On products of some $\boldsymbol{\beta}$-elements in the homotopy of the $\bmod 3$ Moore spectrum

Yoshiko Arita and Katsumi Shimomura
(Received October 21, 1996)

Abstract

By β-elements, we mean the v_{2}-periodic maps on the sphere spectrum S^{0} or on the $\bmod 3$ Moore spectrum M. For the prime number $p>3$, we can tell many examples of non-trivial products of β-elements, since $\pi_{*}\left(L_{2} S^{0}\right)$ is determined in [23], where L_{2} denotes the Bousfield-Ravenel localization functor. On the other hand we have no idea about $\pi_{*}\left(L_{2} S^{0}\right)$ at the prime 3 , and so the situation is different from the case $p>3$. Here we study products related to β-elements in the homotopy groups $\pi_{*}(M)$ of the $\bmod 3$ Moore spectrum M, using our results [1] on $H^{1} M_{1}^{1}$ which relates to the E_{2}-term of the Adams-Novikov spectral sequence for computing $\pi_{*}(M)$.

1. Introduction

Let $B P$ denote the Brown-Peterson spectrum at a prime number p. Then the coefficient ring $B P_{*}$ of the $B P_{*}$-homology theory is the polynomial algebra $\boldsymbol{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right]$. The Morava K-theory $K(n)_{*}(-)$ is characterized by the coefficient ring $K(n)_{*}=\boldsymbol{Z} / p\left[v_{n}, v_{n}^{-1}\right]$. A spectrum X is of type n if $K(n)_{*}(X) \neq 0$ and $K(n-1)_{*}(X)=0$, and a self-map $f: X \rightarrow X$ of a type n spectrum X is said to be a v_{n}-map if $K(n)_{*}(f) \neq 0$. By the name β-element, we mean an element of the homotopy groups of the $\bmod p$ Moore spectrum M or the sphere spectrum defined by using a v_{2}-map on a type 2 spectrum V. For $p>3$, we take V to be Toda-Smith spectrum $V(1)$ and v_{2}-map is β with $K(2)_{*}(\beta)=v_{2}$ constructed by [24] (cf. [25]). The homotopy β-elements are given by [5], [6], [7], [8], [9], [15], [26]. The non-triviality of β-elements itself is shown by Miller, Ravenel and Wilson [4]. The non-triviality of products of β-elements at the prime >3 is studied in [2], [3] and [22] for the $\bmod p$ Moore spectrum and [10], [11], [16], [17], [18], [19], [20] for the sphere spectrum. In [23], the homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ are determined and render the non-triviality of the products of two β-elements for $p>3$.

At the prime 3, S. Pemmaraju [12] shows the existence of $\beta_{s} \in \pi_{4(3 s+s-1)-2}\left(S^{0}\right)$ for $s \equiv 0,1,2,5,6 \bmod 9$, while $\beta_{s} \in \pi_{(s p+s-1) q-2}\left(S^{0}\right)$ at the prime $p>3$ exists for any $s>0$. In this paper, we assume his results

[^0]including that $\beta_{s}^{\prime} \in \pi_{4(3 s+s-1)-1}(M)$ also exists if $s \equiv 0,1,2,5,6 \bmod 9$. Here M denotes the mod 3 Moore spectrum. Note that the second author shows that β_{s} does not exist in $\pi_{*}\left(S^{0}\right)$ if $s \equiv 4,7,8 \bmod 9$, and further shows the existence of $\beta_{t} \in \pi_{*}\left(L_{2} S^{0}\right)$ and $\beta_{t}^{\prime} \in \pi_{*}\left(L_{2} M\right)$ if $t \equiv 0,1,5 \bmod 9$ [21], where L_{2} denotes the Bousfield-Ravenel localization functor with respect to $v_{2}^{-1} B P$. As is seen in his book [14], Ravenel shows the existence of another type of β elements $\beta_{6 / 3} \in \pi_{82}\left(S^{0}\right)$. This result also indicates the existence of another β-element $\beta_{6 / 3}^{\prime} \in \pi_{83}(M)$. As v_{1}-periodic maps, we have the α-elements. The α-elements α_{s} 's are all seen to be non-trivial elements of $\pi_{4 s-1}\left(S^{0}\right)$ by the existence of the Adams map $\alpha: \Sigma^{4} M \rightarrow M$ such that $B P_{*}(\alpha)=v_{1}$. In this paper we show the following theorems under the assumption of Pemmariaju's results. The first one is on the products with α-elements:

Theorem A. In the homotopy groups $\pi_{*}(M)$ of the mod 3 Moore spectrum M,

$$
\alpha_{s} \beta_{t}^{\prime} \neq 0 \quad \text { if } 3 \nmid s t
$$

We next consider products of β^{\prime}-elements:
Theorem B. In the homotopy groups $\pi_{*}(M)$ of the mod 3 Moore spectrum M,

$$
\beta_{s}^{\prime} \beta_{t}^{\prime} \neq 0 \quad \text { if } 3 \nmid s t
$$

and

$$
\beta_{s}^{\prime} \beta_{6 / 3}^{\prime} \neq 0 \quad \text { if } 3 \nmid s
$$

Since β_{t}^{\prime} exists unless $t \equiv 3,4,7,8 \bmod 9$, these theorems are restated as:
Theorem A^{\prime}. The element $\alpha_{s} \beta_{t}^{\prime}$ for $s, t>0$ is essential in $\pi_{*}(M)$ if $s \not \equiv 0$ $\bmod 3$ and $t \equiv 1,2,5 \bmod 9$.

Theorem B^{\prime}. The element $\beta_{s}^{\prime} \beta_{t}^{\prime}$ for $s, t>0$ is essential in $\pi_{*}(M)$ if $s, t \equiv 1,2,5 \bmod 9$. If $s \equiv 1,2,5 \bmod 9$, then $\beta_{s}^{\prime} \beta_{6 / 3}^{\prime}$ is an essential element of $\pi_{*}(M)$.

These follow from Theorem 3.3, which are the 2nd line phenomena. Now turn to the 3rd line phenomena.

Theorem C. In the homotopy groups $\pi_{*}(M)$ of the mod 3 Moore spectrum M,

$$
\beta_{s}^{\prime} \beta_{t} \neq 0
$$

if $3 \mid(s+t)$ and $3 \nsucc s$, or if $3 \mid(s-t)$ and $3 \mid(s-1)$, and

$$
\beta_{s}^{\prime} \beta_{6 / 3} \neq 0 \quad \text { if } 3 \ngtr s .
$$

This is also restated as:
Theorem C^{\prime}. The element $\beta_{s}^{\prime} \beta_{t}$ is essential in $\pi_{*}(M)$ if $s \equiv 1 \bmod 3$ and $t \equiv 1,2,5 \bmod 9$, or if $s \equiv 2 \bmod 3$ and $t \equiv 1 \bmod 9$. If $s \equiv 1,2,5 \bmod 9$, then $\beta_{s}^{\prime} \beta_{6 / 3}$ is an essential element of $\pi_{*}(M)$.

This result follows from Theorem D below. In fact, Pemmaraju shows in [12] that β_{i} in the E_{2}-term of the Adams-Novikov spectral sequence is a permanent cycle if $i \equiv 0,1,2,5,6^{*} \bmod 9$. Therefore the result of the E_{2}-term implies the result of the homotopy, since nothing killes the products in the spectral sequence by degree reason.

Theorem D. In the E_{2}-term of the Adams-Novikov spectral sequence for computing $\pi_{*}(M)$,

$$
\beta_{s}^{\prime} \beta_{t} \neq 0
$$

if $3 \mid(s+t)$ and $3 \nmid s$, or if $3 \mid(s-t)$ and $3 \mid(s-1)$,

$$
\beta_{s}^{\prime} \beta_{3 t / 3} \neq 0
$$

if $3 \nmid s t$, and

$$
\beta_{s}^{\prime} \beta_{3^{n} t / a_{n}} \neq 0
$$

if $3 \mid(m+2)$ or $27 \mid(m-8)(m+1)$, where $s=3^{k-1} m-3^{n-1}(3 t-1)$ for $k>0$ with $3 \times m$.

Here the integer a_{k} is $4 \cdot 3^{k-1}-1$, and β-elements of the E_{2}-term are defined in the next section. This follows from the main result of [1] immediately.

