
HIROSHIMA MATH. J.
29 (1999), 347-360

Induction of nilpotent orbits for real reductive groups and associated

varieties of standard representations

Takuya OHTA
(Received July 6, 1998)

(Revised October 19, 1998)

ABSTRACT. In [LS], Lusztig and Spaltenstein introduced the notion of induction of

nilpotent orbits for complex reductive groups. It is known that the induction of

representations and that of nilpotent orbits are compatible with respect to the operation

taking associated variety for complex reductive groups (cf. [BV]). In this paper, we give

a definition of induction of nilpotent orbits by 0-stable paraboric subalgebras and that

by real paraboric subalgebras for real reductive groups, and show that the generic

A^-orbits in the associated varieties of certain standard (g, A1)-modules can be described

by using these inductions.

0. Introduction

Let G be a complex connected reductive algebraic group and τ : G —> G
a complex conjugation which defines a real form G(R) of G. Let θ : G —> G
be a (complexified) Cartan involution of G which commutes with τ. Write
K = {g e G; θ(g) = g} and g = f + s the Cartan decomposition with respect to
θ. For a closed subgroup H of G, we denote its Lie algebra by the corre-
sponding small German letter f).

In §1, to describe the g-principal (i.e. regular in g) X-orbits in the
associated varieties of certain standard (g, Λ^-modules, we give a para-
metrization of g-principal nilpotent X-orbits in s.

In §2, we discuss the induction of nilpotent A^-orbits. For a 0-stable
(resp. τ-stable) parabolic subgroup Q — LU (resp. P = MN) with ^-stable and
τ-stable Levi factor L (resp. M), we define

Indθ((\, q) ΐ g) :

(resp. 7m/R((m, p) ΐ

as a generalization of induction of nilpotent orbits in the complex cases, where
we write 2***/κ for the set of subsets of nilpotent AΓ-orbits in s. We describe
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the nilpotent K orbits induced by Indθ((l,q) | g) from I-principal nilpotent K-
orbits. We also describe the nilpotent ^Γ-orbits induced by 7ra/R((m, p) t g)
from the zero orbit when P = MN is a τ-stable Borel subgroup of G.

In §3, we recall the descriptions of the associated varieties of certain
standard (g, AT)-modules and show that the generic Λ^-orbits in their associated

varieties can be described by using Indθ((l,q) T 9) and 7ra/R((m,p) t g). We
also show that some finite group F£ (cf. (3.3)) acts on the associated variety of
the standard (g,^)-module corresponding to a set of 0-stable data for G(R).

1. Parametrization of g-principal nilpotent TΓ-orbits

Let G be a complex reductive algebraic group defined over R and
τ : G — » G a complex conjugation which defines the real form G(R) = {g e
G; τ(g) = g} of G. Let θ : G — » G be a (complexified) Cartan involution of G
which commutes with τ. Throughout this paper, we use the following
notations. For a closed subgroup of G, its Lie algebra is denoted by the
corresponding small German letter. The involution of g, which is induced

from τ (resp. θ), is also denoted by τ (resp. θ). Write K := {g e G;θ(g) = g}
and g = f -I- s the Cartan decomposition with respect to θ. The action of G on
g, which we always consider, is the adjoint action. For a τ-stable subset A of

G (resp. g), we write A(R) = {x e A\ τ(x) = x}. For a Cartan subalgebra I) of
g, we denote by Λ(g, ί)) the root system of g with respect to ί) and by gα the
root space corresponding to a root α e /£(g,ί)). For a ^-stable subspace V c g,
we write R(V, ί)) := {α e Λ(g, I)); gα c V}. If I) is 0-stable, we write R(V, ί))/R

(resp. /£(F,ί))R) the set of imaginary (resp. real) roots in R ( V , l ) ) , i.e.

The set of all nilpotent elements in g (resp. s,g(R)) is denoted by J/g (resp.

