
HIROSHIMA MATH. J.

28 (1998), 507-521

Oscillation criteria for half-linear second order differential equations

Ondrej DOSLY

(Received April 30, 1997)

(Revised October 13, 1997)

ABSTRACT. We study oscillatory properties of half-linear second order differential

equation

viewed as a perturbation of the generalized Euler equation

where γ0 =

1. Introduction

In this paper we deal with oscillatory properties of the half-linear second
order differential equation

(1.1) [Φ(y')]' + c(x)Φ(y) = 0,

where c : [0, oo) —• 1R is a continuous function and Φ(s) := \s\p~ι sgn s = l^"2.?
with p > 1. It is known, see. e.g. [4, 10], that basic oscillatory properties of
(1.1) are essentially the same as those of the linear differential equation

(1.2) y» + c(x)y = 0

which is a special case p = 2 of (1.1). In particular, if x\, X2 are consecutive
zeros of a nontrivial solution y of (1.1) then any other solution which is not
proportional to y has exactly one zero in (xi,X2) Consequently, all solutions
of (1.1) are either oscillatory or nonoscillatory.

In the last years, several papers appeared showing that oscillation criteria
of Hartman, Wintner, Kamenev, Philos and others for (1.2) may be extended to
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(1.1), see [3, 7, 9, 11, 12]. These criteria are mostly based on the Riccati
transformation consisting in the fact that if y is a nonzero solution of (1.1) then

(13) »•(*) Φ { Λ X ) )

solves the generalized Riccati equation

(1.4) w' + c(x) + (p-l)\w\q = 0,

where q is the conjugate number of σ, i.e., - + - = 1 . In these criteria,
P q

equation (1.1) is essentially viewed as a perturbation of the (nonoscillatory)
equation

(1.5) ( * ( / ) ) ' = 0.

Here we use a somewhat different approach which is based on the
relationship between positivity of the "/^-degree" functional

r(y,a,b)=\ [\y'\p-c(x)\y\p]dx
Ja

in the class of functions satisfying y(a) = 0 = y(b) and disconjugacy of (1.1) in
[a,b] (for the precise statement see the next section). Moreover, we investigate
equation (1.1) not as a perturbation of (1.5), but as a perturbation of the
generalized Euler equation

( i \ P
] is the so-called critical constant in this equation. Like in

P )
the linear case, if we replace γ0 by a constant γ > γ0 (γ < γ0) then (1.6) becomes
oscillatory (remains nonoscillatory), see [3].

The paper is organized as follows. In the next section we recall basic
properties of solutions of (1.1) and we also formulate, for the sake of com-
parison, some results of "linear" oscillation theory. The main result of the
paper, an oscillation criterion for (1.1), is presented in Section 3 and the last
section is devoted to remarks and comments concerning possible extensions of
our results and to related topics.

2. Preliminary results

First recall some results and methods of oscillation theory of linear
equations. The well known variational principle, see e.g. [6], states that the
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equation

(2.1) (r(x)y')' + c(x)y = 0,

where c, r : [a,b] —> R, r(x) > 0, is disconjugate in [<z,fe] (i.e., any nontrivial
solution has at most one zero in [a,b] if and only if

Γ{y;a,b) = f [r{x)y12 - c(x)y2} dx>0
Ja

for every nontrivial, piecewise C1 function y for which y(a) = 0 = y(b).
Another important concept of oscillation theory of linear equations is the
concept of principal solution. A solution yo of (2.1) is said to be principal if

l i m ^ = 0

for any nonzero solution y of (2.1) which is linearly independent of yo (such
solution is said to be nonprincipal). Principal solution of (2.1) exists (uniquely
up to multiplication by a nonzero real constant) if and only if (2.1) is
nonoscillatory.

Now, consider equation (2.1) as a perturbation of the nonoscillatory
equation

(2.2) (r(x)y')' + co(x)y = O,

where Co is a continuous real-valued function and let yo, y\ be principal and
nonprincipal solutions of (2.2), respectively. If

Vi (x) f

(2.3) j i m ^ U J ^ (c(x) - co(s))y2

o(s) ds > 1

then (2.1) is oscillatory and if

(2.4) Hm ^ I J J ( Φ ) - co{s))+y2

o(s) ds <\
then (2.1) is nonoscillatory, here the subscript " + " denotes the positive part of

a function in brackets. In particular, if r= 1, co(x) =:^—j> the condition

(2.50 jim lg* J00 (c(s) - ^\sds > 1,

is sufficient for (1.2) to be oscillatory and the condition
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(2.52) Bm lgxj^ ( φ ) - ^a)+*Λ < J

is sulficient for nonoscillation of (1.2).

