).

THEOREM 2.1 (SuN (1993)) Suppose Z(t) is a d-dimensional nonsingular
differentiable Gaussian random field on a bounded d-dimensional set 7, with mean
zero, unit variance and covariance function c(s,i). Under some regularity
conditions for c(s,t), as z —> oo,

PJmaxZ(ί) >

where

=
Jjt

is an incomplete Gamma function and KQ, KΊ are two geometric constants which
can be represented as

dtd, (2.1)

is the determinant of the d x d matrix

no = (̂  }I oSiOtj t IV x

and S(t) is the scalar curvature of the manifold which has V(t) as its metric
tensor.

Let

Since ^Jί^(<y) = <&Jί<f(—at)y its maxima is unchanged if α is restricted to a
semisphere yp~l/2. Then, by the results obtained in Section 1, we get the
weak convergence property

max ^NyjtJvί) =ϊ max
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At first we evaluate the probability (1.2) as follows:

P< max

where £(α,/?) is defined in (1.21) and x = Λ/TVz. The parameter space of the
Gaussian random field £(α,/?) is /^-dimensional. It is possible to reparametrize
{(α,/?)} in terms of t by the following spherical polar coordinate transformation

φ = (^, . . . ,^_,) 6 [0,»r] x x [0,π] = Iφ c Λ^1,

/?=0»lW,/?2W),

p e [0, 2π] Ξ /f ,

t=(φ,φ) = (φι,...,φp_ι,φ)elφ xlφ=l,

where 9» = 0 and φ = 2π represent the same point and

ξ(t)=β'(φ)Z(*(φ)),

for t = (φλ , . . . , φp_γ , φ) E /. Note that £(f) is a nonsingular differentiable

Gaussian random field with £"ίί = 0 and

for t = (φ,φ),s— (φ,φ) e I. We can easily check the regularity conditions
about the covariance function r(s, /) for using Theorem 2. 1 . Especially, the
critical radius of the tube of the manifold constructed from the Karhunen-
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Loeve expansion of ξ(i) is positive since, as shown in Proposition 1.5, its
expansion is finite (see Sun (1993)). Thus we can apply Theorem 2.1 to the

maxima of ξ(t), t e I.
For using Theorem 2.1, it is necessary to get the metric tensor matrix and

two geometric constants concretely. In the following, we only summarize these
quantities (detailed calculations are given in Section 4). Now, by a direct
calculation, the metric tensor matrix is obtained as follows.

I 0 R22(

0 1
=«/'

(2.3)

where

and

r (K\C(β) =
3τ3,ι+τ3,2
—

4τ4,ι+2τ4,2

Straightforward but somewhat lengthy computations yield that the scalar

curvature is

-i

-1 /yYMΛ2Γ
itr w I dφ1 (2.4)

Therefore two geometric constants are given as

1 i n ~ / . x , j l / 2

[
J/

i!/2

P-\dφ (2.5)
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(2.6)

where

and ωp-\ is the surface area of £fp~l given by ωp-\ = 2πp/2/Γ(p/2) and the
expectation Eβ[ ] is taken for β ~ Uniform(^λ), the uniform distribution on £fl .

Since the approximation mentioned above is based on the limiting random
field, we see from (1.18) and (1.20) that similar argument also holds for ΉJiJ*
and yji^ defined by (1.17) and (1.19), respectively. We summarize the
results as follows.

PROPOSITION 2.2 Under the conditions of Theorem 1.4,

P max * (̂«) > z \ K K o Ψ , P ± l +K2JP-λ\ (2.7)
-
,

-1

max ^^J^*(α) > z « ̂ , + K 2 ^ , (2.8)
-

(2-9)

as N ^^ co.

3 Examples and Monte Carlo experiments

In this section we confirm the results in Section 2 through some elliptically
symmetric distributions. Exploratory projection pursuit procedure based on
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is applied to real data in conjunction with showing efficiency of pursuing

nonellipticity. Further, some Monte Cairo experiments related to the approxi-
mation formulas in Proposition 2.2 are discussed.

3.1 Some examples

EXAMPLE 3.1 (Normal distribution). Projection pursuit discussed up to
this point regards normal distribution as the least interesting structure. When
X ~ ̂ (μ, Σ), a /?-variate normal distribution with mean μ and covariance
matrix Σ, since (X — μ)'Σ~l(X — μ) distributed as a chi-square distribution
with p degree of freedom, we have

m4 = E[{(X-μ)'Σ-l(X-μ)}2} =

m6 = E[{(X-μ)'Σ-l(X-μ)γ}=

ms = E[{(X - μ)'Σ-\X - μ)}*} = p(p + 2)(p + 4)(p + 6).