^S)^g(R))- The set of orbits in ^Q (resp. Λ^Λ^R)) under the action of G
(resp. K,G(R)) is denoted by JfjG (resp. J^/

DEFINITION 1.1 ([AV]). (i) Let I) be a 0-stable Cartan subalgebra of
g. A positive system Σ of R(§, ϊ))ίR is called of large type if every simple roots

of Σ is non-compact (i.e. gα c s).
(ii) A ^-stable Borel subalgebra b of g is called of large type if every

simple root of Λ(b,ί>) is complex (i.e. 0(α) ^ ± α) or non-compact imaginary
for any 0-stable Cartan subalgebra I) a b. We write ̂  the set of 0-stable

Borel subalgebras of g of large type.

REMARK 1.2. For a 0-stable Borel subalgebra b of g, since any 0-stable
Cartan subalgebras in b are conjugate under the action of B Π K, b is of large
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type if and only if there exists a ^-stable Cartan subalgebra ί) of b such that
every simple root of R(b, ί)) is complex or non-compact imaginary.

PROPOSTION 1.3 ([AV, Proposition 6.25]). Let b be a θ-stable Borel
subalgebra of g and ί) c= b a θ-stable Cartan subalgebra. Then the positive
system R(b, I))/R is of large type if and only if b is of large type.

To describe the g-principal AΓ-orbits in the associated variety of X =
XG(R}(c\,H(R},δ,v) (cf. §3), we consider the sets Λ^ and ̂ . Let q = I +
ti c= g be a ^-stable parabolic subalgebra with 0-stable Levi subalgebra I and
nilpotent radical u. We put

^ := {b e βt^\ kb c q for some k e K}.

We write ̂  the set of pairs (t,Σc] with the following properties:
(a) t is a fundamental Cartan subalgebra of g (i.e. t contains a Cartan

subalgebra of I).
(b) Σc is a positive system of R(§, t)/R of large type.
(c) There exists k e K such that kt a q and that kΣ° c R(q,kϊ).

Let α be a maximal abelian subspace of s Π [g, g] and define a finite group FG
by

FG := {a e έ?*p(α); Ad(a2) = id}.

REMARK 1 .4. (i) For ae FG and k e K, since a2 is contained in the
center of G, we have θ(aka~λ) — a~lka = a~2(aka~l)a2 = aka~l and hence FG
normalizes K.

(ii) By [KR, Proposition 1], we have

Ad(K°FG) = [Ad(G)\ θ := {Ad(g)-9 geG,θo Ad(g) o θ~l = Ad(g}},

where we write K° the identity component of K. It is easily verified that

[Ad(G)]θ = Ad(NG(ΐ)} and hence Ad(K°FG) = Ad(NG(l)} = Ad(NG($)). Since
NG(Ϊ) => K, we have Ad(KFG) = Ad(NG(ϊ)) = Ad(NG(*)).

A nilpotent element A' e g is called g-principal if X is regular in g. We
write Ji^~pr (resp. Jf^~p1 ", ^QJ£\] the set of g-principal elements in NQ (resp.

PROPOSITION 1.5 ([AV, Proposition 6.24]). The following conditions on θ
are equivalent.

(a) g is quasisplit (i.e. there exists a Borel subalgebra 0/g defined over R).
(b)
(c)
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(d) For any θ-stable Cartan subalgebra f) of g,^(g,ί))/R has a positive
system of large type.

(a1} There exists a θ-stable Cartan subalgebra I) of g such that JR(g, ί))/R

has a positive system of large type.

By using Λ^/K and 0>£/K, the set ^~pr/K of ΛΓ-orbits in JT*-pr is
parametrized as follows. For x e N*~pr, we can take a normal S-triple
(A,*, y) (he I, yes) (cf. [KR]). Since h is a reguler semisimple element of

9>t:=3 g (λ) is a 0-stable Cartan subalgebra of g. Define a Borel subalgebra
b =) t of g by Λ(b,t) = {α e Λ(g,t);α(A) > 0} and write J the set of simple
roots in Λ(b,t). Then we have A = {α e Λ(g,t);α(Λ) = 2}. Since [A,x] =
2jc,.x can be written as a sum

for some root vectors X^ e gα\(0) and it holds that Θ(XOL) = —Xθ(a} (α e ^)
Hence any roots in A are complex or non-compact imaginary, and thus b is of
large type. Since x e b and x is g-principal, b is the unique Borel subalgebra
containing x. Then the correspondence x t— » b defines a map

