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ABSTRACT. Our aim in this paper is to show the exponential integrability for Riesz

potentials of functions in an Orlicz class. As a corollary, we show the double

exponential integrability given by Edmunds-Gurka-Opic [3], [4].

1. Introduction

For 0 < α < n, we define the Riesz potential of order α for a nonnegative
measurable function / on RΛ by

In this paper, we give the following theorems, which deal with the limiting
cases of Sobolev's imbeddings.

THEOREM A. Let f be a nonnegative measurable function on a bounded
open set G c RΛ satisfying the Orlicz condition

\ /00>g(e + /(>>))]>g(* + log(* +/00))]* dy < oo (1.1)
JG

for some numbers p, a and b. If up = n, a < p — 1, β = p/(p — I — a) and
γ = b/(p - 1 - a\ then

\ exp[A(R«f(x))β(log(e + R«f(x))Y] dx < oo for any A > 0. (1.2)
JG

In case a = b = Q, inequality (1.2) is well known to hold (see [1], [9], [12],
[13]). The case a <p — 1 and b = 0 was proved by Edmunds-Krbec [5] and
Edmunds-Gurka-Opic [3], [4]; see also Brezis-Wainger [2].

In view of Theorem A, we see that (1.2) is true for every β > 0 (and γ > 0)
when a ^p — 1. In case a > p — 1, we know that RΛf is continuous on RΛ

(see [7] and [10]).
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In case a=p— 1, we are also concerned with double exponential inte-
grability given by Edmunds-Gurka-Opic [3], [4].

THEOREM B. Let f be a nonnegative measurable function on a bounded
open set G c Rπ satisfying the Orlicz condition

dy < oo
JG

for some numbers p and b. If <xp = n, b < p — 1 and β = p / ( p — 1 — b), then

exp[Λ exp(£(lk/(jc)/)] dx < oo /or αn M > 0 αnrf £ > 0. (1.3)

In case b > p - 1, Λα/ is continuous on Rπ (see [7] and [10]), so that (1.3)
holds for every β > 0.

2. α-potentials

For a nonnegative measurable function / on Rn, we see (cf. [8, Theorem
1.1, Chapter 2]) that RΛf φ oo if and only if

Hence it is seen that RΛf φ oo when / is integrable on Rn.
We deal with functions / satisfying the Orlicz condition:

oo. (2.1)

Here Φp(r) is of the form rpφ(r), where 1 </?< oo and φ is a positive
monotone function on the interval [0, oo) of log-type; that is, φ satisfies

Af~lφ(r) ^ ̂ (r2) ^ Mφ(r) for any r > 0. (2.2)

Here we note (see [8]) that if δ > 0, then there exists M = M(S) for which

sδφ(s) ^ Mtδφ(t) whenever t > s > 0. (2.3)

If φ is nondecreasing, then we have for η > 1,

a: (2-4)
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Throughout this note, let G be a bounded open set in Rw. For a
measurable set E c R", denote by \E\ the Lebesgue measure of E, and by
B(x, r) the open ball centered at x with radius r. Further we use the symbol C
to denote a positive constant whose value may change line to line.

LEMMA 1 (cf. [8, Remark 1.2, p.60]). There exists C>0 such that

\ \x - y\*~n dy ̂  C\E\"/n for any measurable set E c R".
JE

PROOF. Take r ^ 0 such that |J?(0,r)| = \E\, that is,

σnι* = \E\

with σn denoting the volume of the unit ball. Note that

f \X-y\-*dyZ \ \X-yΓ"dy
JE JB(x,r)

= nσnoΓl(\E\/σn)*/n

LEMMA 2 (cf. [7]). Let up — n. Iff is a nonnegatiυe measurable function
on G and η ̂  2, then

t i . . { d r ] ΦP(f(y}}dy
}{yεG:\<f(y}<η}

where l/p + l/p' = 1 and C is a positive constant independent off and η.

