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Representation of a-harmonic functions in Lipschitz domains

Krzysztof BoGDAN
(Received October 29, 1997)

AssTracT. We give the Martin representation for nonnegative functions which are
harmonic on Lipschitz domains with respect to symmetric stable processes.

1. Introduction

The purpose of the present paper is to derive the Martin representation of
nonnegative functions which are a-harmonic on Lipschitz domains. In general
any nonnegative function o-harmonic in a bounded domain decomposes into
regular part and singular part [9]. Each part admits its Martin representa-
tion. The regular part is given by integrating the function outside the domain
against the o-harmonic measures. In [3] we have seen that for Lipschitz
domains the a-harmonic measures have jointly continuous densities with respect
to the Lebesgue measure. In the present paper, by using the boundary
Harnack principle proved in [3], we shall show that the singular part is given by
integrating a family of singular a-harmonic functions which are parameterized
by the points at the boundary. Our restriction to Lipschitz domains simplifies
the argument and yields an explicit definition of the family in terms of the
Green function.

Our development is a standard one (cf. [1]). Nevertheless most of
the arguments are substantially modified in comparison with its classical
counterpart. We use this opportunity to illustrate the theory of Martin re-
presentation by a straightforward construction. Martin representation in the
case of arbitrary bounded domains is the subject of [9]. Reader interested in
the Martin representation in a general setting of Markov processes is referred
to [7].

We first review the notation and a few results on a-harmonic functions
following [3]. For the rest of the paper, let a€(0,2) and d > 2. We denote
by (X;, P*) the standard rotation invariant a-stable Lévy process (i.e. homo-
geneous and with independent increments) in R¢ with the characteristic
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function
E%iX — o' feRY 1>0.

As usual, E* denotes the expectation with respect to the distribution P* of the
process starting from x € RY.  We assume, as we can, that sample paths of X,
are right-continuous and have left limits a.s. The process is Markov with
transition probabilities given by P,(x,4) = P*(X, € A) = p,(4 — x), where g, is
the distribution of X, with respect to P°. It is well-known that (X,, P¥) is
strong Markov with respect to the so-called standard filtration, see e.g. [2]
(also for another definition of X, using subordination). The process has the
generator 4%/

A u(x) = 4 (d, —a)J ux ) —ulx) 4 (1.1)
RO |y

where /(d,y) = I'((d —v)/2)/(2"7%?|I"(y/2)|) (cf. [8]). The limiting classical

case o = 2 corresponds to the Brownian motion with Laplacian 4 = Zle % as

the generator. Needless to say, the integro-differential operator 4%/ is not of

local type. The Fourier transforms of the 4%? and A satisfy the equation

F(=A7)(&) = |&]" = (F (=) (&)™ (1.2)

A proof of (1.2) can be found in [8]. The notation 4% suggests the negative
of the fractional power of —4 ([10, IX.11]).

For a Borel set A = R we define 74 =inf{t > 0: X, € A°}, the first
entrance time of the complement A¢ of A. It is well known that 74 is a
Markov time with respect to the standard filtration (cf. [2]). If A is bounded
then 74 < o0 a.s. Otherwise, in writing expressions like E*u(X;,), we adopt
the usual convention E*u(X;,) = E*{u(X:,); 14 < o}.

DEFINITION 1. Let u > 0 be a Borel measurable function on R®. We say
that u is regular a-harmonic in an open set V < RY and write ue #%(V) if

u(x) = E*u(X;,) < oo, xeV. (1.3)

We say that u is o-harmonic in V and write ue #*(V) if ue # x(B) for every
bounded open set B with the closure B contained in V i.e.

u(x) = E*u(Xz,) < o, xe€B. (1.4)

We say that u is singular o-harmonic in V and write ue #§(V) if ue #*(V)
and u(x) =0, xe V°.