Therefore

04 = 0, <jf = 6, <% = 24,

which have noted in Section 0. Further, the facts that

*3,i = 6> τ4,ι = 24, τ3)2 = τ4,2 = τ4,3 = 0

give

C(β) = 3β2

l+4β2

2 = 4-βl (3.1)

since β\ + β\ = 1. It is well known fact that, for β - Uniform^1), β\ in (3.1)
is distributed as a Beta distribution Beta(l/2,l/2). Therefore we can obtain
the values of Eβ[{C(β)}(p~l}/2] by using the central moments of Beta(l/2, 1/2)
if p is odd. For even p, we can get these by numerical integral. The
expressions of Eβ[ ] in (2.5) and (2.6) are useful because of, especially for large
p, these can also be obtained by Monte Carlo. Table 3.1 tabulates the
geometric constants KQ in (2.5) and KΊ in (2.6) for several dimensions p.

EXAMPLE 3.2 (Contaminated normal distribution). If the random vector
X has the density
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for some vector μ e Rp, some symmetric positive definite matrix A and some

c > 0 we say that X has a contaminated normal distribution and denote it

X ~ CNp(c,μ,A)(Q < ε < 1, see Anderson (1993, p.9)). We have

E[X] = /ι, E[(X - μ)(X - μ}1} = {1 + e(c - \}}A = Σ.

For X ~ CNp(c,μ,A], since (X - μ)Ά~l(X - μ) has the density

we obtain

m4 = p(p + 2) -

+ β(c4-!)}
mg — p\p T ^)\P T **)\P ~Γ υ; —

Therefore

_ _Γ{ l+ε(c 2 - 1)}
^4 = 3 — —-j

{ι+ β ( c_i)}

4τ4,ι H- 2τ4,2 - 240 -̂ -̂  ^ - 288

-h!44
Ί 6 '
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TABLE 3.1: Geometric Constants KQ and
KΊ (Normal Case)

P

3

4

5

6

7

8

9

10

KO

7.0

11.650304

16.5

20.698704

23.566667

24.754117

24.270238

22.407414

*2

-9.4641016

-29.805364

-68.0

-125.07895

-196.2

-271.56853

-339.31429

-388.92865

TABLE 3.2: Geometric Constants KQ and
K2 (Contaminated Normal Case)

P

3

4

5

6

7

8

9

10

6.1537202

9.6281624

12.840656

15.192911

16.339914

16.235653

15.077835

13.201537

-8.177

-23.982534

-51.242143

-88.607571

-131.0358

-171.37926

-202.71231

-220.30817

Similar to Table 3.1, Table 3.2 tabulates the geometric constants KQ and

several dimensions p under the case where ε = 0.5 and c = 9.0.

for

EXAMPLE 3.3 (Symmetric multivariate Pearson Type II distribution). The

random vector X is said to have a symmetric multivariate Pearson Type II

distribution if X has the density

2 , 1 / 2
Γ(m+l)πP/2\Λ\ '

for some vector μ e Rp and some symmetric positive definite matrix

A(meR,m>-\ see Fang et al (1989, p. 89)). We shall denote this
X ~MPIIp(m,μ,A).

As shown in Baringhaus and Henze (1991, Examples 2.8, 3.7),

E[(X-μ)(X-μ)'} =
1

p + 2m + 2

and (X — μ)Ά(X — μ) has a Beta distribution B(p/2,m + 1). Further, we see
for X ~ MPIIp(m,μ,Δ) that

=p(p + 2)
+ 2m + 2

? -f 2m + 4'

2)(/7 + 4)(p 2m + 2)3

(p + 2m + 4)(p + 2m + 6)(p + 2m + 8)'
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Thus direct calculations give

6/4 =
p + 2m + 4

\f^ ' * \ ~* j 1 Q J •* v i Q
"" ^3,2 / _ , /^___ , x \ / „ , / .̂,, i r\ i _ _ι Λ.-J i / i f ' '

240(p + 2m + 2)3

4τ4,ι + 2τ4,2 = '
(/? -f 2w + 4)(p + 2m + 6)(p + 2m + 8)

^ 4-1^

105(/7 + 2m + 2)3

(/? 4- 2m + 4)(/? + 2m -f 6)(p + 2m -f 8)

(p + 2m + 4)2(/7 + 2m + 6)

EXAMPLE 3.4 (Symmetric multivariate Pearson Type VII distribution). If
the random vector X has the density

/(*)=- n λΓ(a-p/ΐ)(nm)p/2\A\l

for some vector μ e Rp and some symmetric positive definite matrix A, we say
that X has a symmetric multivariate Pearson Type VII distribution and we
shall denote it X - MPVIIp(m,μ, A) (a>p/2,m>Q, see Fang et al (1989,
p. 81)). In the case m is a positive integer and a = (p + m)/2, it is multivariate
^-distribution. We have

E[X] = μ, E[(X - μ)(X - μ)1} = 2a ™p _ 2 Δ=Σ(a> p/2 + 1).

