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ABSTRACT. The main purpose of the present paper is to study efficient tests for mean

structure in random effects models. We are mainly concerned with a multivariate one-

way classification model with random effects. A simplified test is naturally con-

structed. The test has uniformly higher power than the Wald-type test and the

likelihood ratio test. The idea can be applied to other related models including a

random coefficient growth curve model.

0. Introduction

A multivariate one-way classification model with random effects is given
by

i + eij, i= !,...,«, 7 = !,...,£, (0.1)

where ytj is a /?-component vector of the y-th repeated observation of the i-th
individual, μ is a total mean parameter, bi is a random effect of the i-th
individual, βy is a noise, n is the number of individuals, and k is the number of
repeated observations. Assume that A, 's and £,y's are mutually independent, bi
is normally distributed with mean vector 0 and covariance matrix Γ, and βy is
normally distributed with mean vector 0 and covariance matrix Σ. The
covariance matrix Γ expresses a dispersion of the randomly chosen individ-
uals. We also deal with the case where Σ has an appropriate structure.

Let us give an example. Suppose that there are p types of machines in
a factory. The n workers are randomly chosen. An observation y^ is the
amount of the y'-th product made by the i-th individual using the a-th
machine. Letting y^ • = (ytj\, . . . , }>(//>)', we may use the multivariate one-way
classification model with random effects to analyze the data.

In the above model, a considerable work has been done. The maximum
likelihood estimators were obtained by Anderson et al. [3] and Anderson
[5]. Their asymptotic properties were investigated by Remadi and Amemiya
[21]. The tests for rank of random effects were discussed by Amemiya et al.
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[2], Anderson [6], Kuriki [16], and Schott and Saw [25]. For the unbalanced

case, i.e., when the numbers of repeated observations are not equal, the
maximum likelihood estimators are not obtained as a closed form. Some
estimation procedures were suggested by Amemiya [1]. The tests for rank of
random effects were extended by Anderson and Amemiya [7]. In balanced
multivariate variance components models, Calvin and Dykstra [9] proposed a
computational algorithm of the estimate which is guaranteed to converge to the
restricted maximum likelihood estimators. That method was applied to some
models by Calvin [8] and Calvin and Dykstra [10].

In the present paper we consider testing the linear hypothesis

H : Cμ = 0, (0.2)

against the alternative hypothesis K : Cμ φ 0, where C is a q x p known design
matrix. If we set the (p — 1) x p matrix

1

C =

the null hypothesis is the same as H: μλ = = μp, where μ =

(//!,. . . ,μp)'. On the above example, the equality of qualities of the machines
is tested. Similar testing problems were discussed by Fujisawa [11], Fujisawa

[12], Reinsel [20], Suzukawa [28], Vonesh and Carter [29], and Yokoyama [34]
in random coefficient growth curve models, and by Yokoyama and Fujikoshi
[33] in a parallel profile model with random effects.

We consider the Wald-type test and the likelihood ratio test. Type I
errors of these tests generally depend on nuisance parameters (see Suzukawa

[28]). Therefore we need to evaluate their supremums. If they are obtained,
we can perform the Wald-type test and the likelihood ratio test. When

Σ — σ2/, the supremums can be derived by using the same methods as in
Fujisawa [11], [12]. The results are extended to a more general situation,
which is mentioned in Sections 4 and 8.

In the present paper we suggest the simplified tests which are the Wald-
type test and the likelihood ratio test based on the sample means Jγ's only,
where yt. = ΣJLi yy/k. The test statistics are expressed as a closed form and
their Type I errors are simple. It is shown that the simplified tests have
uniformly higher power than the Wald-type test arid the likelihood ratio
test. For details, see Sections 4 and 8. In Part I, some preliminary results are

presented. The testing problem is reduced to a simple canonical form in
Section 1. In the subsequent sections, we use the canonical form in place of
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the original testing problem. In Parts II and III, the Wald-type test and the

likelihood ratio test are discussed. Each part consists of four sections: Main

results, Examples, Test statistics and their properties, Proofs. In Part IV, the
methods are applied to other related models including a random coefficient
growth curve model.

Part I. Preliminaries

In this part, the original testing problem (0.2) under the model (0.1) is
reduced to a simple canonical form and some preliminary results are presented.

1. Canonical form

Let yt = (yJ1? . . . ,y'ik)' and βi = (e'n, . . . ,e'ik}' . The model (0.1) is expressed

yt = (Ik ® IP)(μ + *ί) + «ί,

as

where 1* = (1, . . . , 1)', ® denotes the Kronecker product, and e, 's are inde-
pendently normally distributed as Λ^(0,4 ®Γ). Let AQ be a kxk

orthogonal matrix whose first column is lk/Vk and let A = AQ (x) Ip. Then,

the orthogonal transformation jc, = A'yt leads to

xn '
xn

xtk 0

Here jc,/s are p x 1 vectors and in particular xn = \fkyt.. Decompose

C = PcQc where PC is a q x q non-singular matrix and Qc is a /? x # matrix

such that β'cβc = Iq Let βo be a pxp orthogonal matrix whose first
^-column is Qc- Then, the null hypothesis H : Cμ = 0 corresponds to

H : θ^ = 0, where θ^ is the first ^-component vector of θ = VkQf

0μ, because

0 = Cμ = PcQ'cμ = PCQ'cQ0Q'0μ = -̂  PC(IqO)θ = -±= Pcθ^.