We have that P*(t4 =0) =1 for every x € A° with this definition of 74.
Thus the equalities in (1.4) and (1.3) in fact hold on all of R¢. Since 73 < 7y
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for B < V, it follows by the strong Markov property that regular a-harmonic
functions are o-harmonic. The converse is not generally true, as we shall
shortly exhibit the existence of nontrivial singular a-harmonic functions. For
ue#%(V), the values u(x),x e V¢, serve as the boundary condition. "Obvi-
ously, the only regular a-harmonic function which is also singular is the zero
constant. For x € RY, the P* distribution of X, is called a-harmonic measure
and denoted by wy. Clearly, wj is concentrated on V¢ and for a function u €
H%(V) we have

u(x) = ch u(y)wy(dy), xeV. (1.5)

For xe V¢, by P*(Xp=x) =1, we have w} =J,, the Dirac measure in x.
For xeR? and r > 0 we denote B(x,r) = {yeR’:|x— y| <r}. In the case
of the ball B = B(0,r), r > 0, the a-harmonic measure ®}( - ), has for x € B the
density function P,(x,-) explicitly given by the formula

A = x| (| p)* = 1) x — 7, >,
Pr(x’)_{a( x| %) (1t = r7) 7 x = |7l (16)

0, [yl <r,

where c¢f = I'(d/2)n"%/?"sin(na/2) (see [8]). Thus, every ue #%(B(6,r))
satisfies the equality

u(x) = J‘ " P,(x -6,y — Q)u(y)dy, x € B(0,r). (1.7)

The integral in (1.7) is an analogue of the classical Poisson integral for the
ball. By (1.6) and (1.7), if V # J is open then every function u e #*(V) is
smooth on ¥ and satisfies the condition

J. 1)+ 17y < o

Unlike for the Brownian motion, the o«-harmonic measure wj is typically
supported on all of V¢ for x e V, which reflects the existence of jumps of
sample paths. The fact follows from (1.6) and an obvious inequality w3} > wg
on V¢ where B is a ball with xe B< V. Another consequence of (1.7) and
(1.6) is the usual Harnack inequality. We shall use the following version of it
(see [3, Lemma 2]).

LemMa 1. Let x1,x, € R r>0 and ke N with |x; — xa| <2%r. If ue
H*(B(xy,r)U B(xy,r)) then

JTI27KA Ny (xy) < u(xp) < J2KEu(x,), (1.8)

with a constant J = J(d,o).
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The notation C = C(x, y,z) means that the constant C depends only on x, y, z.
Constants are always numbers in (0, o).

As in the classical case (a =2) the notion of a-harmonicity can be also
formulated in terms of the generator. Namely, as stated in [3], a nonnegative
Borel measurable function u defined on all of R? and C? in an open set V is
a-harmonic in V if and only if 4% Zu(x) =0, xe V. In particular, these
conditions are satisfied if for every 6 € V' there is r > 0 such that (1.7) holds.

For the rest of the paper let D be a Lipschitz domain with the localization
radius Ry and the Lipschitz constant A. It means that D is a bounded open
set and for each Q € D there are a Lipschitz function I'gp : R?! — R with the
Lipschitz constant not greater than A and an orthonormal coordinate system

Y= ()’11)’2,--.,yd) such that
DNB(Q,Ro) ={y: 4> To(y1,¥2--->¥a1)} N B(Q, Ro).

Lipschitz domains have the following simple geometric property.
There exists a constant k = k(4) € (0,1) such that for every r e (0,Ry) and
Q € 0D, there is at least one point A = A,(Q) such that B(A,kr) < DN B(Q,r).
For Lipschitz domains a-harmonic measures have nice density functions
([3, Lemma 6]):

LeEMMA 2. The a-harmonic measure w}, is concentrated on int D¢ and is
absolutely continuous with respect to the Lebesgue measure on D¢. There exists
a density function P(x,y) (the Poisson kernel) which is continuous in (x,y) €
D x int D°.

As usual, int D¢ above denotes the interior of D¢.

