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ABSTRACT. We give some nonexistence results for positive subsolutions of a certain
class of nonlinear elliptic equations including the scalar curvature equation on bounded
domains in a Riemannian manifold.

1. Introduction

Let (M,g) be a Riemannian manifold (n = dimM > 3), Sg its scalar
curvature. For any smooth function / o n M, f can be realized as the scalar
curvature of some metric g conformal to g, if and only if there exists a smooth
solution u of the following equation:

w /« o n M )

I M > 0

where Δg is the Laplacian of g (i.e. Δg := gijVy). Indeed, the conformal metric
g = u4/(n~2)g has the scalar curvature Sg = / .

In this paper, we consider a class of equations including (*) on a certain
type of open Riemannian manifolds, and give some nonexistence results in the
case/is nonpositive. Before describing our results, we recall here some known
facts for typical (M,#)'s. Throughout this paper, we use the notation "/ ~f"
to mean that/// is bounded between two positive constants (i.e. Cf <f < C'f
for some C > 0 and C > 0).

FACT 1.1. Let (M,g) be the Euclidean space (R",0o). Denote the dis-
tance function to the origin by r. Then the following assertions hold:
(1) If I/I < Cr~2~ε near oo for some C > 0 and ε > 0, then (*) has infinitely

many solutions u satisfying u ~ 1 = r° near oo ([14]);
(2) If -Cr~2~ε < / < 0 near oo for some C > 0 and ε > 0, and f < 0 on R",

then (*) has a solution u satisfying u > C'r8^'2^4 near oo for some C > 0

([4]);
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(3) Iff < -Cr~2 near oo for some C>0,andf<0on Rn, then (*) has no

solutions ([12], [3]).

FACT 1.2. Let (M,g) be the unit ball (Bι(0),g0) in RΛ. Then the fol-
lowing assertions hold:

(1) If\f\ < C(l - r)~2+ε near dBχ(O) for some C > 0 and ε > 0, then (*) has

infinitely many solutions u satisfying w ~ 1 = (1 — r)° Aieαr 32?i(0) {To see

this, examine a supersolution and a subsolution u± = γ{2 ± (1 — r2)ε}.);

(2) If-C{\ -r)~2+ε <f<0near dB{{0) for some C>0andε>0, andf<0

on B\(0), then (*) has a solution u satisfying u>C'{\ - ry
ε(n~2)/4

 n e a r

dBx{0) for some C > 0 ([16]);

(3) Iff < - C ( l - r)~2 near dBλ{0) for some C > 0, and f < 0 on Bχ{G), then

(*) has no solutions ([16]).

Now, consider the case of open Riemannian manifolds of the form

M = M\Σ, where {M, g) is a compact Riemannian manifold and Σ is its

closed submanifold. The scalar curvature equation (*) on such M = M\Σ is

studied as a problem of finding solutions with prescribed singularity Σ, or as an

approach to an investigation on the space of positive solutions of the nonlinear

equation (*) with various Martin boundary.

It is well known that Rn is conformal to S"\{/?}, and that B\(0) is

conformal to both a connected component of S n\S"~ 1 and the hyperbolic space

H n . Namely both R" and Bχ(0) (or HΛ) belong to the class {M = M\Σ}.

From this common viewpoint, Facts 1.1 and 1.2 seem to describe the same

phenomenon on the different objects, and the difference of the orders in the

assertions seems to be caused by the difference of the dimensions of the

boundaries {/?} and S""1. Indeed, there is a fact for the boundary of

dimension d e [0, n — 2) as below:

FACT 1.3. Let {M,g) be a compact Riemannian manifold {n =

d i m M > 3 ) with positive scalar curvature, and Σ its closed C1-submanifold

{d = dimZ1 < n — 2). Set {M,g) :— (M\Σ,g\^Σ). Denote the distance func-

tion to Σ by rz- Then the following assertions hold'.

