Exponential integrability for Riesz potentials of functions in Orlicz classes

Yoshihiro Mizuta and Tetsu Shimomura
(Received June 11, 1997)

Abstract

Our aim in this paper is to show the exponential integrability for Riesz potentials of functions in an Orlicz class. As a corollary, we show the double exponential integrability given by Edmunds-Gurka-Opic [3], [4].

1. Introduction

For $0<\alpha<n$, we define the Riesz potential of order α for a nonnegative measurable function f on \mathbf{R}^{n} by

$$
R_{\alpha} f(x)=\int|x-y|^{\alpha-n} f(y) d y
$$

In this paper, we give the following theorems, which deal with the limiting cases of Sobolev's imbeddings.

Theorem A. Let f be a nonnegative measurable function on a bounded open set $G \subset \mathbf{R}^{n}$ satisfying the Orlicz condition

$$
\begin{equation*}
\int_{G} f(y)^{p}[\log (e+f(y))]^{a}[\log (e+\log (e+f(y)))]^{b} d y<\infty \tag{1.1}
\end{equation*}
$$

for some numbers p, a and b. If $\alpha p=n, a<p-1, \beta=p /(p-1-a)$ and $\gamma=b /(p-1-a)$, then

$$
\begin{equation*}
\int_{G} \exp \left[A\left(R_{\alpha} f(x)\right)^{\beta}\left(\log \left(e+R_{\alpha} f(x)\right)\right)^{\gamma}\right] d x<\infty \quad \text { for any } A>0 . \tag{1.2}
\end{equation*}
$$

In case $a=b=0$, inequality (1.2) is well known to hold (see [1], [9], [12], [13]). The case $a<p-1$ and $b=0$ was proved by Edmunds-Krbec [5] and Edmunds-Gurka-Opic [3], [4]; see also Brézis-Wainger [2].

In view of Theorem A, we see that (1.2) is true for every $\beta>0$ (and $\gamma>0$) when $a \geqq p-1$. In case $a>p-1$, we know that $R_{\alpha} f$ is continuous on \mathbf{R}^{n} (see [7] and [10]).

[^0]In case $a=p-1$, we are also concerned with double exponential integrability given by Edmunds-Gurka-Opic [3], [4].

Theorem B. Let f be a nonnegative measurable function on a bounded open set $G \subset \mathbf{R}^{n}$ satisfying the Orlicz condition

$$
\int_{G} f(y)^{p}[\log (e+f(y))]^{p-1}[\log (e+\log (e+f(y)))]^{b} d y<\infty
$$

for some numbers p and b. If $\alpha p=n, b<p-1$ and $\beta=p /(p-1-b)$, then

$$
\begin{equation*}
\int_{G} \exp \left[A \exp \left(B\left(R_{\alpha} f(x)\right)^{\beta}\right)\right] d x<\infty \quad \text { for any } A>0 \text { and } B>0 . \tag{1.3}
\end{equation*}
$$

In case $b>p-1, R_{\alpha} f$ is continuous on \mathbf{R}^{n} (see [7] and [10]), so that (1.3) holds for every $\beta>0$.

2. α-potentials

For a nonnegative measurable function f on \mathbf{R}^{n}, we see (cf. [8, Theorem 1.1, Chapter 2]) that $R_{\alpha} f \not \equiv \infty$ if and only if

$$
\int(1+|y|)^{\alpha-n} f(y) d y<\infty .
$$

Hence it is seen that $R_{\alpha} f \not \equiv \infty$ when f is integrable on \mathbf{R}^{n}.
We deal with functions f satisfying the Orlicz condition:

$$
\begin{equation*}
\int \Phi_{p}(f(y)) d y<\infty \tag{2.1}
\end{equation*}
$$

Here $\Phi_{p}(r)$ is of the form $r^{p} \varphi(r)$, where $1<p<\infty$ and φ is a positive monotone function on the interval $[0, \infty)$ of log-type; that is, φ satisfies

$$
\begin{equation*}
M^{-1} \varphi(r) \leqq \varphi\left(r^{2}\right) \leqq M \varphi(r) \quad \text { for any } r>0 \tag{2.2}
\end{equation*}
$$

Here we note (see [8]) that if $\delta>0$, then there exists $M=M(\delta)$ for which

$$
\begin{equation*}
s^{\delta} \varphi(s) \leqq M t^{\delta} \varphi(t) \quad \text { whenever } t>s>0 \tag{2.3}
\end{equation*}
$$

If φ is nondecreasing, then we have for $\eta>1$,

$$
\begin{equation*}
\left(\int_{1}^{\eta} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}} \geqq \varphi(\eta)^{-1 / p}(\log \eta)^{1 / p^{\prime}}, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1 \tag{2.4}
\end{equation*}
$$

Throughout this note, let G be a bounded open set in \mathbf{R}^{n}. For a measurable set $E \subset \mathbf{R}^{n}$, denote by $|E|$ the Lebesgue measure of E, and by $B(x, r)$ the open ball centered at x with radius r. Further we use the symbol C to denote a positive constant whose value may change line to line.

