HIROSHIMA MATH. J.
28 (1998), 139-147

On the union of 1-convex open sets

Makoto ABE
(Received January 28, 1997)

ABSTRACT. A complex space X is 1-convex if it satisfies the conditions that there exists
a locally finite 1-convex open covering of X of order <2, that the dimension of
H'(X,0x) is at most countably infinite and that X is K-separable outside a compact
set.

0. Introduction

It is well-known that the union of two Stein open sets in a complex space
is not necessarily Stein. For example the union of two Stein open sets
{(z1,22) € €?*||z1] < 1,0 < |z3] < 1} and {(z1,22) € €*|0 < |z1| < 1,|z2| < 1} in
€? is not Stein. Tovar [22] proved that if X is a union of two relatively
compact Stein open sets D; and D, in a reduced Stein space S such that
dim H'(X,0x) < +o, then X is also a Stein open set in S (Theorem 3 of
Tovar [22] or Theorem 1.1 of Cho-Shon [4]).

We prove the following theorem which is a generalization of Theorem 3 of
Tovar [22]. It also gives a generalization of Proposition 3.4 of Cho-Shon [4]
on the finite simple chain Stein open covering. In the proof we use the
theorem of Nguyen-Nguyen [20].

Let X be a second countable (not necessarily reduced) complex space. Then
X is l-convex if it satisfies the following three conditions.
i) There exists a locally finite 1-convex open covering of X of order <2.
ii) The dimension of H'(X,0x) is at most countably infinite.
iii) X is K-separable outside a compact set.

We also give a 1-convex version of the theorem of Markoe [16] and Silva
[21] on the union of the monotone increasing sequence of Stein open sets. The
results in this paper were announced in the author’s articles [1, 2].

1. Preliminaries

Throughout this paper all complex spaces are supposed to be second
countable. Let X be a (not necessarily reduced) complex space. We always
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denote by Oy the complex structure sheaf of X and by Ay the nilradical of
Ox. A compact analytic set C in X is said to be the maximal compact analytic
set of X if every nowhere discrete compact analytic set of X is contained in C
and dim, C > 0 for every x € C (cf. Grauert [11, p. 339]). A complex space X
is said to be 1-convex if X is holomorphically convex and contains the maximal
compact analytic set. This definition is equivalent to the usual one (cf.
Nguyen-Nguyen [20] or Coltoiu [5]).

Every closed complex subspace of a 1-convex complex space is 1-convex.
Especially if a complex space X is l-convex, then red X is also 1-convex.
If conversely red X is 1-convex, then X is l1-convex. For the completeness
we give a proof of this fact (Lemma 3 below). Here we remark that there
exists a complex space which are not holomorphically convex and the holomor-
phic reduction of which is holomorphically convex (cf. [6, p. 33]).

LEMMA 1. Let X be a complex space. Assume that red X is 1-convex and
that there exists m > 1 such that Ay’ = 0. Then we have that dim HI(X, %) <
+o00 for every coherent analytic sheaf & on X and for every q > 1.

PrOOF. Let ¢ >1. Since Ny(NLF/NIT'P)=0, the sheaf N]F/
/V}+19 is (Ox/Ax)-coherent for every j >0 by the extension principle [13,
p. 239]. Since red X is l-convex, it holds that dim HY(X, /}%/ N7 %) <
+oo for every j > 0 by Theorem V of Narasimhan [19]. The exact sequence
0 NEF NS - PINT'SF — S| N)F — 0 induces the exact sequence
of cohomology groups --- — HY(X, V3L | NiT'P) - HI(X, S| N P) —
HY(X,¥/N}]F) — ---. Therefore by induction on j it holds that
dim HY(X, ¥/ N} F) < +o0 for every j>1. Since A% =0, it holds that
dim H1(X,¥) < +o0. O

We need the following theorem of Narasimhan (Theorem V of [19]).

LEMMA 2. Let X be a complex space. Then the following three conditions
are equivalent.
1) X is 1-convex.
2) dim HY(X,¥) < +o0 for every coherent analytic sheaf & on X and for every
q=1
3) dim HY(X,.#) < +oo for every coherent ideal ¥ of Ox.