PROOF. For each positive integer y, set

Ej - {J e G :/(y) > 1,2-',; g

Then we have by Lemma 1

[ \x - yΓ"f(y) dy ̂  2-J+lt! f \χ - yΓ" dy g C2~'n\Ej\l'f .
JEj JEj
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Hence Holder's inequality yields

\*-yΓnf(y)dy
{yεG:Kf(y)<η}

a ., ,
φ(rΓP/pr-ldr

l/p

where the sum is taken over ally such that 2 j+lη> 1. Thus Lemma 2 is now
proved.

3. Exponential integrability

We prepare some lemmas which are used to establish exponential
inequalities for Riesz potentials.

LEMMA 3 (cf. [5], [6]). Let β > 0 and u be a nonnegative measurable
function on G. Then

exp[Au(xγ] dx < oo for every A> 0
JG

if and only if

1 / f \l/q

Bm-ϊ^M u(x)qdx\ = 0.

LEMMA 4 (cf. e.g. [13, p.89]). Let f be a nonnegative measurable function
on G. Ifθ>0, then

Q \ !/^2

G[RΛf(x)}^dxj ^ Cq2

1
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ι _ 1 n

whenever 1 ̂  q\ < q2 < oo and ^ , where C is a positive constant
q\ n q2

independent of q\, q2 and f.

In view of Lemmas 1, 2 and 4, we have the following result.

COROLLARY 1. Suppose φ is nondecreasing. If η2> ηl > 2 and q > p =
«/α, then

G 12 ,. Λ \1//?Vf

φ(rΓP/pr-ldr)
I J \J {yεG:ηι<f(y)<η2}

In fact, it suffices to note from Lemma 4 that

l/q
V \\χ-yΓnf(y)dy)dx\
) )

f(yfdy

THEOREM 1. Let φ be a positive nondecreasing function on [0, oo) of log-
type such that

\ φ(rΓP'/Pr~ldr=ao. (3.1)
J i

Let \l/ be a positive monotone function on [0, oo) of log-type which satisfies one of
the following conditions for β > 0:
( i ) ψ is nondecreasing and

f «Λ x W

lim sup q-l/βΨ((\ogqΓ1} φ(rΓP/pr~l dr\ < oo, (3.2)
?->oo \Jl /

where

Ψ(δ) = sup r~VW < oo forδ > 0. (3.3)
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(ii) ψ is nonincr -easing, limr_>oo ψ(r) =0 and

lim sup q'l/βψ(q) ( f φ(rY^lpr~l dr] < oo. (3.4)
?->oo \Jl /

If ap = n and f is a nonnegative measurable function on G satisfying (2.1), then

[ Qxp[A(R0ίf(x)ιl/(Rolf(x)))β} dx<ao for every A > 0.
JG

PROOF. First we consider the case when ψ is nondecreasing. If
p < q < oo and 0 < δ < 1, then we have by (3.3)

l/q

Hence we establish by Corollary 1

a \ι/q /F x1/?
JLRΛf(x^(Λaf(x))γdxJ £ *(l)\G\l/< + Ψ(δ) (]^G(RJ(x)}q(^ dxj

( (v* ,, \l/ptft \l/p

ί C+ CΨ(δ}\ η, + ( φ(rΓP/pr~l dr) ΦP(f(y}}dy
( \Jl / \J{y^G:ηι^f(y)<fl2} /

for η2>η\> 2. If we take η2 = eq and δ = (log^)"1, then we have by (2.4)
and assumption (3.2)

αJ*α

ft ΦP(f(y}}dy\

it >
ΦP(f(y)}dy
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for q > log;/!. Therefore it follows that

lim supί- J ( [RΛf(x)\l/(Raf(x))]qdx\ ^ CI I

which implies that the left hand side is equal to zero, by the arbitrariness of ηλ.
Next we consider the case when ψ is nonincreasing. We have by (2.3)

with φ = ψ

V l/<7

\ l/<7

[R«f(x)]qdx\

for ηl > I. If eq > ηl > 2, then we have by Corollary 1 and (2.4)

ι / / / r \l/p

ΦP(f(y))dy} ,

so that

ι/«

ft* \wί(
φ^Γ'^r^ dλ Φ

\Jl / \JiyeG-.f (y)^ηι}

\l/P

P(f(y}}dy\ .