It will be convenient to fix an increasing sequence of open sets D, < D
such that | J2 D, = D and each D, is a compact subset of D. Since 7p < o
a.s., we have that

tp, 1 Tp a.s. asn — 0. (1.9)

Moreover, the fact that wj} does not charge 0D for x € D has the following
consequence:

lim P*{X,, =X;}=1, xeD (1.10)

n— o0

(see [3, (5.40)]). In the later discussion we need a specific choice for the
sequence {D,}. We let

D, = {x e D : dist(x, D) > 1/n}, n=12,..., (1.11)

where dist denotes the Euclidean distance in R,
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The potential operator U, of the process X; is given by the Riesz kernel of
order «. Namely, for nonnegative Borel measurable functions f on R

Uef(x) = E* r) F(X)dt = #(d, a)J SO 4 xere
0 RY |x — p|“7*

Given a measure u on R? we let U# be its Riesz potential,

Uk(x) = (d, ) Ld%, xeR. (1.12)

We recall the definition of the Green function of the domain D:

G(x,y) = U(y) — Us?(y), x,yeR? (1.13)

(we have G(x,x) = oo if x e D and we put G(x,x) =0 if x € D), see [8]. For
nonnegative Borel measurable functions f

EJ FX)dt = J FO)G(x, p)dy,  xeRY. (1.14)
0 D

We clearly have
G(x,y) < A(d,o)lx~y*™,  xyeR’ (1.15)

It is well-known that G(x,y) >0 on D. Also, G(x,y) = G(»,x), x,y € R%,
(symmetry) and G(x, y) =0 provided x € D¢ or y € D¢, see [8], [6]. For each
y € D, G(x, y) is a-harmonic in x € D\{y} and regular a-harmonic in D\B(y,r)
for every r > 0. The same is of course true when the roles of x and y are
interchanged. The next formula recovers the a-harmonic measure density from
the Green function:

P(x,y) = [4"*G(x,)](»)

dv, xeD, yeintD". (1.16)

Formula (1.16) follows from the connection between the Lévy measure and the
harmonic measure established in [5] (see also [3, (4.32)]) and will be frequently
used in the sequel.

The following lemma is a local, scaling-invariant version of the boundary
Harnack principle for a-harmonic functions (BHP) compiled from [3, Lemma
16 and the proof of Theorem 1].

Lemma 3 (BHP). For all Qe dD, re(0,Ry/2) and functions u,ve
H%(DNB(Q,2r)) which vanish on D‘NB(Q,2r) and satisfy u(4,(Q)) =
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v(A4,(Q)) > 0, the ratio h(x) = u(x)/v(x) is Holder continuous in DN B(Q,r).
In fact there exist Cy = Cy(d,a,A) and v=v(d,a, ) such that

|h(x) = h(p)| < Ci(Jx = yI/r)",  x,ye DNB(Q,r). (1.17)
In particular, there is a constant Cy, = Cy(d,a,A) such that
C;'<h(x)<C,, xeDNB(Q,r) (1.18)

and limpsx_.g h(x) exists for every Q' e 0DNB(Q,r).

As for the decay rate of a-harmonic functions near the boundary 0D,
the next result provides useful absolute estimates. For a proof the reader is
referred to [3, Lemma 3, Lemma 4 and Lemma 5].

LeMMA 4. There exist constants C; = C3(d,a, 1) and ¢ =¢e(d,o, 1) such
that for all Qe dD, re (0,Ro/2) and functions ue #%(DNB(Q,2r)) which
vanish on DN B(Q,2r) we have

Cilu(A)p(x)*™* < u(x) < Cu(A)p(x)®,  xe DNB(Q,r), (1.19)
where p(x) = dist(x,D)/r, A = 4,(Q).

2. Martin representation
We keep denoting by D the generic Lipschitz domain in R?. By (1.5) and
Lemma 2, every function u € # %(D) has the representation

u(x) = JDC P(x, y)u(y)dy, xeD. (2.20)

Let yp. be the indicator function of D¢. We regard u(y)yp.(y)dy as a
representing measure, the kernel P(x, y) being independent of u. The values of
u on D¢ are incorporated in the notion of a-harmonicity thus the representing
measure is unique in (2.20). In this section we will reveal a representation
valid for all the nonnegative a-harmonic functions.

