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Nonlocal nonlinear systems of transport equations
in weighted L' spaces: An operator theoretic approach
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ABsTrRACT. Mathematical models of a general class for muscle contraction are studied
in terms of linear semigroup theory. Two-state and four-state cross-bridge dynamics
are described as nonlocal nonlinear transport systems. The initial-value problem for
the nonlinear transport equation is reformulated as an abstract evolution equation
in certain weighted L' spaces and a natural notion of mild solution to the evolution
problem is introduced. The existence, blowing-up at a finite time, and uniqueness of
the mild solutions are discussed under natural assumptions.

1. Introduction

This paper is concerned with nonlocal nonlinear transport systems of the
form

O+ 2' (1) 0xu = o(t, x,u,z(1)), (t,x) € (0,T) xR,
(NNS) ) = L([ v -wtend).  repo.1)

Here u:[0,7] x R — R" is an unknown function, [0, T] is a given time in-
terval, N is a given positive integer, 0, and J, stand for the partial differential
operators with respect to the time and space variables, respectively, z’' means
the time derivative of z, and w(y) - u(t, y) means the inner product of w and
u in RY. Moreover, the function ¢:[0,7] x R x E x R — R" is supposed
to be continuous in (t,u,z), where E={(u',...,u™)eRY|u',...,uV >0,
u' +.--+u" <1}, ¢ need not be continuous in x, L: (a,b) — R is a con-
tinuous, decreasing function, and w: R — R" is a continuous weight function
whose components are all nondecreasing. The precise assumptions for the
system are made later.

The coefficient z'(f) of dyu in (NNS) may vanish and need not have a
constant sign. Hence the system (NNS) of partial differential equations
may degenerate to a system of ordinary differential equations. Further, the
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transport term z'(f)0cu is a product of the space derivative of the unknown
function # and the function z’(¢) which contains # in a nonlocal way. The
nonlocal nonlinearity of this type is not straightforward to treat.

In case N =1, many authors have treated (NNS) under various as-
sumptions and discussed the existence and uniqueness of solutions. In early
works (8, 26], the inhomogeneous term ¢(¢,x,u,z) is of a linear form
y()f(x)(1 —u) — g(x)u and is assumed to be smooth, w(x) =x, L(z) is a
specific function and the initial data is identically equal to zero. Under these
conditions, classical solutions or Lipschitz continuous strong solutions with
compact support were studied. In [4, 13], Lipschitz continuous strong solu-
tions with compact supports are investigated in the case where ¢ is of the
form F(t,x,z) — G(t,x,z)u and is locally Lipschitz continuous in x, L(t) is
a general function, and the initial function has a compact support. Using
the vanishing viscosity method, Colli and Grasselli [7] treated the equation
in L?(R) for ¢(t,x,u,z) = F(t,x,z) — G(t,x,z)u. For the function ¢ of the
general form, Kato and Yamaguchi [17] chose the space of bounded, uniformly
continuous functions on R as the base space. In addition, in [15] the equation
in L'(R) is treated in the cases where o(t,x,u,z) = y(t)f(x,z)(1 —u)’ —
g(x,z)u? and y(£)f(x,2)(1 — uP) — g(x,z)u? with p, p > 1. In the recent paper
[21], Matsumoto, Oharu and Yamaguchi have considered weak solutions with
compact supports and showed the well-posedness in L'(R) in the case where
o(t,x,u,z) = F(t,x,z,u) — G(t,x,z,u)u, w(x) is of class C! and bi-Lipschitz
continuous, L(t) is a general function, and the initial data have compact
supports.

In case N =4, Comincioli et al [l11] studied the case where ¢ =
(0 0%,0° 0%,

o'(t,x,ut,u? P ut z) = Z [a;(t, x)u/ — a;i(t, x)u'], i=1,23,4,
j=it1
aii+1(t,x), i=1,2,3,4, are bounded and of class C! on [0,7] x R, w(x) =
(0,0,x —d,x) (0 a constant), and

+00

L(z) = log(l +J [(oc — 8)ud (x) + xug(x)]dx) — log(1 + 1),

— 0
a=-1and b=+oo. Here (u},u? u3,ul) stands for an initial datum. They
established existence and uniqueness theorems for global classical solutions.
See [1, 3, 5, 6, 7, 9, 10, 15, 16, 20, 27] for the mathematical researchs in the
other model equations.

The unknown function u(t,x) = (u'(t,x),...,u™(¢,x)) represents an N-
vector of densities or that of populations. Therefore each component is not
always continuous in x, and it is preferable that those should be found in
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L'(R)N . Furthermore, the function ¢(¢,x,u,z) proposed originally by A. F.
Huxley is discontinuous in x, and a solution is required to have the
property that xw— w(x)-u(f,x) is integrable on R because the integral
jj;o w(x) - u(t,x)dx has to make sense in (NNS). For these reasons, it is
most suitable that the system is treated in the product space X =
L'(R; (14 [w'(x)])dx) x--- x L'(R; (1 + |w¥(x)|)dx) of weighted L' spaces by
1+ |wi(x)|, i=1,..., N. Here wi(x), i=1,...,N, are components of w(x).
The precise definition of the weighted L! spaces is given in §5. On the other
hand, as seen later, it is possible to assume that the function ¢ can be
eventually smooth in ¢.

