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Representation of α-harmonic functions in Lipschitz domains
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ABSTRACT. We give the Martin representation for nonnegative functions which are

harmonic on Lipschitz domains with respect to symmetric stable processes.

1. Introduction

The purpose of the present paper is to derive the Martin representation of

nonnegative functions which are α-harmonic on Lipschitz domains. In general
any nonnegative function α-harmonic in a bounded domain decomposes into
regular part and singular part [9]. Each part admits its Martin representa-
tion. The regular part is given by integrating the function outside the domain
against the α-harmonic measures. In [3] we have seen that for Lipschitz

domains the α-harmonic measures have jointly continuous densities with respect
to the Lebesgue measure. In the present paper, by using the boundary
Harnack principle proved in [3], we shall show that the singular part is given by

integrating a family of singular α-harmonic functions which are parameterized
by the points at the boundary. Our restriction to Lipschitz domains simplifies
the argument and yields an explicit definition of the family in terms of the
Green function.

Our development is a standard one (cf. [1]). Nevertheless most of
the arguments are substantially modified in comparison with its classical
counterpart. We use this opportunity to illustrate the theory of Martin re-
presentation by a straightforward construction. Martin representation in the
case of arbitrary bounded domains is the subject of [9]. Reader interested in
the Martin representation in a general setting of Markov processes is referred
to [7].

We first review the notation and a few results on α-harmonic functions
following [3]. For the rest of the paper, let αe(0,2) and d > 2. We denote
by (Xt,P

x) the standard rotation invariant α-stable Levy process (i.e. homo-
geneous and with independent increments) in Rd with the characteristic

1991 Mathematics Subject Classification. Primary 31C35, 60J50; Secondary 31B05.

Key words and phrases. Martin representation, symmetric stable processes, boundary Harnack

principle.



228 Krzysztof BOGDAN

function

As usual, Ex denotes the expectation with respect to the distribution Px of the
process starting from x eRd. We assume, as we can, that sample paths of Xt

are right-continuous and have left limits a.s. The process is Markov with
transition probabilities given by Pt(x,A) = Px(Xt e A) — μt(A — x), where μt is
the distribution of Xt with respect to P°. It is well-known that (Xt,P

x) is
strong Markov with respect to the so-called standard filtration, see e.g. [2]
(also for another definition of Xt using subordination). The process has the
generator z/α/2:

^-^^, (1.1)

where tf(d,γ) = Γ((d - γ)/2)/(2?πd/2\Γ(γ/2)\) (cf. [8]). The limiting classical
case α = 2 corresponds to the Brownian motion with Laplacian A = ΣjLi dj as
the generator. Needless to say, the integro-diίferential operator A"/2 is not of
local type. The Fourier transforms of the zfα/2 and A satisfy the equation

\ (1.2)

A proof of (1.2) can be found in [8]. The notation A*/2 suggests the negative
of the fractional power of -A ([10, IX.ll]).

For a Borel set A c Rd, we define τA = inf{t > 0 : Xt ε A0}, the first
entrance time of the complement Ac of A. It is well known that TA is a
Markov time with respect to the standard filtration (cf. [2]). If A is bounded

then TA < oo a.s. Otherwise, in writing expressions like Exu(XτA), we adopt
the usual convention Exu(XτA) — Ex{u(XlA)-, TA < oo}.

DEFINITION 1. Let u > 0 be a Borel measurable function on R^. We say
that u is regular u-harmonic in an open set V c= Rd and write u ε J t i f χ ( V ) if

u(x) = Exu(Xτv) < oo, x E V. (1.3)

We say that u is OL-harmonic in V and write ueJ#"*(V) if ueJtf'χ(B) for every

bounded open set B with the closure B contained in V i.e.

u(x) = Exu(XτB) < oo, xeB. (1.4)

We say that u is singular ^-harmonic in V and write u e J^Q(V) if uε 3
and u(x) = 0, x e Vc.