LeMMA 5. Every function ue #*(D) decomposes into the unique sum
u=r+s, where r e # (D) and s e H (D).

PrROOF. By the mean value property, for xe R? and D, as in (1.11)
u(x) = E*u(X:,,)
= E*{u(Xz,,); Xz, € D} + E*{u(Xz,,); Xz, € D\Dy}
= E*{u(X:,); Xz, € D} + E*{u(X:,,); Xz, € D\D,}.



Representation of a-harmonic functions 233

Clearly the first term coincides with u(x) if xe D while {X;, € D} /
{X:, e D} up to a P*-null set by (1.10) if xeD. Consequently u(x) >
E*{u(X:,); X:,, € D} / EXu(X:,)]=r(x) and E*{u(X:,,); Xz, € D\D,}
decreases to a limit, say s(x), as n — oo. By definition u(x) = r(x) + s(x).
Clearly r(x) =u(x) and s(x) =0 if xe D°. Being finite, r is regular a-
harmonic in D. If B is open relatively compact in D and x € B then

r(x) + s(x) = u(x) = E*u(Xz,)
= E*r(X:,) + E*s(Xy,) = r(x) + E*s(Xz,).

Subtracting r(x) < oo, we see that s is (singular) a-harmonic in D. O

It is easy to verify that the composition of the regular part r with
the process stopped on leaving the domain is a closed martingale. Such a
composition with s yields a supermartingale with the expectation tending to 0.
We now fix a reference point xy € D.

LEMMA 6. For every Q€ dD and x € R?

G(x,¢)

pats0 G(xo, &) (@21)

K(x,0) =

exists. The mapping (x,Q)w— K(x,Q) is continuous on D x 0D. For every
Q € 0D the function K( -, Q) is singular o-harmonic in D with K(xy,Q) =1. If
0,S€dD and Q # S then K(x,0) — 0 as x — S.

Proor. For each fixed x e D, the existence of the limit in (2.21) is
an immediate consequence of Lemma 3 trivially extended by relaxing the
assumption u(4,(Q)) = v(4,(Q)). We now prove that K(x, Q) is a-harmonic
in xe D. To this end we fix Qe dD. Throughout the proof, we let re
(0, Ro/2) be so small that |[xo — Q| > 2r and we write &, = 4,(Q). With the
conditions on r, Lemma 3 (extended as above) yields

lG(yaér) < G(yaé) <C G(yaér)

@ G(x0,¢) — G(x0,&) — 2 G(x0,&,)’ &e DNB(Q,r), y e D\B(Q,?2r).
(2.22)
Letting ¢ — Q gives
—1 G(yv ér) G(y’ ér)
G _G(xo, Z) <K(»0) <G —G(xo, )’ y € D\B(Q,?2r). (2.23)

Let e D and p=dist(d,D°)/3. We fix xe B(0,p) and define o*(dy) =
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P,(x—0,y—6@)dy. To prove o-harmonicity, it is enough to verify that
K(x.0) = [K(3, Q)"

(see Introduction). By (1.7) and Fatou’s lemma we only have

. G(x,¢)
K(X, Q) - DllgEQ G(X(),é)

o G(y,&)
- Dil?—l'QJG(XO’é) ()

z]m%@wwa

In particular, K(-, Q) is o*-integrable. In addition to the previous conditions
onr, let r <p/2. For ye B(Q,2r) we now have |y — 6| >2p and P,(x -0,
y—20)<c =c(d,a,p). Therefore, using (1.15) and polar coordinates, we get

G(y,¢,) c1 J (d, )
—= 2 g¥(dy) < ——— — 7 dz
JD(’]B(Q,Zr) G(xo0,¢,) (@) G(x0,&r) )04 |2