2. β-elements in the \boldsymbol{E}_{2}-term

Let $B P$ denote the Brown-Peterson spectrum at the prime 3 whose homotopy groups $\pi_{*}(B P)=B P_{*}$ consist of a polynomial algebra $\boldsymbol{Z}_{(3)}\left[v_{1}, v_{2}, \ldots\right]$ over the Hazewinkel generators v_{i} with $\left|v_{i}\right|=2\left(3^{i}-1\right)$. Then $B P_{*}(-)=$ $\pi_{*}(B P \wedge-)$ is a homology theory over the category of spectra. Moreover, the

[^1]pair $\left(B P_{*}, B P_{*}(B P)\right)$ is a Hopf algebroid with structure maps $\eta_{R}=(i \wedge B P)_{*}$, $\eta_{L}=(B P \wedge i)_{*}$ and $\Delta=(B P \wedge i \wedge B P)_{*}$, where $i: S^{0} \rightarrow B P$ denotes the unit map of the ring spectrum $B P$. The unit map also defines the exact couple which yields the Adams-Novikov spectral sequence
$$
E_{2}^{s}(X)=\operatorname{Ext}_{B P_{*}(B P)}^{s}\left(B P_{*}, B P_{*}(X)\right) \Longrightarrow \pi_{*}\left(X \wedge S Z_{(3)}\right)
$$
for a spectrum X and the Moore spectrum $S \boldsymbol{Z}_{(3)}$ with $\pi_{0}\left(S \boldsymbol{Z}_{(3)}\right)=\boldsymbol{Z}_{(3)}$. Here the E_{2}-term is defined as a cohomology of the cobar complex $\left(\Omega^{s}(X), d_{s}\right)=$ $\left(\Omega_{B P \cdot(B P)}^{S} B P_{*}(X), d_{s}\right)$, which is defined by
\[

$$
\begin{gathered}
\Omega^{s}(X)=B P_{*}(X) \otimes_{B P_{*}} B P_{*}(B P) \otimes_{B P_{*}} \cdots \otimes_{B P_{*}} B P_{*}(B P), \\
\left(s \text { copies of } B P_{*}(B P)\right)
\end{gathered}
$$
\]

$$
\begin{aligned}
d_{s}\left(x \otimes \gamma_{1} \otimes \cdots \otimes \gamma_{s}\right) & =\eta_{R}(x) \otimes \gamma_{1} \otimes \cdots \otimes \gamma_{s} \\
& +\sum_{k=1}^{s}(-1)^{k} x \otimes \gamma_{1} \otimes \cdots \otimes \gamma_{k-1} \otimes \Delta\left(\gamma_{k}\right) \otimes \gamma_{k+1} \otimes \cdots \otimes \gamma_{s} \\
& +(-1)^{s+1} x \otimes \gamma_{1} \otimes \cdots \otimes \gamma_{s} \otimes 1,
\end{aligned}
$$

for $x \in B P_{*}(X)$ and $\gamma_{i} \in B P_{*}(B P)$.
First we define the β-elements in the E_{2}-terms $E_{2}^{1}(M)$ and $E_{2}^{2}\left(S^{0}\right)$ at the prime 3 in the same way as those at the prime $p>3$. Here M denotes the $\bmod 3$ Moore spectrum. Recall [4] the elements x_{i} of $v_{2}^{-1} B P_{*}$:

$$
\begin{gathered}
x_{0}=v_{2}, \quad x_{1}=v_{2}^{3}-v_{1}^{3} v_{2}^{-1} v_{3}, \quad x_{2}=x_{1}^{3}-v_{1}^{8} v_{2}^{7}-v_{1}^{11} v_{2}^{3} v_{3} \quad \text { and } \\
x_{n}=x_{n-1}^{3}+v_{1}^{a_{n}-3} v_{2}^{3^{n}-3^{n-1}+1} \quad \text { for } n>2,
\end{gathered}
$$

for the integer a_{n} with $a_{0}=1$ and

$$
a_{n}=4 \cdot 3^{n-1}-1
$$

Now consider the differential $d_{0}=\eta_{R}-\eta_{L}: v_{2}^{-1} B P_{*} \rightarrow v_{2}^{-1} B P_{*}(B P)$, and it is shown [4] that

$$
\begin{align*}
d_{0}\left(x_{n}\right) & \equiv v_{1} t_{1}^{3} & & n=0 \\
& \equiv v_{1}^{3} v_{2}^{2}\left(t_{1}+v_{1}\left(v_{2}^{-1}\left(t_{2}-t_{1}^{4}\right)-\zeta_{2}\right)\right) & & n=1 \tag{2.1}\\
& \equiv-v_{1}^{a_{n}} v_{2}^{2 \cdot 3^{n-1}}\left(t_{1}+v_{1} \zeta_{2}^{3-1}\right) & & n>1
\end{align*}
$$

Here
(2.2) ([4]) ζ_{2} represents a cocycle $v_{2}^{-1} t_{2}+v_{2}^{-3}\left(t_{2}^{3}-t_{1}^{12}\right)-v_{2}^{-4} v_{3} t_{1}^{3}$, which is homologous to $\zeta_{2}^{3^{i}}$ for $i \geq 0$ in $\Omega_{\Gamma}^{1} E(2)_{*} /\left(3, v_{1}\right)$.