Proor. 1) »2). Let C be the maximal compact analytic set of
X. There exists a strongly pseudoconvex open set D of X with globally
defined boundary such that C <« D cc X. The argument of the proof of
Theorem V of Narasimhan [19, p. 214] is valid for not necessarily reduced
complex space X. Therefore the natural homomorphism HI(X,%) —
HY(D,%) is injective. By theorem I of Narasimhan [19] red D is 1-convex.
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Since D is compact, there exists m > 1 such that #75 =0. By Lemma 1 it
holds that dim HY(X,¥) < dim HY(D,¥) < +o for every g > 1.

2) — 3) — 1). The argument of the proof of Theorem V of Narasimhan
[19, p. 215] is valid for not necessarily reduced complex space X. [

LeMMA 3. Let X be a complex space. If red X is 1-convex, then X is also
1-convex.

Proor. Let C be the maximal compact analytic set of red X. Let
Y’ :red X — Y’ be the Remmert reduction of red X (cf. [13, p. 221]). Take a
Stein open set E; of Y’ such that y/(C) < E; c< Y’. Then D := ¢/~ !(E}) is
a l-convex open set of red X. Since D; is compact, there exists m > 1 such
that #§' =0 on D;. Therefore D; as an open set of X is also 1-convex by
Lemmas 1 and 2. Let (¢,9) : (D1,0p,) — (¥1,0y,) be the Remmert reduction
of (Dy,0p,), where Op, = Ox|p, (cf. [13, p. 221] or Wiegmann [24]). Then
P, :=¢(C) is a finite set of Y; and the induced map D, — C — Y; — P; is
biholomorphic. Let Z be the direct sum of Yy := X — C and Y;. Identifying
such zo € D; — C and z; € Y, — P) that ¢(zp) = z;, we obtain the quotient space
Y of Z. Then Y is a Hausdorff space and the natural projection p: Z — Y
is continuous and open. Let U;:=p(Y;), pi:=py,u :Yi— U; and 0;:=
(pi),(0y,) for i =0,1. The map p; is homeomorphic and (U, 0;) is a complex
space for each i=0,1. The homomorphism ¢ induces the isomorphism
0: O1ly,ny, = Oolyyny,- By the gluing lemma [13, p. 10] there exist a
complex structure sheaf ¢y of Y and C-algebra isomorphisms p; : Oy|y, — 0;
such that §=pyopr! on UpNUi. (pi,p;): (Yi,O0x)— (UyOyly) is a
biholomorphic map for each i =0,1. Let Y : X — Y be the continuous map
defined by y/(x) = p(x) for x e Yy and y(x) = p(¢(x)) for x € D;. The map
¥ : X — Y is surjective and proper. For every open set W < Y and for every
he Oy(W) there exists a unique ke Ox(y~'(W)) such that Klpo-1wnvy) =
Polhlwny,) and Kl -1wnoy)) = #(P1(klwny,)). These local homomor-
phisms glue together to determine an isomorphism ¥ : Oy — ,(Ox). Then
(Y, ¥) : (X,0x) — (Y,0y) is a holomorphic map. P := y(C) is a finite set of
Y. We have that y~!(P)=C. The induced map Yy cyp:X—-C—
Y — P is biholomorphic. Using the properties of the map ¥, we can verify
that Y contains no positive dimensional compact analytic set. Since red y :
redX —red Y is proper and surjective, red ¥ is Stein by E.73b of [15,
p. 314]. Therefore (Y,0y) is Stein by 52.19 of [15, p. 236]. Since Y is
proper, X is holomorphically convex. It follows that X is l-convex. [J

Let X be a complex space and L a compact set of X. Then X is said to
be K-separable outside L if for every x € X — L the analytic set {y € X|[f](y) =
[f](x)for every f € Ox(X)} is of dimension 0. Here [f] denotes the valuation
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x> fi+myyelOx/my,=C,xeX. If X is K-separable outside L, then
every closed complex subspace Y of X is K-separable outside LNY. A
complex space X is 1-convex if and only if X is holomorphically convex and
K-separable outside a compact set. A complex space X is K-complete if and
only if X is K-separable outside the empty set @ (cf. E.51c of [15, p. 225]).

Nguyen-Nguyen [20] obtained the following characterization of the finite
dimensional reduced 1-convex complex space.

LeEmMMA 4. Let X be a reduced complex space of finite dimension. Then X
is l-convex if and only if it satisfies the following three conditions.
i) If the function f € Ox(X) is not constant on any non-compact irreducible
component of X, then the analytic set {x € X|f(x) =0} is 1-convex.
ii) dim H (X, Ox) < +00.
iii) X is K-separable outside a compact set.