For b e Λ^ ta^e a ^-stable Cartan subalgebra t of b. Since b is 0-stable,
9

,t) dose not have any real root and t is fundamental. By Proposition 1.3,
Σc:=R(b,t)iR is of large type and hence (t,Zc)e^. Then the corre-
spondence b t—> (t, Σc) defines a map

PROPOSITION 1.6 ([AV, Proposition A.7]). The maps φ : J^l~pr/K — >

Λ^jK and φ : &£/K — > 0*£/K are bisections. Furthermore the finite group FG

acts naturaly and transitively on the sets Jf*~p1 ' /K, &Q/K, &Q/K, and the maps
φ, i// are Fs-equivariant.

We write 0(itΣc} e JΓ*~pr JK the ^-orbits corresponding to (t,Σc)e0>£ by
Proposition 1.6.

Let Q be a 0-stable parabolic subgroup of G, L a 0-stable Levi subgroup of
β and U the unipotent radical of g. Then g = LU. For a maximal abelian
subspace aL of [I, I] Π s, we write

FL = {a E exp(aL)]Ad(a2)\l = id,}, F° = {ae FL Ad(a2) = idQ}.

Then the set

'/K , o n q / 0}

of g-principal AΓ-orbits which intersect q is parametrized as follows.
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PROPOSITION 1.7. The maps φ,ψ in Proposition 1.6 induce F^-equίvariant
bijectίons

2. Induction of nilpotent orbits for real reductive groups

2.1 Induction of nilpotent orbits by 0 -stable parabolic subalgebras

Let Q = LU be a 0-stable paraboric subgroup of G with 0-stable Levi
factor L and unipotent radical £7, and write q = I + u its Lie algebra. We put

KL:=LΓlK, *L = I Π s.

Let G be a KL -orbit in Jf^L and 0o a connected component of 0. Since
fi?o + u Π 5 ci J/s is irreducible and Jf* is a finite union of AΓ-orbits, there exists
a unique A^-orbit Ge^V9/K such that (G$ + uΠs) Π 0 is open and dense in
d?o + u Π s. Here we consider the Zariski topology. Any connected compo-
nent of $ + u Γ Ί s can be written as fc^o + u Π s for some k e KL. Then

o + u n s ) n f f = Λ { ( Φ 0 H - u n s ) n Φ } is open and dense in fc00 + u n s =
o + uΠs). Therefore Θ is the unique nilpotent ΛΓ-orbit in Jf* such that

u Π s ) n < P is open and dense in ^ + u Π δ .

DEFINITION 2.1. For a nilpotent A^-orbit (9E<ΛrsL/KL, we write

the unique nilpotent A>orbit in ^Γs such that (ί? -I- u Π s) Π G is. open and dense
in ^ + uΠs .

REMARK 2.2. (i) Suppose that <?(R) itself is a complex connected
reductive group. We can see that

G= G(R) x G(R), %ι,^2) = (92,91), τ(gι,g2) = (d2,§ι),(0ι,ff2 e G(R)),

where gf ι-> g is the complex conjugation of G(R) corresponding to a compact
real form of G. Then we have

K = { ( g , g ) ' , g e G(R)} * G(R), s - {(ΛΓ, -X)',Xe g(R)} ^ g(R).

Via the map g(R)-^s,A rn^ (X,—X), we have a natural identification

(2.1)

Let β(R) = ̂ (R) U(R) be a complex parabolic subgroup of G(R) and write
Q = β(R) x β(R),L = L(R) x L(R). In Lusztig-Spaltenstein [LS], the indue-
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tion of nilpotent orbits

for complex Lie algebras is defined. Then it is easily verified that, via
the identification (2.1), Indθ((l,q) | g) coincides with Indff^ q(R)). Therefore
Definition 2.1 is a generalization of the induction in [LS].

(ii) It is known that the induction Ind^El ,R^ of [LS] depends only on
I(R), not on q(R). But the induction of Definition 2.1 depends on the choice
of q.

