Non-projective compactifications of C^3 III: A remark on indices

Mikio Furushima

(Received August 11, 1998) (Reviced September 8, 1998)

ABSTRACT. Let (X, Y) be a non-projective Moishezon compactification of \mathbb{C}^3 with $b_2(X) = 1$. Then we have $K_X = -rY$ $(0 < r \in \mathbb{Z})$. In this paper, we prove $1 \le r \le 2$.

1. Introduction

This is a continuation of my previous papers [4] and [5]. Let (X, Y) be a smooth non-projective Moishezon compactification of \mathbb{C}^3 with the second Betti number equal to one, that is, X is a smooth non-projective Moishezon threefold and Y is an irreducible divisor on X such that X - Y is biholomorphic to \mathbb{C}^3 . It is well-known that Y is a non-normal and non-projective irreducible algebraic surface and that the canonical bundle K_X can be written as $K_X = -rY$ for $0 < r \in \mathbb{Z}$ (cf. [1], [7]). The positive interger r = r(X, Y) is called the index of the compactification (X, Y). Now we have two cases (i) Y is *nef* or (ii) Y is *not-nef*. Then we obtained the following:

- (i) If Y is *nef*, then we have $1 \le r \le 2$. When r = 2, the complete structure of (X, Y) is given in Theorem 0.3 in [4]. In the case when r = 1, we know only one example (see Theorem A in [5]).
- (ii) If Y is not-nef, then there exist infinitely many examples with 1 ≤ r ≤ 2 (see Theorem B in [5]).
 In this means we shall around the following:

In this paper, we shall prove the following:

THEOREM. Let (X, Y) be a non-projective Moishezon compactification of \mathbb{C}^3 with the second Betti number $b_2(X) = 1$. Then we have $1 \le r(X, Y) \le 2$.

2. Proof of Theorem

Let (X, Y) be a smooth non-projective Moishezon compactification of \mathbb{C}^3 with $b_2(X) = 1$. Then we have the following:

¹⁹⁹¹ Mathematics subject Classification. 14J45, 32J05

Key words and phrases. Moshezon, non-projective compactification

Mikio FURUSHIMA

LEMMA 1. (cf. [2], [3], [7])

- (1) Y is a non-normal irreducible Cartier divisor on X.
- (2) $H^i(X; \mathbb{Z}) \cong H^i(Y; \mathbb{Z}), H_i(Y; \mathbb{Z}) \cong H_i(X; \mathbb{Z}) \text{ for } i > 0.$
- (3) $H^1(X; \mathbb{Z}) = H^1(Y; \mathbb{Z}) = 0.$
- (4) $H^2(X; \mathbb{Z}) = \mathbb{Z}c_1(\mathcal{O}_X(Y))$ and $H^2(Y; \mathbb{Z}) = \mathbb{Z}c_1(N_Y)$, where $N_Y := \mathcal{O}_Y(Y)$.
- (5) $H^{i}(X; \mathcal{O}_{X}) = 0$ for i > 0.
- (6) $H^0(X; \mathcal{O}_X(mK_X)) = 0$ for m > 0.
- (7) $H^1(Y; \mathcal{O}_Y) = 0, \ H^2(Y; \mathcal{O}_Y) = 0 \ (resp. C) \ if \ r \ge 2 \ (resp. r = 1).$
- (8) Pic $X \cong \mathbb{Z}\mathcal{O}_X(Y)$ and Pic $Y \cong \mathbb{Z}N_Y$.
- (9) $K_X = -rY$ and $K_Y = -(r-1)N_Y$, where $0 < r \in \mathbb{Z}$.

Let $\varphi: V \to X$ be the projectivization of X, that is, V is a smooth projective algebraic threefold and φ is a bimeromorphic holomorphic mapping. Let $v: \tilde{Y} \to Y$ be the normalization and \mathscr{I} be the conductor ideal sheaf defining closed subscheme E on Y. Let $\mu: \hat{Y} \to \tilde{Y}$ be the minimal resolution with the exceptional divisor $\Delta = \bigcup \Delta_i$. Then \hat{Y} is a projective algebraic surface. We set $\eta := v \circ \mu: \hat{Y} \to Y$. Since $v_* \omega_{\tilde{Y}} = \mathscr{I} \otimes \omega_Y$, we have $K_{\tilde{Y}} =$ $-(r-1)v^*N_Y - \tilde{E}$, where \tilde{E} is an effective Weil divisor on \tilde{Y} (cf. p. 166 in [6]). Thus we have $K_{\hat{Y}} = -(r-1)\eta^*N_Y - \hat{E} - \sum_i m_i \Delta_i \ (m_i \in \mathbb{Z}, m_i \ge 0)$, where \hat{E} is the proper transform of \tilde{E} in \hat{Y} (cf. [2]).

LEMMA 2. \hat{Y} is a ruled surface unless $\hat{Y} \cong \mathbf{P}^2$.

