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Nonexistence of subsolutions of a nonlinear elliptic equation
on bounded domains in a Riemannian manifold
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AssTract. We give some nonexistence results for positive subsolutions of a certain
class of nonlinear elliptic equations including the scalar curvature equation on bounded
domains in a Riemannian manifold.

1. Introduction

Let (M,g) be a Riemannian manifold (»=dim M > 3), S, its scalar
curvature. For any smooth function f on M, f can be realized as the scalar
curvature of some metric § conformal to g, if and only if there exists a smooth
solution u of the following equation:

9 (A s gl

on M,
u>0

where 4, is the Laplacian of g (i.e. 4, := g’V;;). Indeed, the conformal metric
g = u*™2g has the scalar curvature S; = f.

In this paper, we consider a class of equations including (%) on a certain
type of open Riemannian manifolds, and give some nonexistence results in the
case f is nonpositive. Before describing our results, we recall here some known
facts for typical (M,g)’s. Throughout this paper, we use the notation “f ~ ik
to mean that f/f is bounded between two positive constants (i.e. Cf < f < C'f
for some C >0 and C’ > 0).

Fact 1.1. Let (M,g) be the Euclidean space (R",go). Denote the dis-

tance function to the origin by r. Then the following assertions hold:

(1) If |f| < Cr** near o for some C >0 and & > 0, then (%) has infinitely
many solutions u satisfying u~1=1r" near oo ([14));

(2) If —=Cr2=¢ <f <0 near o for some C >0 and ¢ >0, and f <0 on R",
then (x) has a solution u satisfying u > C'r"=2/4 near oo for some C' >0

([4D);
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(3) Iff < —Cr2 near o for some C >0, and f <0 on R", then (x) has no
solutions ([12], [3]).

Fact 1.2. Let (M,g) be the unit ball (B1(0),g0) in R". Then the fol-
lowing assertions hold:

(1) If |f| < C(1 =) near 0B (0) for some C >0 and ¢ > 0, then (x) has
infinitely many solutions u satisfying u ~ 1 = (1 — r)® near 0B,(0) (To see
this, examine a supersolution and a subsolution uy = y{2 + (1 —r?»)°}.);

() If —C(1 —r)"** < f < 0 near 3B,(0) for some C >0 ande >0, and f <0
on By(0), then (x) has a solution u satisfying u> C'(1 — r)~"2/% yeqr
0B, (0) for some C' > 0 ([16]);

3) Iff<-c(1- r)_2 near 0B, (0) for some C > 0, and f <0 on By(0), then
(%) has no solutions ([16}).

Now, consider the case of open Riemannian manifolds of the form
M = M\X, where (M,g) is a compact Riemannian manifold and X is its
closed submanifold. The scalar curvature equation (*) on such M = M\ZX is
studied as a problem of finding solutions with prescribed singularity 2, or as an
approach to an investigation on the space of positive solutions of the nonlinear
equation (x) with various Martin boundary.

It is well known that R" is conformal to S"\{p}, and that B;(0) is
conformal to both a connected component of S"\S"~! and the hyperbolic space
H”. Namely both R” and B;(0) (or H") belong to the class {M = M\ZX}.
From this common viewpoint, Facts 1.1 and 1.2 seem to describe the same
phenomenon on the different objects, and the difference of the orders in the
assertions seems to be caused by the difference of the dimensions of the
boundaries {p} and S"!. Indeed, there is a fact for the boundary of
dimension d € [0,n —2) as below:

Fact 13. Let (M,§) be a compact Riemannian manifold (n=
dim M > 3) with positive scalar curvature, and X its closed C*-submanifold
(d=dimZ <n-2). Set (M,g):=(M\Z,§l|js). Denote the distance func-
tion to X by rs. Then the following assertions hold.

() If |f] < CrE D% ponr 5 for some C>0 and &> 0, then (x) has

infinitely many solutions u satisfying u ~ r="% near X ([5], [10]);

2) If —Cri /= 2"Ls<f<0near)§'forsomeC>0and£>0 and f <0 on

M, then (%) has a solution u satisfying u > C'ry 2ontd=en=D/4 Loar X for

some C' >0 ([7], [8]).