We have that Px(τA — 0) = 1 for every x e Ac with this definition of TA
Thus the equalities in (1.4) and (1.3) in fact hold on all of Rd. Since τβ < τv
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for B c: V, it follows by the strong Markov property that regular α-harmonic
functions are α-harmonic. The converse is not generally true, as we shall
shortly exhibit the existence of nontrivial singular α-harmonic functions. For
uejtf"χ(V), the values u(x),xe Vc, serve as the boundary condition. Obvi-
ously, the only regular α-harmonic function which is also singular is the zero
constant. For x e Rd, the Px distribution of Xτv is called ^-harmonic measure
and denoted by coy. Clearly, a>y is concentrated on Vc and for a function u e
tf*R(V) we have

u(x)=\ u(y}ω*v(dy}, xεV. (1.5)
Jvc

For xe Vc, by Px(Xo = x) = 1, we have a>y =SXί the Dirac measure in x.
For x e Rd and r > 0 we denote B(x, r} = {y e R^ : \x — y\ < r}. In the case
of the ball B = ^(0, r), r > 0, the α-harmonic measure ω^( ), has for x e B the
density function Pr(x, •) explicitly given by the formula

\χ\2Γ/2(\y\2-r2Γ/2\χ-yΓd, \y\>r,
(1.6)

\y\ < r,

where c* = Γ(d/2)π-d/2-1 sin(πα/2) (see [8]). Thus, every u ε ^(B(θ,r))
satisfies the equality

«(*)=[ Pr(x-θ,y-θ)u(y)dy, xeB(θ,r). (1.7)
J\y-θ\>r

The integral in (1.7) is an analogue of the classical Poisson integral for the
ball. By (1.6) and (1.7), if V ̂  0 is open then every function u € ̂ (V) is
smooth on V and satisfies the condition

f u(y)(\
Jκr f

Unlike for the Brownian motion, the α-harmonic measure ω£ is typically
supported on all of Vc for x e V, which reflects the existence of jumps of
sample paths. The fact follows from (1.6) and an obvious inequality coy > ω|
on Vc, where B is a ball with x e B a V. Another consequence of (1.7) and
(1.6) is the usual Harnack inequality. We shall use the following version of it
(see [3, Lemma 2]).

LEMMA 1. Let x \ , X 2 £ R^, r > 0 and k e N with \x\ — x^\ < 2kr. If u E
je*(B(xi,r)(JB(x2,r)) then

jc2), (1.8)

with a constant J = J(d, α).



230 Krzysztof BOGDAN

The notation C = C(x, y, z) means that the constant C depends only on x, j, z.
Constants are always numbers in (0, oo).

As in the classical case (α = 2) the notion of α-harmonicity can be also
formulated in terms of the generator. Namely, as stated in [3], a nonnegative
Borel measurable function u defined on all of R^ and C2 in an open set V is
α-harmonic in V if and only if Δ*ί2u(x) = 0, xeV. In particular, these
conditions are satisfied if for every θ e V there is r > 0 such that (1.7) holds.

For the rest of the paper let Z) be a Lipschitz domain with the localization
radius RQ and the Lipschitz constant λ. It means that Z) is a bounded open
set and for each Qe 3D there are a Lipschitz function ΓQ : Rd~l — » R with the
Lipschitz constant not greater than λ and an orthonormal coordinate system

y = (y^y^"">yd) such that

Q) = {y:yd> ΓQ(yλ, y2, . . . , yd

Lipschitz domains have the following simple geometric property.
There exists a constant K = κ(λ) e (0, 1) such that for every r e (0, RQ) and

Q E dD, there is at least one point A = Ar(Q) such that B(A,κr) c DΓ\ B(Q,r).

For Lipschitz domains α-harmonic measures have nice density functions
([3, Lemma 6]):

LEMMA 2. The ^-harmonic measure ω^ is concentrated on mtDc and is
absolutely continuous with respect to the Lebesgue measure on Dc . There exists
a density function P(x, y) (the Poisson kernel) which is continuous in (x, y) e
D xintDc.