2 o

= —7 y
G(x07ér)

with a constant c¢; = ¢y(d,«,p). By Lemma 4, there is a constant c¢3 =

c3(d, o, D, xp) such that G(xp,&,) > c3r*%, and so

J G(y,¢)
pna(g2r) G(x0,&;)

under the above restrictions on r. 'We recall that K( -, Q) is o*-integrable. By
the left-hand side of (2.23) and by (2.24) the functions G(-,¢,)/G(xo,<&,) are
uniformly o*-integrable for all r > 0 small enough. Therefore

me=mﬁ%%%¢w>

o*(dy) < crc;'r® (2.24)

= Jrl_i'r(gl+ G(y,¢,)/G(x,&,)a*(dy)

:jm%gwwwy

We have thus proved that K( -, Q) is (singular) a-harmonic in D. In particular
K(x, Q) is smooth in x for each fixed Q € dD. Let F 3 x¢ be a compact subset
of D. Let U={¢eD:dist(&, D) < e} where e=min(Ry/2,dist(F,D¢)/2). As
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the quotients G(x,&)/G(xp, &) equal 1 for x = xo, by their a-harmonicity in x
and Harnack inequality (1.8) there is a constant ¢ = c(a, F,¢) such that

G(x, &)
G(xﬂa é) = c,

By Lemma 3 (extended as above) there are constants ¢’ = ¢/(d,a,4,¢) and v =
v(d,a, A) such that

xeF, teU.

G(xvél) _ G(xa52)
G(x0,¢1)  G(x0,&2)

It follows that

lK(xa Ql) _K(xa QZ)I < cc’lQl - Q2|v7 XGF, QlaQZ e oD.
Let Fax — yeF, 0D>3Q — RedD. We have

SCCllgl—ézlv’ XEF, élaéZEU'

|K(x, Q) — K(y, R)| < |K(x, Q) — K(x, R)| + |K(x,R) — K(y, R)|
<cc'|Q - R|” +|K(x,R) — K(y,R)| = 0.

It follows that K(-,-) is jointly continuous on D x D. The continuous decay
of K(x,Q) as x —» S e 0D, S # Q follows from the right-hand side of (2.23) (see
also Lemma 4). O

The argument proving o-harmonicity of K(-,Q) above differs from the
Harnack convergence theorem which is used in the classical case (x =2). We
do not have a direct analogue of the classical Harnack convergence theorem
for o < 2, see [9]. Also, the analogue of the function K( -, Q) for domains less
regular than Lipschitz is not (singular) a-harmonic in general ([9]).

We are now ready to state and prove the main result of the paper.

THEOREM 1. Let D be a Lipschitz domain in R?, d > 2. For every finite
nonnegative Borel measure u on 0D, the function

ux)= [ KxOwd), xer! (2.25)

is in #E(D) and u(xg) = u(R?). Conversely, for every function ue #HE(D)
there is a unique finite nonnegative Borel measure u on 0D such that (2.25) holds.

Proor. Since K(x,Q) =0 if xe D¢, for each x € R?,K(x,Q) is contin-
uous in Q € 0D by Lemma 6. Therefore the integral in (2.25) is well-defined,
finite and nonnegative. By the joint continuity of K(-,-),u(-) is continuous
(hence Borel measurable) in D. If B is open, relatively compact in D, by
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Fubini-Tonelli and a-harmonicity of K(-,Q) we have
Eu(x,) = [u()o3(@)
- | [kt 0@

- j K(x,Qu(dQ) = u(x),  xeR%
oD

It follows that u € s#{(D). We now prove the uniqueness of the representation
(2.25). Let Qe dD and D, be as given by (1.11). We define v2(dy) =
K(y,Qwp (dy), n=1,2,... We have v = o in the sense of weak con-
vergence as n— oo. Indeed, for every n,v¢(R?) = [K(y, Q)wp (dy) =
K(x0,Q) =1. Also, for each ball B= B(Q,r) with r > 0 we get

v2(B) < o (RY) sgp\BK (»0)
yeDg

= sup K(y,0)—0 asn — oo,
yeDE\B

where we have used Lemma 6. More generally, for v,(dy) = u(y)wy) (dy) with
u satisfying (2.25) we have

Ve = asn — 0. (2.26)

Indeed, let ¢ be a bounded continuous function on RY.  We may assume that
¢ > 0. By Fubini-Tonelli theorem and bounded convergence theorem we get

[#as= [ [#00x0r Q@) due)

:J J¢(Y)V,?(dy) du(Q) — J #(Q) du(Q) asn — oo.
oD oD

Thus the function u determines the measure u.