(1) If \f\< Cr2-Ad/{n-2)+ε near Σ for some C> 0 and ε > 0, then (*) has

infinitely many solutions u satisfying u ~ r2£nJrd near Σ ([5], [10]);

(2) If _Cr
2

Σ~
4d/{n~2)+ε < / < 0 near Σ for some C>0andε>0,andf<0on

M, then (*) has a solution u satisfying u > cfrΣ~
n^d~ε^~2^4 near Σ for

some C>0 ([7], [8]).

When we observe these results, it is natural to expect the following:

(3) Iff < -Cr2

Σ~
4d/{n~2) near Σ for some C > 0, andf < 0 on M, then (*) has

no solutions.
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The aim of this paper is to show more general nonexistence results which

include this as a special case.

Let (M,g) be a Riemannian manifold (« = d i m M > 3 ) , M a relatively

compact domain in M, and g := g\M. Let q be a number larger than 1, S

(resp. / ) a nonnegative (resp. nonpositive) locally Holder continuous function

on M. Under these assumptions, we consider the following equation:

(**) -AgU + Su=fuq onM.

Throughout this paper, we denote the distance function to dM (resp. Σ etc.) by

(resp. rΣ etc.). We have the following

THEOREM I. Let (M,#), q, S and f be as above, S a nonnegative Holder

continuous function on M such that S < S on M, and φ a positive function on M

satisfying —Δgφ + Sφ = 0. If f satisfies

f < -Cr^<p-{q-l) neardM

for a positive constant C, then the equation (**) does not possess a positive

{sub-) solution.

In the proofs of Facts 1.1(3) and 1.2(3), analyses of ordinary differential

inequalities played a cruicial role. However, it seems difficult to apply such

methods to our case, and we employ a different method to show Theorem I.

In the assumption of Theorem I, if we choose S = 0, then φ is a positive

harmonic function. We can always choose φ = 1, and, as a corollary, we get a

generalization of Fact 1.2(3) to an arbitrary bounded domain in R", or in a

complete Riemannian manifold.

COROLLARY. Let (M,g), q, S and f be as in Theorem I. If f satisfies

f < — Cr~^M near dM for a positive constant C, then the equation (**) does not

possess a positive {sub-)solution.

Note here that the set dM is free from any assumption on dimension and

regularity. Moreover, by another special choice of φ, we get the following

THEOREM II. Let (M,g), q, S and f be as in Theorem I. Assume one of

the following conditions holds:

{a) There exists a bounded domain Ω CC M which includes the closure M of M\

{b) M is a compact Riemannian manifold without boundary, the closure M of M

coincides with M, and S is bounded below by a positive constant.

Suppose dM = [Ji=0Σi, and Σ{ is a compact C2-submanifold of M (έ/, =

<n-2) (i = 1,... ,k). If f satisfies
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f -Cr^l when i = 0

-OsfOogfc,1))"**"1* When di = n-2
_Cr-2-iq-m-n+d) w h e n d i < n - 2

near Σι for a positive constant C, then the equation (**) does not possess a

positive {sub-)solution.

The expected Fact 1.3(3) for the scalar curvature equation (*) is a special

case of this theorem with the condition (b).

Recently, some nonexistence results were given for certain classes of

complete Riemannian manifolds including Rn and Hπ, under curvature con-

dition or volume growth condition ([17], [15], [19]). In particular, in [17] and

[15], the orders between those of (l)-(2) and (3) in Facts 1.1 and 1.2 were

considered. Also in our case, we have the following result. Here log7 means

the /-times composition of the logarithmic function log.

THEOREM III. Let (M,g), q, S and f be as in Theorem II with the condition

(a) or (b). Suppose dM = |J / = 1 Σ\ (disjoint union), and Σ\ is a compact C2-

submanifold of M (di = dim27, < n — 1) (i = 1,...,k). If f satisfies

[ -<*£Π£i(Wfc,1))-1 when di = n-\
f < I -Cr£{\oφ-Σ]))-^+ι) IEUOogVί,1))-1 when d, = n - 2

[ ))-1 when di<n-2
near Σj for a positive constant C, then the equation (**) does not possess a

positive (sub-)solution.