Let Q = Ik ® βo The orthogonal transformation zt = &Xi(= Q'A'y^ yields
to

zt=

Zίl
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where Zy = O^xy, zn = VkQ^.^b* = VkQ^bj is normally distributed as
N,(0, Ψ), Ψ = kQ'0ΓQQ, e* = QΆ'a is normally distributed as N^(0,4 ® Φ),
and Φ = Q'QΣQQ. It is seen that Zϊ/s are mutually independent, z/i is dis-
tributed as N^(β, J), where Λ = !P + Φ, and Zy(y > 2) is distributed as Np(0, Φ).

Therefore, the above canonical form is expressed as follows:
Zy(i = 1, . . . , nj = 1, . . . , k) are mutually independent,

z/i - N,(0, J), z0 - N,(0, Φ) for; > 2,

where J and Φ are positive definite matrices such that Δ > Φ. We also deal
with the case that Φ has an appropriate structure. The null hypothesis is

H : 0(1) = 0,

against the alternative hypothesis K : 0(1) φ 0.

Let Zi = (zn Zai), Z2 = (zπ Zn2Zi3 ^iifc), and Z = (Zi , Z2). If the
restriction J > Φ is neglected, Zι(i.e. y^s) is useful but Z2 is not useful to test
the null hypothesis H : 0(1) = 0 because Z2 has no information about θ. Due
to its property, the former observations may be characterized as the main
information and the latter observations as the additional information.

We use the following notations: For any vector φ, φ^ denotes the first
^-component vector of φ. For any matrix K, we consider a partition

K = (J^ )ι,y=ι,2 such *at 1̂1 *s the fifst 0 x ^ submatrix of K. We denote by
Fq,n-q a random variate according to F-distribution with q and n — q degrees of
freedom.

2. Some properties of likelihood

The likelihood of Z is

(2.1)

where
ι n k

~ ̂ )'' K = _ n Σ Σ

to
maximized with respect to θ is given by

Λ n

n Σ^1 - _
1=1 ι=l ΛvΛ ^ ι=l 7=2

The maximum likelihood estimator of θ is θ = z.ι- The likelihood

(2.2)
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When Φ is unrestricted or Φ is diagonal with equal variance, the maximum
likelihood estimators of A and Φ were obtained by Anderson et al. [3]. In
general, if Φ has a structure, it is difficult to obtain the maximum likelihood
estimators as a closed form. If the restriction A > Φ is neglected, the
maximum likelihood estimator of A is U and the maximum likelihood esti-
mator of Φ is based on V (i.e. Z^}. If Φ is known, we can derive the
following lemma.

LEMMA 2.1 Suppose that Φ is known. Then under the restriction A >Φ the
function h(A,Φ) is maximized at

~A = ΦII2QGDGQ'GΦ
II\

where G = Φ-^2UΦ~^\ G = QGDGQ'G, DG = diag(0ι, . . . ,gp), 0ι > >
gp > 0 are the ordered eigenvalues of G, QG is an orthogonal matrix,
mG = max{0 : ga > 1}, and DG = diag(0ι, . . . ,#WG, 1, . . . , 1). Further, it holds
that

where

sup h(A, Φ) = |GΓΛ/2λ*(G)λ**(Φ),
A>Φ

( P y/2 r / p \ |
Π gλ exp \~(mo+ £ 9a ,

a=mG+l / L V a=mG+l / J

3. Proof

PROOF OF LEMMA 2.1. Let ί2 = Φ~1/2JΦ~1/2. Then we have ί2 > / and

Since Ω > /, we have a decompose ί2 = ββ^Dβββ, where ββ is an orthogonal
matrix, DQ = diag(α>ι, . . . ,ωp},ω\ > > ωp > 1. Here we have

ϊ

βfl^β^βc]
J

logA**(Φ).

First, we consider the case that ga's are all different. Since β'Gββ is the
orthogonal matrix, the expression is maximized at β'Gββ = /, that is, QQ = QG
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(see von Neumann's lemma in Anderson et al. [3]). Then, the resultant

expression is

a=l

 ω

Note that log x + a/x (a > 0, x > 0) is minimized at x = a. Under the
restriction ω\ > > ωp > 1, the above formula is maximized at ωa = ga for

α = I , . . . , / H G , and ωa = 1 for a = mG + 1, . . . ,/?. Therefore, Ω = QGDGQ'G
and 1̂ = Φ1/2ί2Φ1/2 = Φl/2QGϊ)GQ

f

GΦ
1/2. Also, by simple calculations, we can

show (2.3). For the case that some of ga's are equal, the similar arguments

can be performed. Π

Part Π. Wald-type test

In this part, the Wald-type test based on original information is compared

with the Wald-type test based on the main information only, say the simplified

test.