When we observe these results, it is natural to expect the following:

B3) Iff < —CrE*®2 pear 5 for some C >0, and f <0 on M, then (x) has
no solutions.



Nonexistence of subsolutions of a nonlinear elliptic equation 421

The aim of this paper is to show more general nonexistence results which
include this as a special case.

Let (M,j) be a Riemannian manifold (n = dim M > 3), M a relatively
compact domain in M, and g:= g|,,. Let ¢ be a number larger than 1, S
(resp. f) a nonnegative (resp. nonpositive) locally Holder continuous function
on M. Under these assumptions, we consider the following equation:

() —Adgu+ Su=fu? on M.

Throughout this paper, we denote the distance function to 0M (resp. X etc.) by
rom (resp. rx etc.). We have the following

TueOREM 1. Let (M,g), q, S and f be as above, S a nonnegative Holder
continuous function on M such that S < S on M, and ¢ a positive function on M
satisfying —A,0 + Sp = 0. If f satisfies

f<-Crsk0 %Y near oM

for a positive constant C, then the equation (xx) does not possess a positive
(sub-)solution.

In the proofs of Facts 1.1(3) and 1.2(3), analyses of ordinary differential
inequalities played a cruicial role. However, it seems difficult to apply such
methods to our case, and we employ a different method to show Theorem I.

In the assumption of Theorem I, if we choose S =0, then ¢ is a positive
harmonic function. We can always choose ¢ = 1, and, as a corollary, we get a
generalization of Fact 1.2(3) to an arbitrary bounded domain in R”, or in a
complete Riemannian manifold.

COROLLARY. Let (M,g), q, S and f be as in Theorem 1. If f satisfies
f < —Cr3} near dM for a positive constant C, then the equation (xx) does not
possess a positive (sub-)solution.

Note here that the set M is free from any assumption on dimension and
regularity. Moreover, by another special choice of ¢, we get the following

THEOREM II. Let (M,g), q, S and f be as in Theorem I. Assume one of
the following conditions holds:
(a) There exists a bounded domain Q CC M which includes the closure M of M,
(b) M is a compact Riemannian manifold without boundary, the closure M of M
coincides with M, and S is bounded below by a positive constant.
Suppose OM = U:;OEi, and X; is a compact C?-submanifold of M (d; =
dimZX; <n-2) (i=1,...,k). If f satisfies
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-Crz? when i =0
f< —Crfiz(log(rgil))_(q_l) when d; = n — 2
—Cr Eiz_(q_l)(z_"er) whend; <n—2

near X; for a positive constant C, then the equation (xx) does not possess a
positive (sub-)solution.

The expected Fact 1.3(3) for the scalar curvature equation (*) is a special
case of this theorem with the condition (b).

Recently, some nonexistence results were given for certain classes of
complete Riemannian manifolds including R” and H”, under curvature con-
dition or volume growth condition ([17], [15], [19]). In particular, in [17] and
[15], the orders between those of (1)-(2) and (3) in Facts 1.1 and 1.2 were
considered. Also in our case, we have the following result. Here log’ means
the j-times composition of the logarithmic function log.

THeOReM III. Let (M, g), q, S and f be as in Theorem II with the condition

(a) or (b). Suppose oM = |_],k=1 Z; (disjoint union), and X; is a compact C?-
submanifold of M (d;=dimX; <n—1) (i=1,...,k). If f satisfies

~Cr3? H;L(l()gj(rf,,l))_l whend; =n— 1
£ <{ —Crelog(rh)) WV [Ty (log/(r51)) " when dy=n 2
__Cr;_iz—(Q—l)(Z—n+d) HZI(IOgj(rE‘iI))_I when d; < n—?2

near X; for a positive constant C, then the equation (xx) does not possess a
positive (sub-)solution.