Lemma 1 (cf. [8, Remark 1.2, p.60]). There exists $C>0$ such that

$$
\int_{E}|x-y|^{\alpha-n} d y \leqq C|E|^{\alpha / n} \quad \text { for any measurable set } E \subset \mathbf{R}^{n}
$$

Proof. Take $r \geqq 0$ such that $|B(0, r)|=|E|$, that is,

$$
\sigma_{n} r^{n}=|E|
$$

with σ_{n} denoting the volume of the unit ball. Note that

$$
\begin{aligned}
\int_{E}|x-y|^{\alpha-n} d y & \leqq \int_{B(x, r)}|x-y|^{\alpha-n} d y \\
& =\left(n \sigma_{n}\right)\left(r^{\alpha} / \alpha\right) \\
& =n \sigma_{n} \alpha^{-1}\left(|E| / \sigma_{n}\right)^{\alpha / n} \\
& =n \alpha^{-1} \sigma_{n}^{1-\alpha / n}|E|^{\alpha / n} .
\end{aligned}
$$

Lemma 2 (cf. [7]). Let $\alpha p=n$. Iff is a nonnegative measurable function on G and $\eta \geqq 2$, then

$$
\int_{\{y \in G: 1<f(y)<\eta\}}|x-y|^{\alpha-n} f(y) d y \leqq C\left(\int_{1}^{\eta} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}}\left(\int_{G} \Phi_{p}(f(y)) d y\right)^{1 / p}
$$

where $1 / p+1 / p^{\prime}=1$ and C is a positive constant independent of f and η.
Proof. For each positive integer j, set

$$
E_{j}=\left\{y \in G: f(y)>1,2^{-j} \eta \leqq f(y)<2^{-j+1} \eta\right\} .
$$

Then we have by Lemma 1

$$
\int_{E_{j}}|x-y|^{\alpha-n} f(y) d y \leqq 2^{-j+1} \eta \int_{E_{j}}|x-y|^{\alpha-n} d y \leqq C 2^{-j} \eta\left|E_{j}\right|^{1 / p} .
$$

Hence Hölder's inequality yields

$$
\begin{aligned}
& \int_{\{y \in G: 1<f(y)<n\}}|x-y|^{\alpha-n} f(y) d y \\
& \quad=\sum_{j} \int_{E_{j}}|x-y|^{\alpha-n} f(y) d y \\
& \quad \leqq C \sum_{j} 2^{-j} \eta\left|E_{j}\right|^{1 / p} \\
& \quad \leqq C\left(\sum_{j} \varphi\left(2^{-j} \eta\right)^{-p^{\prime} / p}\right)^{1 / p^{\prime}}\left(\sum_{j}\left(2^{-j} \eta\right)^{p} \varphi\left(2^{-j} \eta\right)\left|E_{j}\right|\right)^{1 / p} \\
& \quad \leqq C\left(\int_{1}^{\eta} \varphi(r)^{-p^{\prime} / p^{-1}} d r\right)^{1 / p^{\prime}}\left(\int_{\{y \in G: 1<f(y)<\eta\}} \Phi_{p}(f(y)) d y\right)^{1 / p}
\end{aligned}
$$

where the sum is taken over all j such that $2^{-j+1} \eta>1$. Thus Lemma 2 is now proved.

3. Exponential integrability

We prepare some lemmas which are used to establish exponential inequalities for Riesz potentials.

Lemma 3 (cf. [5], [6]). Let $\beta>0$ and u be a nonnegative measurable function on G. Then

$$
\int_{G} \exp \left[A u(x)^{\beta}\right] d x<\infty \quad \text { for every } A>0
$$

if and only if

$$
\lim _{q \rightarrow \infty} \frac{1}{q^{1 / \beta}}\left(\int_{G} u(x)^{q} d x\right)^{1 / q}=0
$$

Lemma 4 (cf. e.g. [13, p.89]). Let f be a nonnegative measurable function on G. If $\theta>0$, then

$$
\left(\int_{G}\left[R_{\alpha} f(x)\right]^{q_{2}} d x\right)^{1 / q_{2}} \leqq C q_{2}^{1-1 / q_{1}}\left(\int_{G} f(y)^{q_{1}} d y\right)^{1 / q_{1}}
$$

whenever $1 \leqq q_{1}<q_{2}<\infty$ and $\frac{1}{q_{1}}-\frac{\alpha}{n} \leqq \frac{1-\theta}{q_{2}}$, where C is a positive constant independent of q_{1}, q_{2} and f.

In view of Lemmas 1,2 and 4, we have the following result.
Corollary 1. Suppose φ is nondecreasing. If $\eta_{2}>\eta_{1}>2$ and $q>p=$ n / α, then

$$
\begin{aligned}
& \left(\int_{G}\left(R_{\alpha} f(x)\right)^{q} d x\right)^{1 / q} \leqq C \eta_{1} \\
& \quad+C\left(\int_{1}^{\eta_{2}} \varphi(r)^{-p^{\prime} / p^{-1}} d r\right)^{1 / p^{\prime}}\left(\int_{\left\{y \in G: \eta_{1}<f(y)<\eta_{2}\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p} \\
& \quad+C q^{1 / p^{\prime}}\left[\varphi\left(\eta_{2}\right)\right]^{-1 / p}\left(\int_{\left\{y \in G: f(y) \geqq \eta_{2}\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p} .
\end{aligned}
$$