4. Main results

Consider the Wald-type test statistic denoted by W . Its Type I error, that

is, PH(W > c) generally depends on nuisance parameters. Then we need to
evaluate its supremum, in other words, sup# PH(W > c). If it is known, the
Wald-type test with significance level α has the reject region {W > ca} such

that sup#P#(W > CΛ) = α.
When Φ = σ2! (i.e. Σ — σ2/), the supremum of Type I error can be

derived by using the same method as in Fujisawa [12]. Letting F*)H_q —
[nq/(n - q)]Fq,n-q, we have

THEOREM 4. 1 . Suppose that Φ = σ2/. Then

H

The above result can be extended to a more general structure of Φ,

satisfying the following conditions:
(*W1) the parameter space of Φ has the zero-matrix as a boundary,
(*W2) there exist the maximum likelihood estimators A and Φ,
(*W3) Φ converges in probability to the zero-matrix as Φ tends to the

zero-matrix, more precisely,

lim P(tr[Φ2] > ε) = 0 for any ε > 0.
Φ— >O

Such examples are given in Section 5. Theorem 4.1 is extended as follows.
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THEOREM 4.2 Suppose that Φ has an appropriate structure provided that

(*W1)-(*W3). Then

H

Using the canonical form and noting that Z\ is the main information,

we construct the simplified test which is the Wald-type test based on Z\ (i.e.
y/.'s). If the condition (*W1) is satisfied, the test statistic is expressed as a
closed form (see Section 6.1), given by

W = n^'U^. (4.1)

Its Type I error, that is, PH(W > c) does not depend on nuisance param-
eters. The simplified test with significance level α has the reject region
{w > cα} such that P#(w > CΛ) = α.

THEOREM 4.3 Suppose that Φ has an appropriate structure provided that

(*Wl). Then

The above two test statistics w and W have a relation (see Section 6.3)

w > W. (4.2)

This relation and the above theorems imply the following main theorem which
insists that the simplified test is more efficient than the usual Wald-type test.

THEOREM 4.4 Suppose that Φ has an appropriate structure provided that
(*W1)-(*W3). Letting c* be the upper α point of the variate F* , we have

> cl) = a, sup PH(W > <) - α,
H

and

5. Examples

The various structures will be satisfied with (*PF1) ~ (*W3). In this
section, two examples are given.

EXAMPLE 5.1 The case that Φ = σ2!. The condition (*W1) is sat-
isfied. The maximum likelihood estimators were obtained by Anderson et al.

[3] as follows: Decompose
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where Q\ is an orthogonal matrix, DUl = diag(wn, . . . ,u\p), and u\\ >•••>

u\p > 0 (distinct with probability 1) are the ordered eigenvalues of U. Define

sa = {(k - l)tr[F] + κ1|β+1 + - - - 4- «!,}/(£/> - α),

A/i = diag(wι i , . . . , ι/ιmι , smι , . . . , smι ) .

Then, the maximum likelihood estimators of A and σ2 are

The condition (*W2) is satisfied. It can be proved that σ2 < sp = tr[V]/p

as shown later. Since n(k— l)ir[V]/σ2 has a chi-squared distribution with

n(k — \)p degrees of freedom, Φ = σ2I converges in probability to the zero-

matrix as Φ tends to the zero-matrix (in other words, σ2 tends to zero). The

condition (*W3) is satisfied.

First we prove the above inequality σ2 < sp for the case m\ —p. Since

σ2 — sp, the inequality is true. Next we consider the case m\ < p. The

definition of m\ follows that u\p < sp. Also,

(k-\)\x[V\+ulp ^ (k-\)psp+spui^p-i < Sp_\ = - - - — — - < — - - t = sp.'* p kp-p+\ kp-p+l y

By induction, it is shown that u\a < sp for a = m\ + 1, . . . ,p. Hence

# _ _(k- l)tr[K] + MI> W I +I + ---- h UIP ^ (k- \)psp + (p - m\)sp _
& — Sm\ — Ί ^ i — Sp

kp — m\ kp — m\

EXAMPLE 5.2. The case that Φ is unrestricted. The condition (*W1) is

satisfied. The maximum likelihood estimators were obtained by Anderson et

al. [3] as follows: Decompose

U = Q2DU2Q'2, V=Q2Q
f

2,

where Q2 is a non-singular matrix, DU2 — diag(w2i, . . . , u2p), and u2\ > - - - >

u2p > 0 (distinct with probability 1) are the ordered eigenvalues of

UV~l. Define

m2 — max{α : u2a > 1},

DU2 = diag(w2ι, - - , u2m2, !,...,!),

DU2 = diag(l, . . . , 1, w2,m2+ι, , u2p).