An open covering {D;};.; of a complex space X is said to be of order <2
if for all pairwise different three indices iy,7; and i, the intersections D;, N D; N
D;, are empty (cf. [17, p. 18]). A finite open covering {D} ., of a complex
space X is said to be a finite simple chain covering of X if D;, N D; =@ for
lip — i1| = 2 (Definition 3.3 of Cho-Shon [4]). Then every finite simple chain
covering of X is of order <2.

2. 1-convex open covering of order <2

LEMMA 5. Let X be a complex space. Assume that there exists a finite 1-
convex open covering of X of order <2. Then it holds that dim HY(X,¥) <
+o0 for every coherent analytic sheaf & on X and q > 2.

Proor. There ex1sts a finite 1-convex open covering {D; } _; of X of order
<2. Let Y;:= U Di for 1 <k <N. By induction on k we prove that
dim HY(Yy, &) < +o0. The case k=1 1s by Lemma 2. Assume that 2 <
k<N. Y UDy=Y,. Y iNDy= U . (D,ﬂDk) d1s101nt union). We
have the Mayer-Vietoris exact sequence ---— (—D, IH‘I YD;N Dy, &) —
HY Yy, &) > HI(Y-1,¥) ® HI(Dg,¥) — ---. By induction hypothesis
dim H9(Y—1,¥) < +00. Dy and D;ND; are l-convex. By Lemma 2 we
have that dim H?(Dy, &) < +oo and that dim H9~!(D; N Dy, &) < +o0. There-
fore it holds that dim HY(Yj, %) < +oo. Since X = Yy, the lemma is
proved. []

LeMMA 6. Let X be a reduced complex space. Assume that there exist 1-
convex analytic sets X\ and X, of X such that X;UX, =X and that the
intersection X1 N X, is compact. Then X is 1-convex.
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PrOOF. Let .4, be the maximal defining ideal of X, (v =1,2). Let # be an
arbitrary coherent ideal of Ox. Consider the exact sequence of sheaves 0 —
F = (F/AF)®(F/AHF)— F/(F1+ F)F — 0. Then we have the exact
sequence of cohomology groups ---— I'(X1NXa, (£/(H1+ £2)9)|x, nx,) —
H'(X, #) - H'(X1,(#/59)ly,) ® H (X2, (#/528)|y,) — -+ Since X, is
1-convex, H'(X,,(#/4%#)|y,) is finite dimensional by Lemma 2 (v=1,2).
Since the complex space (X1 N X2, (Ox/(£1 + £2))|x, nx,) is compact, I'(X; N X2,
(F/(A1+22)F)|x,ny,) is finite dimensional by the finiteness theorem of
Cartan-Serre [12, p. 186]. Therefore H!(X, #) is also finite dimensional. It
follows that X is l-convex by Lemma 2. []

LemMA 7. Let X be a complex space. Assume that the following three
conditions are satisfied.
i) dim H*(X,%) < +oo for every coherent analytic sheaf & on X.
ii) dim H!(X,0x) < +c0.
ili) X is K-separable outside a compact set L.
Then X is 1-convex.

Proor. First we consider the case when X is reduced and dim X < +o0.
We proceed by induction on dim X. The case dimX =0 is trivial. Assume
that dimX > 1. Take an arbitrary f € Ox(X) which is not constant on any
non-compact irreducible component of X. Let 4:={xe X|f(x)=0}. Let
{A4i};c; be the set of irreducible components of 4. Let I’ be the set of ie [
such that A4; is a positive dimensional irreducible component of X. I":=
I-T. A :=);.pA4i. A":=);cn4i. Since every A;,iel’, is compact
and contained in L, the analytic set 4’ is compact. For every i € I” it holds
that dimA4; =0 or that dim, 4; < dim, X,x € 4;. Therefore it holds that
dimA” < dim X. The analytic set 4” is K-separable outside LNA". We
denote by i(4”) the maximal defining ideal of 4”. 04 := (Ox/i(A"))|, is the
reduced complex structure sheaf of the analytic set 4”. The exact sequence
0 —i(4") > Ox — Ox/i(4") — 0 of sheaves induces the exact sequence
of cohomology groups - -+ — H(X,0x) — H'(A",04) — H*(X,i(4")) — ---.
Since H'(X,0x) and H?(X,i(A")) are finite dimensional, H'(4",0 ) is also
finite dimensional. Let & be an arbitrary coherent analytic sheaf on 4”. Let
1: A" — X be the inclusion. Then 1% is a coherent analytic sheaf on X by
the extension principle. Therefore H?(4”,¥) = H*(X,1,.¥) is finite dimen-
sional. By induction hypothesis the analytic set A” is 1-convex. By Lemma 6
the analytic set 4 =A'UA" is 1-convex. It follows that X is l-convex by
Lemma 4.