ΐ Q)(Φ)(Φe^L/KL) defines a map

Indθ((\, q) T 9) : ̂ *JKL -

We extend this to a correspondence between the set 2^/^L of subsets of
JV^JKL and 2^κ as follows.

DEFINITION 2.3. For a subset Se2^L/KL of Ji^LjKL, we write

Indθ((\,q) t β)(S) the set of orbits in {Indθ((\,<\) T Q) (%)',<# e S} which are
maximal with respect to the closure relation. This defines a map

/ra/'((l,q) ΐ g) : 2^/^ -> 2*'κ.

PROPOSITION 2.4. Le/1 Q = LU be a θ-stable parabolic subgroup of G with
θ-stable Levi subgroup L and unipotent radical U. Suppose that L is quasi-
split. Then the set [Indθ((l,q) | ^)(^l~L

pr / KL)]Q~pr of ^principal K-orbits in
Indθ((l,q) T Q)(^l~L

pr/KL} can be written as

PROOF. It is clear that

[/ra/'((I,q) ΐ

Suppose that 0 e [^~pr/K]q and xeqΠO. Choose a normal S-triple
(h,x,y) (hel,x, yes} (cf. [KR]) and a Borel subalgebra b of g such that
x e b c q . We can also choose a Borel subalgebra b7 of g such that x,h
e b7. Since x is g-principal, a Borel subalgebra which contains x is unique.
Therefore

x,h e b = b' c q.

Since h is regular in g and h e I, t := 3g(A) c b is a fundamental Cartan
subalgebra of g.

Let t' be a fundamental Cartan subalgebra of I. Then R(l, t') does not
have any real root. Since u is ^-stable, Λ(u, t7) does not have any real root.
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Hence t' is also fundamental in g. Since tc = t Π f and i'c = t' Π f are both
Cartan subalgebras of q f l ϊ , there exists ke QΓ\K such that i'c = ktc. Since

I = *' = 3g(O = 3g(*tc) = k^(tc) = kt = 5g(fc/0,

by taking kx e q Π G instead of x, we may assume that t c I.
Let A be the base of Λ(b,t) and write

Δ\ := A Π Λ(I, t), AU := A Π Λ(u, t).

Since [λ,jc] = 2x,x can be written as x = Γαe jJΓα for suitable root vectors

If we write

then x = x\ + xu. Since I, u are ^-stable and θ(x) = —x, we have x\ e s/, and
xu e u Π s. Since 0 is g-principal, G Π (J^xi + u Π s)( 9 x) is open dense in
KLx\ + u Π s. Therefore we have

0 = *x = 7m/*((I, q) ΐ g)(*L*t) e 7/ιrf^((I, q)

by noticing that KLx\ E JT1'^ JKL.

REMARK 2.5. In the setting of Proposition 2.4, for two orbits

01,026^77*1,, it can happen that ΛιX((I,q) T g)(0ι) and Indθ((\,q)]
g)(02) have different dimensions. We will exhibit such an example in the
succeeding paper.

2.2 Induction of nilpotent orbits by real parabolic subalgebras

Let P = MN be a τ-stable parabolic subgroup of G with τ-stable Levi
factor M and unipotent radical N.

DEFINITION 2.6. For a nilpotent orbit G e J^m(R)/M(R), we write

7m/R((m, p) T 9)(0) the set of orbits in {̂  e Λ^g(R)/G(R); (0 + n(R)) Π <β Φ 0}
which are maximal with respect to the closure relation.

REMARK 2.7. In the setting of Remark 2.2(i), let P(R) = M(R)7V(R) be a

complex parabolic subgroup of G(R) and write P = P(R) x -P(R), M — M (R)x
M(R). We can see that P and M are complexifications of P(R) and Λf(R)
respectively. Then for 0 e J^m(R)/M(R) and G e ^Γg(R)/G(R), 0 is maximal in

{̂  e ^Tg(R)/G(R); (0 -f n(R)) Π^ ̂  0} with respect to the closure relation if
and only if (0 + n(R))Π0 is open dense in 0 + n(#) (with respect to the
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Zariski topology). Therefore we have

Indκ((m,p)

Thus we can interpret 7m/R((m, p) | 9) as a generalization of the Lusztig-

Spaltenstein induction of nilpotent orbits for complex Lie algebras.