Since (X -μ)Ά~l(X - μ) has the density

(Λ , ly" f > Q

V+m) ' ' > "'

1 -p/2tp/2-\
mB(p/2,a-p/2) Vm
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straightforward calculations give

2a-p-2
m4=p(p + 2)

m6=p(p

2a-p-4'

(2a-p-2)2

(2a-p-4)(2a-p-6)'

* (2a-p-4)(2a-p-6)(2a-p-&)'

for a>p/2 + 5. So we get

a Λ^-P'2 i l
ί̂̂ T^Γ1]'

3τ3,ι 4- τ3 2 = -̂ r -p— 77- - 18< > + 9,
(2α— /? — 4)(2a— p — 6) \2a— p — 4)

_2 l5(2a-p-2)2

4τ4,ι + 2τ4ι2 =

3 (2a-p-4)(2a-p-6)

240(2α - /» - 2)3 288(2α - p - 2)3

(2β -p-4)(2a-p- 6)(2a-p - 8) (2a -p -4)2(2a -p - 6)

+ 144J
2a-p-4j '

:α-/7-2)3 180(2α-jp-2)3

(2β -/? - 4)(2a-p- 6)(2a -p - 8) (2a-p- 4)2(2α -/> - 6)

3.2 Lubischew's fleabeetle data

Next we apply exploratory projection pursuit procedure based on ΉJU to
real data. In order to compare ^Ji^ with projection indices discussed in
Jones and Sibson (1987), we adopt Lubischew's fleabeetle data (Lubischew
(1962)). In Jones and Sibson (1987), comparisons of principal component
analysis with one-dimensional projection pursuit based on entropy index were
given by using this data set. For, this data, N = 14 and p = 6. Here, we
compare yjt<$ under the case that normal is the least interesting, which is
equivalent to JtJ, with ^Ji^ under the case that contaminated normal
(CNormal) with ε — 0.5, c = 9.0 is the least interesting. Empirical density plot
of the least normal view and the least contaminated normal view are
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- 4 - 3 - 2 - 1 0 1 2

FIGURE 3.1 (a): The least normal view obtained by

CO

o

o
o

-1.5 -0.5 0.0 0.5 1.0 1.5

FIGURE 3.1 (b): The least contaminated normal view obtained by

respectively shown in Figures 3.1 (a) and 3.1 (b). In Figures 3.1 (a) and (b),
utilized indices are respectively (1.1) with 64 = 0, σ\ = 3! and σ\ = 4! and (1.1)
with 04 = 1.92, σ\ = 23.28 and σ\ = 141.3996. These latter values can be

obtained from Example 3.2. Let ^normal and αcnormα/ be the maximizers of
and yJtJ, respectively. In fact, we get

= (0.093275 1 , 0. 1672886, -0.3639479, 0.0253959, -0.271 5826, 0.8697437)',

= (-0.6229537, 0.2468078, 0.0421696, 0.5716667, 0.01 10745, 0.4714985)'.

The horizontal axes of Figures 3.1 (a) and (b) are αnomjα/ and
respectively. In both Figures, "max" designates the values of the index for

^normal and <xcnormai> The labels A, B and C are corresponding to three different
species (see, Tables 4, 5 and 6 in Lubischew (1962), respectively). Figure 3.1
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CM

O

O

O

- 4 - 3 - 2 - 1 0 1 2

FIGURE 3.2 (a): The least normal view obtained by

oo
o

o
o

-1.5 -0.5 0.0 0.5 1.0 1.5

FIGURE 3.2 (b): The least contaminated normal view obtained by

(b) is splitting species B from other two better than Figure 3.1 (a). This
reveals not only exploratory projection pursuit based on the formalization that

normal is the least interesting is not suffices to provide information of high-
dimensional structure but also the fomalization that elliptical structure is the
least interesting is efficient.

Similarly, Figures 3.2 (a) and (b) show empirical density plot based on *
version index ΉJIJ*, see (1.17). For this data, we get σ\ = 4.409578,
σ\ = 14.26718 from (1.15) and (1.16), so that f version <SJM\ is equal to

In this case,

**
normal
 = (0.1001596, 0.1681235, -0.3655418, 0.0345533, -0.2804055,0.8650205)',

= (-0.6279178, 0.2476047, 0.0545414, 0.5676038, 0.01 10142, 0.4681250)',
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where α*ormα/ and α*wormα/ are the maximizers of JtJ* and ΉJίJ*, respec-
tively. Also from Figures 3.2 (a) and (b), we observe that pursuing non-
ellipticity is useful.

3.3 Monte Carlo experiments

In this subsection, we investigate the accuracy of the approximation
formulas (2.7), (2.8) and (2.9) given in Proposition 2.2 through Monte Carlo
experiments. Let

F(z) = P< max 9J(S(oϊ) > z 1,
Ue^-' J

F*(z) - PJ max 9JfJ*(a) > z j,

= p max <t) > z 1
)

and let

'Nz p - 1(Nz

\2 '

be the value of the approximation formula in Proposition 2.2 for z. To check
the accuracy of A(z), we can only compare A(z) with some simulated values
FM(Z) of F(z) for sample size M. Similarly, we compare A(z) with some
simulated values F^(z) of F*(z) and F\f(z) of F^(z) for the same size M.