Consider the comodules

$$
\begin{aligned}
& N_{0}^{0}=B P_{*}, \\
& N_{1}^{0}=B P_{*} /(3), \\
& N_{0}^{1}=B P_{*} /\left(3^{\infty}\right), \\
& N_{2}^{0}=B P_{*} /\left(3, v_{1}\right), \\
& N_{1}^{1}=B P_{*} /\left(3, v_{1}^{\infty}\right), \\
& N_{0}^{2}=B P_{*} /\left(3^{\infty}, v_{1}^{\infty}\right),
\end{aligned}
$$

and $M_{l}^{k}=v_{k+l}^{-1} N_{l}^{k}$, whose comodule structures are induced from the right unit η_{R}. Then we have the short exact sequences

$$
\begin{gathered}
0 \longrightarrow N_{0}^{0} \xrightarrow{\subset} M_{0}^{0} \longrightarrow N_{0}^{1} \longrightarrow 0, \\
0 \longrightarrow N_{0}^{1} \xrightarrow{\subset} M_{0}^{1} \longrightarrow N_{0}^{2} \longrightarrow 0, \quad \text { and } \\
0 \longrightarrow N_{1}^{0} \xrightarrow{\subset} M_{1}^{0} \longrightarrow N_{1}^{1} \longrightarrow 0,
\end{gathered}
$$

with the associated connecting homomorphisms

$$
\begin{aligned}
& \delta: H^{s} N_{0}^{1} \rightarrow H^{s+1} N_{0}^{0}, \\
& \delta^{\prime}: H^{s} N_{0}^{2} \rightarrow H^{s+1} N_{0}^{1}, \\
& \delta_{1}: H^{s} N_{1}^{1} \rightarrow H^{s+1} N_{1}^{0} .
\end{aligned}
$$

Here we use the abbreviation

$$
H^{s} L=\operatorname{Ext}_{B P_{*}(B P)}^{s}\left(B P_{*}, L\right)
$$

for a comodule L. Note that $H^{s} N_{0}^{0}=E_{2}^{s}\left(S^{0}\right)$ and $H^{s} N_{1}^{0}=E_{2}^{s}(M)$. Since we compute

$$
\begin{equation*}
d_{0}\left(v_{1}^{3 n^{n}}\right) \equiv 3^{n+1} s v_{1}^{3_{s-1}} t_{1} \quad \bmod \left(3^{n+2}\right) \tag{2.3}
\end{equation*}
$$

in $\Omega^{1}\left(S^{0}\right)$ by the formula $\eta_{R}\left(v_{1}\right)=v_{1}+p t_{1}(c f .[14])$, we see that

$$
v_{1}^{3^{n s}} / 3^{k} \in H^{0} N_{0}^{1}
$$

for $n \geq 0, s \geq 0$ and $0<k \leq n+1$. Besides, we see by (2.1) that

$$
x_{n}^{s} / v_{1}^{j} \in H^{0} N_{1}^{1} \quad \text { and } \quad x_{n}^{s} / 3 v_{1}^{j} \in H^{0} N_{0}^{2}
$$

for $n \geq 0, s>0$ and $0<j \leq a_{n}$. Now we can define the α - and β-elements:

$$
\begin{aligned}
\alpha_{3^{n} / k} & =\delta\left(v_{1}^{3^{n} s} / 3^{k}\right) \in H^{1} N_{0}^{0}=E_{2}^{1}\left(S^{0}\right) \\
\beta_{3 n_{s / j}}^{\prime} & =\delta_{1}\left(x_{n}^{s} / v_{1}^{j}\right) \in H^{1} N_{1}^{0}=E_{2}^{1}(M) \\
\beta_{3^{n} / j / j} & =\delta \delta^{\prime}\left(x_{n}^{s} / 3 v_{1}^{j}\right) \in H^{2} N_{0}^{0}=E_{2}^{2}\left(S^{0}\right)
\end{aligned}
$$