In fact, it suffices to note from Lemma 4 that

$$
\begin{aligned}
& \left(\int_{G}\left(\int_{\left\{y \in G: f(y) \geqq \eta_{2}\right\}}|x-y|^{\alpha-n} f(y) d y\right)^{q} d x\right)^{1 / q} \\
& \quad \leqq C q^{1 / p^{\prime}}\left(\int_{\left\{y \in G: f(y) \geqq \eta_{2}\right\}} f(y)^{p} d y\right)^{1 / p} \\
& \quad \leqq C q^{1 / p^{\prime}}\left[\varphi\left(\eta_{2}\right)\right]^{-1 / p}\left(\int_{\left\{y \in G: f(y) \geqq \eta_{2}\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p} .
\end{aligned}
$$

Theorem 1. Let φ be a positive nondecreasing function on $[0, \infty)$ of \log type such that

$$
\begin{equation*}
\int_{1}^{\infty} \varphi(r)^{-p^{\prime} / p} r^{-1} d r=\infty \tag{3.1}
\end{equation*}
$$

Let ψ be a positive monotone function on $[0, \infty)$ of log-type which satisfies one of the following conditions for $\beta>0$:
(i) ψ is nondecreasing and

$$
\begin{equation*}
\limsup _{q \rightarrow \infty} q^{-1 / \beta} \Psi\left((\log q)^{-1}\right)\left(\int_{1}^{e^{q}} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}}<\infty \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(\delta) \equiv \sup _{r>1} r^{-\delta} \psi(r)<\infty \quad \text { for } \delta>0 \tag{3.3}
\end{equation*}
$$

(ii) ψ is nonincreasing, $\lim _{r \rightarrow \infty} \psi(r)=0$ and

$$
\begin{equation*}
\limsup _{q \rightarrow \infty} q^{-1 / \beta} \psi(q)\left(\int_{1}^{e q} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}}<\infty \tag{3.4}
\end{equation*}
$$

If $\alpha p=n$ and f is a nonnegative measurable function on G satisfying (2.1), then

$$
\int_{G} \exp \left[A\left(R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right)^{\beta}\right] d x<\infty \quad \text { for every } A>0
$$

Proof. First we consider the case when ψ is nondecreasing. If $p<q<\infty$ and $0<\delta<1$, then we have by (3.3)

$$
\left(\int_{\left\{x \in G: R_{\alpha} f(x)>1\right\}}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q} \leqq \Psi(\delta)\left(\int_{G}\left[R_{\alpha} f(x)\right]^{q(1+\delta)} d x\right)^{1 / q}
$$

Hence we establish by Corollary 1

$$
\begin{aligned}
& \left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q} \leqq \psi(1)|G|^{1 / q}+\Psi(\delta)\left(\int_{G}\left(R_{\alpha} f(x)\right)^{q(1+\delta)} d x\right)^{1 / q} \\
& \leqq C+C \Psi(\delta)\left\{\eta_{1}+\left(\int_{1}^{\eta_{2}} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}}\left(\int_{\left\{y \in G: \eta_{1} \leqq f(y)<\eta_{2}\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p}\right. \\
& \left.\quad+q^{1 / p^{\prime}}\left[\varphi\left(\eta_{2}\right)\right]^{-1 / p}\left(\int_{\left\{y \in G: f(y) \geqq \eta_{2}\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p}\right\}^{1+\delta}
\end{aligned}
$$

for $\eta_{2}>\eta_{1}>2$. If we take $\eta_{2}=e^{q}$ and $\delta=(\log q)^{-1}$, then we have by (2.4) and assumption (3.2)

$$
\begin{aligned}
& q^{-1 / \beta}\left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q} \leqq C \eta_{1}^{2} \Psi\left((\log q)^{-1}\right) q^{-1 / \beta} \\
& + \\
& C\left\{\Psi\left((\log q)^{-1}\right) q^{-1 / \beta}\left(\int_{1}^{e^{q}} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}}\right\}^{1+(\log q)^{-1}} \\
& \\
& \times\left(\int_{\left\{y \in G: f(y) \geqq \eta_{1}\right\}} \Phi_{p}(f(y)) d y\right)^{\left(1+(\log q)^{-1}\right) / p} \\
& \leqq C \eta_{1}^{2} \Psi\left((\log q)^{-1}\right) q^{-1 / \beta}+C\left(\int_{\left\{y \in G: f(y) \geqq \eta_{1}\right\}} \Phi_{p}(f(y)) d y\right)^{\left(1+(\log q)^{-1}\right) / p}
\end{aligned}
$$

for $q>\log \eta_{1}$. Therefore it follows that
$\limsup _{q \rightarrow \infty}\left(\frac{1}{q}\right)^{1 / \beta}\left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q} \leqq C\left(\int_{\left\{y \in G: f(y) \geqq \eta_{1}\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p}$,
which implies that the left hand side is equal to zero, by the arbitrariness of η_{1}.
Next we consider the case when ψ is nonincreasing. We have by (2.3) with $\varphi=\psi$

$$
\begin{aligned}
& \left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q} \\
& \quad \leqq C \eta_{1} \psi\left(\eta_{1}\right)+\psi\left(\eta_{1}\right)\left(\int_{\left\{x \in G: R_{\alpha} f(x) \geqq \eta_{1}\right\}}\left[R_{\alpha} f(x)\right]^{q} d x\right)^{1 / q}
\end{aligned}
$$

for $\eta_{1}>1$. If $e^{q}>\eta_{1}>2$, then we have by Corollary 1 and (2.4)

$$
\begin{aligned}
& \left(\int_{G}\left[R_{\alpha} f(x)\right]^{q} d x\right)^{1 / q} \\
& \quad \leqq C \eta_{1}+C\left(\int_{1}^{e^{q}} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}}\left(\int_{\left\{y \in G: f(y) \geqq \eta_{1}\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q} \\
& \quad \leqq C \eta_{1} \psi\left(\eta_{1}\right)+C \psi\left(\eta_{1}\right)\left(\int_{1}^{e^{q}} \varphi(r)^{-p^{\prime} / p^{-1}} d r\right)^{1 / p^{\prime}}\left(\int_{\left\{y \in G: f(y) \geq \eta_{1}\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p}
\end{aligned}
$$