Then, the maximum likelihood estimators of A and Φ are

A = Q2DU2Q'2, Φ=V~
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The condition (*W2) is satisfied. Note that I>DU2. Therefore, it is seen
that Φ < V. Since n(k-\}V has a Wishart distribution Wp(n(k - 1),Φ),Φ
converges in probability to the zero-matrix as Φ tends to the zero-matrix. The
condition (*W3) is satisfied.

6. Test statistics and their properties

6.1. Wald-type test statistic based on main information

We derive the Wald-type test statistic w based on Z\. Remember that
Zίi's are independently distributed as NP(Θ,A). Let τ be the parameter vector
of Δ and let ξ = (θ'τ1)' . Then the Fisher information matrix is

The condition (*W1) implies that the parameter space of A is positive defi-
nite. So, the maximum likelihood estimators of θ and A are θ = z.\ and
A — U. By using a q x p matrix C* = (/^O), the null hypothesis H : θ^ = 0
can be written as H : C*θ = O. Therefore, the Wald-type test statistic is given

by

nz(l}'u^z(l}. (6.1)

6.2. Wald-type test statistic based on original information

We derive the Wald-type test statistic W based on Z. Remember the
canonical form. Let τ be the vector of the covariance parameters and let
ξ = (θ'τ')'. Then the Fisher information matrix is

4-ι o
-EI ̂ —i (likelihood of Z)

\dξdξ
= fnA~

Λ o
The maximum likelihood estimator of θ is θ = z.\. Let A be the maximum
likelihood estimator of A. Then the Wald-type test statistic is

W = (Cj)'[C*(nA-lΓlCίΓ(C*Θ) = n z A . (6.2)

6.3. Their properties

First we demonstrate some properties of A. The condition (*W2) admits
that Φ is given. Remember the function h(A,Φ) defined by (2.2). The
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maximum likelihood estimator A is characterized by

sup h(A,Φ] = h(A,Φ).
Δ>Φ

Let T = Φ~l/2UΦ~l/2 and decompose T = QTDTQ'T, where Qτ is an
orthogonal matrix, Dτ = diag(/ι, . . . , tq), and t\ > •• > tp > 0 are the ordered
eigenvalues of T. As a result of Lemma 2.1, the maximum likelihood esti-
mator A is expressed as

where DT = diag(ίι, . . . , tmτ, !,...,!) and mτ = max{# : ta > 1}. Noting that
DT > DT, we know the relation between A and J7, given by

A = Φ1/2QTDTQ'TΦ
1/2 > Φ1/2QTDTQ'TΦ

1/2 = Φl/2TΦ1'2 = U. (6.3)

From (6.1), (6.2), and (6.3), it follows that

w > W. (6.4)

Next we describe a property of mτ Remember that T = Φ~l/2UΦ~1/2

and nU has a Wishart distribution as Wp(n—\,A), where A — Ψ + Φ. The
condition (*W3) implies that \im^P(tp >!) = !, where s/ = {Ψ > O,
Φ — » O}. Since the case tp > 1 is the same as the case mj = p>

limP(mτ=p) = l. (6.5)
si

Also, when w^ = /?, we see that J = U and w = W. So

l imP(w= ίF) = 1. (6.6)
j/

7. Proofs

PROOF OF THEOREM 4.2. By the virtue of Theorem 4.3 and the inequality
w > W, it holds that

P(̂ %-, >c) = PH(W >c)>ΫH(W> c).

If the supremum of the right-hand term attains the upper bound, the theorem is
proved. Using the properties illustrated in the previous section, we have

H
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= lim PH(W > c,mτ = p)
S0

= lim PH (w > c, niτ — p)
S0

= lim PH(W > c)

The proof is complete. Π

PROOF OF THEOREM 4.3. We know that z/i's are independently distributed
as N^βjΛ). The Wald-type test statistic is the same as Hotelling's T2-
statistic. Its distribution is well-known (see, e.g., Anderson [4]). Π

PROOF OF THEOREM 4.4. The result follows from the above theorems and
the inequality w>W. Π

Part IΠ. Likelihood ratio test

In this part, the likelihood ratio test based on original information is
compared with the likelihood ratio test based on the main information only,
say the simplified test.

8. Main results

Consider the likelihood ratio test statistic denoted by A. Its Type I error,
that is, PH(Λ < c) generally depends on nuisance parameters. Then we need
to evaluate its supremum, in other words, sup# P//(Λ < c). If it is known, the
likelihood ratio test with signeficance level α has the reject region {A < cα} such
that supHPff(Λ < cα) = α.

When Φ = σ2/(i.e. Σ = σ2/), the supremum of Type I error can be de-
rived by using the same method as in Fujisawa [11]. Letting F**n_q =
{\+F**n_q/nΓn/\ we have

THEOREM 8.1 Suppose that Φ = σ2L Then

supPH(Λ<c)=P(F^n_q<c).
If

The above result can be extended to a more general structure of Φ, satisfying
the following conditions:
(*L1) the parameter space of Φ has the zero-matrix as a boundary,
(*L2) there exist the maximum likelihood estimators A and Φ based on Z and

there exists the maximum likelihood estimator Φ based on ZΊ,
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(*L3) Φ converges in probability to the zero-matrix as Φ tends to the zero-
matrix, more precisely,

lim P(tr[Φ2] > β) = 0 for any ε > 0.
Φ— >o

The conditions (*L1)-(*L3) are slightly different from the conditions
(*W1)-(*W3). Such examples are given in Section 9. Theorem 8.1 is
extended as follows.