As usual, intZ>c above denotes the interior of Dc.
It will be convenient to fix an increasing sequence of open sets Dn c D

such that U^jAi = D and each 2)̂  is a compact subset of D. Since τ/> < oo
a.s., we have that

?Dn ΐ ΈD a s- as n — > oo. (1.9)

Moreover, the fact that ω£ does not charge dD for x e D has the following

consequence:

limPx{XτDn=XτD} = \, xeD (1.10)

(see [3, (5.40)]). In the later discussion we need a specific choice for the

sequence {Dn}. We let

Dn = {xeD:dist(x,Dc) > I/Λ}, n= 1,2, . . . , (1.11)

where dist denotes the Euclidean distance in R^.
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The potential operator C/α of the process Xt is given by the Riesz kernel of
order α. Namely, for nonnegative Borel measurable functions / on Rd

y, xeRd.« ,
\x- y\

Given a measure μ on Rd, we let U£ be its Riesz potential,

dμ(y^ *eRd. (1.12)
\x- y\

We recall the definition of the Green function of the domain D:

G(x,y) = U'Λ*(y) - uf°(y), x,yεRd (1.13)

(we have G(x, x) = oo if x e D and we put G(x, x) = 0 if x e Dc), see [8]. For
nonnegative Borel measurable functions /

E* Γf(Xt)dt = f f(y)G(x,y)dy, xeRd. (1.14)
Jo JD

We clearly have

G(x, y) < s/(d, *)\x - yΓd, x,yε Rd (1.15)

It is well-known that G(x,y) > 0 on D. Also, G(x,y) = G(y,x), x,yεRd,
(symmetry) and G(x, y) = 0 provided x e Dc or y e Dc, see [8], [6]. For each
y E D, G(x, y) is α-harmonic in x e D\{ y} and regular α-harmonic in D\B(y, r)
for every r > 0. The same is of course true when the roles of x and y are
interchanged. The next formula recovers the α-harmonic measure density from
the Green function:

xeD,yemtDe. (1.16)

Formula (1.16) follows from the connection between the Levy measure and the
harmonic measure established in [5] (see also [3, (4.32)]) and will be frequently
used in the sequel.

The following lemma is a local, scaling-invariant version of the boundary
Harnack principle for α-harmonic functions (BHP) compiled from [3, Lemma
16 and the proof of Theorem 1].

LEMMA 3 (BHP). For all QedD,re(Q,Ro/2) and functions u,vε
which vanish on D€Γ(B(Q,2r) and satisfy u(Ar(Q)) =
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v(Ar(Q)} > 0, the ratio h(x) =u(x)/v(x) is Holder continuous in DΓ\B(Q,r).
In fact there exist C\ = C\ (d, α, λ) and v = v(rf, α, λ) such that

\h(x)-h(y)\<C,(\x-y\/r)\ x, y e DΓ\B(Q,r). (1.17)

In particular, there is a constant €2 — Cι(d, α, λ) such that

C2-' </*(*)< C2, xEDΠB(Q,r) (1.18)

and limD3χ^Q> h(x) exists for every Q' e dDΓ\B(Q, r).

As for the decay rate of α-harmonic functions near the boundary dD,
the next result provides useful absolute estimates. For a proof the reader is
referred to [3, Lemma 3, Lemma 4 and Lemma 5].

LEMMA 4. There exist constants Q = Cτ>(d,u,λ) and ε — ε(J, α,/l) such
that for all QedD, re(Q,RQ/2) and functions u e J^(DΓ!£(ρ,2r)) which
vanish on DcΓ\B(Q,2r) we have

~ε < u(x) < C3u(A)p(x)ε, xeDΓ(B(Q,r), (1.19)

where p(x) = dist(x,Dc)/r, A = Ar(Q).