Now we take ηl = ql/β to obtain by (2.2) on ψ and (3.4)

?
= 0.

q^>

Now we obtain the required assertion from Lemma 3.

COROLLARY 2. Let f be a nonnegative measurable function on a bounded
open set G c RΛ satisfying (1.1) when Q < a <p — 1 or when a = 0 and

6^0. If cup = n, then

Q\p[A(ROLf(x)γ(log(e + ROLf(x))Y] dx < oo /or #«y yl > 0
JG

w/YA β =p/(p — 1 — a) and y = b/(p — 1 — a}.
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PROOF. Let φ(r) = [log(e + r)]a[log(e + log(e + r))]b for
Then

/fβf \W
^ I φ(rΓP'/pr-1 dλ ^

for q > e, so that (3.1) holds. If b ̂  0, then (3.4) holds for β = p/(p - I - a)
and ^(r) = pog(* + r)]0/*.

On the other hand, if ψ(r) = [log(e + r)]c for c ̂  0, then we see that

for 0 < J < 1, so that

(3.5)

for all #>*?. Thus, if 6^0, then (3.2) holds for β=p/(p-l-u) and
^(r) = [log(e + r)}btp. Corollary 2 now follows from Theorem 1.

REMARK 1. If α/? = n and (3.1) does not hold, then it is known (cf. [7] and
[10]) that Rxf is continuous on R", so that the conclusion of Theorem 1 is true
in this case, too.

Next, let φ be a positive nonincreasing function on [0, oo) satisfying (2.2).

LEMMA 5. If q > 0, then

φ(eq) ^ Ctllqφ(t) for allt>\. (3.6)

PROOF. We first show that

φ(Mq) ^ tl/qφ(t) for all / > 1, (3.7)

where M is a positive constant in (2.2). If 1 < t < Mq, then (3.7) is trivially
true, since φ is nonincreasing. If [Mqγm ^ t < [Mq]2m for a positive integer
m, then we have by (2.2)

from which (3.7) follows. Since (3.6) follows from (3.7) with the aid of (2.2),
the present lemma is proved.

LEMMA 6. lim^oo [φ(eq)\ l/q = 1 .

PROOF. If q — 2m for a positive integer m, then (2.2) implies

φ(M2m) ^ M~m(p(M},
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so that

Hence it follows that

which implies

]1/ί7 = l. (3.8)

Now it suffices to see that the required assertion is equivalent to (3.8) with

M> 1.

THEOREM 2. Let φ be a positive nonincreasing function on [0, oo) of log-

type. Let ψ be a positive monotone function on [0, oo) of log-type which satisfies

one of the following conditions for β > 0:

(i) ψ is nondecreasing and

lim sup q-l/β+l/pfψ((\ogqΓl}[φ(eq)]~l/p < oo (3.9)
q— »oo

with Ψ given by (3.3);

(ii) ψ is nonincreasing , limr_,oo Ψ(r) = 0 and

lim sup q~l/β+Wψ(q)[φ(eq)Γl/p < oo. (3.10)
g— >oo

If up = n and f is a nonnegative measurable function on G satisfying (2.1), then

\ Qxp[A(RQίf(x)ψ(R0ίf(x)))β} dx<ao for every A > 0.
JG

PROOF. First we consider the case when ψ is nondecreasing. Let g be a

nonnegative measurable function on G satisfying (2.1). If p < q < oo and

0 < δ < 1, then we have by (3.3)

/f

\J{

l/q / f l/q

^ Ψ(δ] (\
\J{XEG:RΛg(x)>\} \JG

If 0 < δ <p2 — 1, q\ = p — l/q and qi = q(l +<5), then Lemma 4 implies that

"2 "
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for large q. Note by Lemma 1 that