THEOREM 8.2 Suppose that Φ has an appropriate structure provided that
(*L1)-(*L3). Then

sup PH(A <c) = P(/7 < c).
H

Using the canonical form and noting that Z\ is the main information, we
construct the simplified test which is the likelihood ratio test based on Z\ (i.e.
Jγ's). If the condition (*L1) is satisfied, the test statistic is expressed as a
closed form (see Section 10.1), given by

λ = {l+w/n}~n/2, (8.1)

where w is presented by (4.1). Its Type I error, that is, P#(Λ < c) does not
depend on nuisance parameters. The simplified test with significance level α
has the reject region {λ < cα} such that P#(Λ < CΛ) = α.

THEOREM 8.3 Suppose that Φ has an appropriate structure provided that
(*L1). Then

PH(λ<c)=P(F**n_q<c).

The above two test statistics λ and A have a relation (see Section 10.3)

λ < A. (8.2)

This relation and the above theorems imply the following main theorem which
insists that the simplified test is more efficient than the usual likelihood ratio
test.

THEOREM 8.4 Suppose that Φ has an appropriate structure provided that
(*L1)-(*L3). Letting c* be the upper α point of the variate F*^n_q and
c** = {1 + cl/n}~n/2, we have

PH(λ < c**) - α, sup PH(A < <*) - α.
H

and

Pκ(λ < C) > PK(Λ < <*).
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From expression (8.1) of A, it is seen that λ is a monotone decreasing

function of w. So, the reject region {λ < c**} is the same as the reject region

{w > c*}. That is, based on Zi, the likelihood ratio test is the same as the

Wald-type test. Therefore, two simplified tests are identical. Also, it is well
known that the simplified test is uniformly most powerful among some

invariant tests based on Z\.

9. Examples

The various structures will be satisfied with (*L1)-(*L3). In fact, it is

shown that the same two examples as in Section 5 satisfy the conditions.

EXAMPLE 9.1. The case that Φ = σ2L The condition (*L1) is sat-

isfied. The maximum likelihood estimators A and σ1 based on Z are obtained

(see Example 5.1). Also, the maximum likelihood estimator of σ2 based on ZΊ

is well-known, given by

σ2 = iτ[V}/p.

The condition (*L2) is satisfied. Since n(k — l)tr[F]/σ2 has a chi-squared

distribution with n(k — \)p degrees of freedom, Φ = σ2I converges in proba-

bility to the zero-matrix as Φ tends to the zero-matrix (in other words, σ2 tends

to zero). The condition (*L3) is satisfied.

EXAMPLE 9.2. The case that Φ is unrestricted. The condition (*L1) is

satisfied. The maximum likelihood estimators A and Φ based on Z are

obtained (see Example 5.2). Also, the maximum likelihood estimator of Φ
based on Z^ is well-known, given by

Φ= V.

The condition (*L2) is satisfied. Since n(k— \)V has a Wishart distribution

Wp(n(k— 1),Φ),Φ converges in probability to the zero-matrix as Φ tends to

the zero-matrix. The condition (*L3) is satisfied.

10. Test statistics and their properties

10.1. Likelihood ratio test statistic based on main information

We derive the likelihood ratio test statistic λ based on Z\. Remember

that z/i's are independently distributed as NP(Θ,A), the null hypothesis is
H : 0(1) = 0, and the alternative hypothesis is K : 0(1) φ 0. The condition

(*L1) implies that the parameter space of A is positive definite. So, the
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maximum likelihood estimators of θ and A are θ = ZΛ and A — U. Hence, the
likelihood ratio test statistic is given by

(10.1)

10.2. Likelihood ratio test statistic based on original information

We investigate the likelihood ratio test statistic A based on Z. Using the
formula (2.1) of the likelihood / and considering its maximization with respect
to θ, the likelihood ratio test statistic is expressed as

where the function h(A,Φ) is defined by (2.2), H\\ = z^z^'9

(10.2)

Let U partition as U = (Uy)ij=l2 and let

S=( 7 °\(UH+HH ° \(f UϋlUn\
\U2iUrf l)\ O U22.J\0 I )

where C/22.ι = U22 - t/2i l/π1 t/i2 If the restriction A > Φ is neglected, the
function hQ(A,Φ) is maximized at A = S and Φ = Φ.

It is difficult to express the numerator of Λ as a closed form. However,
we can construct an upper bound and a lower bound of A. The upper bound
of A is suggested as follows:

sup hQ

The numerator of A is given by

sup

Let R = Φ~1/2ί/Φ~1/2,rι > > rp > 0 be the ordered eigenvalues of R, and
niR = max{0 : ra > 1}. By the virtue of Lemma 2.1, it is seen that the
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denominator of A is

sup h(A,Φ) = sup h(A,Φ)
A>Φ=Φ Δ>Φ

= \R\-*/2lf(R)h *(Φ).