From now on, we suppose that M is 0-stable. Since p(R) — m(R) -h n(R)
is a real parabolic subalgebra of g(R),p(R) contains a minimal parabolic

subalgebra of g(R). Hence there exists a τ-stable maximal abelian subspace α

of s Π [g, g] such that α c m. As before, we write

FG = {a 6 exp(a) Ad(a2) = id}.

Then we have the following.

REMARK 2.8. (i) Any element a e FG can be written as a = exp(iA) for

some A e α(R) and hence τ(ά) = a~l. By an argument similar to the one in

Remark 1.4 (i), FG normalizes both Af(R) and G(R).

(ii) By [KR, Proposition 2], we have Ad(NG(ΰ(R))) = Ad(FGG(R)).

(iii) For 0 e ^Γm(R)/M(R), write FG(Θ) := {a ε FG aO = (9}. Then for

a e FG(Φ) and 0 e ^rg(R)/G(R), we have (0 + n(R)) Π φ Φ 0 if and only if

(0 + n(R)) Π (aff) Φ 0. Hence 7m/R((m, p) T g)(0) is Fσ(0)-stable.

For a subset S e 2^WM(R) of Λ^m(R)/Af (R), we write 7m/R((m, p) T

the set of G(R)-orbits in \JGeSIndR((m, p) | g)(Φ) which are maximal with
respect to the closure relation. This defines a map

7m/R((m,p) T 9) : 2^R)/M^ -> 2^

It is known by [S] that there exists a natural bijection

which is called the Sekiguchi correspondence (for the details of the definition of
SG, see [O, Theorem 1]). It is easy to see that SG is jPo-equivariant. Via the

Sekiguchi correspondence, we regard 7m/R((m, p) | g) as a map

7m/R((m,p) T g) : 2^SM/^ _> 2^/^,

where we write KM := Λf Π AT, SM = m Π s.

PROPOSITION 2.9. Leί H be a maximal torus of G which is both τ-stable

and θ-stable, and P = HN a τ-stable Borel subgroup with Levi factor H and

unίpotent radical N (hence G is quasisplit). Then we have

where (0)SH is the Kff-orbit in *H consisting of 0.
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PROOF. Let A be the base of the positive system R(p, ί)) and zfR (resp. Ac)
the set of real (resp. complex) roots in A:

AR := {α e J; τ(α) = α}, Ac = {κe Δ\ τ(α) φ α},

where the root τ(α) is defined by τ(α)(A) := α(τ(A)) (Aeί)). We notice that

τ(α) = — 0(α) for a root α e .R(g, ί)). Since Λ(p,ί)) is τ-stable, J does not have
any imaginary root: A — AR U Jc. Choose root vectors XΛ e 9α\(0)(α e A) such

that τ(XΛ) = XΛ for α 6 zlR and τpfα) = Xτ(^ for α e z/c. Write x = Σαe j -*«•
Since x e n(R) = (0)^Rj + n(R) and x is g-principal, we have

on the level of induction by real Lie algebra, where we write (0)^R) the H(R)~

orbit in f)(R) consisting of 0. Since FG = ίb((0)^Rj) acts on IndR((fy,p) |

9)({(°)ί)(R)}) by Remark 2.8(iii) and acts transitively on Λ^^/G^R), we have

7ιιrfR(ft,p) ΐ

On the other hand, we notice that Jf*~pr and Λ/g are defined over R,

is open dense in Λ^, and Λ^jfi = jr*~pr Π g(R) / 0. Hence ^ R̂[ is open
dense in Λ^g(R) — ^ΓgΠg(R). Therefore we have

Via the Sekiguchi correspondence, we have

, P) T 9)({(0)SJ) = S*-"IK. q.e.d.

3. Induction of nilpotent orbits and associated varieties of standard (g,^Q-

modules

3.1 Standard (g, AT (-modules

In this section, we show that the generic A'-orbits in the associated varieties
of certain standard (&K) -modules can be described by induction of nilpotent
orbits. We first describe the standard (g, ΛΓ)-modules Ar

G(R)(q,7/(R),(5, v)
according to Vogan [VI].