Suppose that X^ , . . . , X$ is the ι-th observed data set with sample size N
drawn from some specified elliptically symmetric distribution with mean μ and
nonsingular covariance matrix Σ. Let

Zi= max

be the observed maxima of ^Jί^ based on the i-th data set, for i
1,...,M. The estimate FM(Z) for F(z) is defined as

Since our main interest is the significance level, we forcus on the accuracy
under the case where z is in the tail of the distribution. We shall compare

FM(Z) with A(z) through the closeness of a and A(CLM), where άu = F^(ά) is
the quantile based on the estimate FM( ) The closeness of a and A(&M)
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TABLE 3.3: The accuracy of the approximation formulas (Normal Case)

Normal

p = 3 N = 2W

a

0.15

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

SE

0.01129

0.00948

0.00904

0.00857

0.00806

0.00750

0.00689

0.00619

0.00539

0.00442

0.00314

(̂4)

0.1558130

0.0753916

0.0675008

0.0553127

0.0431159

0.0365530

0.0226535

0.0146721

0.0072111

0.0042940

0.0020497

WM)

0.0850384

0.0459614

0.0406268

0.0350564

0.0275108

0.0191760

0.0139100

0.0104349

0.0061774

0.0037232

0.0011117

A(ά
M
)

0.0573070

0.0174995

0.0091794

0.0066404

0.0041428

0.0019088

0.0008007

0.0002641

0.0000899

0.0000266

0.0000013

p = 3 N = 500

a

0.15

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

SE

0.01129

0.00948

0.00904

0.00857

0.00806

0.00750

0.00689

0.00619

0.00539

0.00442

0.00314

Λ(4)

0.1745950

0.1088540

0.0886893

0.0809810

0.0597809

0.0511417

0.0340495

0.0262558

0.0174575

0.0096322

0.0048497

A(V
M
)

0.1127960

0.0690244

0.0591318

0.0511417

0.0438919

0.0331433

0.0262270

0.0207651

0.0137071

0.0075218

0.0035916

A(a
M
)

0.0934352

0.0357551

0.0260286

0.0220768

0.0161603

0.0115011

0.0060777

0.0032293

0.0018384

0.0005486

0.0000329

p = 3 N = 1000

a

0.15

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

SE

0.01129

0.00948

0.00904

0.00857

0.00806

0.00750

0.00689

0.00619

0.00539

0.00442

0.00314

*(*\i)

0.2229230

0.1476660

0.1299380

0.1188060

0.0922673

0.0684738

0.0500739

0.0414031

0.0257674

0.0181965

0.0106108

A(V
M
)

0.1516680

0.0955310

0.0844527

0.0740134

0.0599869

0.0474915

0.0414031 ,

0.0307235

0.0205957

0.0155692

0.0074991

A(a
M
)

0.1444670

0.0715722

0.0603056

0.0486144

0.0302443

0.0259835

0.0219367

0.0157401

0.0086747

0.0020360

0.0002614
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TABLE 3.4: The accuracy of the approximation formulas (Contaminated

Normal Case)

Contami. Normal ε = 0.5 c = 9.0

p = 3 ΛΓ = 200

a

0.15

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

SE

0.01129

0.00948

0.00904

0.00857

0.00806

0.00750

0.00689

0.00619

0.00539

0.00442

0.00314

Aψ
M
]

0.1718770

0.1018090

0.0867845

0.0726342

0.0630075

0.0483675

0.0373056

0.0285515

0.0181802

0.0095219

0.0031194

A(*
M
]

0.0777164

0.0507668

0.0456378

0.0372194

0.0298417

0.0259224

0.0164407

0.0120531

0.0089631

0.0044727

0.0027096

A(ά
M
)

0.0769616

0.0306819

0.0236476

0.0181558

0.0123612

0.0092919

0.0060513

0.0021956

0.0008374

0.0000534

0.0000011

p = 3 * = 500

a

0.15

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

SE

0.01129

0.00948

0.00904

0.00857

0.00806

0.00750

0.00689

0.00619

0.00539

0.00442

0.00314

(̂4)
0.2060530

0.1101210

0.0981768

0.0787344

0.0646111

0.0552909

0.0457591

0.0341372

0.0260609

0.0143398

0.0065625

WM)

0.1053830

0.0599274

0.0552909

0.0494322

0.0408115

0.0372266

0.0285225

0.0209803

0.0136816

0.0087518

0.0052037

A(a
M
)