In the special case when di < (n — 2)/2 for any /, there exists a complete

scalar flat conformal metric on M. In this case, if S > Sg(n — 2)/4(n — 1),

then the assertion above can be shown also by using the transformation rule of

the conformal Laplacian and combining [15, Theorem 4.1] and [10, Proposition

2, Theorem 2]. ([19, Theorem 3.1] also relates to this case.) On the other

hand, [17, Theorem 4] treats the scalar curvature equation on complete

Riemannian manifolds with negative scalar curvature which relates to the case

when dj > (n — 2)/2 for any i. However, since it assumes the existence of a

pole, our assertion cannot be derived from it. Moreover, our theorem con-

siders mixed cases.

In Section 2, we recall and prepare some a priori upper estimates for

subsolutions of the equation (**), and prove Theorems I and II in Section 3.

A proof of Theorem III is given in Section 4 with an improved estimate, and

some applications to the scalar curvature equation (*) is demonstrated in

Section 5. In particular, we have the following uniqueness result for solutions

of (*).
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THEOREM IV. Let (Af, g), Σ and f be as in Fact 1.3 with d = n - 2. Sup-

pose f ~ - ^ 2(log(r^ 1))" 2 n / ( π" 2 )" ε near Σ for some ε > 0, / < 0 on M, and

suppose u is a solution of (*). If u/\og(rΣ

ι) —> +oo as rΣ —• 0, then u ~

(log(rΣ

ι)γ+ε^n~2^Λ near Σ. In particular, u coincides with the maximal solution

of (*)•
This corresponds to the results in the previous papers (see [8] for

d<n-2, [9] for d = n- 1).

2. A priori upper estimates for subsolutions

In this section, we observe a priori upper estimates for subsolutions.

By the same way as [16, Proposition 2.3], we can prove the following

LEMMA 2.1. Let (M,g), q, S and f be as in Theorem I. Let x be a point

in M, and R a positive number smaller than the injectivity radius of M. Set

Rf := minί̂ R, Γ 5 M W } Then any nonnegative subsolution u of the equation (**)

satisfies the estimate

where C\ is a positive constant which depends only on n, q, R and j^

Here Br(x) denotes the r-neighborhood of JC. We use notations of this

type (BR(ΘM) etc.) throughout this paper.

We also use Harnack inequality of the following type (see e.g. [6, Theorem

8.20]):

LEMMA 2.2. Let (M,g) be as in Theorem /, S a nonnegative Holder

continuous function on M, and φ a positive solution of the equation

—Δgφ + Sφ = 0 on M. Then there is a positive constant Cι which satisfies
m a x 5 (x)*? — C2ψ{χ) for any x G M close to dM.

By using Lemmas 2.1 and 2.2, we have

LEMMA 2.3. Let (M,g), q, S and f be as in Theorem /, Σ a connected

component of dM, R as in Lemma 2.1, S a nonnegative Holder continuous

function on M such that S < S on M, and φ a positive solution of the equation

—Δgφ + Sφ = 0 on M. If f < — ψ(rΣ)φ~(q~^ near Σ for a positive monotone

function ψ on (0, 2R), then, for C3 := 4/5 (when φ is nondect-easing), 6/5 (when

φ is nonincreasing), any nonnegative subsolution u of the equation (**) satisfies

the estimate

u < C4{r2

Σφ(C3rΣ))-mq-ι)φ near Σ

for a positive constant C4.
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PROOF. Choose r = rΣ(x)/5 in Lemma 2.1.