Let H be a 0-stable and τ-stable maximal torus of G and H = HCHS the
Cartan decomposition (i.e. Hc = H Π K, Hs = {h e H] θ(h) = A'1}).

Let <, > be a non-degenerate G-invariant symmetric bilinear form on g
which is real valued on g(R) such that ϊ and s are orthgonal with respect to

<, >»O|f(R) is negative definite and <, )|S(R) ^s positive definite. The bilinear
form on g*, which is induced from <, >, is also denoted by <, >. For a ί)-stable
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subspace V c g, we write ρv := (ΣαeΛ(^M α)/2. Let us consider a set
(q,/f(R),<5, v) of 0-stable data for G(R) which is a quadruple such that

(a) q = I -h u is a 0-stable parabolic subalgebra of g with ^-stable and
τ-stable Levi factor I.

(b) The connected subgroup L of G corresponding to I is quasisplit and
has a maximally split Cartan subgroup H a L.

(c) δ is a character of HC(R) which is fine with respect to L(R) (cf. [VI,
Definition 4.3.8]).

(d) v is a character of HS(R).
(e) Write λL := dδ e ί)c* for the differential of δ, and λ° := λL + pu e I)* a

ί)*. Then <α, Λ G > > 0 for α e ^(u, ί)).
Choose a τ-stable Borel subgroup PL = HNi of L such that v is negative with
respect to ML (i.e. 7te<α, v> < 0 for α e jR(n^,ί))). The standard (g,A^)-module
corresponding to (q,//(R),<5, v) is

® v) - (

Let ALΦ)(O) be the set of fine L(R) Π ΛΓ(R)-types μ such that <5 occurs in μ\πc(R)
([VI, Definition 4.3.15]). It is known that there is a bijection between AL^(δ)

and the set AG^(q,H(R),δ) of lambda-lowest A" (R) -types in X(c\,δ® v).
Any πe AGφ)(q,H(R),δ) occurs in A r(q,ί®v) with multiplicity one and
defines an irreducible submodule X(c\,δ®v)(π) which contains the lambda-
lowest ^(R)-type π. It is known that any irreducible (g,^)-module is iso-
morphic to some ^(q,<5® v)(π).

Standard (g, ΛΓ)-module is also described as follows. Let m => ί) be the
Levi subalgebra defined by R(m, ί)) = ^(g,!))^ and M the connected group
corresponding to m. Let qM = ί) -h UM be the 0-stable Borel subalgebra of m

defined by R(qM,l)) = {α e ^(m,ί)); <α,/lG> > 0}. Take a τ-stable parabolic
subalgebra p = m + n of g with Levi factor m as in [VI, 6.6.14]. Then the
standard (g,^Γ)-module can be written as

),δ, v ) * I n d ( ( ^ M ) m δ ® v)).

Here we note that R(u, ί))/R = Λ(uM,ί)) is a positive system of the root system

REMARK 3.1. Write n := nL + u, b := pL+u = I) + n, C_2/?nL := ( Λ top

(one dimensional /f(R)-module) and C|^nL| := (positive square root of \2pr\L\ :

H(R) — > R X ) . These one dimensional //(R)-modules can be seen as
(b, /fc)-modules. We write Q(g)V the //(R)-module corresponding to
δ ® v : //(R) —> Cx and Ep^ the genuine one dimensional (b, (Hc)

p^) -module

induced from (b,7/c) -module ^(b) — /\top($/ty* (for the definition of Ep^,
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see [AV, Definition 8.11]). CΛ := (Q® v (x) C_2/mL ® C\priL\) ® ^(b) can be seen
as a genuine (b, (Hc)

p^) -module. Then b and CΛ are in good position ([AV,
Definition 8.18]). Furthermore the stndard representation /(£, CΛ) defined in
[AV, Definition 8.18] coincides with XG(R}(q,H(R),δ,v).