0.0974672

0.0371190

0.0315313

0.0264778

0.0180659

0.0107216

0.0070294

0.0038401

0.0026151

0.0003624

0.0000047

p = 3 N = 1000

a

0.15

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

SE

0.01129

0.00948

0.00904

0.00857

0.00806

0.00750

0.00689

0.00619

0.00539

0.00442

0.00314

A(a
]

M
)

0.1972380

0.1072330

0.0890502

0.0749391

0.0704033

0.0587613

0.0522590

0.0402168

0.0314704

0.0199987

0.0114957

WM)

0.1263580

0.0711925

0.0658864

0.0581898

0.0482156

0.0425729

0.0362011

0.0325967

0.0210523

0.0145513

0.0053734

A(ά
M
)

0.1256910

0.0557335

0.0476321

0.0351544

0.0272595

0.0216652

0.0157389

0.0095505

0.0053822

0.0023102

0.0001032
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indicates that A(-) is a good approximation to F. The same procedures are
applied to * and f versions with the notations ά*M and ά^M, respectively. A
rigorous standard error formula associated with A(&M} is hard to
obtain. However, as given in Sun (1991), the standard error of A(άM) is
asymptotically as M — > oo,

SE =

We have done a great amount of simulation using quasi-Newton method
by FORTRAN programming. Tables 3.3 and 3.4 are representative tables.
Table 3.3 is the case where normal distribution is the least interesting. The
values of the geometric constants included in A(-) are figured in Table
3.1. Further, Table 3.4 is the results of simulations in the case where con-
taminated normal distribution (ε = 0.5, c = 9.0) is the least interesting struc-
ture. In our simulation, we use M = 1000. We observe from Table 3.3 that
the convergence of the maxima of ^M^ is so slowly that the limiting
approximation is poor for N = 200,500. However, the maxima of <&JtJ^
converges faster than that of yjtJ and ΉJIJ*, thus limiting approximations
are better in even if N = 500. The trend that the approximation of ΉJίJ^ is
better than that of <$JtJ* and <3JtJ can also be recognized from Table 3.4.
Further, we note that its convergence under contaminated normal is faster than
that under normal.

4 Proofs and related calculations (I)

This section includes proofs and detailed calculations of the results pre-
sented in the previous sections. We need the following result.

LEMMA 4.1 Let X have a spherically symmetric distribution with unit
coυarίance matrix such that m% < oo. Then

sup <•"»• 0

and

sup
αe

N

TV
7=1

as N —* oo.
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PROOF. Direct computation gives

N p

j=\ *,/,«=! I y=ι J

where A} = (Λ}ι,..., Λ^)'. We see from Anderson (1993, p. 7) that

1 £
Nfr

Thus

sup sup - oP(\).
/,"=l

For the second assertion, it suffices to show that, for arbirary q(l <q<p),

p
sup 0.

For this, let fq be a ^-dimensional unit vector such that fq = ( f q \ , . . . ,fqp) =
(δq\,... ,δqp)'9 where δu is Kronecker's symbol. We must show that

sup
7=1

The left hand side of (4.1) can be expressed as

p

0. (4.1)

sup , /, ", V)

k,l,utυ=l

where

1 N

.'.«.«') = iE

Since, by using formulas about the forth moment in Anderson (1993, p. 7),

tN(kJ,u,v) =

for all kj,u,υ,

sup SUP
U,/,«,u=l

which completes the proof.
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PROOF OF LEMMA 1.1. Note that the assertion of Lemma 1.1 follows
provided that

sup
α e y-1

converges to zero in probability for k = 3,4. We only prove the case
k = 4. For this, we identify any pair (a, B) of a vector a = (a\, . . . , ap)

f e Rp

and a real p xp symmetric matrix B= (by] with p+p(p + l)/2-dimensional
vector

(ΛI, . . . , Op, £>n, . . . ,b\p,bιι,. 5*2/75 - 5 */>/>) -

Let λ = (0,7^), the true values of parameters, and let λ = (X,S~ll2), a con-
sistent estimator of λ. Now it follows by one term Taylor expansion of
estimator that

- Z4|Λr(α) - /ι(α) + 72(α

where

_ f 4

7ι(α) = -
I 7=

72(α) = 2(04 + 3)α/{^

73(α) = α'ί^S-1/2 - /,)}(!
I V 7=1

and >Γ = (#*,!?*) satisfying |λ* — A | < | A — λ\. Now it is easy to verify by
Lemma 4.1 and Slutsky's theorem that

sup !/!(«) I -^ 0
α

and that

sup >'**(A} - Λ*))3(A} - α*) - (04 + 3)α
V 7=1

P
0.

The equality

S-1'2 -Ip = -S~l/2(I 4-
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gives that

sup = sup
α e &P-

where

MN = l-Ip - S~l'2(Ip UN = VN(S -

and ιc(l) and κ(p) are the largest and the smallest eigenvalue of

respectively. Since S~1/2 converges to Ip in probability, we get

sup
α 6 Sep-1

0.