2. Martin representation

We keep denoting by D the generic Lipschitz domain in R^. By (1.5) and
Lemma 2, every function u e 3?^(D) has the representation

u(x)= f P(x,y}u(y}dy, xεD. (2.20)
JDC

Let χDc be the indicator function of Dc. We regard u(y)χDC(y)dy as a
representing measure, the kernel P(x, y) being independent of u. The values of
u on Dc are incorporated in the notion of α-harmonicity thus the representing
measure is unique in (2.20). In this section we will reveal a representation
valid for all the nonnegative α-harmonic functions.

LEMMA 5. Every function u e Jf?α(Z)) decomposes into the unique sum
u = r + s, where r e 3?*R(D) and s e 2

PROOF. By the mean value property, for xeRd and Dn as in (1.11)

u(x) = Exu(XτDa}

= Ex{u(XτDn ); XτDn e Dc} + Ex{u(XτJ; XτDn e D\Dn}

= E*{u(XτD); XτDn e Dc} + Ex{u(XτDn ); XTDa e D\Dn}.
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Clearly the first term coincides with u(x) if x e Dc while {XτDn ε Dc} /
{XτoεDc} up to a P*-null set by (1.10) if xeD. Consequently u(x) >

Ex{u(XTD); XτDn e Dc} / Ex[u(XτD)\ = r(x) and E*{u(XτJ; XτDn e D\Dn}
decreases to a limit, say s(x), as n — > oo. By definition u(x) = r(x) + s(x).
Clearly r(x) = u(x) and s(x) = 0 if x e D°. Being finite, r is regular α-
harmonic in D. If B is open relatively compact in D and x e B then

= Exr(XτB) + E*s(XτB) = r(*) + £^τj.

Subtracting r(x) < oo, we see that s is (singular) α-harmonic in D. Π

It is easy to verify that the composition of the regular part r with
the process stopped on leaving the domain is a closed martingale. Such a
composition with s yields a supermartingale with the expectation tending to 0.

We now fix a reference point XQ e D.

LEMMA 6. For every Qe dD and x e Rd

K(x, Q)= lim (2.21)

exists. The mapping (x, Q) \— > K(x, Q) is continuous on D x dD. For every
Q e dD the function K( , Q) is singular u-harmonic in D with K(XQ, Q) — 1. If

Q.SedD and QJ-S then K(x, β) -* 0 as x -^ S.

PROOF. For each fixed xeD, the existence of the limit in (2.21) is
an immediate consequence of Lemma 3 trivially extended by relaxing the
assumption u(Ar(Q)) = v(Ar(Q)). We now prove that K(x, Q) is α-harmonic
in x E D. To this end we fix Q e dD. Throughout the proof, we let r e

(0,^o/2) be so small that |x0 - Q\>2r and we write ξr = Ar(Q). With the
conditions on r, Lemma 3 (extended as above) yields

r-\G(y,ζr) G(y,ζ) G(y,ξr] t^nnunr} „ ̂  n\ nn ->r\C2 ^/ z\ ^ ^/ κ\ ^ C27v - TT> ^ eDίl/ί(ς;,r), yεD\β(Q,2r).
G(XQ,ξ) G(xQ,ζ) G(xo,ξr)

(2.22)

Letting £ — >• 2 gives

yeD\B(Q,2r). (2.23)

Let θeD and /? = dist(0,Z>c)/3. We fix xεB(θ,p) and define
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Pp(x — θ, y — θ)dy. To prove α-harmonicity, it is enough to verify that

(see Introduction). By (1.7) and Fatou's lemma we only have

K(X,Q)= lim <**'«

In particular, K( - , Q) is σ*-integrable. In addition to the previous conditions
on r, let r < ρ/2. For y e B(Q,2r) we now have \y-θ\> 2ρ and Pp(x - θ,
y — θ) < c\ = c\(d, a,/?). Therefore, using (1.15) and polar coordinates, we get