3.2. Induction of nilpotent orbits and associated varieties of standard (9, K}-
modules

For a finitely generated (g, ,KΓ) -module X, we write Ass(X) c g* the
associated variety of X (for the definition of Ass(X)9 see [V2]). By the
identification g ~ g*(χκ-» <#, •» which is induced by the G-invariant bilinear
form <, > on g, we see that Ass(X) is a subset of g. Then Ass(X) is a K-
invariant subset of g. It is known that if X has a finite composition series,
then Ass(X) c Λ; (cf. [V2]). We write Ass(X)*~pr the set of g-principal
elements in Ass(X) and Ass(X)*~pr/K that of ΛΓ-orbits in Ass(X)*~pr.

PROPOSITION 3.2 ([AV, Proposition A.9]). Suppose that g is quasi-
split. Let (b, Γ(R),(J,v) fte 0 set of θ-stable data for G(R) such that b is a
θ-stable Borel subalgebra of large type. Write Σc := R(b, t)/R. Then (t, -Σc) e
&Ϊ1 and we have

Ass(XG(R}(1>, Γ(R),(J, v)) - β(tt-Σ').

THEOREM 3.3 ([AV, Theorem A. 10]). Suppose that g is quasisplit. Let H
be a θ-stable and τ-stable maximal torus of G, (q, 7/(R),<5, v) (q = I + u, I) c I) a
set of θ-stable data for G(R) flftd A" := ^(R)(q,/ί(R),ί, v) the corresponding
standard (§,K}-module. Write

Σ := Λ(u, ή)Λ - {α e Λ(β, ί))/R; <α, A G > > 0}.

(i) TjΓ Γ ίy not of large type, Ass(X)ΰ~pr = 0.
(ii) Suppose that Σ is of large type. Let Q' = L'U' be a θ-stable par-

abolic subgroup of G such that L' => H, and that Σ is contained in the set of
roots of ί) in u' (hence L1 is quasisplit). Then we have

K = (?(,,_£.,; t,Γ e

In particular, Ass(X)Q~pr/K depends only on (ϊ),^).

Under the assumption of Theorem 3.3(ii), we have

by Theorem 3.3(ii) and Proposition 1.7 where we write (q')~ the parabolic
subalgebra corresponding to — Λ(q7,I)). For a subset £f<^<Λ^5/K, we write
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^~pr the set of g-principal AΓ-orbits in Sf. Then, by Proposition 2.4 and
Proposition 2.9, we obtain the following:

THEOREM 3.4. Under the assumption of Theorem 3.3(ii), we have

(3.1) ASS(Xrpr/K = [ΛT'VJη,,)- = \Indβ((\', (q'Γ) ΐ

= [Indβ((l', (q'Γ) ΐ 9) ° /^R((ϊ>, PL') T I'

we wπte PL' = HNι> a τ-stable Borel subgroup of L' .

REMARK 3.5. (i) In the setting of Theorem 3.3(ii), if Σ is not of large
type, it can be shown that

γ = [Indθ((ϊ, (q')Ί ΐ 9)(^-pr/KL')rpr = 0.

Therefore (3.1) holds even when Σ is not of large type. We will show this in
the succeeding paper.

(ii) For a standard (g, ΛΓ)-module

X = jrσw(q,/f(R),«ϊ, v) = ( ^ ) d i m u Π f ( / « ( ^ ® v))

in 3.1, write Ύ := Indp(δ® v). We can see that Ύ itself is a standard
(I, L Π A:)-module corresponding to the data (I,/f(R),<ϊ, v) for L(R). By
Theorem 3.4, we have Ass(Y) = Λ^iris and hence Ass(Y) is stable under the
action of FL. On the other hand, if Σ = R(u,l))iR is of large type, the
subgroup Fξ of FL acts on Ass(X)Q~pr/K = [^Γpr/K}(^- by Proposition 1.7.

(iii) The dual group RS of the P-group R# in [VI] is a quotient of
FL ([VI, Lemma 4.3.46]). Since RS acts transitively on the set AL^(δ) of
lowest LΠ^-types of Ύ ([VI, Theorem 4.3.16]), FL also acts on AL(R}(δ)
transitively. Since there is a natural 1-1 correspondence between AL^(δ)
and the set AG^(c\,H(R),δ) of lambda lowest ^-types of X, FL acts on

) transitively.