Next we consider the case when X is reduced and dim X = +c0. We
have only to prove that X is holomorphically convex. Let {X;},_, be the set
of irreducible components of X. Let I':={iel|X;NL # 0}, I":=1-1T1,
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X' = Uieri and X" := Uiel,,Xi. Since I’ is finite, the analytic set X’ is
finite dimensional. X’ is K-separable outside LN X'. By the same reasoning
developed above we have that dim H' (X, Ox) < +oo0 and that dim H?*(X", &¥) <
+o00 for any coherent analytic sheaf & on X’. Therefore X’ is 1-convex
by what was shown above. Take an arbitrary i € I”. The analytic set X; is
finite dimensional. By the same reasoning developed above we have that
dim H'(X;, Ox,) < +o0 and that dim H?(X;, &) < +0o for any coherent analytic
sheaf & on X;. Therefore X; is 1-convex by what was shown above. Since
X;NL =0, the analytic set X; is K-complete. Therefore X; is Stein. It
follows that X” is Stein by Narasimhan [18]. Let C be the maximal compact
analytic set of X’ and ¢: X' — Y’ the Remmert reduction of X’. Then
P :=¢(C) is a finite set of Y’. Since ¢p~!(P)=C and C =« L c X — X", there
exists a neighborhood U of P such that ¢! (U) cc X — X”. Let Z be the
direct sum of X — C and U. Identifying such z; ep"'(U) -~ Cand z,e U — P
that ¢(z;) = z;, we obtain the quotient space Y of Z. Let p: Z — Y be the
natural projection. Since we can verify that Y is Hausdorff, ¥ has a unique
reduced complex structure such that both p: X —C > p(X —C) and p: U —
p(U) are biholomorphic. Let }y: X — Y be the map defined by ¥(x) = p(x)
for xe X — C and y(x) = p(p(x)) for xe p"!(U). Themap ¢ : X —» Y is a
proper holomorphic surjection. We can also verify that the complex space Y
does not contain any positive dimensional compact analytic set. LetA: X — X
be the normalization of X. Since every irreducible component of X is holo-
morphically convex, every connected component of X is holomorphically
convex. Therefore X is holomorphically convex. Since the composition
Yyold:X — Y is proper and surjective, Y is Stein (cf. E.73b of [15, p. 314]).
Since  is proper, X is holomorphically convex.

Finally we consider the case when X is not reduced. @ := Ox/ ANy is the
complex structure sheaf of red X. We have the exact sequence 0 — Ay —
Ox - 0 —0. By the same reasoning developed above we have that
dim H'(X, ) < 40 and that dim H*(X,¥) < +oo for any coherent analytic
sheaf & on red X. Therefore red X is 1-convex by what was shown above.
It follows that X is l-convex by Lemma 3. O

THEOREM 8. Let X be a complex space. Assume that the following three
conditions are satisfied.
i) There exists a locally finite 1-convex open covering of X of order <2.
ii) The dimension of H' (X, Ox) is at most countably infinite.
iii) X is K-separable outside a compact set.
Then X is 1-convex.

Proor. There exists a locally finite 1-convex open covering {D;};.; of X
of order <2. It holds that dim H!(X,0x) < +o0 by Siu’s theorem (Pro-
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posizione 7 of Ballico [3] or Théoréme 2 of Jennane [14]). There exists a
compact set L of X such that X is K-separable outside L. Let I' :=
{ielIDiNL # @}, I":=1-T, Y:=),.,Di and Z:= Ujel,,Dj, then we
have YUZ =X and YﬂZ:U(i,j)eI,xl,,(DiﬂDj) (disjoint union). Let &
be an arbitrary coherent analytic sheaf on X. We have the Mayer-Vietoris
exact sequence ---— HY(YNZ,¥) - H*X,¥) - H*(Y,¥)® HX(Z,¥) —
H*(YNZ,¥#)— ---. Since YNZ is Stein, HI(YNZ,¥) =0 for every ¢ > 1.
Since {D;};. is a Stein open covering of Z of order <2, H*(Z,¥) =
Hz({Dj}je 1 ¥) =0 (cf. [12, p. 35]). Therefore we have an isomorphism
H*(X,%) = H*(Y,¥). Since the set I’ is finite, it holds that dim H*(X, %) =
dim H*(Y,%) < +o0 by Lemma 5. It follows that X is l-convex by
Lemma 7. O

COROLLARY. Let X be a K-complete complex space. Assume that the
Sfollowing two conditions are satisfied.
i) There exist two Stein open sets Dy and D, of X such that DiUD, = X.
ii) The dimension of H'(X,0x) is at most countably infinite.
Then X is Stein.