Thus

RN,

where RN = RN(&) satisfies

0,

From the fact that

sup
a e sep~l

sup \a!(jNX)xO\ -U 0,
α e y-1

it can be concluded that

sup |/2(α)+/3(α)
α e yf~l

0.

This completes the proof.

PROOF OF THEOREM 1.2. To compute t>(α,α), we can use the first part of

the proof of Theorem 2.1 in Baringhaus and Henze (1991), which is based on

the formula given in Fang et aί (1989, p.72). By using this, straightforward

algebra gives (1.6), (1.7) and (1.8). Note that the metric space (&p~l,\ \)
satisfies the metric entropy condition

rε< oo,
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where, for ε > 0, n(£fp~l,ε) stands for the smallest positive integer m such that
£fp~l can be covered by m subsets each having diameter at most ε with respect
to I |. Putting

for α e .

Z4(α) = (α'JT)4 -

we have

- 1},

and

|Z4(α) - Z4(α)| < 4{|JT|4 + (ft, + 3)|Jif|2}|a - α|,

for α, αe^"1. Therefore, again by putting

.Z4(α)

for α e .S "̂1, we see that

|Z(α) - Z(δ)| ^ [3{|JΓ|3 + \X\} + 4{\X\4 + (Θ4 + 3)\X\2}]\x - α|.

Since wg < oo, the proof is complete (see Araujo and Gine (1980)).

PROOF OF THEOREM 1.4. Let Y = Σ~lf2(X -//), Yj = Σ~l/2(Xj - μ)
(j = 1, . . . ,7V), where Σ~1^2 is a positive definite square root of Σ~l . Let
GMI((x) and w^(a) be the ones as in (1.1) and (1.3), respectively, with Yj
instead of A}. Since Yj is spherical and satisfying

mg = E[\ Y\*} = E[{(X - μ)'Σ~\X - μ)}4} < oo,

Lemme 1.1, Theorem 1.2 and Corollary 1.3 yield that

>M ) =* z( ),

where Z( ) is the Gaussian random field given in Corollary 1.3. Since the
maxima of yjt<$ is affine invariant and the mapping assingning to each R2

valued continuous function on £fp~l the square of its maximum is continuous,
we have

max N9JlS(aί)= max NGMI(a) = max \wN(κ)\2 =» max |Z(α)|2,
' - α e ̂ ~! α e ^p~l

which completes the proof.
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PROOF OF PROPOSITION 1.5. The covariance function of the limiting
Gaussian random field £(α,/?) is

{τs.Kα'α)3 + τ3,2(α'α)}

for αjαe^"1, β,βe£^1, where 13,1,13,2,14,1^4,2 and 14,3 are given in Section
1. First we prove the equality (1.22) in the case of p > 3. Now the powers of
(α'α) can be expressed as

3 = 3C|(α'α) 3C[(α'«)

^ ^

where Cγ

d(t) is the Gegenbauer polynomial of degree d and order γ — (p — 2)/2
(see Stein and Weiss (1971, pp. 143, 149)). These can be obtained from
equations

Cl(t) = 1, C[(ί) = 2yt, Cl(t) = 2v(7 + I)/2 - y,

Cl(t) =y(y+ l)(γ + 2)(y + 3)ί4 - 2y(y 4- l)(y 4- 2)/2 + -y(y + 1).

The addition theorem of the Gegenbauer polynomial gives that

/=!

p-1for α, α 6 ̂  !, where {0,/(«) : / = 1, 2, . . . , v(rf)} are linearly independent
surface harmonics of degree d being orthonormal with respect to the uniform
distribution on £fp~l , and

,,, (p-3 + d)l -

{ '
(p-2)\(d-\)Γ (p-2)\d\
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(see Erdelyi et al. (1953, p.243)5 and Stein and Weiss (1971)). By using the

above equalities, we obtain the expression (1.22).

For p = 2, let C%(t) be the Chebyshev polynomial of degree d. We see

from the relation

ford> 1 (see Erdelyi et al (1953, ρ.184)) that

v(d)

Σ
/=!

And Cg(ί) = 1, C?(/) = t, C°(f) = 2t2 - 1, Cf(ί) - 4f3 - 3ί, Cftf) -
8/4 — 8f2 4- 1 give the expression. This completes the proof.

CALCULATION OF THE METRIC TENSOR MATRIX. The covariance function of

the Gaussian random field ξ(i) is

for t=(φ,φ), s = (φ,φ) e/. By the spherical polar coordinate representation

of α and /?, we see that

where ^zy is Kronecker's symbol. We have

dφkdφl

H-

dφdφ

-0.

(4.3)

(4.4)
s=tdφkdφ

Equations (4.2), (4.3) and (4.4) gives (2.3).