Now we take $\eta_{1}=q^{1 / \beta}$ to obtain by (2.2) on ψ and (3.4)

$$
\lim _{q \rightarrow \infty}\left(\frac{1}{q}\right)^{1 / \beta}\left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q}=0
$$

Now we obtain the required assertion from Lemma 3.
Corollary 2. Let f be a nonnegative measurable function on a bounded open set $G \subset \mathbf{R}^{n}$ satisfying (1.1) when $0<a<p-1$ or when $a=0$ and $b \geqq 0$. If $\alpha p=n$, then

$$
\int_{G} \exp \left[A\left(R_{\alpha} f(x)\right)^{\beta}\left(\log \left(e+R_{\alpha} f(x)\right)\right)^{\gamma}\right] d x<\infty \quad \text { for any } A>0
$$

with $\beta=p /(p-1-a)$ and $\gamma=b /(p-1-a)$.

Proof. Let $\varphi(r)=[\log (e+r)]^{a}[\log (e+\log (e+r))]^{b}$ for $0 \leqq a<p-1$. Then

$$
C^{-1} q^{(p-1-a) / p}(\log q)^{-b / p} \leqq\left(\int_{1}^{e^{q}} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}} \leqq C q^{(p-1-a) / p}(\log q)^{-b / p}
$$

for $q>e$, so that (3.1) holds. If $b \leqq 0$, then (3.4) holds for $\beta=p /(p-1-a)$ and $\psi(r)=[\log (e+r)]^{b / p}$.

On the other hand, if $\psi(r)=[\log (e+r)]^{c}$ for $c \geqq 0$, then we see that

$$
C^{-1} \delta^{-c} \leqq \Psi(\delta) \leqq C \delta^{-c}
$$

for $0<\delta<1$, so that

$$
\begin{equation*}
C^{-1} \psi(q) \leqq \Psi\left((\log q)^{-1}\right) \leqq C \psi(q) \tag{3.5}
\end{equation*}
$$

for all $q>e$. Thus, if $b \geqq 0$, then (3.2) holds for $\beta=p /(p-1-\alpha)$ and $\psi(r)=[\log (e+r)]^{b / p}$. Corollary 2 now follows from Theorem 1 .

Remark 1. If $\alpha p=n$ and (3.1) does not hold, then it is known (cf. [7] and [10]) that $R_{\alpha} f$ is continuous on \mathbf{R}^{n}, so that the conclusion of Theorem 1 is true in this case, too.

Next, let φ be a positive nonincreasing function on $[0, \infty)$ satisfying (2.2).
Lemma 5. If $q>0$, then

$$
\begin{equation*}
\varphi\left(e^{q}\right) \leqq C t^{1 / q} \varphi(t) \quad \text { for all } t>1 \tag{3.6}
\end{equation*}
$$

Proof. We first show that

$$
\begin{equation*}
\varphi\left(M^{q}\right) \leqq t^{1 / q} \varphi(t) \quad \text { for all } t>1 \tag{3.7}
\end{equation*}
$$

where M is a positive constant in (2.2). If $1<t<M^{q}$, then (3.7) is trivially true, since φ is nonincreasing. If $\left[M^{q}\right]^{2^{m-1}} \leqq t<\left[M^{q}\right]^{m^{2}}$ for a positive integer m, then we have by (2.2)

$$
t^{1 / q} \varphi(t) \geqq M^{2^{m-1}} \varphi\left(\left[M^{q}\right]^{2^{m}}\right) \geqq M^{2^{m-1}-m} \varphi\left(M^{q}\right) \geqq \varphi\left(M^{q}\right)
$$

from which (3.7) follows. Since (3.6) follows from (3.7) with the aid of (2.2), the present lemma is proved.

Lemma 6. $\quad \lim _{q \rightarrow \infty}\left[\varphi\left(e^{q}\right)\right]^{1 / q}=1$.
Proof. If $q=2^{m}$ for a positive integer m, then (2.2) implies

$$
\varphi\left(M^{2^{m}}\right) \geqq M^{-m} \varphi(M)
$$

so that

$$
[\varphi(M)]^{1 / 2^{m}} \geqq\left[\varphi\left(M^{2^{m}}\right)\right]^{1 / 2^{m}} \geqq M^{-m / 2^{m}}[\varphi(M)]^{1 / 2^{m}}
$$

Hence it follows that

$$
\lim _{m \rightarrow \infty}\left[\varphi\left(M^{2^{m}}\right)\right]^{1 / 2^{m}}=1
$$

which implies

$$
\begin{equation*}
\lim _{q \rightarrow \infty}\left[\varphi\left(M^{q}\right)\right]^{1 / q}=1 \tag{3.8}
\end{equation*}
$$

Now it suffices to see that the required assertion is equivalent to (3.8) with $M>1$.