When φ is nondecreasing, by using Lemma 2.2 for φ, we get the estimate

u{x)<cΛ{rΣ{x)/5)

When ^ is nonincreasing, we get the estimate

«(*) < c J (rrW/5) 2 min {φ{rΣ)φ-l<-»)\
{ BrΣ(x)/5(x) J

^-1)^). q.e.d.

As a corollary to Lemma 2.3, we have the following a priori upper

estimate which was partially obtained in [2], [7], [16] etc..

LEMMA 2.4. Let (M,g), q, S, f, Σ, S and φ be as in Lemma 2.3, If

f < —C^Σφ~^q~x^ near Σ for a positive constant C5 and a real number £, then

any nonnegative subsolution u of the equation (**) satisfies the estimate

u < Cβr~z + ''™~ 'φ near Σ for a positive constant Cβ.

PROOF. By Lemma 2.3 with \jj(t) = Cstέ\ we get the estimate

REMARK 2.5. Note here that -(S + 2)/(q- 1) > 0 for < < -2 . There-

fore, if / < -C5rξMφ-(q-V for € < - 2 , then u/φ - > 0 a s rdM -> 0. Now, by

the maximum principle, we have u < εφ on M for any ε > 0, and consequently

u must be equal to 0 on M. However, we want to show this for t < — 2, and

hence we need to improve the estimate above.

3. Proofs of Theorems I and Π

The following lemma is a key tool to prove our nonexistence results.

LEMMA 3.1. Let (M,g), q, S and f be as in Theorem /, and R as in Lemma

2.1. Let φ be a positive C2-function on B2R(dM)ΠM such that
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for a positive constant Cη. Suppose f satisfies

f < - C%rfMφ-^ on B2R(dM) Π M

for a positive constant Cs, Then, for any nonnegative subsolution u of the

equation (**), if u satisfies the estimate u < γoφ on BR(dM) OM for a positive

number γ0, then it holds that u/φ —> 0 as r$M —• 0.

PROOF. First, note here that there exists a positive number β satisfying

I r ^ ^ l <β on BR(X) for any xeM.

Now, we claim that for any / e N U { 0 } ,

u < ytφ on BR/2i (dλf) Π M

for a positive number yt given inductively by yI+1 :=F~ι(γi), where

F(γ) := 9ί yi + y
U) 18(2C7-h l+>8)

By the assumption, this holds for / = 0. To see the claim, assume u < γtφ on

BR/2i(dM)V\M for some i. For any xe BR/2i+i(dM)ΠM, set

My) -= {4(ϊi - yi+\)r dM(χ)~2rx{y)2 + yi+\}φ(y)

for y G BrBM(x)/2(x)(c B3rdAί{x)/2(dM) ΠMc BR/v(dM) ΠM).

By direct computation, we have

Δgux{y) - Sux(y) < 6(Yi - γi+ι)rδM(xΓ2{2rx(y)Vgrx(y) Vgφ(y)

< 8(7, - γM)rdM(x)-2{2rdM(y) 1 • \Vgφ(y)\ + (1 + β)f(y)}

< 8(y, - γM)rdM(x)-2(2C7 +

< 8(7, - yM)rdM{x)-\2CΊ +

\f(y)\ux(y)q = -f(y)ux(y)q for y e BrMx)/2(x).
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It is clear that

My) = 7i<p(y) ^ u(y) for y e dBrdM{x)/2(x).

Therefore, by the maximum principle, ux(y) > u{y) for yeBrjjM(xy2(x). In
particular, we have

u{x) <ux(x) = yi+

Now, we get

u < γi+ι φ on BR/2M {dM) Π M,

and the claim has been proved.

It is easy to see from the definition that the sequence {y,-}/eN is strictly

decleasing. Since F is continuous, we have lim/_*+oo 7, = 0. Therefore u/φ

tends uniformly to 0 as r$M —> 0. q.e.d.

To prove Theorem I, we also use the following interior estimates of

derivatives (see e.g. [6, Theorem 6.2 (and Theorem 8.20)]).