CALCULATION OF THE SCALAR CURVATURE. We give a detailed calculation

of scalar curvature with R(t) as its metric tensor. The inverse matrix R~l(t) of

the metric tensor matrix R(t) = (gij(t)) is written as R~l(t) — (gij(t)). Let
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G\jk(t) be Riemannian curvature tensor and let Gy(t) = Σ*=ι G#*W ^>
curvature tensor (see Sun (1993)). The scalar curvature is defined as

From diagonality of R(t)9 it follows that

Let Φ = {^l5 . . . , ̂ .J and let Ψ = {φ}. In what follow, jeΦ and keΨ

designate tj < ε {φλ, . . . , ̂ _ι) and fc = ,̂ respectively. Using this notation, S(t)
is factorized as

S(t) = SiW

where

Sι(t)= V

keΦJeΦ keΨJeΦ

Σ
keΨJεΨ

Let

By calculating the Christoffel symbols included in Riemannian curvature, we
obtain that

S4(0 - 0. (4.6)

Next we calculate Si,5*2 and ^3. Similar computations yield that S, (f)
(/= 1,2,3) are factorized as

St(i) = {C(β)ΓlSn(t) + {C(β)Γ2Sί2(t), (4.7)

where

= Σ
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We see from easily but somewhat lengthy computations that S\ι(t) =
— (p— !)(/? — 2). Thus we obtain that

Σ SΆ(t) = -(p - !)(/» - 2) + (p - l)ξ~l ̂ ^ (4.8)
i=l ^

and

2. (4.9)

So we get S(t) presented in (2.4) by using the equalities from (4.5) to (4.9).

Part Π Nonnull Behaviors

5 Asymptotic behaviors under interesting structure

5.1 The problem

In the previous sections, we discussed the significance level of a generalized
projection pursuit and derived its approximation formula. These considera-
tions may be interpreted as the problem of investigating null performances of
goodness of fit statistics. In the area of testing statistical hypothesis, it is
important to investigate nonnull performances of test statistics. Relating to
this, we are interested to get the distribution of test statistic under certain
selected alternative and to evaluate its power.

In exploratory projection pursuit, above considerations are correspoding to
evaluating behaviors of projection index under the interesting structure.
However, it is not possible to define the interesting structure because of its
variety. Thus we only deal with the interesting structure such that it is
elliptically symmetric and is not the least interesting. That is, the perfor-
mances of the index for the case that some elliptically symmetric structure X
is the least interesting are investigated under another elliptically symmetric
structure X* satisfying certain conditions. More concretely, main purpose of
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this section is to evaluate

P max (5.1)

under X*, where z is the maxima of yjt<$, which is utilized for the case when
X is the least interesting, based on a random sample drawn from X*.

Similar to (1.2), it is difficult to evaluate (5.1) theoretically in finite N.
Therefore some asymptotic results are needed. We proceed this in the next
subsection.

5.2 Asymptotic consideration

Suppose that the least interesting elliptically symmetric structure is X with
64 so that the corresponding index is (1.1), that is,

k=3

Let X* be another elliptically symmetric distributed random /?-vector with mean
μ* and covariance matrix Σ* such that

θl = E[H4(x'(Σ*Γl/2(X* ~ μ*)] φ 04

and m% = E[{(X* - μ*)' (Σ*)~l (X* - μ*)}4] < oo. In this subsection we discuss
asymptotic behaviors of ΉJIJ under X*. Note again that

[ σ4

(5.2)

for αe^"1, where W^N( ) and W^N( ) are those in (1.4). We use the
following trivial fact without proof.

LEMMA 5.1 Let X have a spherically symmetric distribution with unit
covariance matrix such that m% < oo. Then

sup
α e SfP~l

as N —» oo.
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Let C\(£fp l ) be the separable Banach space of real valued continuous
functions defined on £fp~l , endowed with the supremum norm. Let
X\ , . . . , XN be a random sample of size N drawn from X* not from X. Then
from Lemma 5.1 and (5.2), we see that

where RN = RN(K) converges, as a member of C\(^p~l), to zero in prob-
ability. Let

K) = A- Var[H4(*'S-ll2(Xλ - X))},

which is asymptotic variance taken with respect to the distribution of X*.
It is easy to show that the limiting random field derived from ΉJtJ is also

Gaussian. The result is stated in the following theorem.

THEOREM 5.2 Suppose that X* has an elliptically symmetric distribution
with mean μ* and covariance matrix Σ* such that

and

mΆ = E({(X* -ιt)'(Σ r\X* -μ*)}k] < oo,

for & = 2, 3,4. Then we have

max
^04

where Z4(α),α e &*p~l, is a Gaussian random field with mean zero, unit variance
and covariance function C4(α, α) given in (1.12), for α, αe^"1.

The next representation of Z* is straightforwardly obtained from Propo-
sition 1.5.