Theorem 2. Let φ be a positive nonincreasing function on $[0, \infty)$ of logtype. Let ψ be a positive monotone function on $[0, \infty)$ of log-type which satisfies one of the following conditions for $\beta>0$:
(i) ψ is nondecreasing and

$$
\begin{equation*}
\underset{q \rightarrow \infty}{\lim \sup } q^{-1 / \beta+1 / p^{\prime}} \Psi\left((\log q)^{-1}\right)\left[\varphi\left(e^{q}\right)\right]^{-1 / p}<\infty \tag{3.9}
\end{equation*}
$$

with Ψ given by (3.3);
(ii) ψ is nonincreasing, $\lim _{r \rightarrow \infty} \psi(r)=0$ and

$$
\begin{equation*}
\limsup _{q \rightarrow \infty} q^{-1 / \beta+1 / p^{\prime}} \psi(q)\left[\varphi\left(e^{q}\right)\right]^{-1 / p}<\infty \tag{3.10}
\end{equation*}
$$

If $\alpha p=n$ and f is a nonnegative measurable function on G satisfying (2.1), then

$$
\int_{G} \exp \left[A\left(R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right)^{\beta}\right] d x<\infty \quad \text { for every } A>0
$$

Proof. First we consider the case when ψ is nondecreasing. Let g be a nonnegative measurable function on G satisfying (2.1). If $p<q<\infty$ and $0<\delta<1$, then we have by (3.3)

$$
\left(\int_{\left\{x \in G: R_{\alpha} g(x)>1\right\}}\left[R_{\alpha} g(x) \psi\left(R_{\alpha} g(x)\right)\right]^{q} d x\right)^{1 / q} \leqq \Psi(\delta)\left(\int_{G}\left[R_{\alpha} g(x)\right]^{q(1+\delta)} d x\right)^{1 / q}
$$

If $0<\delta<p^{2}-1, q_{1}=p-1 / q$ and $q_{2}=q(1+\delta)$, then Lemma 4 implies that

$$
\left(\int_{G}\left[R_{\alpha} g(x)\right]^{q_{2}} d x\right)^{1 / q_{2}} \leqq C q_{2}^{1 / q_{1}}\left(\int g(y)^{q_{1}} d y\right)^{1 / q_{1}}
$$

for large q. Note by Lemma 1 that

$$
R_{\alpha} f(x) \leqq C \eta+\int_{\{y \in G: f(y) \geqq \eta\}}|x-y|^{\alpha-n} f(y) d y
$$

for $\eta>0$. Hence

$$
\begin{equation*}
\left(\int_{G}\left[R_{\alpha} f(x)\right]^{q_{2}} d x\right)^{1 / q_{2}} \leqq C \eta+C q^{1 / p^{\prime}}\left(\int_{\{y \in G: f(y) \geqq \eta\}} f(y)^{q_{1}} d y\right)^{1 / q_{1}} \tag{3.11}
\end{equation*}
$$

for large q. Note by Lemmas 5 and 6 that

$$
\begin{equation*}
t^{q_{1}} \leqq C\left[\varphi\left(e^{q}\right)\right]^{-1} t^{p} \varphi(t)=C\left[\varphi\left(e^{q}\right)\right]^{-1} \Phi_{p}(t) \quad \text { for } t>1 \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\varphi\left(e^{q}\right)\right]^{-1 / q_{1}} \leqq C\left[\varphi\left(e^{q}\right)\right]^{-1 / p} . \tag{3.13}
\end{equation*}
$$

Collecting these facts, we have

$$
\begin{aligned}
& \left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q} \\
& \quad \leqq \eta_{1} \psi\left(\eta_{1}\right)|G|^{1 / q}+\Psi(\delta)\left(\int_{\left\{x \in G: R_{\alpha} f(x)>\eta_{1}\right\}}\left[R_{\alpha} f(x)\right]^{q(1+\delta)} d x\right)^{1 / q} \\
& \leqq C \eta_{1} \psi\left(\eta_{1}\right)+C \Psi(\delta)\left\{\eta_{1}+q^{1 / p^{\prime}}\left(\int_{\left\{y \in G: f(y) \geqq \eta_{1}\right\}} f(y)^{q_{1}} d y\right)^{1 / q_{1}}\right\}^{1+\delta} \\
& \leqq C \eta_{1} \psi\left(\eta_{1}\right)+C \Psi(\delta)\left\{\eta_{1}+q^{1 / p^{\prime}}\left[\varphi\left(e^{q}\right)\right]^{-1 / q_{1}}\left(\int_{\left\{y \in G: f(y) \geqq \eta_{1}\right\}} \Phi_{p}(f(y)) d y\right)^{1 / q_{1}}\right\}^{1+\delta} \\
& \leqq C \eta_{1} \psi\left(\eta_{1}\right)+C \Psi(\delta) \eta_{1}^{1+\delta} \\
& \quad+C\left(\Psi(\delta) q^{1 / p^{\prime}}\left[\varphi\left(e^{q}\right)\right]^{-1 / p}\right)^{1+\delta}\left(\int_{\left\{y \in G: f(y) \geqq \eta_{1}\right\}} \Phi_{p}(f(y)) d y\right)^{(1+\delta) / q_{1}}
\end{aligned}
$$

for $\eta_{1}>1$ and sufficiently large q. Consequently, if we take $\delta=(\log q)^{-1}$, then it follows from (3.9) that
$\limsup _{q \rightarrow \infty}\left(\frac{1}{q}\right)^{1 / \beta}\left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q} \leqq C\left(\int_{\left\{y \in G: f(x) \geqq \eta_{1}\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p}$.