We now prove the existence part of the theorem. We denote by Gy, P,
the Green function and the Poisson kernel of D,, respectively. The existence
of P(,, that is the absolute continuity of wp, (-) with respect to the Lebesgue
measure (for x € D,), is here, at least for large n, a consequence of the Lipschitz
character of D,. Namely, if n > ny, nyp being an integer depending on D, the
localization radii of the sets D, may be chosen independent of n and their
Lipschitz constants are not greater than A. The verification of this geometric
result is left to the reader.
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Let xe D and let n; > ny be such that x, xp € D,,. We use (1.16) and
Fubini-Tonelli theorem in the following basic calculation (n > n;):

) = [ uls) P )y

J

JD¢

n

={.mewwr@®uxm~ﬂﬁﬂﬁw

[ G(x,0)
= |, Gl %) 220

where  u,(d¢) = Gu(x0,&) [y u(y)t (d, —a)|y — & *dydé. We see that
#,(R?) = u(xq) < . For each compact F = D and every £ e F, we get

| w)d =ty — e ay

n

oA (d,—a)

<————| u(y)d 0 asn — oo, 2.28
dist(F,Dg)d+“JDc Dy = - (2.28)

n

because u is integrable.
By (1.15) and (2.28) we have

u,(F) — 0 asn — oo. (2.29)

The sequence being tight, some subsequence {u, } weakly converges to a
measure u supported on 0D. Similarly to (2.29),

J Gn(x,¢)
F

Gn(xo,é)#"(dé) -0 as n — oo. (2.30)

We now observe that
Gn(x,¢) T G(x,¢) asn — o, £ e R (2.31)

This is a consequence of (1.9), (1.14) and the continuity of the Green functions.
By (2.31) and its analogue for x, we have

Gi(x,8) _ G(x&)
Gu(x0,&)  G(x0,¢)’

(as usual if x = xp = £ € D, we let the quotients equal 1). Outside of D,,, by
BHP, the functions G,(x,¢)/Gy(x0,&) are uniformly equicontinuous in ¢ on
their respective domains of definition. Therefore the convergence in (2.31) is
uniform outside of D,, in the sense that for each ¢ >0

Gi(x,8)  G(x,8)

Gn(x0,&) B G(xp,¢) =¢ ¢ € Dp\Dn,, (2.32)

teD, asn— ©
)
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for all n sufficiently large. With this ¢ and such n we have

J G(x,§) _ Gu(x,$)
D,

G(x0,&)  Gu(xo,&)
Now, by (2.30) with F = D,, it follows that
J G (x,¢)

Gnk (X(), é)

Y G(x,¢)
=i [, Gy @0

By Lemma 6 the function & G(x,&)/G(xo, &) extends continuously to D\{x}.
Since suppu < 0D, we get

u(x) = LD K(x, Q)u(dQ).

1n(dE) < ey (RY) = eu(x0). (2.33)

c
n

= lim
k—o0

u(x) Hin (dE)

¢
n

The subsequence {u, } was chosen independent of x € D and the existence of a
representing measure is established. Actually, due to the uniqueness of such
representation, we even have u, = u as n — . O

We also get the characterization of minimal singular a-harmonic functions
on D. We call fe #§(D) minimal if every 4 € #§(D) dominated by fis a
constant multiple of f. Indeed, the correspondence between u and u in (2.25)
is obviously linear and preserves the natural order i.e. u; < u if and only if
U < w, (the “only if” part is a consequence of (2.26)). It follows that minimal
singular a-harmonic functions f on D with f(xg) = 1 are precisely the functions
{K(-,Q), Q € dD} corresponding to the Dirac measures on JD.