Therefore

exp[-ιφ/2]

I |5| J **(*)

= λ X V,

where v = exp[— np/2]/h*(R). The result can be dedcuced by using the fol-
lowing relations:

- \U\ = |ί/n||ί/22.ι|, |S| = \Un

and

Note that

l}(U^ U12 - Δ^Δl2)Δ^(Uϊΐ Un - ̂ Δu)'\ > 0.

Therefore, from the expression (10.2) of the function ho, we have

ho > ho(A, Φ)

The lower bound of A is suggested as follows:

Let F = Φ~l/2SΦ~l/2

y f\> ••- >fp > 0 be the ordered eigenvalues of F, and
mF = max{α :fa > 1}. Using Lemma 2.1, we can see that the numerator of
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A is

sup A 0(Λ,Φ) = sup A0(J,Φ) - |

and the denominator of A is

sup h(A,Φ) = sup A(4,Φ) = \T\~n/2h*(T)h**(Φ),
4 > φ=φ A > Φ

where T=Φ~l/2Uφ-^2 (defined in Section 6.3). Therefore

JF|J Λ*(Γ)

— λ x v,

where v — h*(F)/h*(T). The result can be deduced by using the following
relations:

IΓHΦI - \U\ = |t/ιι||t/22.ι|, \F\\Φ\ = \S\ = \Un +

and

W2 ( ιi7, j γ/2rmr 2

= r i^ i i i
=λ

10.3. Their properties

In this subsection we concern with basic properties of v = h*(F)/h*(T) and
v = exp[—np/2]/h*(R). The function h*(Ω) is monotone increasing for the
eigenvalues of Ω (see Section 11). Since S>U and F>T, we have v =
h*(F)/h*(T) > 1. Therefore

Λ ^̂  n A ̂  A ̂  ~~Ί ι\ — / -I r\ ^\

By the similar ways as in Section 6.3, it is shown that

lim P(WR =p) = I.
si

Also, when mR =p, it is seen that v = 1. So,

lim P(v =!) = !.
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11. Proofs

PROOF OF "the function h*(Ω) is monotone increasing for the eigenvalues of
Ω". The logarithm of 2/n power of h*(Ω) is given by

p
p(ω)= ^ {\ogωa-ωa + !}-/?,

where ω = (ω\ , . . . , ωp) , ω\ > - - - > ωp > 0 are the ordered eigenvalues
of Ω, and πiQ = max{0 : ωa > I}. So, it is seen that ωa < 1 for a =
Wβ + 1, . . . ,/7. The function κ(x) = log* - x + 1 is monotone increasing and
non-positive on 0 < x < l . Let ω* = (ωj,. .. ,ω*),ω* > ωa for α =!, . . . ,/?,
and Wβ* = max{α : ω* > 1}( > WΩ). Then

p WQ*

P(o>*) - p(ω) = Σ {κ(ω*a) - κ(ωa}} - J κ(ωβ) > 0. Π
a=mΩ*+\ a=mΩ+\

PROOF OF THEOREM 8.2. By the virtue of Theorem 8.3 and the inequality
(10.3), it holds that

P(F**n_q <c)= PH(λ <c)> PH(A <c)> PH(λ x v < c).

If the supremum of the right-hand term attains the upper bound, the theorem is
proved. Using the properties illustrated in the previous section, we have

;_ < c) > sup PH(Λ < c)
* H

> sup(λ xv<c)
H

> lim PH(λ x v < c)
sd

= lim

= lim PH(λ < c)

This completes the proof. Q

PROOF OF THEOREM 8.3. This is a direct consequence from expression (8.1)
of λ and Theorem 4.3. Π
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PROOF OF THEOREM 8.4. This theorem follows from the above theorems

and the inequality λ < A. Π

Part IV. Other related models

The idea established in previous sections can be applied to other related

models. In this part, some results are outlined. The detailed proofs are
omitted since the results are similarly proved.

12. Multivariate nested classification model with random effects

A multivariate nested classification model with random effects is given by

Λife * = r + *? } + */2 + + *&~ L + «M2» fc,

where JZl/2...Zjfc is a /^-component observation vector, μ is a total mean parameter,

A/jfc...,-. is a ramdom eίfect, and e/^.../* is a noise. Assume that A}J^.. I 'S and

e, l f 2...k's are mutually independent, A ^...z is normally distributed with mean
vector 0 and covariance matrix Σj, and eilir..ik is normally distributed with
mean vector 0 and covariance matrix Σ^. We also deal with the case that
Σj(j > 2) has an appropriate structure. We consider testing the linear
hypothesis

H : Cμ = 0,

against the alternative hypothesis K : Cμ ^ 0, where C is a q x p known design

matrix.
The testing problem is reduced to a canonical form: Zy(ί = 1, . . . , Nj,

j — 1 , . . . , K) are mutually independent,

Zii ~ Np(ff, Δ\ Zij ~ N^O, Φj) for j > 2,

where A = Φ\ > ΦΊ > - > Φk > O, and let n — n\ — N\. We also deal with
the case that Φj(j > 2) has an appropriate structure. The null hypothesis

becomes

H : 0(1) = 0,

against the alternative hypothesis K : θ^ ^ 0.