In this paper we extend (2.5i) to (1.1) and we also explain why we were
not successful in extending (2.52) to half-linear equation. Our investigation is
based on the following statement proved recently by Li and Yeh in [8].

LEMMA 2.1. Let y be a solution of the equation

(2.6) (r(x)Φ(y'))' + c(x)Φ(y) = 0

on [a,b] satisfying y(x) φQ on (α,6). Denote by Ω the family

Ω = {ωe Cι[a,b] \ω(a) = 0 = ω(b) and ω(x) φ 0 on (a,b)}.

Then for every ω e Ω

(2.7) *-(α>;a,b) = Ϋ\r[x)\oJ(x)\> - c{x)\ω{x)\p] dx > 0,
Ja

where equality holds if and only if ω and y are proportional.

A closer examination of the proof of this lemma shows that it applies
without changes also to the case when the condition ωe Cι[a,b] in definition of
Ω is replaced by a weaker condition: ω is piecewise of the class C1 in [α, b] and
at any discontinuity point xe[a,b] of ω' there exist finite limits ω'(x+),
ω'{x—). This larger class of function we denote by Ωr.

Consequently, if we find a nontjivial function y e Ω' such that
2Γ(y\a,b) < 0, then equation (2.6) is conjugate in [a,b], i.e., there exists a
nontrivial solution with at least two zeros in [a,b]. Conversely, if
3~{y\ a,b) > 0 for every nontrivial yeΩ' then (2.6) is disconjugate in [a, b] since
if y is a nontrivial solution with consecutive zeros x\,xi e [a,b], then for

xe[a,b]\[xux2]

we have

;α,ft) = P(r(*)|a>7 ~ c(x)\ω\>)dx
Jxi

= r{x)ω{x)Φ{ω'{x))\?χ - Γ ω(x)[(r(x)Φ(ω'))' + c{x)Φ{ω)] dx = 0.
Jxi
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3. Oscillation criterion

In this section we prove our main result.

THEOREM 3.1. Suppose that

(3.1) lim lg

511

p-\

then (1.1) is oscillatory.

PROOF. According to Lemma 2.1 it is sufficient to find for any d > 0 a
piecewise differentiable function ;;, with compact support in (d, oo), say [*o,*3],
such that

S{y,*o,χi) = Γ[\y'\p - c(χ)\y\p] dx < 0.
Jxo

Let *3 > X2 > x\ > xo and let /, g be solutions of (1.6) satisfying boundary
conditions

Define a test function y as follows

y(χ) =

' 0 if x < xo,

f(x) if xo < x < x\,

X(P-I)/P if X ι < x < X2y

g(x) if x2 < x < X3,

0 if x > x3.

In the next computation, for the convenience of notation, denote

G(xo,xι) = xtl)

H(x2,x3) = xtl)

Using this notation and integration by parts, we have
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xo

,*,) + H(x2,x,) - J " [φί) - jjjj] I/I' &

Next we prove that the functions — and — are strictly monotonic on (Λ:O,Λ:I)
yo yo

and (JC2,X3), respectively. If (f/yo)f(x) = 0 at some Jc G (XO,X\), then we have
= {y'o/yo)(X) Denote by Wι = Φ(f')/Φ(f), w2 =

Both these functions satisfy the generalized Riccati equation

(3.2) w ' + 0 + ( p - 1 ) 1 ^ = 0,

where ^ is the conjugate number of p, i.e., - + - = 1, with the same initial
P <1

condition at x = x. Hence these solutions coincide over the whole interval of

their existence, which is the interval (xo,x\). But this is the obvious con-

tradiction (since f(xo) = 0), i.e., (f/yo)'>O on this interval. The same

argument applies to prove monotonicity of g/yo over (x2>*3) Now, the

second mean value theorem of integral calculus implies the existence of

ξλ — (JCO,ΛΓI) such that
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-ι:
Similarly,

for some ξ2 e (xi.x^)- Consequently,

JΓ ( ( ) S ) w ) | t ( W • S ) ^ " 1 dx

In the following part we derive the asymptotic formula for G{x$,x\) as
x\ —» 00 and for i/(jC2,X3) as JC3 —• 00. To this end, we use the transformation
of the independent variable x = e*. Put z(ή = y(et) = y(x), v(t) = xp~x w(x),
then this transformation transforms equations (1.6) and (3.2) into the equations
(with constant coefficients)