Rj(x)^cη+\ \*-yΓnf(y)dy
J{yEG:f(y)^η}

for η > 0. Hence

Q v/fc / f v7*1

[RJWΓ dx\ ^Cη + CqW f(yΓ dy (3.11)
G J \J{yεG:f(y)^η} )

for large q. Note by Lemmas 5 and 6 that

f* ^ C[φ(<*)Γlfφ(t) = C[φ(eq}]-lΦp(ή for / > 1 (3.12)

and

(f(e*)Γl/* ^ C(φ(eηΓ^. (3.13)

Collecting these facts, we have

l/ί

{xeβ .R.f(X)>ηι}

T dy
J{γεG .f(y)*ηl}

ΦP(f(y)}dy\

CΨ(δ)η\«

Φp(f(y)}dy\

for >/! > I and sufficiently large q. Consequently, if we take δ = (log#)~', then
it follows from (3.9) that

/ iV/Vr V/? (( \ί/p

limsup (-) (\[Raf(x)ψ(Itβlf(x))]'dx) <C[\ ΦP(f(y))dy\ .
q-^cc \^/ \JG / \^J{yeG:f(x)'^ηl} J
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Because of the arbitrariness of ηl9 we find

-0.

Next we consider the case when ψ is nonincreasing. If η > 1, then we
have by (2.3) with φ = ψ, (3.11), (3.12) and (3.13)

"

"

:

, l/qι 'I f *
ι / _ / . . _ . _ ι /„ I I . . .

η + <

ΦP(f(y)}dy

forq>p and q\ =p — l/q. Now we take η = ql/P and obtain by (2.2) on ψ
and (3.10)

lim (- ) ( [R0ίf(x)\l/(ROLf(x))]q dx] =0.
q-κx)\q/ \JG J

Thus Theorem 2 is obtained by Lemma 3.

COROLLARY 3. Let f be a nonnegative measurable function on a bounded
open set G c R" satisfying (1.1) when a < 0 or when a = 0 and b ̂  0. If
ap = n, β — p/(p — 1 — a) and y = b/(p — I — a), then

f Qxp[A(R0ίf(x))β(log(e + RΛf(x)))γ} dx < oo for any A > 0.
JG

In fact, let

φ(r) = [log(e + r)}a[log(e + log(e + r))}b

for a < 0 and

If b ^ 0, then (3.5) gives (3.9), and if b < 0, then (3.10) clearly holds. Thus
Corollary 3 follows from Theorem 2.

PROOF OF THEOREM A. Theorem A follows from Corollaries 2 and 3.
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4. Double exponential integrability

In this section, we discuss the double exponential integrability as another
application of our arguments.

LEMMA 7. If a > e, then

PROOF. Take a nonnegative integer WQ such that

a2 - 1 < w0 ^ a2.

Then we have

For m ̂  wo, set

If AW 4- 1 ̂  mo + 1 > a2 > e, then, since (logt)/t is decreasing on (e, oo), we
have

Am+ι a log(m + 1
**/! J 1
m ~Γ 1

/τlnσf/7
<

α2 V loβw

~ α V ι°sw /

Note here that

lim
logm

so that

_

2
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when a is sufficiently large. In this case,

l

Now the present lemma is obtained if we take C sufficiently large.

THEOREM 3. Let φ be a positive nondecreasing function on [0, oo) satisfying
(2.2). Suppose up = n and there exists β > 0 satisfying

/ «* \ W
lim sup (log ?Γ1//? ( φ(r)-p>lpr-1 dr\ < oo. (4.1)

tf^oo V J l /

If f is a nonnegative measurable function on G satisfying (2.1), then

[ Qxp[A exp(5(Λα/(jc)/)] rfx < oo /or αwy v4 > 0 and B > 0. (4.2)
J<7

PROOF. In view of Lemma 3, it suffices to show that

=0 (4.3)

for any B > 0. By the power series expansion of ex, we have

f [exp(£(*α/ (*)/)]* dx = Σ ̂  (^)m [ [*«/ WΓ Λ. (4.4)
Jc m^ml JG

It is seen from Corollary 1 that

α
ι ;7f \l/p

φ(rΓPpr-ldr ΦP(f(y}}dy\

Φ P ( f ( y ) ) d y )
)

whenever 2 < ηQ < η < oo and m ̂  1; Corollary 1 in fact gives the inequality
when βm > /?, and we apply Holder's inequality to obtain the inequality for
smaller m. If we take η = eβm, then it follows from (2.4) and assumption (4.1)
that

G
\l/βm

(RJ(x}]βmdxJ ^
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where

l/p

Consequently it follows from (4.4) that

JjαpίW/ί*)/)]' dx ^ \G\ + £ 1 (Bq)m(Cη0 + CF,0[log(e + m)]l/βfm.