LEMMA 3.2. Let (M,g), S and φ be as in Lemma 2.2. Then there is a

positive constant Cη which satisfies TQM\^fgψ\ ^ Cηφ on M.

PROOF OF THEOREM I. Clearly, it holds that

—Δ gφ + Sφ > —Δgφ + Sφ = 0 on M,

and, by Lemma 3.2, φ satisfies the condition (3.1). Furthermore, by Lemma

2.4, u satisfies u < Ceφ near dM. Hence, by Lemma 3.1, we get u/φ —• 0 as

rdM -+ 0.

More precisely, for a positive number R small enough and any / e N,

u < jiψ on BR/2i(dM) Π M, and

(Ag - S)(y# - ύ) < 0 on M.

Therefore, by the maximum principle, we have u < y{φ on M. As

lim^+oo ϊi = 0, we get u = 0 on M. This completes the proof. q.e.d.

Now, Theorem II follows from Theorem I and the following

LEMMA 3.3. Let (M,g) and S be as in Theorem II with the condition (a) or

(b). In the case of (a), set S := 0 (resp. In the case of (b), let S be a positive

constant such that S < S on M). Suppose Σ is a compact C2-submanifold of M

included in M (d = dimi7 <n — 2). Then there exists a positive solution GΣ of

the equation —AgGz + •S'Gx = 0 on M which satisfies
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C9r
2

Σ-
n+d ί " ^ " i Ci0r

2fn+d when d<n-2

Cnr
l£n+d < \V9GΣ\ < Cnr

lfn+d

near Σ for positive constants C9, C\o, C\\ and Cγi.

PROOF. In the case of (α), let G(x,y) be the positive Dirichlet Green
function of — Δg on a bounded domain Ω with smooth boundary such that
M c c f i C C M (resp. In the case of (6), let G(x, y) be the Green function of
-Δg + S on M = M) (cf. [1, Chapter 4], [11, Theorem 2.8] etc.), and set
GΣ(x) := lΣG(x,y)dσ{y), where dσ is the volume element of the induced
metric on Σ. Then, by the same way as in the proof of [10, Proposition 2] (see
also [18], [13], [5]), we get the estimates in the assertion above. q.e.d.

PROOF OF THEOREM II. Let S and GΣi be as in Lemma 3.3, and set
φ := Σ?=ι GΣr Then φ is also a positive solution of the equation — Δgφ +
Sφ = 0 on M. By the definition, it is clear that C13 := min f̂ φ > 0. For any
xeM close to dM, choose an index i such that J ^ M M = ^(.x)- By the
assumption and Lemma 3.3, / satisfies

- . , , . Γ 2 ^ -CrΣi{x)-2{Cΰxφ{x)T(q-l) when / = 0
/ \X)

Γ -CrΣi{xy2 £ -

\ -CrΣl{x)-\Cζ(CglGΣi(x))-{q-ι) when i = 1,. . . ,k

where Cu := C(min{C9, Cn})q~ι. Now, by Theorem I, we get the asser-
tion, q.e.d.

4. A proof of Theorem III

In this section, as we mentioned in Introduction, we treat orders expressed
by the logarithmic function. From here, we denote the j times composition of
log by log7. First, we see the following a priori estimate:

LEMMA 4.1. Let (M,g), q, S and f be as in Theorem I, and Σ a connected

component of dM. If

7=1

near Σ for a positive constant C\$ and real numbers ίj {j = 0,1, . . . ,m), then any

nonnegative subsolution u of the equation (**) satisfies the estimate
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7=1

near Σ for a positive constant C\β.