(3.3) \Φ{z')]' -{p- l)Φ(z') + γ0Φ(z) = 0

and

(3.4) v' = (p - \)υ - γ0 - (p - l)\v\9 =: F(v),

respectively. Concerning the last equation, this equation possesses the constant

solution v = vo = ( ) and any solution υ tends to vo as t—> oo.
V P )

Indeed, i^tfo) = 0 and if v = v(t) exists on some interval [Γ, oo), then

<3 5 )

Now, if t -^ oo, the integral on the left-hand-side must diverge and this occurs
only if v(oo) = vo.

The function F(v) may be expressed in the form (since also F'^o) = 0)

F(v) = jF"(t*)(i> - vo)2 + O((v - voγ), as v -> v0,

hence

F(v) F''(vo)(v-voΫ

ί 1 \
0

\v - voj
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this implies (compare (3.5))

2

-v)

hence

O(lg\v-v0\) = t - T a s / - • oo,

— - r + (v0 - v)O(lg I v - vo\) = (vo - v)(t -T) as r ̂  oo.

Since lim,_>oo(t;o - v(ή)O(lg \ vo - v(ή\) = 0 we have

urn (vo - v(ή)(t -T)= lim /(, 0 - v(ή) = - ^

Consequently,

O(lg I vo - KOI) = O[ l g 7 ) = 0( lgή as t -> oo

and thus

!*-!> 2

which means

V - Vo = -
\F"{υo)t + O(lgt) LF»(v0)t(l + θ ( ^

~ F"(vo)t

as t —> oo. Taking into account the relation between solutions w and v of (3.2)

and (3.4) we have

— I as x —y oo.
x )

Φ(f'(x))
Let w(x,xo) := V v y y . Then this function solves (3.2) and hence

-vo

F"(vo)lgXι

 + U\ lg2χ, ) lgx
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as x\ —> oo since by a direct computation we have F"(vo) = . Moreover,

observe that G(xo,x\) is positive and decreasing. Indeed, if t\=lgx\ and

v(ή = e^"1 ) iw(e r,x0) then G(xo,x\) = v(t\) - v0 > 0 for every t\ > t0 (since

/ '(* i ) > y'o(xύ) and δ'(ί) = F(δ(O) < H(v0) = 0.

Concerning the asymptotic behaviour of H(x2,xs) as xi —> oo, we proceed

similarly as for G(xo,x\). We have

where w(x1x3) = ^ is the solution of (1.4) generated by the solution g

of (1.6), i.e., the solution for which w(x3—,#3) = — 00. We will show that

vo—xζ~ιw(x2,X3)—^O as X3 —> 00. To this end, we use again the trans-

formation x = e', v(ή = xp~ιw(x) which transforms (1.4) into (3.4). Let te R

be arbitrary and denote by w(ί, t) the solution of (3.4) determined by the

solution of (3.3) satisfying z(t) = 0, i.e., lim,_^_ w(ί, t) = — 00. Similarly as for

ί—• 00 in the previous part of the proof we have lim^-oo^o — v{t,t)) = 0.

Using the fact that (3.4) is autonomous, i.e. v(t — ί, 1) solves this equation too,

we have vo — v(t,t) —• 0 as |/ — 7| —>• 00, regardless whether t —* — 00 and t

is fixed or t is fixed and 7—> 00. Consequently, if t2 = lgx2, h — lg*3 and

υ(t,t3) = xp~ιw(x,X3)9 x = Qt, we have

-10 = lim (vo - !>(ί2, ts)) = lim (ι;0 - x%~lw(x2, x3)),
ί3—^00 JC3—>CX)JC3—

i.e. ro - xζ~lw(x2,X3) -^ 0 as X3 -^ 00.
Now, let us return to the computation of the functional 2Γ. Let d < xo be

fixed, we have

2,x3) - | ' (c(x) - ^)xp~l dx

3) Jft ( C W - ^ ) ^ - 1 rf^l
JG(rf,*o

In the last inequality we have used monotonicity of G and the fact that the

numerator of the third term in brackets is positive (compare (3.1)).