In the special case when d; < (n —2)/2 for any i, there exists a complete
scalar flat conformal metric on M. In this case, if S > S;(n—2)/4(n—1),
then the assertion above can be shown also by using the transformation rule of
the conformal Laplacian and combining [15, Theorem 4.1] and [10, Proposition
2, Theorem 2]. ([19, Theorem 3.1] also relates to this case.) On the other
hand, [17, Theorem 4] treats the scalar curvature equation on complete
Riemannian manifolds with negative scalar curvature which relates to the case
when d; > (n— 2)/2 for any i. However, since it assumes the existence of a
pole, our assertion cannot be derived from it. Moreover, our theorem con-
siders mixed cases.

In Section 2, we recall and prepare some a priori upper estimates for
subsolutions of the equation (**), and prove Theorems I and II in Section 3.
A proof of Theorem III is given in Section 4 with an improved estimate, and
some applications to the scalar curvature equation (x) is demonstrated in
Section 5. In particular, we have the following uniqueness result for solutions
of (x).
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THEOREM IV. Let (M,g), X and f be as in Fact 1.3 withd =n—2. Sup-
pose f ~ —rz2(log(rz!)) 2™ D= near X for some £>0, f <0 on M, and
suppose u is a solution of (x). If u/log(rz!) — +o0 as rz — 0, then u~
(log(rg’))lﬂ(”_z)/ * near X. In particular, u coincides with the maximal solution
of (%).

This corresponds to the results in the previous papers (see [8] for
d<n-2 9] ford=n-1).

2. A priori upper estimates for subsolutions

In this section, we observe a priori upper estimates for subsolutions.
By the same way as [16, Proposition 2.3], we can prove the following

LemMA 2.1. Let (M,g), q, S and f be as in Theorem 1. Let x be a point
in M, and R a positive number smaller than the injectivity radius of M. Set
R’ :=min{R,ryp(x)}. Then any nonnegative subsolution u of the equation (xx)
satisfies the estimate

, ~1/(g-1)
“C .
u(x) < G inf (r g}g)glfl) ,

where Cy is a positive constant which depends only on n, q, R and max ;| Kj|.

Here B,(x) denotes the r-neighborhood of x. We use notations of this
type (Br(0M) etc.) throughout this paper.

We also use Harnack inequality of the following type (see e.g. [6, Theorem
8.20)):

LEMMA 22. Let (M,g) be as in Theorem I, S a nonnegative Holder
continuous function on M, and ¢ a positive solution of the equation
—4,0+Sp =0 on M. Then there is a positive constant C, which satisfies

A ss()? = Cy9(x) for any x e M close to oM.

By using Lemmas 2.1 and 2.2, we have

Lemma 2.3. Let (M,g), q, S and f be as in Theorem I, X a connected
component of M, R as in Lemma 2.1, S a nonnegative Holder continuous
function on M such that S < S on M, and ¢ a positive solution of the equation
—A4,0+Sp=00n M. If f < —Y(rz)p~ 9V near X for a positive monotone
Sunction  on (0, 2R), then, for C3 :=4/5 (when y is nondecreasing), 6/5 (when
V is nonincreasing), any nonnegative subsolution u of the equation (xx) satisfies
the estimate

u < C4(r2y(Car)) /4 Vg pear =

for a positive constant Cj.
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Proor. Choose r =rg(x)/S in Lemma 2.1.
When ¢ is nondecreasing, by using Lemma 2.2 for ¢, we get the estimate
-1/(g-1)
u(x) < 1§ (r=(x)/5)* _min (Y (rz)p™@")
B p(x)/5(x) ’
< Ci{(rz(x)/9) W (4rs(x)/5)C; “ Vg(x) @Dy /6D
< Y@L Cofrz(0) Y (4rz(x)/9)} O Vg ().

When ¥ is nonincreasing, we get the estimate

-1/(g-1)
u(x) < Cl{(rz(X)/ 5)° _min (l//(rx)fﬂ_("_”)}

B, 5 (/5(x)
< Ci{(r=(x)/5) ¥ (6rz(x)/5)C; “ Vg(x) D) 71D
< @D G Co{rz(x) Y (6r2(x)/5)} 1 Vo(x). qed.
As a corollary to Lemma 2.3, we have the following a priori upper
estimate which was partially obtained in [2], [7], [16] etc..