Because of the arbitrariness of η_{1}, we find

$$
\lim _{q \rightarrow \infty}\left(\frac{1}{q}\right)^{1 / \beta}\left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q}=0
$$

Next we consider the case when ψ is nonincreasing. If $\eta>1$, then we have by (2.3) with $\varphi=\psi$, (3.11), (3.12) and (3.13)

$$
\begin{aligned}
& \left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q} \\
& \quad \leqq C \eta \psi(\eta)+\psi(\eta)\left(\int_{\left\{x \in G: R_{\alpha} f(x) \geqq \eta\right\}}\left[R_{\alpha} f(x)\right]^{q} d x\right)^{1 / q} \\
& \quad \leqq C \eta \psi(\eta)+C \psi(\eta)\left\{\eta+q^{1 / p^{\prime}}\left[\varphi\left(e^{q}\right)\right]^{-1 / p}\left(\int_{\{y \in G: f(y) \geqq \eta\}} \Phi_{p}(f(y)) d y\right)^{1 / q_{1}}\right\} \\
& \quad \leqq C \eta \psi(\eta)+C \psi(\eta) q^{1 / p^{\prime}}\left[\varphi\left(e^{q}\right)\right]^{-1 / p}\left(\int_{\{y \in G: f(y) \geqq \eta\}} \Phi_{p}(f(y)) d y\right)^{1 / q_{1}}
\end{aligned}
$$

for $q>p$ and $q_{1}=p-1 / q$. Now we take $\eta=q^{1 / \beta}$ and obtain by (2.2) on ψ and (3.10)

$$
\lim _{q \rightarrow \infty}\left(\frac{1}{q}\right)^{1 / \beta}\left(\int_{G}\left[R_{\alpha} f(x) \psi\left(R_{\alpha} f(x)\right)\right]^{q} d x\right)^{1 / q}=0
$$

Thus Theorem 2 is obtained by Lemma 3.
Corollary 3. Let f be a nonnegative measurable function on a bounded open set $G \subset \mathbf{R}^{n}$ satisfying (1.1) when $a<0$ or when $a=0$ and $b \leqq 0$. If $\alpha p=n, \beta=p /(p-1-a)$ and $\gamma=b /(p-1-a)$, then

$$
\int_{G} \exp \left[A\left(R_{\alpha} f(x)\right)^{\beta}\left(\log \left(e+R_{\alpha} f(x)\right)\right)^{\gamma}\right] d x<\infty \quad \text { for any } A>0
$$

In fact, let

$$
\varphi(r)=[\log (e+r)]^{a}[\log (e+\log (e+r))]^{b}
$$

for $a \leqq 0$ and

$$
\psi(r)=[\log (e+r)]^{b / p} .
$$

If $b \geqq 0$, then (3.5) gives (3.9), and if $b<0$, then (3.10) clearly holds. Thus Corollary 3 follows from Theorem 2.

Proof of Theorem A. Theorem A follows from Corollaries 2 and 3.

4. Double exponential integrability

In this section, we discuss the double exponential integrability as another application of our arguments.

Lemma 7. If $a>e$, then

$$
\sum_{m=0}^{\infty} \frac{1}{m!} a^{m}(\log m)^{m} \leqq a^{C a} .
$$

Proof. Take a nonnegative integer m_{0} such that

$$
a^{2}-1<m_{0} \leqq a^{2} .
$$

Then we have

$$
\begin{aligned}
\sum_{m=0}^{m_{0}} \frac{1}{m!} a^{m}(\log m)^{m} & \leqq \sum_{m=0}^{m_{0}} \frac{1}{m!} a^{m}(2 \log a)^{m} \\
& \leqq e^{2 a \log a}=a^{2 a} .
\end{aligned}
$$

For $m \geqq m_{0}$, set

$$
A_{m}=\frac{1}{m!} a^{m}(\log m)^{m} .
$$

If $m+1 \geqq m_{0}+1>a^{2}>e$, then, since $(\log t) / t$ is decreasing on (e, ∞), we have

$$
\begin{aligned}
\frac{A_{m+1}}{A_{m}} & =\frac{a \log (m+1)}{m+1}\left(\frac{\log (m+1)}{\log m}\right)^{m} \\
& \leqq \frac{a \log \left(a^{2}\right)}{a^{2}}\left(\frac{\log (m+1)}{\log m}\right)^{m} \\
& =\frac{2 \log a}{a}\left(\frac{\log (m+1)}{\log m}\right)^{m}
\end{aligned}
$$

Note here that

$$
\lim _{m \rightarrow \infty}\left(\frac{\log (m+1)}{\log m}\right)^{m}=1
$$

so that

$$
\frac{A_{m+1}}{A_{m}}<\frac{1}{2}
$$

when a is sufficiently large. In this case,

$$
\sum_{m=m_{0}+1}^{\infty} \frac{1}{m!} a^{m}(\log m)^{m}<A_{m_{0}}<a^{2 a}
$$

Now the present lemma is obtained if we take C sufficiently large.
Theorem 3. Let φ be a positive nondecreasing function on $[0, \infty)$ satisfying (2.2). Suppose $\alpha p=n$ and there exists $\beta>0$ satisfying

$$
\begin{equation*}
\limsup _{q \rightarrow \infty}(\log q)^{-1 / \beta}\left(\int_{1}^{e q} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}}<\infty \tag{4.1}
\end{equation*}
$$