3. Examples

As before, D is a Lipschitz domain in R¢, xo € D is fixed and P(x,y) =
wp(dy)/dy is the Poisson kernel for D. It is convenient to have a formula for
the kernel K(-,-) in terms of the Poisson kernel.

LEMMA 7. For every xe D and Q€ 0D

_ g P(x,y)
K(x,Q) = ileclrar}AQ Plxoy)’ (3.34)

Proor. Let xe D and Qe dD. For yeintD® we have by (1.16)

[ G(x,0)y — o do
J G(x0,0)|y — o] %dv’

P(an’)/P(xo,)’)
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According to Lemma 4 there exist constants ¢ = ¢(d, «, D, xp) and ¢ = &(d, a, A)
such that

G(x,v) = clo— 0] (3.35)

for v in an inner cone € <= D with vertex in Q. By (1.16), Fatou’s lemma and
(3.35) we see that

liminf P(x,y) > J&/(d, ~0)G(x,v)|@ — v dv
intD¢sy—Q

> CJ A(d,—a)|Q — v Fdv = oo,
4

hence P(x,y) — oo asintD°sy — Q. Let V be an arbitrary neighborhood of
Q. If y— Q then

J G(x,v)|y — o] dv — J G(x,0)|Q — v| ™ %dv < w0,
ye ye

hence we have

P G — o™ %,
lim sup (x,) = limsu Jy G, v)ly — o] — Y
intDesy—Q P(X0,¥)  intDeay—0 Jy G(x0,v)|y — vl dv
G(x,v)
vevnp G(Xo0,v)

Analogously,
liminf 28I 5 g G0)
intD¢sy—Q P()CO, y) veVND G(XO, U)
Letting V shrink to Q and using Lemma 6 we get (3.34). O

ExaMpLE 1. Let D be the ball B(0,r)eR%r>0 and xp=0. An
application of Lemma 7 and (1.6) yield

(r* = |x)*?
lx— Q|

for all Qe dB(0,r). Formula (3.36) is an exact analogue of the classical
Poisson kernel for the ball. The resulting Martin representation of non-
negative functions singular a-harmonic in a ball is quite similar to that of
classical harmonic functions. As a consequence it follows easily that multi-
plication by the factor r>~*(r? — |x|2)“/ 2-1 is an isomorphism from the class of
nonnegative functions harmonic in B(0,r) onto #((B(0,r)). The description
was given before in [4].

K(x,Q) =ri , x| <r (3.36)
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Martin representation of nonnegative functions singular a-harmonic in
certain unbounded domains can be derived from our results by means of the
Kelvin transform. The Kelvin transform (with center at the origin) is the
mapping T : R\ {0} — R?\{0} given by Tx = x/|x|>. For 4 = R%\{0}, T4 is
the image of A under T as well as the inverse image since 7~! = T. Let u be
a function on R%\{0}. The Kelvin transform of u will mean the function Tu
on RY\{0} defined by

Tu(y) = " u(Ty) (3:37)
(we drop o from the notation). We have the following result

LemMA 8. Let D be an open set in RY\{0}. If ue #*(D) then Tue
H*(TD).

Lemma 8 implies in particular that the classes (D) and #§(TD) are
isomorphic. In consequence it yields a (Martin) representation for #(7TD)
if such a representation is given for (D). Proof of Lemma 8 is given in
Appendix. A similar result with # being a Riesz potential (1.12) is implicit
in [8].