LEMMA 2.4. Let (M,g), q, S, f, Z, S and ¢ be as in Lemma 2.3, If
f < —Csrbp~4 near X for a positive constant Cs and a real number ¢, then
any nonnegative subsolution u of the equation (xx) satisfies the estimate

u< Cﬁr;“”’/ (q—1)¢ near X for a positive constant Cg.

ProOF. By Lemma 2.3 with y(7) = Cst/, we get the estimate
u< C4{r§C5(C3r);)/}_1/(q_l)¢ < C4(C5C{)_1/("_1)@(“2)/("_1)(0. q.e.d.

REMARK 2.5. Note here that —(¢£ +2)/(q—1) >0 for £ < —2. There-
fore, if f < —Csri, ;9= for £ < —2, then u/p — 0 as ror — 0. Now, by
the maximum principle, we have u < ¢p on M for any ¢ > 0, and consequently
u must be equal to 0 on M. However, we want to show this for £ < — 2, and
hence we need to improve the estimate above.

3. Proofs of Theorems I and II
The following lemma is a key tool to prove our nonexistence results.

Lemma 3.1. Let (M,g), q, S and f be as in Theorem I, and R as in Lemma
2.1. Let ¢ be a positive C?-function on Byr(0M)NM such that
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(3.1) { —49+Sp 20 on Byr(0M)NM

raM|Vg¢| < C7(0
for a positive constant Cq;. Suppose [ satisfies
f=< —Csra‘f,(o‘("") on Byr(0M)NM

for a positive constant Cs, Then, for any nonnegative subsolution u of the
equation (xx), if u satisfies the estimate u < y,9 on Br(OM)NM for a positive
number y,, then it holds that u/p — 0 as rp — 0.

Proor. First, note here that there exists a positive number f satisfying
|rxd4rx| < B on Bg(x) for any xe M.
Now, we claim that for any i e NU {0},

u<yp onBgn(dM)NM

for a positive number y; given inductively by ;. := F!(y;), where

F(y) =1 7+ .

8
8(2C,+1+p)

By the assumption, this holds for i = 0. To see the claim, assume u < y;¢ on
Bgrji(0M)N M for some i. For any x € Bgjy+1 (0M)N M, set

ux(9) = {40 = %141)rom (¥) rx(9)” + 9141 }0(9)
forye B,BM(x)/z(x)(C B3,m(x)/2(aM) nNMcC BR/zi(aM) N M)

By direct computation, we have

Agu(y) — Sux(y) < 8(yi — ¥ig1)ram () H{2re(D)Vyra(v) - Voo(»)
+ (1 +rx(y)dgr=(¥))o(»)}
< 8(y; — Vir1)rama (¥) " H{2ram(¥) - 1+ Vg0 (»)| + (1 + B)o(»)}
< 8(ri = P )rom () 2(2C1 + 1+ B)o(»)
< 83 — Vit )rom (%) 22C7 + 1+ B)p(){ux(») (7i10(») ™'}
= 8{F(yi41) — Vi1 rom () 22C1 + 1+ By 0(9) " V()
= Ca(3ram(x)/2) 0(y) "4 Vux(3)*
< Csram(y) 20(») " Vuy(»)?
SIfWux(3)? = ~f(P)ux(»)? for y € B,y (x)2(%)-
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It is clear that
ux(y) = 7:9(y) 2 u(y) for y € 0By, (x/2(x).

Therefore, by the maximum principle, u,(y) > u(y) for y € B, (x2(x). In
particular, we have

u(x) < ux(x) = y;19(%).
Now, we get

U<y.,9 on BR/2i+l (8M) ﬂM,

and the claim has been proved.

It is easy to see from the definition that the sequence {y;},.n is strictly
decleasing. Since F is continuous, we have lim; i, y; =0. Therefore u/¢
tends uniformly to 0 as rsr — 0. q.e.d.

To prove Theorem I, we also use the following interior estimates of
derivatives (see e.g. [6, Theorem 6.2 (and Theorem 8.20)]).