Theorem 8 is a generalization of Theorem 3 of Tovar [22]. It also gives a
generalization of Proposition 3.4 of Cho-Shon [4] on the finite simple chain
Stein open covering by the similar argument in the proof of Lemma 5.

In Theorem 8 we cannot replace the condition ii) by the weaker one
that H'(X,0x) is Hausdorff with its canonical topology. For example let X
be the union of two Stein open sets {(z1,z) € €*||z1| < 1,0 < |z2| < 1} and
{(z1,22) e €*|0 < |z1| < 1,]z3| < 1} in €2. By Lemma 9 of Trapani [23] the
topology of H!(X,0x) is Hausdorff. But X is not Stein.

3. Increasing sequence of 1-convex open sets

If X is a complex space which is the union of monotone increasing
sequence of Stein open sets, then X is not necessarily Stein as is shown by
Fornass [7, 8, 9] or Forn®ss-Stout [10]. Markoe [16] and Silva [21] proved
that a complex space X is Stein if it satisfies the conditions that X is the union
of a monotone increasing sequence of Stein open sets and that the cohomology
module H'(X,Oy) is Hausdorff with its canonical topology. For the defini-
tion of the canonical topology of the cohomology modules H?(X,0x),q =0,
we refer E.55h of [15, pp. 261-262]. We have the following 1-convex version
of the theorem of Markoe-Silva [16, 21].

THEOREM 9. Let X be a complex space which is the union of a monotone
increasing sequence of 1-convex open sets. Assume that the following two condi-
tions are satisfied.
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i) H'(X,Oyx) is Hausdorff with its canonical topology.

ii) There exists a compact set L of X such that every nowhere discrete compact
analytic set of X is contained in L.

Then X is 1-convex.

Proor. There exists a sequence {D,},-, of 1-convex open sets of X such
that D, = D,,; for every v>1 and that X = Uff’: , Dy. We may assume that
L = D;. Let C be the maximal compact analytic set of D;. Then C is also
the maximal compact analytic set of X. By the same method as in the proof
of Lemma 3 we construct a complex space Y and a proper holomorphic
surjection ¥ : X — Y. Then Y contains no positive dimensional compact
analytic set and E, := y(D,) is an open set of Y for every v > 1. Since the
map Yp, g, : Dy — E, is proper and surjective, E, is Stein for every v>1
(cf. E.73b of [15, p. 314]). Therefore Y is the union of the monotone
increasing sequence {E,}>, of Stein open sets. y induces the isomorphisms
¥ : CI{E}L,,0y) = CI({D,}2,, Ox), {gvo...vq}»—»{lﬁ(g,,o...vq)},q >0. By the
definition of the product topology and by 55.6 ii) of [15, p. 258] Y7 is
continuous for every ¢ >0. It holds that Yy od =80 y? for every g >0,
where J denotes the coboundary operator. Therefore \ﬁ" induces a con-
tinuous isomorphism HY({E,}2,,0y) = HI({D,},,0x) for every q>0.
Since {E,},2, is a Stein open covering of Y, the canonical homomorphism
H'({E,}2,,0y) — H'(Y,Oy) is isomorphic and homeomorphic. On the other
hand the canonical homomorphism H'({D,}2,,0x) — H'(X, Ox) is injective
and continuous. Therefore we have a continuous injection H'(Y,0y) —
H'(X,0x). Since H'(X,0x) is Hausdorff, H'(Y,0Oy) is also Hausdorff. It
follows that Y is Stein by the theorem of Markoe [16] or Silva [21]. Since the
mapy : X — Y is proper, X is holomorphically convex. It follows that X is
l-convex. [

We cannot drop the condition ii) in Theorem 9 above. For example let X
be the direct sum of countably infinite copies of the n-dimensional projective
space IP". Then X satisfies the condition i). But X is not l-convex.
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