PROOF. We have $K_{\hat{Y}} = -\hat{E} - \sum_i m_i \Delta_i$ if r = 1. Since \hat{E} is an effective divisor, we obtain $H^0(\hat{Y}; \mathcal{O}_{\hat{Y}}(kK_{\hat{Y}})) = 0$ for k > 0. Let A be a very ample irreducible divisor on V and put $D = \varphi_* A$. By Lemma 1-(8), there is an integer $k \in \mathbb{Z}, k > 0$ such that D = kY and then the divisor $D|_Y$ consists of effective curves. Then $kK_{\hat{Y}} = -(r-1)\eta^*D|_Y - K\hat{E} - k\sum_i m_i \Delta_i$ is an effective divisor. Thus $H^0(\hat{Y}; \mathcal{O}_Y(kK_{\hat{Y}})) = 0$ for $k \gg 0$. By the classification of algebraic surfaces, \hat{Y} is isomorphic to either \mathbf{P}^2 or a ruled surface, that is, there exists a \mathbf{P}^1 -fibration $\pi : \hat{Y} \to C$, where C is a smooth projective curve with the genus $h^1(\mathcal{O}_{\hat{Y}}) \ge 0$. \Box

In the case when $\hat{Y} \ncong \mathbf{P}^2$, take a general fiber \hat{f} of π . By the adjunction formula, we have

(*)
$$-2 = (K_{\hat{Y}} \cdot \hat{f}) = -(r-1)(\eta^* N_Y \cdot \hat{f}) - (\hat{E} \cdot \hat{f}) - \sum_i m_i (\Delta_i \cdot \hat{f}).$$

LEMMA 3. $(\eta^* N_Y \cdot \hat{f}) > 0$ for any general fiber \hat{f} of π .

PROOF. Let \overline{Y} be the proper transform of Y in V. We set $f = \eta(\hat{f}) \subset Y$. Let \overline{f} be the proper transform of f in \overline{Y} . Take a very ample irreducible divisor A on V with $\overline{f} \not\subset A$ and set $D = \varphi_* A$. Then we have $(D \cdot f) > 0$. Since

296

 $D \sim kY$ for some $0 < k \in \mathbb{Z}$, we obtain $(Y \cdot f) = (N_Y \cdot f) > 0$. This proves the lemma. \Box

LEMMA 4. If $\hat{Y} \cong \mathbf{P}^2$, then Y is ample.

PROOF. Since there is no exceptional curve on \mathbf{P}^2 , one sees that $\hat{Y} \cong \tilde{Y} \cong \mathbf{P}^2$. By an argument similar to Lemma 3, one has $(v^*N_Y \cdot \ell) > 0$ for a general line ℓ on $\tilde{Y} \cong \mathbf{P}^2$. This shows that v^*N_Y is ample. Since $X - Y \cong \mathbf{C}^3$, Y is ample by Kleiman's criterion. \Box

We are in a position to prove Theorem. We have only to consider the case where Y is *not-nef* (see (i) in Introduction). Then we have $\hat{Y} \ncong \mathbf{P}^2$ by Lemma 4. Assume that $r \ge 3$. By Lemma 3 and the relation (*), we obtain that r = 3, $(\eta^* N_Y \cdot \hat{f}) = 1$, $(\hat{E} \cdot \hat{f}) = 0$ and $\sum_i m_i(\Delta_i \cdot \hat{f}) = 0$. This shows that $f \cap E = \emptyset$ and f passes through at worst rational double points on Y - E. Thus there is an integer n such that $nf \in \text{Pic } Y$. Since $\text{Pic } Y \cong \mathbb{Z}N_Y$, one has $nf = aN_Y$ for some $a \in \mathbb{Z}$. If f does not pass through any rational double point on Y - E, then $f \cong \mathbf{P}^1$ is a smooth Cartier divisor with $f^2 = 0$. Since $(N_Y \cdot f) > 0$, we have $a \neq 0$. Then we have $0 = f^2 = a(N_Y \cdot f) \neq 0$. This is a contradiction. Therefore we may assume that f passes through a rational double point y_0 on Y - E. Then there exists an irreducible component Δ_i of $\eta^{-1}(y_0) \subset \Delta$ such that $(\Delta_i \cdot \hat{f}) > 0$. Take a general fiber $\hat{f}_0 \neq \hat{f}$ of π such that $(N_Y \cdot f_0) > 0$ and $f_0 \cap E = \emptyset$, where $f_0 = \eta(\hat{f}_0)$. Since $(\varDelta_i \cdot \hat{f}_0) = (\varDelta_i \cdot f) > 0$, we have $y_0 \in f_0 \cap f$. Thus we have $0 < (nf \cdot f_0) = a(N_Y \cdot f_0)$. This implies a > 0. On the other hand, since Y is *not-nef*, there exists an irreducible curve B such that $(Y \cdot B) < 0$, that is, $B \subset Y$ and $(N_Y \cdot B) < 0$. Thus we have $0 \leq C$ $(nf \cdot B) = a(N_Y \cdot B) < 0$. This is a contradiction. Therefore we conclude that $r \leq 2$. This completes the proof of the theorem.

References

- L. Brenton, Some algebraicity criteria for singular surfaces, Invent. Math. 41 (1977), 129– 147.
- [2] M. Furushima, The complete classification of compactifications of C³ which are projective manifolds with second Betti number equal to one, Math. Ann. 297 (1993), 627–662.
- [3] M. Furushima, An example of a non-projective smooth compactification of C³ with second Betti number equal to one, Math. Ann. 300 (1994), 89–96.
- [4] M. Furushima, Non-projective compactifications of C³ (I), Kyushu J. Math. 50 (1996), 221–239.
- [5] M. Furushima, Non-projective compactifications of C³ II: New Examples, Kyushu J. Math. 52 (1998), 149-162.
- [6] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. Math. 116 (1982), 133–176.

Mikio Furushima

[7] T. Peternell and M. Schneider, Compactifications of Cⁿ: A survey, In: Bedford, E (ed. et al) Several complex variables and complex geometry. (Proc. Symp. Pure Math., vol. 52, pp. 455-466) Amer. Math. Soc., Providence, RI 1991.

The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Science Hiroshima University Higashi-Hiroshima 739-8521, Japan

298