Suppose that G(R) is connected, semisimple and has a compact Cartan
subgroup Γ(R). Let b = t + u be a ^-stable Borel subalgebra of g with Levi
factor t and nilpotent radical u. Let (b, Γ(R),<5) be a set of 0-stable data for
G(R) which contains b and T(R), and write

X = J5ΓG(R)(b, T(R),δ) =

the corresponding standard (g, A^) -module. Then λG = dδ + pu is regular,
Λ(b,t) = {αe^(g,t);<α,/lG> > 0} and X is the (g, A:) -module of the discrete
series representation with Harish-Chandra parameter λG. Write u~ the nil-
potent radical of the opposite Borel subalgebra b~ of b. Then the following



Induction of nilpotent orbits for real reductive groups 359

fact seems to be well known to experts. A proof based on a work of Hotta-
Parthasarathy is given in Yamashita [Y]. A brief sketch of a proof can be
found in Binegar-Zierau [BZ].

THEOREM 3.6 (Yamashita [Y, Theorem 1]). In the above setting, we have

Ass(X)=K(vΓt\*).

This is the closure of the unique K-orbit in Λ^, whose intersection with ιι~ Γ) s is
open dense in vΓ Π s.

In the above setting, clearly the unique .K-orbit in ~/Fs, whose intersection
with ιι~ Πs is open dense in u~ Πs, is Indθ((l,b~) | 9)((0)g/f). Hence we have
the following.

PROPOSITION 3.7. Ass(X) = Aκ/*((I,lΓ) T 9)((0)βJ.

3.3 The action of Fξ on the associated varieties of the standard (g, ΛΓ)-modules

Let (q,//(R),J,v) and PL = HNL be as in 3.1, and write

the corresponding standard (g, ̂ -module. Define finite groups FL and F£ by

FL := {a E expfa Π ( l , ί \ ) ] A d ( a 2 ) \ l = id,}, F? = {a E FL Ad(a2) = id}.

We will show that the action of K on X can be extended to that of KFξ and
that X has a structure of (g,£F^)-module. Consequently Ass(X) is stable
under the action of KF£.

For a subgroup S of G normalized by F£, we write

Then S is a normal subgroup of [$]% of finite index. We notice that the
subgroups G(R),K,K(R),L(R),LC\K,L(R)Γ(K(R),H(R),HC(R) and Pjr(R) =
HC(R)HS(R)NL(R) are all normalized by Fξ. [G(R)]f is a real reductive
linear group in the sense of [VI, Chap. 0], [AΓ(R)]^ is a maximal compact
subgroup of [G(R)]f and W[G(R)]c(q) = [L(R)]f . For the character δ of HC(R),

we can take a character J of [HC(R)]^ such that ^|//C(R) = δ. Then J is fine
with respect to [L(R)]£ and (q, [7/(R)]f , J, v) is a set of 0-stable data for

[G(R)]f . On the other hand, [Pι,(R)]£ = (FfHc(R))Hs(R)NL(R) is a minimal
parabolic subgroup of [L(R)]^ and v is negative with respect to NL(R). Hence
we obtain the standard (g, KF£) -module

X =
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By the construction of standard (g, K) -module, it is verified that X is iso-
morphic to A^as (g, AΓ)-modules. The associated variety Ass(X) coincides with
Ass(X) and hence Ass(X) is stable under the action of KF£ = [K]^.

PROPOSITION 3.8. For the standard (^K)-module

X = ZG(R)(q,#(R)A v) = (^)d i m ( u n f )(/«4 ((^® v))

corresponding to a set (q, H(R),δ, v) of θ-stable data for G(R), the associated
variety Ass(X) is stable under the action of KFξ = [K]£.

REMARK 3.9. In the above setting, if Σ = R(§, ί))/R is of large type (hence
g is quasisplit) and θ is of inner type, we can show that the action of F£ on
Ass(X)Q~pr/K Φ 0 is transitive. We will prove this in the succeeding paper.
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