ExampLE 2. Let P=(0,...,0,1) e R%. The Kelvin transform of the
ball B(P,1) is the half-space {y = (»;,...,¥,) €R?: y, > 1/2}. Using (4.42)
below one can easily calculate the Kelvin transforms of the Martin functions
(3.36). These are clearly (minimal) singular a-harmonic and give rise to a
representation of general nonnegative functions singular a-harmonic for the
half-space which is completely analogous to that for the ball. The details are
left to the reader. We give the resulting Martin functions in the half-space
I={y=(y,...,y5) €R% y,>0}. We have the following functions

a/2
Y
K, Q) =—"4—(1+|0P"* ;>0 (3.38)
ly— 0
with Q € dIT and

K(ya OO) = ys/zy Yd > 07 (339)

corresponding to the point at infinity. The functions are normalized so to
satisfy K(P,-) = 1. Let us also remark that (3.38) and (3.39) can be derived
(as in Lemma 7 and Example 1) from the explicit form of the following Poisson
kernel for the half-space II:

o/2

P(x,y) = c? d Ix — y|7¢, yeintll€ (3.40)
: |J’d|a/2

where x € IT. Verification of (3.40) is left as an exercise to the reader.
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4. Appendix

LEMMA 9. Let u be a nonnegative Borel measurable function on R?\{0}
and let Tu be its Kelvin transform (3.37). For every ball B < R\{0} we have

ETTu(X.,) = |x|“*E*u(X,,), xeB. (4.41)

Proor. The following basic relation can be easily verified:

Ix— ¥l
|Tx - Ty| = , x,y#0. (4.42)
=
To be specific let B= B(Q,r) where Qe R\{0} and 0 <r < |Q]. It is well
known that TB is also a ball. Let 7B = B(S,p), thus defining S and p.
Using (4.42) for points x, y € 0D on the radius from 0 to Q we get

- - = 4.43

P=Tor—naor+n 1o -2’ (4.43)
221( 1 ! ) _ 0

o IQ‘ 2 IQ'—r+|Q‘+r |Q|2_r2’ (444)

By (1.7)

) 27 %/2

p-—|Tx—S _ _

P TulXy) = | P =SEN  pe (T ).
18| |y — S|"—p?

We change the variable y = Tz. For the Jacobian of 7 we have the formula
|JT(z)| = |z|_2d ((4.43) establishes the rate of expansion of the element of
volume under T). Using (4.42), (4.43), the fact that T2 = id and (4.44) we get

ETxTu(X,TB) = co‘fj

|Tx — Tz|™)|2|9 " u(2)|z| ¥ dz

2
p? — |Tx - 5]
Tz — S| — p?

p? — |Tx — 12|
7 o
3 [.?_—m_—p] = 2|l ol ulz)

- _ _27%2, &
| [r2<|Q|2—r2> > — [x=TS|’x| *|TS] 2] x|°u(z) dz
o Be

2= TSPlz) TS| = (101 =r2) 2 | [2|%|x—2]"

= |x]

a/2
Py J [r2|x|2— Jx - TSIZIQIZ] u(z)
BL‘

c
: z— TSP|Q) = 2|z | |x -z
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2
[

Since TS = Q
[k

, we have

|01%Ix — TSI = |01*|x|” + |QI*|TS|* - 2|0|*(x, TS)
= 0Px1* + (10> = *)* = 2(1Q)* - )(x, ),

where (-,-) denotes the usual inner product in RY. It follows that

Plx? = 10Px - TS* = (10> - *)(r* - |x - Q).
Analogously |z — TS|*|Q|* — r*|z)* = (|Q|* — r*)(|z — Q|* — ?). Therefore

' _ 2 o/2
E™Tu(Xep) = et [ |EZEZ O e oo
Be||z— Q| —r?

= |x|* T E*u(Xy,).
The proof of (4.41) is complete. O

Proor OF LEMMA 8. By a remark in Introduction it is enough to prove
that

Tu(Tx) = E™*Tu(X,

TTB

), xeB

for every ball B< B < D,D being the domain of «-harmonicity of u. Since
Tu(Tx) = |x|*“u(x), this follows from (4.41) and (1.4). 0O

ADDED IN PrOOF. During the conference on Geometric Stochastic Analysis
and Fine Properties of Stochastic Processes on March 23-27, 1998 in Berkeley
I was informed that independent research into this subject was carried out by
Zhen-Qing Chen and Renming Song. Their interesting results, which partially
overlap with those above, are given in preprint “Martin boundary and integral
representation for harmonic functions of symmetric stable process”.
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