If f is a nonnegative measurable function on G satisfying (2.1), then

$$
\begin{equation*}
\int_{G} \exp \left[A \exp \left(B\left(R_{\alpha} f(x)\right)^{\beta}\right)\right] d x<\infty \quad \text { for any } A>0 \text { and } B>0 \tag{4.2}
\end{equation*}
$$

Proof. In view of Lemma 3, it suffices to show that

$$
\begin{equation*}
\lim _{q \rightarrow \infty} \frac{1}{q}\left(\int_{G}\left[\exp \left(B\left(R_{\alpha} f(x)\right)^{\beta}\right)\right]^{q} d x\right)^{1 / q}=0 \tag{4.3}
\end{equation*}
$$

for any $B>0$. By the power series expansion of e^{x}, we have

$$
\begin{equation*}
\int_{G}\left[\exp \left(B\left(R_{\alpha} f(x)\right)^{\beta}\right)\right]^{q} d x=\sum_{m=0}^{\infty} \frac{1}{m!}(B q)^{m} \int_{G}\left[R_{\alpha} f(x)\right]^{\beta m} d x \tag{4.4}
\end{equation*}
$$

It is seen from Corollary 1 that

$$
\begin{aligned}
& \left(\int_{G}\left[R_{\alpha} f(x)\right]^{\beta m} d x\right)^{1 / \beta m} \\
& \quad \leqq C \eta_{0}+C\left(\int_{1}^{\eta} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}}\left(\int_{\left\{y \in G: \eta_{0} \leqq f(y)<\eta\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p} \\
& \quad+C(\beta m)^{1 / p^{\prime}}[\varphi(\eta)]^{-1 / p}\left(\int_{\{y \in G: f(y) \geqq \eta\}} \Phi_{p}(f(y)) d y\right)^{1 / p}
\end{aligned}
$$

whenever $2<\eta_{0}<\eta<\infty$ and $m \geqq 1$; Corollary 1 in fact gives the inequality when $\beta m>p$, and we apply Hölder's inequality to obtain the inequality for smaller m. If we take $\eta=e^{\beta m}$, then it follows from (2.4) and assumption (4.1) that

$$
\left(\int_{G}\left[R_{\alpha} f(x)\right]^{\beta m} d x\right)^{1 / \beta m} \leqq C \eta_{0}+C F_{\eta_{0}}[\log (e+m)]^{1 / \beta}
$$

where

$$
F_{\eta_{0}}=\left(\int_{\left\{y \in G: \eta_{0} \leq f(y)\right\}} \Phi_{p}(f(y)) d y\right)^{1 / p} .
$$

Consequently it follows from (4.4) that

$$
\int_{G}\left[\exp \left(B\left(R_{\alpha} f(x)\right)^{\beta}\right)\right]^{q} d x \leqq|G|+\sum_{m=1}^{\infty} \frac{1}{m!}(B q)^{m}\left(C \eta_{0}+C F_{\eta_{0}}[\log (e+m)]^{1 / \beta}\right)^{\beta m} .
$$

Taking a positive integer m_{0} depending on η_{0} for which

$$
\begin{equation*}
\eta_{0}<F_{\eta_{0}}\left[\log \left(e+m_{0}\right)\right]^{1 / \beta} \tag{4.5}
\end{equation*}
$$

we have by Lemma 7

$$
\begin{aligned}
\int_{G}\left[\exp \left(B\left(R_{\alpha} f(x)\right)^{\beta}\right)\right]^{q} d x \leqq & |G|+\sum_{m=1}^{m_{0}} \frac{1}{m!}(B q)^{m}\left(C F_{\eta_{0}}^{\beta} \log m_{0}\right)^{m_{0}} \\
& +\sum_{m=m_{0}+1}^{\infty} \frac{1}{m!}\left(B C F_{\eta_{0}}^{\beta} q \log m\right)^{m} \\
\leqq & e^{B q}\left(C F_{\eta_{0}}^{\beta} \log m_{0}\right)^{m_{0}}+\left(B C F_{\eta_{0}}^{\beta} q\right)^{B C F_{\eta_{0}}^{\beta} q}
\end{aligned}
$$

for q with $B C F_{\eta_{0}}^{\beta} q>e$. Now, taking η_{0} so large that $B C F_{\eta_{0}}^{\beta}<1$ and then taking m_{0} for which (4.5) holds, we obtain (4.3), as required.

Proof of Theorem B. Let $\varphi(r)=[\log (e+r)]^{p-1}[\log (e+\log (e+r))]^{b}$ (for large r). If $b<p-1$, then

$$
\left(\int_{1}^{\eta} \varphi(r)^{-p^{\prime} / p} r^{-1} d r\right)^{1 / p^{\prime}} \sim[\log (\log \eta)]^{\left(-b p^{\prime} / p+1\right) / p^{\prime}}=[\log (\log \eta)]^{(p-1-b) / p}
$$

for sufficiently large η. Hence (4.1) holds for $\beta=p /(p-1-b)$, so that Theorem 3 gives Theorem B.