We abbreviate $\alpha_{s / 1}, \beta_{s / 1}$ and $\beta_{s / 1}^{\prime}$ by α_{s}, β_{s} and β_{s}^{\prime}, respectively. Then the formula (2.3) yields immediately

$$
\begin{equation*}
\alpha_{3^{n} s / k} \equiv 3^{n-k+1} s v_{1}^{3^{n-1}} h_{10} \quad \bmod \left(3^{n-k+2}\right) \tag{2.4}
\end{equation*}
$$

in $E_{2}^{1}\left(S^{0}\right)$, since h_{10} is represented by t_{1}. Moreover, by definition together with (2.1), a β^{\prime}-element is expressed by

$$
\begin{align*}
\beta_{s}^{\prime} & \equiv s v_{2}^{s-1} h_{11} \quad \bmod \left(3, v_{1}\right), \\
\beta_{3 s / j}^{\prime} & \equiv s v_{1}^{3-j} v_{2}^{3 s-1} h_{10} \quad \bmod \left(3, v_{1}^{4-j}\right), \quad \text { and } \tag{2.5}\\
\beta_{3^{k} / j}^{\prime} & \equiv-s v_{1}^{a_{k}-j} v_{2}^{3^{k-1}(3 s-1)} h_{10} \quad \bmod \left(3, v_{1}^{a_{k}-j+1}\right) \quad \text { for } k>1
\end{align*}
$$

in $E_{2}^{1}(M)$ by [4, Prop. 5.4] and β-elements are represented by the cocycles as follows (cf. [10]):

$$
\begin{align*}
\beta_{s} & \equiv\binom{s}{2} v_{2}^{s-1} \zeta_{2} h_{11}+\binom{s+1}{2} v_{2}^{s-1} b_{0} \quad \bmod \left(3, v_{1}\right), \\
\beta_{3 s / 3} & \equiv s v_{2}^{3 s-3} b_{1} \quad \bmod \left(3, v_{1}\right), \quad \text { and } \tag{2.6}\\
\beta_{3^{k} s / a_{k}} & \equiv-s v_{2}^{3^{k-1}(3 s-1)} h_{10} \zeta \quad \bmod \left(3, v_{1}\right) \quad \text { for } k>1
\end{align*}
$$

in $E_{2}^{2}\left(S^{0}\right)$. Here h_{11} and b_{i} are represented by t_{1}^{3} and $-\left(t_{1}^{2 \cdot 3^{i}} \otimes t_{1}^{3^{i}}+t_{1}^{3^{i}} \otimes t_{1}^{2 \cdot 3^{i}}\right)$, respectively. Moreover, ζ denotes the homology class which is represented by an element whose leading term is ζ_{2}.

We end this section with explaining about the homotopy elements $\beta_{t}^{\prime} \in$ $\pi_{4(3 t+3-1)-1}\left(L_{2} M\right)$. In [21], the existence is shown of $B_{j}: S^{16 j} \rightarrow L_{2} V(1)$ for $j \equiv 0,1,5 \bmod 9$ such that $B P_{*}\left(B_{j}\right)=v_{2}^{j}$. Here $V(1)$ denotes the Toda-Smith spectrum, which is a cofiber of the Adams map $\alpha: \Sigma^{4} M \rightarrow M$. Now define

$$
\beta_{j}^{\prime}=\pi\left(B_{j}\right) \in \pi_{*}\left(L_{2} M\right)
$$

where $\pi: V(1) \rightarrow \Sigma^{5} M$ is the canonical projection. Then the Geometric Boundary Theorem (cf. [14]) shows that the β-elements of the E_{2}-term converge to the same named homotopy elements in the Adams-Novikov spectral sequence.
3. The non-triviality of products in $\boldsymbol{H}^{2} B P_{*} / 3$