Write Z\ = (zn ZΛI), Z2 = (zu ' ZN22Zn - - ZNkk), and Z = (Z\Z2). If
the restriction A = Φ\>Φ2> ••• > Φk > O is neglected, Z\ is useful but Z2 is
not useful to test the null hypothesis H : θ^ = 0 because Z2 has no information
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about θ. Due to this property, the former observations may be characterized

as the main information and the latter observations as the additional infor-
mation.

We are interested in comparing two Wald-type test statistics. One is
based on Z. The other is based on Zi, say the simplified test. Let W and w
be the corresponding test statistics. If the condition (*W1), stated later, is

satisfied, it is shown that w is expressed as a closed form (W is not always),
given by

where U is the sample covariance matrix of Zίi's. The following theorem
insists that the simplified test is more efficient that the usual Wald-type test.

THEOREM 12.1 Suppose that (*W1) the parameter space of Φ^ has the zero-
matrix as a boundary, (*W2) there exist the maximum likelihood estimators Φj's

based on Z, (* W3) ΦΊ converges in probability to the zero-matrix as ΦΊ tends to
the zero-matrix. Letting c* be the upper α point of the υariate F*^n_q, we have

> c*) - α, sup VH(W > <) = α,
H

and

Similar results hold for comparing two likelihood ratio test statistics. One
is based on Z. The other is based on Zi, say the simplified test. Let A and λ
be the corresponding test statistics. If the condition (*L1), stated later, is
satisfied, it is shown that λ is expressed as a closed form (Λ is not always),
given by

The following theorem insists that the simplified test is more efficient that the
usual likelihood ratio test.

THEOREM 12.2 Suppose that (*L1) the parameter space of ΦΊ has the zero-

matrix as a boundary, (*L2) there exist the maximum likelihood estimators Φj's
based on Z and there exist the maximum likelihood estimators Φj's based on

Z2, (*L3) <ϊ>2 converges in probability to the zero-matrix as ΦΊ tends to the
zero-matrix. Letting c* be the upper α point of the variate F*^n_q and c** =
{l+c*/«}-"/2, we have

PH(λ < O = α, sup PH(A < O = α,
H
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and

Pκ(λ < O > PK(Λ <

Note that the likelihood of Z is

j=2

where N = Σf=1 ty,

Nj

This expression is similar to (2.1). Therefore, the above theorems can be
proved by the same ways as in Parts II and III. It seems that the various
structures will be satisfied with the above conditions. However, such an
example has not been considered yet.

13. Multίvariate one-way classification model with random effects and some

groups

A multivariate one-way classification model with random effects and q
groups is given by

ygij = Pg + b«i + e9V, 0 = 1» » 0> *' = 1, , *0, J = 1, - - , fc,

where ygij is a /7-component vector of the y'-th repeated observation of the i-th
individual of the 0-th group, μg is a total mean parameter of the 0-th group, bgi
is a random effect, egy is a noise, q is the number of groups, ng is the number of
individuals of the g-th group, and k is the number of repeated observa-
tions. Assume that bgi's and egi/s are mutually independent, bgt is normally
distributed with mean vector 0 and covariance matrix Γ, and egij is normally
distributed with mean vector 0 and covariance matrix Σ. We also deal with
the case that Σ has an appropriate structure. We consider testing the general
linear hypothesis

H:Cι<9C2 = 0,

against the alternative hypothesis KrCiβCi^O, where Θ = (μl"-μq), C\
and €2 are c\ x p and q x CΊ known design matrices, respectively.
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The testing problem is reduced to a canonical form: Let Z be the n x r
observation matrix, where n = Σq

g=\ ng and r—pk. Partition

(Zn Zi2 ZB\

Z21 Z22 Z23 I ,

Zsi Z32 Z33 /

and let

and so on, where Z\\ is the £2 x c\ observation matrix, Z(12)(i2) is the q x p
observation matrix. The rows of Z are independent normally distributed with
covariance matrix

where A and Φ are p x p positive definite matrices such that A > Φ, and

where Ξ\\ is a 02 x c\ matrix of mean parameters, Ξ = S"(i2)(i2) is a <ϊ * P
matrix of mean parameters. The null hypothesis becomes

H : Ξn = O,

against the alternative hypothesis K : Ξ\\ φ O.
Let

(ί)'7(S)

where Z(i2j)3 = (Z^ zf ~1)), Z^y) is the n x /> matrix. The likelihood of Z
is

When the restriction A > Φ is neglected, it is seen that Z(i2)(i2) and U (i.e.
Z(\23)(i2)) are useful but F (i.e. Z^ap) is not useful to test the null hyothesis
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H:Ξ\\=O because Z(\2^ has no information about Ξ. Therefore, the
former observations may be characterized as the main information and the
latter observations as the additional information.