LemMA 3.2. Let (M,g), S and ¢ be as in Lemma 2.2. Then there is a
positive constant Cy which satisfies rap|Vgy9| < Cr9 on M.

ProoF OF THEOREM 1. Clearly, it holds that
~4,0+Sp> —4,0+Sp=0 on M,

and, by Lemma 3.2, ¢ satisfies the condition (3.1). Furthermore, by Lemma
2.4, u satisfies u < Cep near M. Hence, by Lemma 3.1, we get u/p — 0 as
oM — 0.

More precisely, for a positive number R small enough and any ieN,
u <y on Bg;i(0M)N M, and

(4, — S)(y;.9p—u) <0 on M.

Therefore, by the maximum principle, we have u<yp on M. As
lim; 40 y; =0, we get u=0 on M. This completes the proof. q.e.d.

Now, Theorem II follows from Theorem I and the following

LemMmaA 3.3. Let (M,g) and S be as in Theorem II with the condition (a) or
(b). In the case of (a), set S :=0 (resp. In the case of (b), let S be a positive
constant such that S < S on M). Suppose X is a compact C%-submanifold of M
included in M (d = dim X < n—2). Then there exists a positive solution Gy of
the equation —A4,Gx + SGx =0 on M which satisfies
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Cylog (r7') } < 6. < Ciolog(rz!) whend=n-2
Corkm+d = = Cior¥™?  whend <n-2

Cur}_"'*'d < |Vng| < Clzré_"*'d

near X for positive constants Cy, Cyy, Cyy and Cij.

Proor. In the case of (a), let G(x,y) be the positive Dirichlet Green
function of —4, on a bounded domain £ with smooth boundary such that
M CC Q CC M (resp. In the case of (b), let G(x,y) be the Green function of
——Ag+.§‘ on M = M) (cf. [I, Chapter 4], [11, Theorem 2.8] etc.), and set
Gs(x) := [; G(x,y)do(y), where do is the volume element of the induced
metric on 2. Then, by the same way as in the proof of [10, Proposition 2] (see
also [18], [13], [5]), we get the estimates in the assertion above. q.e.d.

ProoF OF THEOREM II. Let S and Gy, be as in Lemma 3.3, and set
0= ,~k=1 Gs,. Then ¢ is also a positive solution of the equation —A4,¢ +
Sp =0 on M. By the definition, it is clear that Cj3 := miny ¢ > 0. For any
x€e M close to M, choose an index i such that rypy(x) =rs(x). By the
assumption and Lemma 3.3, f satisfies

~Crs,(x) 2 < = Crs,(x) 2 (CRle(x) ™" wheni=0

10 = { —~Crz,(x) (G5 Gr, (%)Y wheni=1,....k

< —Curs, (%) 20(x) "™ = —Crarop(x) 2p(x)~@Y,

where Cyy := C(min{Cg,C13})”"1. Now, by Theorem I, we get the asser-
tion. g.e.d.

4. A proof of Theorem III

In this section, as we mentioned in Introduction, we treat orders expressed
by the logarithmic function. From here, we denote the j times composition of
log by log’. First, we see the following a priori estimate:

LemMa 4.1. Let (M,g), q, S and f be as in Theorem I, and X a connected
component of oM. If

m
f<—Cisrg [[(log’(r5")) ™
j=1

near X' for a positive constant Cys and real numbers ¢; (j = 0,1,...,m), then any
nonnegative subsolution u of the equation (xx) satisfies the estimate
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m

u< Cl6rg'([°+2)/(q-l) H(logj(rgl))lj/(q-l)

Jj=1

near X for a positive constant Cig.