We have the exact sequence

$$
H^{1} M_{1}^{0} \rightarrow H^{1} N_{1}^{1} \xrightarrow{\delta_{1}} H^{2} B P_{*} / 3,
$$

in which $H^{1, t} M_{1}^{0}=0$ unless $t=0$ by [4]. Therefore, δ_{1} is monomorphic at $t>0$. Moreover, (2.4) and (2.5) show the equations:

$$
\begin{align*}
\alpha_{3^{n} s / n+1} \beta_{3^{m} t / j}^{\prime} & =\delta_{1}\left(x_{m}^{t} \alpha_{3^{n} s / n+1} / v_{1}^{j}\right) \tag{3.1}\\
& =s \delta_{1}\left(v_{2}^{3^{m} t} h_{10} / v_{1}^{j-3^{n} s+1}\right) \\
\beta_{3^{n} s / k}^{\prime} \beta_{3^{m} / / j}^{\prime} & =\delta_{1}\left(x_{m}^{t} \beta_{3^{n_{s} / k}}^{\prime} / v_{1}^{j}\right) \\
& = \begin{cases}s \delta_{1}\left(v_{2}^{3^{m} t+s-1} h_{11} / v_{1}^{j}+\cdots\right) & n=0, \\
s \delta_{1}\left(v_{2}^{3^{m} t+3 s-1} h_{10} / v_{1}^{j-3+k}+\cdots\right) & n=1, \\
-s \delta_{1}\left(v_{2}^{3^{m} t+3^{n-1}(3 s-1)} h_{10} / v_{1}^{j-a_{n}+k}+\cdots\right) & n>1 .\end{cases}
\end{align*}
$$

Recall [1, Th. 6.1] the structure of $H^{1} M_{1}^{1}$:
(3.2) $\quad H^{1} M_{1}^{1}=A \oplus B$. Here B is the direct sum of cyclic $k(1)_{*}$-modules generated by the elements represented by the cocycles whose leading terms are:

$$
v_{2}^{3^{k}(3 t+1)} h_{10} / v_{1}^{a(k)}, \quad v_{2}^{3^{k}(9 t-1)} h_{10} / v_{1}^{a^{\prime}(k)}, \quad v_{2}^{3 t-1} h_{11} / v_{1}^{2} \quad \text { and } \quad v_{2}^{3^{k} u} \zeta / v_{1}^{a_{k}}
$$

for $k \geq 0$ and $t, u \in \boldsymbol{Z}$ with $3 \nmid u$. Here $k(1)_{*}=\boldsymbol{Z} / 3\left[v_{1}\right]$ and the integers $a(k)$, $a^{\prime}(k)$ and a_{k} are given by $a(0)=2, a^{\prime}(0)=10, a_{0}=1, a(k)=6 \cdot 3^{k-1}+1$, $a^{\prime}(k)=28 \cdot 3^{k-1}$ and $a_{k}=4 \cdot 3^{k-1}-1$ for $k>0$.

These facts show the following
Theorem 3.3. In the E_{2}-term of the Adams-Novikov spectral sequence for computing $\pi_{*}(M)$,

$$
\begin{gathered}
\alpha_{3^{n} / n+1} \beta_{3^{m} t / j}^{\prime} \neq 0 \text { if } 3 \nmid s t \text { and } 3 \nmid t+1 \text { or } 9 \mid t+1 . \\
\beta_{s}^{\prime} \beta_{3^{m} / j}^{\prime} \neq 0 \text { if } 3 \nmid s \text { for } m>0, \text { or if } 3 \nmid s t \text { for } m=0 .
\end{gathered}
$$

Suppose that $m>0$. Then,

$$
\begin{gathered}
\beta_{3 s / k}^{\prime} \beta_{3^{m} t / j}^{\prime} \text { if } j+k>3, \quad 3 \nmid s u \text { and } 3 \nmid u+1 \text { or } \\
9 \mid u+1 \text { for } 3^{l} u=3^{m} t+3 s-1 .
\end{gathered}
$$

Suppose that $m \geq n$. Then,

$$
\begin{gathered}
\beta_{3^{n} / k}^{\prime} \beta_{3^{m} t / j}^{\prime} \text { if } j+k>a_{n}, \quad 3 \nmid s u \text { and } 3 \nmid u+1 \text { or } \\
9 \mid u+1 \text { for } 3^{l} u=3^{m} t+3^{n-1}(3 s-1) .
\end{gathered}
$$

Proof. Consider the localization map $\lambda: H^{1} N_{1}^{1} \rightarrow H^{1} M_{1}^{1}$ induced from the canonical localization map $N_{1}^{1} \rightarrow M_{1}^{1}$. Let x denote the element found in $\delta_{1}(x)$ on the right hand side of (3.1). If we show that $\lambda(x) \neq 0$, then $x \neq 0$, and so is the product of the left hand side of (3.1). The non-triviality of $\lambda(x)$ follows from (3.2), immediately.
q.e.d.
4. The non-triviality of products in $H^{3} B P_{*} / 3$