This lemma follows immediately from Lemma 2.3, since the function

t~*° Π?Lι(log i t)~'J is monotone for t large enough. However, to improve

Theorem II, we must show somewhat stronger estimate as follows:

LEMMA 4.2. Let (M,g), q, S and f be as in Theorem /, and Σ a C2-

submanifold of M (d = dim Σ) which is a connected component of dM. If

' Π£,(log'(rϊ 1))-' ' when d = n - 1

' rf = R - 2,μ =

= it - 2,/ι > 2

d < n - 2

near Σ for a positive constant C\η, a positive integer μ and real numbers

ίj (j = μ,...,m), then any nonnegative subsolution u of the equation (**)

satisfies the estimate

C,8(log"(rs1))"(rs 1 )) ( ' ' 1 ~ 1 ) / ( ί ~ 1 ) when d = « - 1

when d = n-2,μ=\

whend = n-2,μ>2

rf < π - 2

i7 ybr a positive constant C\%.

To show this, we prepare the following

LEMMA 4.3. Let (M,g), q, S and f be as in Theorem /, and Σ a connected

component of dM. Let u be a nonnegative subsolution of the equation

(**). Suppose that there exists a positive supersolution \j/ of the equation (**)

near Σ, and that there also exists a positive function v satisfying

—ΔgV + Sv >fφq~ιv near Σ, and v/u —• +00 as rz —• 0. Then it holds that

u < C19Ψ near Σ for a positive constant C\g.
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PROOF. Choose a positive number R such that all of our assumptions

hold on BR(Σ) Π M. For any positive number ε, set φε := φ -f εv. Then we

have

- Agφε + Sφε = -Δgφ + Sψ + β(-Jgι> + Sfo)

*-1!; =fψq(l + εvφ~ι)

namely, φε is a supersolution of the equation (**) on BR(Σ) Π M. Set

C19 := max< 1, max (μφ~ι) >.

^ dBR(Σ)ί)M J

Then we can easily show that C\9φε is also a supersolution of the equation (**)

on BR(Σ) Π M. Now, by the definition of C19, it is clear that C\9φε >

C19Φ > u on dBR(Σ)Γ\M. On the other hand, since C\9φεu~ι > C\9ευu~x —•

00 as rχ —> 0, it holds that C\9φε>u on 2?£/(27)ΠM for a positive num-

ber Rf < R. Hence, by the maximum principle, we have C\9φε > u on

BR(Σ)ΠM, and we get u < limfi_>+o(CΊ9*Aε) = Cwφ on ^ ( I ) Π M . q.e.d.

For convenience, we denote

m

A(α; ί) = A(α0, α b . . . , α w ; ί) := ^ J | ( W /)αy on R w + 1 x (Γ, +00),

where m is a positive integer, and T := 1 (m = 1), expm~ 2e (w > 2). Clearly,

it holds that

h(a<x + afocf; t) = A(α; 0 ° % ' ; 0 β ' f o r a n Y a->a' e R . α . α ' e R W + 1»

and that, if αy = αj (7 = 0,. . . ,/ι - 1) and α^ > 0^, then A(α; ί) > A(α;; ί) for ί

large enough. Moreover, by direct computation, we have

(4.1) hifaή—ΈSZljί;

(4.2) rl2[0ί'iΐ) = ~77 ^~

= 5Z α/(2α y-l)A( τ2,..., τ2,-l,... l Tl,0,...,0;0
j,J=0,j<J 0 j J Ίn

m

+ ^ 0/(0/ - l)A(-^2,..., -^2,0,..., 0; O
y = 0 0 7 ^
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PROOF OF LEMMA 4.2. Fix a positive integer m. We prove our assertion
by the induction for μ. In this proof, C20, , C24 denote positive constants
depending only on (M,g), q, S and /.

(THE CASE d = n - 1) By the assumption, / satisfies

/ < -Ci 7 *(2, - 1 , , - 1 , -tμ% Sμ+u .., -Sm;r^1).