This lemma follows immediately from Lemma 2.3, since the function
t% ]'[;Zl(log’ 1)™% is monotone for ¢ large enough. However, to improve
Theorem II, we must show somewhat stronger estimate as follows:

LemMA 4.2. Let (M,g), q, S and f be as in Theorem I, and X~ a C2-
submanifold of M (d = dim X) which is a connected component of oM. If

(—Cir? TS (log/ (r7Y)) T 112, (log? (r51)) ™" whend =n — 1
~Cyyr5? H}';l(logj(rgl))_lf whend =n—-2,u=1
< § ~Curs*(og(r") "V I (log! (1) !
-Hj'iﬂ(log’(rgl))_(’ whend=n—2,u>2
_ Cpary2 Gt 1 (log! (r51))
| TI2,(log (r51) ™ whend <n—2

near X for a positive constant Ci7, a positive integer u and real numbers
¢; (j=M,...,m), then any nonnegative subsolution u of the equation (%x)
satisfies the estimate

( Clg(log”(r)__-l))(["_1)/(‘1_1) H;:,;H(IOgj(rfl))[j/(q_l) whend =n—1
C]s(log(rz-l))({'_2)/(‘1_1) Hjﬁz(logj(r)}l))l’/(q_]) whend=n—2,u=1
] Cislog(rz")(log"(r")) /(=D

I 1 (log/ (r51)) /@) whend =n—2,u>2
Clgrg_”+d(10g”(rfl))((“_1)/(‘1—1)
‘ -HJT__”H(logj(rz-l)){’/(q_l) whend <n—2

near X for a positive constant Cig.
To show this, we prepare the following

Lemma 4.3. Let (M,g), q, S and f be as in Theorem I, and X a connected
component of OM. Let u be a nonnegative subsolution of the equation
(¥x). Suppose that there exists a positive supersolution  of the equation (xx)
near X, and that there also exists a positive function v satisfying
—d4v+ Sv > Y9 near X, and v/u — +0 as rs — 0. Then it holds that
u < CyoY near X for a positive constant Cjs.
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Proor. Choose a positive number R such that all of our assumptions

hold on Bgr(Z)N M. For any positive number ¢, set ¥, :== ¢ +év. Then we
have

=AY, + SY, = -4y + Sy + e(—A44v + Sv)
> fY +ef YT o = fYI(l +evp)
> Y1 +ep™) = fyg,

namely, Y, is a supersolution of the equation (x*) on Bg(X)NM. Set

— -1
Cyg := max{l,”?%)r(w(m// )}
Then we can easily show that Cioy, is also a supersolution of the equation (*x)
on Br(Z)NM. Now, by the definition of Cyg, it is clear that Cioy, >
Cioy > u on dBr(Z)N M. On the other hand, since Ciopy,u~! > Croevu~! —
oo as ry — 0, it holds that Cio¢, > u on Bgp/(Z)NM for a positive num-
ber R’ < R. Hence, by the maximum principle, we have Cioy, >u on
Br(Z)NM, and we get u < lim,,o(Cio¥,) = Cio¥ on Br(Z)N M. q.e.d.

For convenience, we denote
m
h(a; 1) = h(ao, 1, - .., %m; £) 1= [ [ (log? )% on R™! x (T, +0),
j=1

where m is a positive integer, and T :=1 (m = 1), exp™2e (m > 2). Clearly,
it holds that

h(ao + a'o’; 1) = h(a; 1)°h(a’;£)*  for any a,a’ e R, o, 0’ € R™!,

and that, if o = a]f (j=0,...,u—1) and «a, > oc,’l, then h(ex;t) > h(a’;t) for ¢
large enough. Moreover, by direct computation, we have

4.1 b t) = 5D S 1,0,...,0;1
(4.1) 105 ._h(a;t)_;a, (—?,...,?_, g ),
d*h
) ._7,7(“;’)
42) h(n =52

m

= Y wQey-1h(=2,...,-2,-1,...,=1,0,...,0;1)
JI=0;j<J 0 j n

J m

m
+ 3 oy — DA(=2,...,=2,0,...,0;1).
o m

j=0 j



430 Shin Karto

ProoF OF LEMMA 4.2. Fix a positive integer m. We prove our assertion
by the induction for u. In this proof, Cy,...,Cy denote positive constants
depending only on (M,g), ¢, S and f.