Now, let ε > 0 be (sufficiently small) such that the limit in (3.1) is greater

than Ίy——) C1 + 6 ε ) = 2 ί ;o(l + 6ε). We have lim^oolgxG(d,x) = 2v0,
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i.e., lgxG(d,x) < 2t?o(l + e) if x is sufficiently large, and in view of (3.1) xo > d
can be chosen in such a way that

(M) H Λ χP
(3.7) 2,o(l+6 £ )

- — \xp~ι

χP)
x

whenever ξ\ > XQ and ε is sufficiently small.
Since

G(d,x) χ^co vo — χP~ιw(x,d)

V lg2X / ,

V
there exists x\ > xo such that

)

Further, (3.7) implies the existence of x2 > x\ such that

f *** (r(Ύ\ — %L\ γP~ι ήΎ

• > 1 + 3ε
G(d,ξx)

whenever ξ2 > xi
Finally, since H(x2,X3) —> 0 as x$ —> oo, we have H(x2,X3)G~ι(d,x\) < ε

if X3 is sufficiently large.
Combining all previous computations we see that the expression in the

brackets in (3.6) is < —ε, hence &~(y;xo,X3) < 0, and by Lemma 2.1 equation
(1.1) is oscillatory. •

4. Remarks and comments

(i) Observe that the transformation of the independent variable

~qds(4.1) t=Γ[r(s)}1-
Jo

where q is the conjugate number of/?, i.e., - + - = 1, transforms (2.7) into the
Ό Q

equation
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at

which is the equation of the form (1.1), here x = x(t) is the inverse of t = t(x)

given by (4.1). Using this transformation, a criterion similar to that given in

Theorem 3.1 for (1.1) can be also formulated for a more general equation (2.6).

(ii) In [1] we have shown that the In order equation

(4.2) y(2n) +p(x)y = 0

is conjugate in (0, oo) (i.e., there exists a nontrivial solution of (4.2) with at

least two different zero points of multiplicity n in (0, oo)) provided

ldx>0 and p(x)Ψ% in(0,oo),
x

Γ(2« — I)!!]2

where μn = (—l)n ——τ~~^ is the critical constant in the In order Euler
It

equation y(2n^ +—^y = 0. In particular, if n = 1 then (1.2) is conjugate in

(0, oo) provided

1 \ i
—-=• in (0, oo).

A similar conjugacy criterion may be proved also for half-linear equation (1.1),

using essentially the same test function as in the proof of Theorem 3.1.

THEOREM 4.1. Suppose that

(4.3) ζ(c{x)-ϊ£)χp-ιdx>o and c(x) φ g in (0, oo)

then (1.1) is conjugate in (0, oo).

As we mentioned above, the proof of this theorem is essentially the same

as that of Theorem 3.1. Let y be the same test function as in the proof of

this theorem, with the following exception. By virtue of (4.3) there exists

x G (0, oo) such that c(x) > -^ and we construct a "small hill" on the graph of

the function >>oM = x^~ι^p in the neighbourhood the point x = x in such a

way that &~(y]Xo,xi) < 0 if we let xo —> 0 and x^ —> oo. Construction of this

hill is exactly the same as in linear case. ^

(iii) In Theorem 3.1 we suppose that the integral (c(x) -—jxp~ιdx is

convergent. If this integral diverges to oo then (1.1) is oscillatory as it is

shown in [5, Theorem 7].
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(iv) In Theorem 3.1 and also in previous remarks equation (1.1) is viewed
as a perturbation of generalized Euler equation (1.6). Of course, one may
also consider (2.6) as a perturbation of the one-term (nonoscillatory) equation
(r(x)Φ(y'))' = 0. Using essentially the same test function as in the linear case
one can prove the following oscillation criterion.

THEOREM 4.2. Suppose that J00 rλ~q(x) dx = oo (q is the conjugate number
of p) and

p-1

> 1

then (2.6) is oscillatory.