7 ? ΐ

For any real number <J, define

When μ = 1, by Lemma 4.1 (resp. When μ > 2, by the estimate for μ - 1), we
have 1/ < C20W0 near 27. Set φ := γw-\ and v:=w\. Then

^ y ^ C π A ^ - l , . . . ,-1,-1,0,. . . , 0 ; r ^ ) .
0 μ m

On the other hand, by direct computation,

ι/r W " Sφ) = r~Σ%{... r^1) + r^3(2 - rΣAgrΣ)hx(... r^1) - S,

and, by (4.1) and (4.2), we have

φ-\Agφ-Sφ)<Clλh{2,-\,...,-1,-1,0,. . . . O F Ϊ 1 )

near i7. By the same way, we also have the same estimate for v. Now, if we
choose γ > (C2ι/Cn)ι/{q~ι\ then φ and t; satisfy φ~ι(Agφ - Sφ) < \f\φq~ι and
v~ι(Agv — Sv) < \f\φq~ι. Since v/u > w\/C2owo —* +00 as r̂ - —> 0, by Lemma
4.3, we get u < C\$φ near Σ.

(THE CASE d <n-2) By Lemma 3.3, we have G^ ~ r2fn+d. Hence our
assumption can be rewritten as follows:

/ < - C22rΣ

2h(-(q - 1), - 1 , . . . , - 1 , -Sμ, -ίμ+u . . . , - £ m ; GΓ).
0 μ m

For any ί, define
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0 0*μ+

When μ = 1, by Lemma 4.1 (resp. When μ > 2, by the estimate for / i- l ) ,we
have M < C23W0 near Σ. Set 1̂  := yw-\ and u := n>i. Then, by direct com-
putation,

φ-\Agφ - Sφ) = \VgGΣ\
2h2(... GΣ) + AgGΣhx(. ..;GΣ)-S.

If we choose γ large enough as before, then, by Lemma 3.3, (4.1) and (4.2), we
can show

^ ^ , - 1 , . . . , - 1 , - 1 , 0 , . . . , 0 ; G 2 r )
0 μ m

γh{Q,-1,...,-1,-1,0,...,0;Gz)
0 μ m

z \f\ψ"-1

near Σ, and also v~ι(Agv — Sv) < \f\ψq~ι. Hence, by Lemma 4.3, we get u <
C19Ψ near Σ.

(THE CASE d — n-2 AND μ = 1) By Lemma 3.3, we have GΣ

Hence our assumption can be rewritten as follows:

/ < -C 2 2 ^ 2 Λ(-£i, - 6 , . . . , ~im\ GΣ).
0 m~\

Define

By Lemma 4.1, we have u < C23W0 near Σ. Set ψ := yw_2 and v:=w\. If we
choose 7 large as before, then, by the same way as for d < n — 2, we have

φ~ι (Agφ - Sψ) < C24rΣ

2h(-J, 0,..., 0 GΣ) < \f\φq~ι

near Σ, and also v~ι(Agv- Sv) < \f\φg ι. Hence we get u < Cwψ near Σ.

(THE CASE d — n — 2 AND μ>2) By the same reason as in the case μ — 1,
our assumption can be rewritten as follows:
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/ ^ —C22r~^ h(—(q + 1), — 1 , . , — 1 , —£μ, —£μ+\, j —€m\ GΣ)>

0 μ-\ m-\

Define

By the estimate for μ — 1, we have u < C23W0 near 27. Set ψ := yw_i and

t> .= wi. If we choose γ large, then we have

μ-l

near 27, and also υ ι(Λgv — Sv) < \f\\l/q ι . Hence we get u < Cwψ near

Σ. This completes the proof. q.e.d.

Now, by using Lemma 4.2, we can show the assertion of Theorem III.

PROOF OF THEOREM III. Let u be a nonnegative subsolution of the

equation (**). If έ/, = w - 1, then

' 7=1 7=1

By Lemma 4.2, we have u < Cn(\ogm+1(r^))~ι/{q~ι) near Σ,. Similarly, if

di<n-2, then we have u < CnCglGΣi(logm+ι(r^))~ι/{q~ι) near Σu where

GΣi is as in Lemma 3.3. Set φ := 1 Λ- Σi]di^n-2GΣr Then 9? is a positive

function which satisfies -Δgφ + Sφ>0 on M, and M/^ —> 0 as Γ^M —> 0.