5. Sharpness of $\boldsymbol{\beta}$ in case $\boldsymbol{p}=\boldsymbol{n}$

(I) For $\delta>0$, consider the function

$$
u(x)=\int_{B(0,1)}|x-y|^{1-n} f(y) d y
$$

with

$$
f(y)=|y|^{-1}[\log (e /|y|)]^{\delta-1} \quad \text { for } y \in B(0,1) .
$$

Then f satisfies

$$
\begin{equation*}
\int_{B(0,1)} f(y)^{n}[\log (e+f(y))]^{a} d x<\infty \tag{5.1}
\end{equation*}
$$

if and only if $n(\delta-1)+a<-1$. We see that

$$
u(x) \geqq C \int_{\{y \in B(0,1):|y|>2|x|\}}|y|^{1-n} f(y) d y \geqq C[\log (e /|x|)]^{\delta}
$$

for $|x|<1 / 4$. Hence, if $\beta \delta>1$, then

$$
\begin{equation*}
\int_{B(0,1)} \exp \left[u(x)^{\beta}\right] d x=\infty \tag{5.2}
\end{equation*}
$$

If $\beta>n /(n-1-a)$, then we can choose δ such that

$$
1 / \beta<\delta<(n-1-a) / n
$$

In this case, both (5.1) and (5.2) hold. This implies that the exponent β in Theorem A is sharp.
(II) For $\delta>0$, consider the function

$$
u(x)=\int_{B(0,1)}|x-y|^{1-n} f(y) d y
$$

with

$$
f(y)=|y|^{-1}[\log (e /|y|)]^{-1}[\log (e \log (e /|y|))]^{\delta-1} \quad \text { for } y \in B(0,1)
$$

Then f satisfies

$$
\begin{equation*}
\int_{B(0,1)} f(y)^{n}[\log (e+f(y))]^{n-1}[\log (e+\log (e+f(y)))]^{b} d x<\infty \tag{5.3}
\end{equation*}
$$

if and only if $n(\delta-1)+b<-1$. We see that

$$
u(x) \geqq C \int_{\{y \in B(0,1):|y|>2|x|\}}|y|^{1-n} f(y) d y \geqq C[\log (e \log (e /|x|))]^{\delta}
$$

for $|x|<1 / 4$. Hence, if $\beta \delta>1$, then

$$
\begin{equation*}
\int_{B(0,1)} \exp \left[\exp \left(u(x)^{\beta}\right)\right] d x=\infty \tag{5.4}
\end{equation*}
$$

If $\beta>n /(n-1-b)$, then we can choose δ such that

$$
1 / \beta<\delta<(n-1-b) / n
$$

In this case, both (5.3) and (5.4) hold. This implies that the exponent β in Theorem B is sharp.

Remark 2. For $a<n-1$ and $\delta>0$, consider the function

$$
u(x)=\int_{B(0,1)}|x-y|^{1-n} f(y) d y
$$

with

$$
f(y)=|y|^{-1}[\log (e /|y|)]^{-(a+1) / n}[\log (e \log (e /|y|))]^{\delta-1} \quad \text { for } y \in B(0,1)
$$

Then f satisfies

$$
\begin{equation*}
\int_{B(0,1)} f(y)^{n}[\log (e+f(y))]^{a}[\log (e+\log (e+f(y)))]^{b} d x<\infty \tag{5.5}
\end{equation*}
$$

if and only if $n(\delta-1)+b<-1$. We see that

$$
\begin{aligned}
u(x) & \geqq C \int_{\{y \in B(0,1):|y|>2|x|\}}|y|^{1-n} f(y) d y \\
& \geqq C[\log (e /|x|)]^{1-(a+1) / n}[\log (e \log (e /|x|))]^{\delta-1}
\end{aligned}
$$

for $|x|<1 / 4$. Hence, if $\beta=n /(n-1-a)$ and $\beta(\delta-1)+\gamma>0$, then

$$
\begin{equation*}
\int_{B(0,1)} \exp \left[u(x)^{\beta}(\log (e+u(x)))^{\gamma}\right] d x=\infty \tag{5.6}
\end{equation*}
$$

If $\gamma>(b+1) /(n-1-a)$, then we can choose δ such that

$$
(n-b-1) / n>\delta>(\beta-\gamma) / \beta=(n-(n-a-1) \gamma) / n .
$$

In this case, both (5.5) and (5.6) hold.
Thus we do not know whether the exponent γ in Theorem A is sharp or not.

References

[1] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, Heidelberg, 1996.
[2] H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Diff. Equations 5 (1980), 773-789.
[3] D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), 151-181.
[4] D. E. Edmunds, P. Gurka and B. Opic, Sharpness of embeddings in logarithmic Besselpotential spaces, Proc. Royal Soc. Edinburgh. 126 (1996) 995-1009.
[5] D. E. Edmunds and M. Krbec, Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119-128.
[6] J. Garnett, Bounded analytic functions, Academic Press, 1981.
[7] Y. Mizuta, Continuity properties of Riesz potentials and boundary limits of Beppo Levi functions, Math. Scand. 63 (1988), 238-260.
[8] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
[9] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092.
[10] T. Shimomura and Y. Mizuta, Taylor expansion of Riesz potentials, Hiroshima Math. J. 25 (1995), 595-621.
[11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
[12] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
[13] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.

The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521, Japan

[^1]
[^0]: 1991 Mathematics Subject Classification: 31B15, 46E35
 Key words and phrases: Riesz potentials, Orlicz classes, Sobolev's inequality, limiting imbedding

[^1]: Present address of the second author: General Education Akashi National College of Technology 679-3 Nishioka, Uozumi-cho, Akashi, Hyogo, 674-8501, Japan