We are interested in comparing two Wald-type test statistics. One is

based on Z. The other is based on Z(i23)(i2), say the simplified test. Let W
and w be the corresponding test statistics. If the condition (*W1), stated later,
is satisfied, it is shown that w is expressed as a closed form ( W is not always),
given by

where H\\ = Z'uZ\\/n, U\\ is the first c\ x c\ matrix of U. That is called
Lawley-Hotelling-type test statistic. The following theorem insists that the
simplified test is more efficient that the usual Wald-type test.

THEOREM 13.1 Suppose that (*W1) the parameter space of Φ has the zero-

matrix as a boundary, (*W2) there exist the maximum likelihood estimators A
and Φ based on Z, (*W3) Φ converges in probability to the zero-matrix as Φ
tends to the zero-matrix. Let CΆ be the upper α point of the variate n tr(SΊS'^1)

where S\ and 82 are independently distributed as W C l ( c 2 , I ) and WCl(n — q,I\
respectively. Then we have

> CΛ) = α, sup PH(W > CΛ) = α,
H

and

Similar results hold for comparing two likelihood ratio test statistics. One

is based on Z. The other is based on Z(123)(i2), say the simplified test. Let A
and λ be the corresponding test statistics. If the condition (*L1), stated later,
is satisfied, it is shown that λ is expressed as a closed form (A is not always),
given by

That is called Λ-type test statistic. The following theorem insists that the
simplified test is more efficient that the usual likelihood ratio test.

THEOREM 13.2 Suppose that (*L1) the parameter space of Φ has the zero-
matrix as a boundary, (*L2) there exist the maximum likelihood estimators A and
Φ based on Z and there exists the maximum likelihood estimator Φ based on

Z(i23)35 (*L3) Φ converges in probability to the zero-matrix as Φ tends to the
zero-matrix. Let cα be the lower a point of the variate (|S2|/|5ι H-^l)^2 where
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Si and 82 are independently distributed as WCl(cι,I) and WCl(n — q,I),
respectively. Then we have

Pff (Λ. < c«) = α, sup PH(A < CΛ) = α,
H

and

CΛ) > PK(Λ < CΛ).

The expression of the likelihood is also similar to (2.1). The above

theorems can be proved by the same ways as in Parts II and III. The above
conditions are satisfied for two cases: Φ is unrestricted, Φ = σ2/. It may be
noted that in this model w and λ are not identical.

14. Random coefficient growth curve model

A random coefficient growth curve model is given by

yt = Xβi + έ?z, βt = Θai + ηt, i = 1, . . . , i,

where yi; is a r x 1 observation vector of the /-th individual, X is a r x p design
matrix within individuals, βt is a p x 1 random coefficient vector, βf is a r x I
noise vector, Θ is a p x q matrix of mean parameters, A = (α\ αn)' is a n x q
design matrix between individuals, ηlr is a p x 1 random effect vector, and n is

the number of individuals. Assume that £, 's and jy/s are mutually indepen-
dent, βi is distributed as N(0, σ2/r), and ηt is distributed as N(0,7"). In this
model the variations of the individuals are taken as random effect. We
consider testing the general linear hypothesis

against the alternative hypothesis K : C{ΘC2 ^ O, where C\ and €2 are c\ xp
and q x CΊ known design matrices, respectively.

The testing problem is reduced to a canonical form, which is the almost
same as in Section 13 except that the covariance matrix of each row of Z is

Ω =

and the restriction is Δ > σ2!. After the similar discussions as in Section 13,
we obtain the following results.

We are interested in comparing two Wald-type test statistics. One is

based on Z. The other is based on Z(\23)(i2), saY the simplified test. Let W
and w be the corresponding test statistics. It is shown that w is expressed as a
closed form, given by
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The following theorem insists that the simplified test is more efficient that the
usual Wald-type test.

THEOREM 14.1 Let c^ be the upper α point of the variate n ti^SΊS^"1) where
S\ and 82 are independently distributed as WCλ(c2,I) and WCl(n — q,I),
respectively. Then we have

> CΛ) = α, sup,, PH(W > CΛ) = α,

and

Similar results are obtained for comparing two likelihood ratio test sta-

tistics. One is based on Z. The other is based on Z(123)(i2), say the simplified
test. Let A and λ be the corresponding test statistics. It is shown that λ is
expressed as a closed form (A is not always), given by

The following theorem insists that the simplified test is more efficient that the
usual likelihood ratio test.

THEOREM 14.2 Let cα be the lower α point of the variate (|S2|/|SΊ +
where S\ and 82 are independently distributed as WCl(c2,I) and WCl(n — q,I),
respectively. Then we have

Pπ(λ < CΛ) = α, sup PH(Λ < CΛ) = α,
H

and

Ca).
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