(THE cASsE d =n—1) By the assumption, f satisfies

f<=Cuh(2,-1,...,~1, L ~Cutts - —fm;rgl).
0

u m

For any real number 9, define

ws ;=h(o,o,...,o,”‘+‘5, /"“1,..., i ;rgl).
o 4:1 q- (1:1
u m

When u =1, by Lemma 4.1 (resp. When u > 2, by the estimate for u — 1), we
have u < Cywp near 2. Set ¥ :=ypw_; and v:=w;. Then

W =y Cirh(2, -1, ..., =1,=1,0,..., 0;75Y).
] " m

On the other hand, by direct computation,
U (A — SY) = r5tha(. .5 r5) + 1522 = rsdgrs)h (.. . r5t) = 8,
and, by (4.1) and (4.2), we have

U (dg¥ — SY) < Cuh(2,-1,...,-1,=1,0,...,0;75")
0 m

u

near 2. By the same way, we also have the same estimate for v. Now, if we
choose y > (Cy1/C17)/™V, then ¥ and v satisfy Y~ (4, — SY) < |f|¥?" and
v (440 — Sv) < |fIY?!. Since v/u > wy/Cyowo — +0 as rz — 0, by Lemma
4.3, we get u < Cioy near X.

(THE CASE d < n—2) By Lemma 3.3, we have Gz ~ r};‘"”. Hence our
assumption can be rewritten as follows:
f < - C22r2'2h(-(q - l)! —1’ RN} _1’ _/{ﬂy “lutlyeeey _f{m; GZ)

0 “

For any J, define
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w;::h(l,O,...,O,["-'_a, funt  fm ;Gg).
" q:l qg-—1 g-1

u

m

When u = 1, by Lemma 4.1 (resp. When u > 2, by the estimate for u — 1), we
have u < Cy3wg near 2. Set y :=yw_; and v:=w;. Then, by direct com-
putation,

Y Ay — SY) = [V,Gs|*ha(. .. ; Gs) + 4,Gshy(...; Gs) — S.

If we choose y large enough as before, then, by Lemma 3.3, (4.1) and (4.2), we

can show
l/l_l(Aglp—S!//) < C24r22h(2,—1,...,—1,—,\1,0,...,9\; GE)
0 3 m
<y ' Cury*h(0,-1,...,-1,-1,0,...,0; Gx)
0 I3 m

< Iflp!
near X, and also v~!(4,0 — Sv) < |f|Y7"!. Hence, by Lemma 4.3, we get u <

CioY near X.
(THE CASEd =n—2 AND u=1) By Lemma 3.3, we have Gy ~ log(rz!).

Hence our assumption can be rewritten as follows:

f < —Curi?h(—¢1,~a, ..., ~¢m; Gx).

0 m~1

Define
Ws :=h(£1 +o & fm 'G):).

q—l,q—l"..,q—11

m—1

0
If we

By Lemma 4.1, we have u < Cy3wp near 2.  Set Y := yw_y and v := w.
choose y large as before, then, by the same way as for d < n—2, we have

- 0;Gg) < Sy

¥ (4g¥ — SY) < Coarz?h(=2,0, ..
0

near X, and also v~!(4,0 — Sv) < |f|¥9"!. Hence we get u < Cioy near X.
(THE CASEd =n —2 AND u > 2) By the same reason as in the case u =1,
our assumption can be rewritten as follows:
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f < =Carg?h(=(g +1),~1,..., =1, ~C),~lps1, .., ~Cm; Gr)-
0o u—1 m—1
Define
¢
w,,::h(1,o,...,o,{"+5, sl o Im ;G;_-).
" q:l q-1 q:l
u—1 m-1

By the estimate for u— 1, we have u < C;3wy near XZ. Set ¥ :=yw_; and
v:=w). If we choose y large, then we have

l//‘l(Aglll - S'//) < C24r22h(:\2’_1a" '7'—11_,\1’0,"'7 QaGZ) < |f|'//q—1
m—1

[} u-1

near X, and also v~!(4,0— Sv) < |f|y?!. Hence we get u < Ciofy near
2. This completes the proof. q.ed.

Now, by using Lemma 4.2, we can show the assertion of Theorem III.