Taking a positive integer mo depending on ηQ for which

η0<FjloS(e + m0)γ/β, (4.5)

we have by Lemma 7

f "to

[exP(*(Λβ/(*)y)]« <fec 5Ξ |G| + 2
Jc m=l

+ Σ (

for ^ with BCFξQq > e. Now, taking ;/0 so large that JϊCF^o < 1 and then
taking mo for which (4.5) holds, we obtain (4.3), as required.

PROOF OF THEOREM B. Let φ(r) = [log(e + r)]p~l [log(e + log(e + r))]b (for
large r). If b <p — 1, then

for sufficiently large η. Hence (4.1) holds for β=p/(p—l—b), so that
Theorem 3 gives Theorem B.

5. Sharpness of β in case p = n

(I) For δ > 0, consider the function

\χ-y\l-"f(y)dy
Jβ(0,l)

with

1 for y e 5(0,1).
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Then / satisfies

if and only if n(δ - 1) + a < -1. We see that

u(x] ^ C \ \y\l~nf(y] dy ^ C[log(e/\x\)f
JeB0,l:>2xJ{yeB(0,l):\y\>2\x\}

for \x\ < 1/4. Hence, if βδ > 1, then

exp[κ(jc/]έfe=oo. (5.2)
,l)

If β > n/(n — 1 — a), then we can choose δ such that

l/β<δ<(n-l- a) In.

In this case, both (5.1) and (5.2) hold. This implies that the exponent β in
Theorem A is sharp.

(II) For δ > 0, consider the function

«(*)=[ \χ-y\l-"f(y)dy
J5(0,l)

with

/OO = \yΓl[log(e/\y\)Γl[\og(e\og(e/\y\))f-1 for y e 5(0, 1).

Then / satisfies

f f(ynoB(e+f(y))Γ%s(e + los(e+f(ymb^c < °o (5.3)
J 5(0,1)

if and only if n(δ-l) + b< -I. We see that

u(x] ^ C [ b'Γ'yOO dy ^ C[loB(elog(e/\x\))}δ

J{yεB(0,l):\y\>2\x\}

for |jc| < 1/4. Hence, if βδ > 1, then

f exp[exp(M(*/)]</x=oo. (5.4)
J*(o,i)

If β > n/(n — 1 — 6), then we can choose δ such that

\/β<δ<(n-\-b}/n.
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In this case, both (5.3) and (5.4) hold. This implies that the exponent β in
Theorem B is sharp.

REMARK 2. For a < n — 1 and δ > 0, consider the function

u(x}=\ \x-y\l-nf(y}dy
J5(0,l)

with

/W = \yΓ>S(e/\y\)Γ(a+l}/"[\og(elog(e/\y\))f-1 for y e B(0, 1).

Then / satisfies

/(y)>g(β +f(y))]a(log(e + log(e +/(y)))]* dx < oo (5.5)

if and only if n(δ - 1) + b < -1. We see that

f
J 5(0,1)

«M£C \y\l-"f(y}dy
i{yeB(0,l):\y\>2\X\}

for |;c| < 1/4. Hence, if )S = n/(n - I - a) and β(<5 - 1) -f γ > 0, then

f exp[u(x)β(log(e + u(x)))γ} dx=ao. (5.6)
J£(0,l)

If y > (b -f l)/(fl — 1 — «), then we can choose δ such that

(n-b-l)/n>δ>(β-γ)/β=(n-(n-a-l)γ)/n.

In this case, both (5.5) and (5.6) hold.
Thus we do not know whether the exponent γ in Theorem A is sharp or

not.
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