' [ ^(d

, ξr) JS(0,4r) ̂

G(x0,ζr) '

with a constant ci = cι(d, α,/>). By Lemma 4, there is a constant 03 =
cι(d, α , D , X O ) such that G(xo,ξr) > C3rα~ε, and so

f §^«*(dy}<c2c^ (2.24)
JDΓ\B(Q,2r) ^(xQι ζr)

under the above restrictions on r. We recall that K( , Q) is σ*-integrable. By
the left-hand side of (2.23) and by (2.24) the functions G( ,ξr)/G(x^ξr) are
uniformly σx-integrable for all r > 0 small enough. Therefore

= ^aG(y,ξr)/G(x0,ζr)σx(dy)
"

We have thus proved that K( , Q) is (singular) α-harmonic in D. In particular
K(x, Q) is smooth in x for each fixed Q e dD. Let F 9 XQ be a compact subset
of D. LetU={ξeD: dist(ξ , Dc) < ε} where e = min(^0/2,dist(F,Dc)/2). As
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the quotients G(x,ξ)/G(xo,ξ) equal 1 for x = JTO, by their α-harmonicity in x
and Harnack inequality (1.8) there is a constant c = c(a,F,ε) such that

G(*0,0 —'-—

By Lemma 3 (extended as above) there are constants c' = c'(d,u,,λ,ε) and v =

v(rf,α,A) such that

It follows that

\K(x,Ql)-K(x,Q2)\£cc'\Ql-Q2\
v, xeF, Qι,Q2eδD.

Let FBJC -> yeF, 8D3Q^> RedD. We have

|ΛΓ(*, β) - K(y,R)\ < \K(x, β) - *(*,Λ)| + |*(x,Λ) - K(y,R)\

< cc'\Q - R\v + \K(x,R) - K(y,R)\ -* 0.

It follows that AΓ( , ) is jointly continuous on D x dD. The continuous decay
of K(x, Q) as x -> 5 e 3A 5 ^ Q follows from the right-hand side of (2.23) (see

also Lemma 4). Π

The argument proving α-harmonicity of K( , Q) above differs from the
Harnack convergence theorem which is used in the classical case (α = 2). We
do not have a direct analogue of the classical Harnack convergence theorem
for α < 2, see [9]. Also, the analogue of the function K( - , Q) for domains less
regular than Lipschitz is not (singular) α-harmonic in general ([9]).

We are now ready to state and prove the main result of the paper.

THEOREM 1. Let D be a Lipschitz domain in R^, d > 2. For every finite
nonnegative Borel measure μ on dD, the function

u(x) = f K(x, Q)μ(dQ), xeRd (2.25)
JdD

is in J^Q(D) and U(XQ) = μ(Rd). Conversely, for every function ueJf$(D)
there is a unique finite nonnegative Borel measure μ on dD such that (2.25) holds.

PROOF. Since K(x, β) = 0 if x e Dc, for each x e Rd,K(x, Q) is contin-
uous in Qε dD by Lemma 6. Therefore the integral in (2.25) is well-defined,
finite and nonnegative. By the joint continuity of K( , ), u( - ) is continuous
(hence Borel measurable) in D. If B is open, relatively compact in D, by
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Fubini-Tonelli and α-harmonicity of K( , Q) we have

= [ \K(y,Q)ωx

B(dy)μ(dQ)
J d D J

= f K(x,Q)μ(dQ) = u(x),
JdD

xeRd.

It follows that u e jΊfξ(D). We now prove the uniqueness of the representation
(2.25). Let QεdD and Dn be as given by (1.11). We define vg(dy) =
K(y,Q}ωXj2n(dy), /ι = l,2, ... We have v£ => SQ in the sense of weak con-
vergence as n — » oo. Indeed, for every «, v^(Rrf) = \K(y,Q)ω^ (dy) —

K(XQ, Q) = l Also. for each ball £ = £(β,r) with r > 0 we get

Z ω i s u p
>>6/>«\*

= sup K(y, Q) — » 0 as n — > oo,

where we have used Lemma 6. More generally, for vn(dy) = u(y)ω^n(dy} with
u satisfying (2.25) we have

vn => μ as n —» oo. (2.26)