ProoF oF THEOREM III. Let u be a nonnegative subsolution of the
equation (xx). If di=n—1, then

1 <~ [Juog’ v = ~cr2 [Jog(51) ™ - g™ ).
j=1 J=1

By Lemma 4.2, we have u < Clg(log'"“(rgi‘))'l/ @1 near X;. Similarly, if
d; <n—2, then we have u < C18C9‘1Gzi(log'"“(rgl_l))—l/("_l) near X;, where
Gz, is as in Lemma 3.3. Set ¢:=1+ 24 <,—2Gx,. Then ¢ is a positive
function which satisfies —A4,0+Sp >0 on M, and u/p — 0 as ray — 0.
Now, by using the maximum principle as in the proof of Theorem I, we have
u=0. q.e.d.

5. Remarks on the scalar curvature equation

In the rest of this paper, we remark on some applications of our results to
the scalar curvature equation (x).

By Lemma 4.2 with g=(n+2)/(n—2), k=1 and u=m=1, we
immediately get the following

PROPOSITION 5.1. Let (M,g), X and f be as in Fact 1.3 withd <n—1. If

f< —Cysr32(log(ry!)) ™ whend >n—2
h —Czsri——‘w (n-2) (log(rz)™ whend <n—2
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near X for some Cys >0 and ¢, then any solution u of the scalar curvature
equation (x) satisfies

Cas(log(rz1))¢~Dn-2/4 whend =n—1
u< C26(log(r§1))(“2)("‘2)/ 4 whend =n—2
Coeri ™t (log(rz.‘))({"l)(""2)/ * whend <n-2

near X for some Cy > 0.

We also have

COROLLARY 5.2. Let (M,g), ~ and f be as in Proposition 5.1. If

—Cyrrs2(log(rsh)) ™! whend =n— 1

f < —Curs?(log(rz)) ™™D whend =n-2
Corp 244/ (n=2) _1yy—1

—Cary (log(rs')) whend <n-—2

near X for some Cy; >0, then (x) has no solutions.

When d < n— 2, this improves Fact 1.3(3).

On the other hand, for instance, in the case when d = n — 2, we can show
the following fact by the same way as the proofs of [10, Theorems 2 and 3} and
[7, Theorem IV].

Fact 5.3. Let (M,g), 2 and f be as in Fact 1.3 withd =n—2. Then the

Jfollowing assertions hold:

(1) If|f] < Cawrz?(log(ry!)) /"2 near X for some Caz > 0 and & > 0, then
(*) has infinitely many solutions u satisfying u ~ log(rz!) near X;

Q) If —Crprz2(log(ry!)) ™2~ < £ <0 near X for some Cy >0 and
e>0, and f <0 on M, then (x) has a solution u satisfying u >

Cgo(log(rgl))l+e("‘2)/ * near X for some Ci > 0.

From this, the assumption of Corollary 5.2 is sharp in a sense. To
compare the conditions in Theorem III (and Corollary 5.2) with some more
general conditions for existence, see [10, Theorem 2’].

Furthermore, by applying the proof of [8, Theorem 2] to the case when
d=n-2, we also get the uniqueness result described as Theorem IV in
Introduction.

ProoF oOF THEOREM IV. By Proposition 5.1, we have u<
C26(10g(r):*1))1+£(n_2)/4~

On the other hand, when 0 <& < 1, by the same way as the proof of
[10, Theorem 2 (a)], the equation (x) possesses a solution u; satisfying
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C31Gx(1 — C32G5°) <uy < C31Gy for some C33 >0 and Cj3 >0. Since
1 —u1/C31 Gy < C3G5* < CCyé(log(rz!)) ™%, by [8, Lemma 3.1}, we have
u > Ca(log(rz1)) ' **"=2/* for some Cs; > 0.

When ¢ > 1, choose a positive number 6 < ¢e~!. Then, by the same way
as the proof of [8, Theorem 2], u®GL? > Ci(log(rz')) %™ 2/% Hence
4> C;3/0C110-1/0(10g(r21))1+e(n-2)/4.

Therefore, in both cases, we have u ~ (10g(r§‘))1+€("_2)/4. Now, by [8,
Theorem 1], u coincides with the maximal solution of (x). qed.
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