Now, by using the maximum principle as in the proof of Theorem I, we have

u = 0. q.e.d.

5. Remarks on the scalar curvature equation

In the rest of this paper, we remark on some applications of our results to

the scalar curvature equation (*).

By Lemma 4.2 with q = (n + 2)/(n - 2), k = 1 and μ = m=l, we

immediately get the following

PROPOSITION 5.1. Let (M, #), Σ and f be as in Fact 1.3 with d < n - 1. 7/*

rf>n-2
7 " I -C^-^-^logte1))"' when d<n-2
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near Σ for some C25 > 0 and t, then any solution u of the scalar curvature
equation (*) satisfies

f C26(log(r^))('-1)(/I-2)/4 when d = n - l
u ^ I C 2 6 ( log(r^ 1 )) ( ί f - 2 ) ( / I - 2 ) / 4 when d = n-2

[ ld>)f-ι){n-2)IA whend<n-2

near Σ for some C2β > 0.

We also have

COROLLARY 5.2. Let (M,#), Σ and f be as in Proposition 5.1. If

i -C 2 7ri 2(log(^ 1))- 1 when d = n-l

-C2ηrγ{\og(r-Σ

ι))-ln/{n~2) when d = n-2
2\log(r^))-1 whend<n-2

near Σ for some C2η > 0, then (*) has no solutions.
When d < n - 2, this improves Fact 1.3(3).
On the other hand, for instance, in the case when d — n — 2, we can show

the following fact by the same way as the proofs of [10, Theorems 2 and 3] and
[7, Theorem TV].

FACT 5.3. Let (M,g), Σ andf be as in Fact 1.3 with d = n-2. Then the
following assertions hold:
(1) If I/I < C2 8rί2(log(^1))"2 ' l / ( '1-2 )-e near Σ for some C28 > 0 and ε > 0, then

(*) has infinitely many solutions u satisfying u^log(r^1) near Σ;
(2) If -C 2 9 ^ 2 ( log(r^ 1 ) ) " 2 ' l / ( / I - 2 ) " ε </<0 near Σ for some C29 > 0 and

ε > 0, and / < 0 on Λf, then (*) has a solution u satisfying u >
C3o(log(r^1))1+e(/I-2)/4 near Σ for some C30 > 0.

From this, the assumption of Corollary 5.2 is sharp in a sense. To
compare the conditions in Theorem III (and Corollary 5.2) with some more
general conditions for existence, see [10, Theorem 2'].

Furthermore, by applying the proof of [8, Theorem 2] to the case when
d = n — 2, we also get the uniqueness result described as Theorem IV in
Introduction.

PROOF OF THEOREM ΓV. By Proposition 5.1, we have u<
ι*2V4

On the other hand, when 0 < ε < 1, by the same way as the proof of
[10, Theorem 2 (a)], the equation (*) possesses a solution u\ satisfying
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Cs\GΣ(l - C31G^E) <u\< C3\GΣ for some C31 > 0 and C 3 2 > 0. Since

l-uι/C3\GΣ <CvGγ< C32Cgε(log(r^))~ε, by [8, Lemma 3.1], we have
u > C 3 3 ( log(^ 1 )) 1 + e ( / I ~ 2 ) / 4 for some C33 > 0.

When ε > 1, choose a positive number θ < ε~ι. Then, by the same way

as the proof of [8, Theorem 2], uθG\rθ > C 3 3 ( log(rί 1 )) 1 + ^ ( / 1 " 2 ) / 4 . Hence

Therefore, in both cases, we have u ~ ( log(r^)) 1 + e ( / I " 2 ) / 4 . Now, by [8,

Theorem 1], u coincides with the maximal solution of (*). q.e.d.
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