Indeed, let φ be a bounded continuous function on R^. We may assume that
φ > 0. By Fubini-Tonelli theorem and bounded convergence theorem we get

U < / v Λ = [ \φ(y)K(y,Q)ω«(dy)dμ(Q)
j JdDJ

φ(Q)dμ(Q) astt^oo.= [
JddDJ JdD

Thus the function u determines the measure μ.
We now prove the existence part of the theorem. We denote by Gn,P(n)

the Green function and the Poisson kernel of Dn, respectively. The existence
of />(„), that is the absolute continuity of ω/> (•) with respect to the Lebesgue
measure (for x e /)„), is here, at least for large n, a consequence of the Lipschitz
character of Dn. Namely, if n > HO, «o being an integer depending on D, the
localization radii of the sets Dn may be chosen independent of n and their
Lipschitz constants are not greater than λ. The verification of this geometric
result is left to the reader.
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Let xeD and let n\ >HQ be such that x, xoeDnι. We use (1.16) and
Fubini-Tonelli theorem in the following basic calculation (n>n\):

u(x) = u(y)P(n}(x,y)dy
JDC

f Γ

JD£ JDn

= f ^~τμn(dξ), (2.27)

where μn(dξ] = Gn(xQ, ξ) J^ u(y)j*(d, -α)|y - ξ\-d^dydξ. We see that
^(R^) = U(XQ) < oo. For each compact F a D and every ξeF, we get

f u
)D'n

s/(d, -α) as « ̂  oo, (2.28)

because M is integrable.
By (1.15) and (2.28) we have

μnCF)^0 a s w ^ o o . (2.29)

The sequence being tight, some subsequence {μnk} weakly converges to a
measure μ supported on 3D. Similarly to (2.29),

J F r n X Q ,

We now observe that

Gn(x,ξ)]G(x,ξ) a s w ^ o o , ^eR^. (2.31)

This is a consequence of (1.9), (1.14) and the continuity of the Green functions.
By (2.31) and its analogue for XQ we have

__

Gn(xo,ξ) G(xo,ξ)'

(as usual if x = XQ = ξ e Dn we let the quotients equal 1). Outside of £>„,, by
BHP, the functions Gn(x, ξ)/Gn(xo,ξ) are uniformly equicontinuous in ξ on
their respective domains of definition. Therefore the convergence in (2.31) is
uniform outside of Dn, in the sense that for each ε > 0

Ga(x,ξ) G(x,ξ)

Gn(x0,ξ) G(xo,ξ)
ξeDH\Dnι, (2.32)
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for all n sufficiently large. With this ε and such n we have

G(x,ξ) Gn(x,ξ)

:) Gn(χo,ξ)
"I

Now, by (2.30) with F = ~D^ it follows that

u(x) = lim ———'—-
k^co J (jn.(Xo,ξ)

μn(dξ)<εμπ(Rd)=εu(X<)). (2.33)

= lim f
G(x,ξ)
G(x0,ξ)μ"*

By Lemma 6 the function ξ\-> G ( x , ξ ) / G ( x o , ζ ) extends continuously to D\{x}.
Since suppμ c: dD, we get

u(x)= f K(x,Q)μ(dQ).
JdD

The subsequence {μnk} was chosen independent of x e D and the existence of a
representing measure is established. Actually, due to the uniqueness of such
representation, we even have μn => μ as n —» oo. Π

We also get the characterization of minimal singular α-harmonic functions
on D. We call / e Jfζ(D) minimal if every h e J(?ξ(D) dominated by / is a
constant multiple of /. Indeed, the correspondence between u and μ in (2.25)
is obviously linear and preserves the natural order i.e. u\ < UΊ if and only if
μ\ < μ2 (the "only if" part is a consequence of (2.26)). It follows that minimal
singular α-harmonic functions/on D with /(JCQ) = 1 are precisely the functions
{K( ,Q}, QedD} corresponding to the Dirac measures on dD.