Consider the short exact sequence

$$
0 \longrightarrow M_{2}^{0} \xrightarrow{\varphi} M_{1}^{1} \xrightarrow{v_{1}} M_{1}^{1} \longrightarrow 0
$$

of comodules, and denote the connecting homomorphism by $\partial: H^{s} M_{1}^{1} \rightarrow$ $H^{s+1} M_{2}^{0}$. Here φ is defined by $\varphi(x)=x / v_{1}$.

Lemma 4.1. If $v_{2}^{s} \beta_{t / j}$ is not in $\operatorname{Im}\left\{\partial: H^{s} M_{1}^{1} \rightarrow H^{s+1} M_{2}^{0}\right\}$, then

$$
\beta_{s}^{\prime} \beta_{t / j} \neq 0 \in E_{2}^{3}(M)
$$

Proof. Consider the diagram

in which both sequences are exact, and λ denotes the localization map used in the proof of Proposition 3.3. It is shown that $H^{2} M_{1}^{0}=0$ in [13] (cf. [14]), and so the map δ_{1} in the diagram is a monomorphism. Since $H^{*} N_{0}^{0}$ acts on $H^{*} L$ for a comodule L naturally,

$$
\beta_{s}^{\prime} \beta_{t / j}=\delta_{1}\left(v_{2}^{s} / v_{1}\right) \beta_{t / j}=\delta_{1}\left(v_{2}^{s} \beta_{t / j} / v_{1}\right)
$$

Therefore, the non-triviality of the element $v_{2}^{s} \beta_{t / j} / v_{1}$ implies the desired nontriviality of the product of the β-elements.

Note that $\lambda\left(v_{2}^{s} \beta_{t / j} / v_{1}\right)=v_{2}^{s} \beta_{t / j} / v_{1}$ in $H^{2} M_{1}^{1}$. Furthermore, $v_{2}^{s} \beta_{t / j} / v_{1}=$ $\varphi_{*}\left(v_{2}^{s} \beta_{t / j}\right)$. Thus, if $v_{2}^{s} \beta_{t / j}$ is not in $\operatorname{Im} \partial$, then $\varphi_{*}\left(v_{2}^{s} \beta_{t / j}\right) \neq 0$ and so $v_{2}^{s} \beta_{t / j} / v_{1} \neq 0$.
q.e.d.

Proof of Theorem D. By the result of [1], we see that $\operatorname{Im} \partial$ is generated by the following elements:

$$
\begin{array}{ll}
v_{2}^{3 t} b_{0} & (t \in \boldsymbol{Z}), \tag{I}\\
v_{2}^{9 t-4} b_{0}+v_{2}^{9 t-4} h_{11} \zeta & (t \in \boldsymbol{Z}),
\end{array}
$$

(II)	$v_{2}^{3^{n+1} t+i(n)} \xi$	$(n>0, t \in \boldsymbol{Z})$,
(III)	$v_{2}^{i(t ; n)} h_{10} \zeta$	$(n>0, t \in \boldsymbol{Z})$,
	$v_{2}^{3^{n-1}(3 u-1)} h_{10} \zeta$	$(n>0, u \in \boldsymbol{Z}-3 \boldsymbol{Z})$,
(IV)	$v_{2}^{3 t-3} b_{1}$	$(t \in \boldsymbol{Z})$,
(V)	$v_{2}^{u} h_{11} \zeta$	$(u \in \boldsymbol{Z}-3 \boldsymbol{Z})$.

Here, integers $i(n)=\frac{1}{2}\left(3^{n}-1\right)$ for $n \geq 0$, and $i^{\prime}(t ; 0)=9 t-4$ and $i^{\prime}(t ; n)=3^{n-1}(9(3 t-1)-1)$. Now Theorem D follows from (2.6) and Lemma 4.1.
q.e.d.