PROPOSITION 5.3 The limiting Gaussian random field Z4(α), αe^"1, can
be represented in the form

v(4) v(2)

' k=\ ' k=\
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where

ms

2,A:5 ̂  = 1 5 - j v(2); N^k,k = I , . . . , v(4) are independent standard normal

random variables and {ζ2,k : & = ! , . . . , v(2)}, {£4 ^ : fc = 1, . . . , v(4)} are linearly

independent surface harmonics of degree 2 and 4, respectively, being orthonormal

with respect to the uniform distribution on 6fp~l, where

v(4) =
v(2) = 2)

Note that in above results, both of σ\ and 0J do not depend on α. Let z
be a fixed positive real number. Assume that X* has an elliptically symmetric
distribution with

By arguments similar to the ones in Section 2, we evaluate the probability (5.1)
as follows:

\ max <SJfS(a) > z \ w P\
Ue^'1 J ^

max Z4(α) >
-

where Z4 is the same one as in Theorem 5.2 and

X =

From (5.4), Λ: can be regarded as a point in tail of the distribution of the
maxima of Z4 for large N. The parameter space of the Gaussian random field
Z4 is (p — 1)-dimensional. It is possible to reparametrize α in terms of φ by
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the spherical polar coordinate transformation

* = *(φ)

φ = fa, . . _!) € [0,π] x - x [0,π] = Iφ c Rp

where φp_{ = 0 and φp_λ = π represent the same point. We put Z^(φ) =

Z4(α(^)), for φelφ. We can see that Z4(φ) is a (p - 1) -dimensional non-

singular differentiable Gaussian random field with mean zero, variance 1 and

covariance function c$(φ, φ) = C4(α(^), α(^)), for φ, φ e Iφ. The regularity condi-

tions for c4( , ) given in Sun (1993) can be easily checked. Especially the fact

that Z^( ) has a finite Karhunen-Loeve expansion as in (5.3) guarantees the
critical radius of the tube of the manifold derived from c$(', ) is positive. So

that Theorem 2.1 is also applicable to Z^(φ),φelφ.
By applying Theorem 2.1, we will get an approximation formula of (5.1).

Similar to Section 3, it is necessary to check the accuracy of the approximation

formula, however we only give theoretical results in the following.

Now the covariance function of Z^(φ) is, by (1.12),

C4(φ,φ) = {τ4,ι(αW'α(f))4 + T^αtf/αtf))2 + τ4,3} / (σtf ,

where τ^ 1,14,2 and 14,3 are given in Section 1. The metric tensor matrix is

obtained as the following diagonal matrix:

_ 82c4(φ,φ)

Thus it is easy to see that the scalar curvature is

(see Section 6). By using these, two geometric constants corresponding to (2.1)
and (2.2) can be obtained as

= ωp-ι ί4τ4,ι+2τ4,2V
;' ')/2

, _ (p- l)(p-2)ωp-ι ί4τ4,ι +2τ4,2l /4τ4,ι +2τ4,2\

1 «)2 ί I (̂ :)2 JV v 4/ ^ V ^ 4/ ^

, ,
(5 7)

. (5.8)

We summarize the above results as follow.
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PROPOSITION 5.4 Let z be a fixed positive real number. Suppose that X*
has an elliptically symmetric distribution with mean μ*, covariance matrix Σ* and

such that

mΆ=E[{(X*-μ*)'(Σ*Γ\X'>-μ*}}k\ < oo,

for k = 2, 3,4 and

Then an approximation to (5.1) is that, for large N,

> z * κ>ψ (y ,f ) + *W (y , , (5-9)

where

^2 are given in (5.7) #ra/ (5.8), respectively.

We have obtained an approximation formula of (5.1). Checking the
accuracy of the approximation formula (5.9) is left as the future work.

6 Proofs and related calculations (Π)

This section gives the proofs and related calculations for Section 5.

PROOF of THEOREM 5.2. Note that

\VNσ4 <τ4 \^σ* σ4 σ4

We see from Theorem 1.4 that

4*l

J
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converges weakly to Z4(α), where Z4(<x), α e Sfp~λ is a Gaussian random field

with mean zero, unit variance and covariance function C4(α,α),α, α e 6fp~l,

given in Section 1. Since

σ4

we. obtain weak convergence

σ4

which derive the assertion. This completes the proof.

PROOF OF PROPOSITION 5.3. The proof is similar to that of Proposition 1.5,

thus it is omitted.

CALCULATION OF THE SCALAR CURVATURE. By calculations similar to the

ones in Section 4, we get the metric tensor (5.5)

dφdφ

= |4τ4,1+2τ4)2| U/^γ ^
I K)2 J lέ ΐWJ' 'έΐ

Let

^ =

for & = 1 , . . . , / ? — 1 . In this case, by diagonality of R(φ), S(φ) is easily

obtained. In fact easily but somewhat lengthy algebras yield

ί4τ1+2τ2Γ
1f

From similar calculations given in Section 4 of Naito (1996), the summation in
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the right hand side of (6.1) is equal to -(/?-!)(/?-2). So we get

which is equal to the right hand side of (5.6).
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