3. Examples

As before, D is a Lipschitz domain in R^, XQ e D is fixed and P(x, y) =
ω^(dy]/dy is the Poisson kernel for D. It is convenient to have a formula for
the kernel K( -, ) in terms of the Poisson kernel.

LEMMA 7. For every x e D and QedD

K(x,Q)= lim ffo y\. (3.34)
V '^^ ^ )

PROOF. Let xeD and QedD. For yemtD0 we have by (1.16)

P(x,y)/P(x0,y)=
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According to Lemma 4 there exist constants c = c(d, α, Z), co) and ε = ε(d, α, λ)

such that

G(x,v)>c\v-Q\«-£ (3.35)

for v in an inner cone ^ <= D with vertex in Q. By (1.16), Fatou's lemma and

(3.35) we see that

liminf P(x,y)> \d(d,-κ)G(x,v)\Q- v\~d~^
intDc3y-+Q J

> c [ j*(J, -α)|β - ϋΓ
Jc

dv

= oo,

hence P(x, j) — > oo as intZ>c3 j — > Q. Let Kbe an arbitrary neighborhood of

Q. lί y-^ Q then

f G(x,Ό)\y-Ό\~d~Λdυ^ f
Jr c Jκ c

c,ϋ)|β - υ\~d~Λdυ < oo,

hence we have

hmsup Γ= hmsup
, v)\y — V\ * dϋ

< sup
vεVΓiD

G(x, v)

Analogously,

liminf > inf .
, V)

Letting V shrink to Q and using Lemma 6 we get (3.34). Π

EXAMPLE 1. Let D be the ball 5(0, r) e R^,r > 0 and x0 = 0. An

application of Lemma 7 and (1.6) yield

, β) = < r (3.36)

for all βecλβ(0, r). Formula (3.36) is an exact analogue of the classical

Poisson kernel for the ball. The resulting Martin representation of non-

negative functions singular α-harmonic in a ball is quite similar to that of

classical harmonic functions. As a consequence it follows easily that multi-

plication by the factor r2~α(r2 — x\2)^2~l is an isomorphism from the class of

nonnegative functions harmonic in B(Q, r) onto Jf0(/?(0,r)). The description
was given before in [4].
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Martin representation of nonnegative functions singular α-harmonic in
certain unbounded domains can be derived from our results by means of the
Kelvin transform. The Kelvin transform (with center at the origin) is the

mapping T : Rd\{0} «->RJ\{0} given by Tx = x/\x\2. For A c Rrf\{0}, TA is
the image of A under T as well as the inverse image since T~l = T. Let u be
a function on RJ\{0}. The Kelvin transform of u will mean the function Tu

on Rd\{0} defined by

Tu(y) = \yΓdu(Ty) (3.37)

(we drop α from the notation). We have the following result

LEMMA 8. Let D be an open set in Rrf\{0}- IfueJ^Cί(D) then Tue
JT*(TD).

Lemma 8 implies in particular that the classes J^ζ(D) and J^Q(TD) are
isomorphic. In consequence it yields a (Martin) representation for Jjf^TD)
if such a representation is given for j^ξ(D). Proof of Lemma 8 is given in
Appendix. A similar result with u being a Riesz potential (1.12) is implicit
in [8].

EXAMPLE 2. Let P = (0, . . . ,0, 1) e Rd. The Kelvin transform of the
ball B(P, 1) is the half-space {y = (y^. .. , yd) eRd : yd > 1/2}. Using (4.42)
below one can easily calculate the Kelvin transforms of the Martin functions

(3.36). These are clearly (minimal) singular α-harmonic and give rise to a
representation of general nonnegative functions singular α-harmonic for the

half-space which is completely analogous to that for the ball. The details are
left to the reader. We give the resulting Martin functions in the half-space
Π = {y = (yλ, . . . , yd) e R^; yd > 0}. We have the following functions