References

[1] Y. Arita and K. Shimomura, The chromatic E_{1}-term $H^{1} M_{1}^{1}$ at the prime 3, Hiroshima Math. J. 26 (1996), 415-431.
[2] H. Inoue, Y. Osakada and K. Shimomura, On some products of β-elements in the homotopy of the Moore spectrum II, Okayama Math. J. 36 (1994), 185-195.
[3] M. Mabuchi and K. Shimomura, On some products of β-elements in the homotopy of the Moore spectrum, Okayama Math. J. 34 (1992), 195-204.
[4] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the AdamsNovikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[5] S. Oka, A new family in the stable homotopy groups of spheres, Hiroshima Math. J. 5 (1975), 87-114.
[6] S. Oka, A new family in the stable homotopy groups of spheres II, Hiroshima Math. J. 6 (1976), 331-342.
[7] S. Oka, Realizing some cyclic $B P_{*}$ modules and applications to stable homotopy of spheres, Hiroshima Math. J. 7 (1977), 427-447.
[8] S. Oka, Small ring spectra and p-rank of the stable homotopy of spheres, Proceedings of the 1982 Northwestern Conference in Homotopy Theory, Contemp. Math. 19, Amer. Math. Soc., (1983), 267-308.
[9] S. Oka, Multiplicative structure of finite ring spectra and stable homotopy of spheres, Proceedings of the Aahus Algebraic Topology Conference 1982, Lecture Notes in Math. 1051, (1984), 418-441.
[10] S. Oka and K. Shimomura, On products of the β-elements in the stable homotopy groups of spheres, Hiroshima Math. J. 12 (1982), 611-626.
[11] R. Otsubo and K. Shimomura, On some products of β-elements in the stable homotopy of L_{2}-local spheres, Kodai Math. J. 18 (1995), 234-241.
[12] S. Pemmaraju, v_{2}-periodic homotopy at the prime three, dissertation at Northwestern Univ..
[13] D. C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), 287-297.
[14] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
[15] H. Sadofsky, Higher p-torsion in the β-family, Proc. of Amer. Math. Soc. 108 (1990), 1063-1071.
[16] K. Shimomura, On the Adams-Novikov spectral sequence and products of β-elements, Hiroshima Math. J. 16 (1986), 209-224.
[17] K. Shimomura, Non-triviality of some products of β-elements in the stable homotopy of spheres, Hiroshima Math. J. 17 (1987), 349-353.
[18] K. Shimomura, Triviality of products of β-elements in the stable homotopy group of spheres, J. Math. Kyoto Univ. 29 (1989), 57-67.
[19] K. Shimomura, On the products $\beta_{s} \beta_{t}$ in the stable homotopy groups of spheres, Hiroshima Math. J. 19 (1989), 347-354.
[20] K. Shimomura, The products $\beta_{s} \beta_{t p / p}$ in the stable homotopy of L_{2}-localized spheres, Hiroshima Math. J. 25 (1995), 487-491.
[21]. K. Shimomura, The homotopy groups of the L_{2}-localized Toda-Smith spectrum $V(1)$ at the prime 3, Trans. Amer. Math. Soc., 349 (1997), 1821-1850.
[22] K. Shimomura and H. Tamura, Non-triviality of some compositions of β-elements in the stable homotopy of the Moore spaces, Hiroshima Math. J. 16 (1986), 121-133.
[23] K. Shimomura and A. Yabe, The homotopy group $\pi_{*}\left(L_{2} S^{0}\right)$, Topology 34 (1995), 261289.
[24] L. Smith, On realizing complex bordism modules, IV, Applications to the stable homotopy groups of spheres, Amer. J. Math. 99 (1971), 418-436.
[25] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53-65.
[26] H. Toda, Algebra of stable homotopy of Z_{p}-spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197-251.

Department of Mathematics,*
Faculty of Science,
Hiroshima University, and
Faculty of Education,**
Tottori University

[^2]
[^0]: 1991 Mathematics Subject Classification. 55Q10, 55Q52, 55 P45.
 Key words and phrases. Homotopy groups, β-elements, Adams-Novikov spectral sequence.

[^1]: *There is a conjecture due to Ravenel that β_{i} exists if and only if $i \equiv 0,1,2,3,5,6 \bmod 9$. The 'only if' part is shown in [21]. In [12, Cor. 1.2], Pemmaraju claimed that the 'if' part is shown, but β_{i} with $i \equiv 3 \bmod 9$ stays still undetermined.

[^2]: *Current address: Shikigaoka Junior High School, Hatsukaichi, Hiroshima, 738
 ** Current address: Department of Mathematics, Faculty of Science, Kochi University