Concerning the exact construction of the test function y for which the
functional & given by (2.7) is negative, we define

0

10

χ<χo,

ΛTo < X < X\9

X\ < X < X2,

X2 <X < X3,

X > X3.

Now, if JCO < x\ < X2 < X3 are sufficiently large, we have &~(y;xo,X3) < 0.
Similarly as in the linear case, one may also prove a "nonoscillatory

supplement" of the previous theorem.

THEOREM 4.3. Suppose that §°° rι~q{x)dx = 00 and

P-l / foo \ /_ _ Λ\P-1

(4.4) jim (Γrι~q(s)ds\ (Γ c+(s)ds\
pP

then (2.6) is nonoscillatory. Here c+(s) = max{0, c(s)}.

PROOF. We will show that conditions of theorem imply the existence of
NeJR. such that

**&) = Γ(r(x)\y'\P - c(x)\y\p)dx > 0,
JN

for any nontrivial C1 function y with compact support in (N, oo) (see Lemma
2.1).
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First we establish the following useful inequality which is proved in case
p = 2 e.g. in [6].

Let M be a positive differentiable function for which M'(x) Φ 0 in [a,b]
and let zeΩ (Ω is defined in Lemma 2.1). Then

(4.5,

Indeed, using integration by parts and the Holder inequality we have

rb rb
f \M'\\z\pdxίp\ M\zΓι\z'\dx
Ja Ja

l/P

hence the required inequality follows. Now, denote

(p-\γ-χ

v := pP

and let N e 1R be such that the expression in (4.4) is less than v for x > N.
Using the previous inequality and (4.4) we have for any differentiable y with
compact support in (N, oo)

Γ c{x)\y\pdx< Γc+(x)\y\"dx=p Γ c+(x)( Γ y'Φ(y)dt) dx
JN JN JN \JN /

f00 Γ00 cΛήdt f00

<p\ \y'\Φ(y)M(x)ix + " dx<pv\ M{x)\y'\Φ{y)dx

Qoo

m W d )

since directly one may verify that

\M(x)\p

\M'(x)\p-1

Hence we have S£[r(x)\y'\" - c(x)\y\p] dx>0. Π
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(v) The method used in Theorems 3.1, 4.2 as well as in (2.3) and (2.4)
suggests the following general approach to the investigation of oscillatory
properties of (2.6). In this method, this equation would be viewed as a
perturbation of the general nonoscillatory equation

(4.5) (r(x)Φ(yf)Y + co(x)Φ(y) = O.

However, except for the special case treated in Theorems 3.1, 4.1, no "half-
linear" analogy of (2.3), (2.4) is known till now. The reason is not only the
absence of equivalents of principal and nonprincipal solutions, but also (and
first of all) one has in disposal no transformation theory similar to that for
linear equations. Using the linear transformation theory, e.g. criterion (2.3)
may be proved as follows. If yo is the principal solution of (2.2) then the
transformation y = you transforms this equation into the one-term equation

(4.6) (r(x)y2

0(x)u'Y = 0,

hence this transformation converts (2.1) into the equation

(r(x)y2

0(x)ury + (c(x) - co(x))y2

o(x)u = 0.

Now, the last equation is treated as a perturbation of (4.6) in a way as
suggested in remark (iv) (applied to the linear case) and the obtained results
are then transformed "back" into (2.1). This approach cannot be directly
extended to half-linear equations just because of absence of a "half-linear"
transformation theory. For this reason we also failed in extending (2.52) to
half-linear equation (1.1).

(vi) Consider the partial differential equation

(4.7) div (\Vu(x)\p-2Vu(x)) + q{x)\u\p-2u = 0, x = (xu...,xn) e Rπ.

This so-called /?-Laplace equation has been treated in many recent papers, see
e.g. [2] and the references given therein. Oscillatory properties of the usual
Laplace equation

Δu + q{x)u = 0

Vu
was studied e.g. in [13] using the Riccati-type transform w = — . Then w
satisfies the equation

divw+ #(*) + ||w(;c)||2 = 0

and methods typical for ordinary differential equations can be used also in this
Wuψ^Vu

case. In case of /7-Laplace equation, the function w = -—^—^— verifies the
equation 'M' u
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P
= 0 , q:= p-\

and one may try to extend the idea used in [13] to /^-Laplace equation
(4.7). We hope to follow this idea in a subsequent paper.
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