«/2

|β|2)'/2, yd > 0 (3.38)
\y-QΓ

with Q E dΠ and

K(y, oo) = yf, yd > 0, (3.39)

corresponding to the point at infinity. The functions are normalized so to
satisfy K(P, ) = 1. Let us also remark that (3.38) and (3.39) can be derived
(as in Lemma 7 and Example 1) from the explicit form of the following Poisson

kernel for the half-space 77:

p(χ* y) = Cίf^i2\χ - y\~d> y e intyr> (3 4°)

where x e 77. Verification of (3.40) is left as an exercise to the reader.
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4. Appendix

LEMMA 9. Let u be a nonnegative Borel measurable function on Rί/\{0}
and let Tu be its Kelvin transform (3.37). For every ball B c R^\{0} we have

ETxTu(XττB) = \x\d-«Exu(XTB), x e B.

PROOF. The following basic relation can be easily verified:

\χ-y\ „ „ x A\Tx-Ty\ =
\χ\\y\ '

(4.41)

(4.42)

To be specific let B = B(Q, r) where Q e Rrf\{0} and 0 < r < \Q\. It is well
known that TB is also a ball. Let TB = B(S,ρ), thus denning S and p.
Using (4.42) for points x, y e δD on the radius from 0 to Q we get

P =
\Q\

r» *£
O — , - _

\Q\2\\Q\-r \Q\+rJ \Q\2-r2'

2-2'

Q

(4.43)

(4.44)

By (1.7)

Eτ*Tu(XττB)=cd

Λ\
JTBC

p2-\Tx-S\Ί
I α/2

I— d\,,\<y.—d

\y-s\
\TX-y\-a\yΓa

U(Ty)dy.

We change the variable y = Tz. For the Jacobian of T we have the formula
|/Γ(z)| = \z\~2d ((4.43) establishes the rate of expansion of the element of
volume under T). Using (4.42), (4.43), the fact that T2 = id and (4.44) we get

ETxTu(XττB) = cd \pi-\Tx-S\2
α/2

\Tx-

p2-\Tx-S\2

= \χ\

CK 2

|2

- d ~ * dx-z\-\z\~*\x\u(z)dz

-2

:-ra|2|z|-2|rar2-r2(|ρ|2-r2)-

α/2,

2iΛi2'-\x-TSf\Q\

'"J^liz-raiW-^ί

α/2

X-Z
-dz, UΔ
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Since TS = Q ̂  ~/ , we have

\Q\2\x - TS\2 = \Q\2\x\2 + \Q\2\TS\2 - 2\Q\2(x, TS)

= \Q\2 *\2 + (\Q\2 ~ r2)2 - 2(\Q\2 - r2)(x, Q),

where ( , ) denotes the usual inner product in R^. It follows that

r2\x\2 - \Q\2\x - TS\2 = (\Q\2 - r2)(r2 - \χ - Q\\

Analogously \z - TS\2\Q\2 - r2\z\2 = (\Q\2 - r2)(\z - Q\2 - r2). Therefore

α/2

Eτ*Tu(XττB) = \χ\d-cd

a f
}BC

\x - z\-du(z)dz

= \x\d-«Exu(XτB).

The proof of (4.41) is complete. Π

PROOF OF LEMMA 8. By a remark in Introduction it is enough to prove
that

Tu(Tx) = ETxTu(XττB), xeB

for every ball B a 5 a Z), D being the domain of α-harmonicity of u. Since
Tu(Tx) = \x\*-*u(x), this follows from (4.41) and (1.4). Π

ADDED IN PROOF. During the conference on Geometric Stochastic Analysis
and Fine Properties of Stochastic Processes on March 23-27, 1998 in Berkeley
I was informed that independent research into this subject was carried out by
Zhen-Qing Chen and Renming Song. Their interesting results, which partially
overlap with those above, are given in preprint "Martin boundary and integral
representation for harmonic functions of symmetric stable process".
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