The purpose of the present paper is to study the local existence together
with blowing-up phenomena, global existence, and the global uniqueness of
weak solutions to the Cauchy problem for (NNS) formulated in the weighted
L' spaces. The main theorems may be stated as follows (the precise state-
ments are given in §5):

THEOREM A (THEOREM 5.4; LOCAL EXISTENCE). Suppose that w is smooth
enough, and that L is strictly decreasing and locally Lipschitz continuous.
Assume that ¢ is Lipschitz continuous in (u,z) and grows at most linearly in u,
and furthermore that ¢ enjoys a subtangential condition. Let an initial value
uy e X be such that uy(x) eE ae and a < ff:; w(x) -uy(x)dx < b. Then the
Cauchy problem for (NNS) has a local weak solution. Moreover, if [0, Tmax),
Tmax < T, is the maximal interval of existence of weak solutions, and if u is
a weak solution on [0, Tpmay), then

L +Oowx~ut,xdx
(] v ate.a)

— 0

lim sup
11 Tmax

= 00.

THEOREM B (THEOREM 5.5; GLOBAL EXISTENCE). Assume that w(-) =
0,...,0,w*(-),...,wN()) and w*(-),...,wN(-) are bi-Lipschitz continuous for
some 1 <k <N. Suppose also that the functions ¢ and L satisfy the same
conditions as in the previous theorem. Let uy € X be such that uy(x) € E a.e.
and a < f;f w(x) - uo(x)dx < b. Then the Cauchy problem for (NNS) has a
weak solution on the whole interval [0, T].

THEOREM C (THEOREM 5.7; UNIQUENESS). Suppose that the functions w and
L satisfy the same conditions as in the first theorem. Assume that ¢ is Lipschitz
continuous in (u,z), sufficiently regular in x, and grows at most linearly in u.
Then weak solutions to (NNS) are uniquely determined by the initial data.

As for the nonlinearity of ¢(¢,x,u,z), we consider not only the Lipschitz
continuity with respect to # but also the quasi-dissipativity with respect to .
This kind of generalization and the introduction of weighted L' spaces have
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not been made so far in the study of mathematical models of muscle con-
traction. Treating the system in the product space X, we regard the mapping
u(t,:) — jfof w(x) - u(t,x)dx as a continuous linear functional on X.

One may discuss strong solutions of (NNS), but it is necessary to assume
that x — ¢(¢,x,u,z) is absolutely continuous, since the first equation is hy-
perbolic and any smoothing effect can not be expected. Accordingly, we do
not treat strong solutions here because we are interested in the nonlinear term
¢ which is discontinuous in x.

In a way similar to the past researches, we first reduce (NNS) to an
equivalent equation for z(r) rather than u(z,x). The main reason is that if
u(t,x) is first regarded as the unknown function then (NNS) becomes a fully
nonlinear system, and so that the approach from this point of view is not
straightforward. Therefore we make an attempt to formulate an appropriate
equation for z(-) and find the nonlocal term z(-) by applying Schauder’s fixed
point theorem. Such z(-) is obtained on a “small” subinterval of [0, T]. We
then prolong z(#) onto [0, T] step by step. This approach is essentially made
in [20] for the parabolic regularizations and does not require a priori esti-
mates. In the previous papers, various a priori estimates for z(z) were given to
guarantee the global existence of z(f).

The notion of “weak solution” does not mean a solution in the sense of
distributions which does not make sense in (NNS) if z(¢) is not differentiable.
Therefore it is natural to employ mild solutions in the theory of abstract
evolution equations. (See Definitions 2.2, 3.1 and 5.2 below.) For this reason
we convert the evolution problem for (NNS) to an abstract nonlinear
evolution system (AES) in a real ordered Banach space X. The system may be
formulated as a semilinear evolution equation coupled with a nonlinear
constraint:

(AES) { W(1) + 2/ (1) Au(r) = F(r,u(f),2(1)), 1€ (0,T),

S () e I'(2(1), 1€0,T].

Here u:[0,7] - X and z:[0,T] — R are unknown functions, 4: 2(4) =« X
— X is the generator of a linear Cy-group on X, D stands for a natural class
of elements of X in which solutions u take their values, and F:[0,T] x D x
R — X is a continuous nonlinear mapping. In the nonlinear constraint,
f:X — R is a continuous linear functional on X, a multi-valued function
I':9(I') = R — 2R is a nonlinear m-dissipative operator in R, and ' stands for
the differentiation with respect to .

A one-parameter family {S(¢)},.g of continuous linear operators from a
Banach space (X,||-|) into itself is said to be a linear Cy-group on X, if
S(s+1) = S(s)S(¢) for all s,zeR, S(0) = Iy, the identity operator in X, and
|IS(t)v —v|| — 0 as t — 0 for ve X. The generator 4 of {S(#)},.g is defined
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by 2(A4) = {ve X|limy_oh ' (S(h)v — v) exists in X} and Av = lim,_oh~!-
(S(h)v —v) for ve 2(A4). The Co-group {S(7)},.g is of type w e R, if ||S(7)||
< el for all teR. Let 4 be a nonlinear, possibly multi-valued, operator in
X. Its range #(A) is defined by #(4) = UuE@(A)Au. We often write (u,v) €
Aif ue 2(A) and ve Au. In case X =R, A4 is m-dissipative if and only if
(v1 — v2) (w1 —u2) <0 for (w,v;)eAd, i=1,2, and Z(I —14) =X for 1> 0;
in other words, —A4 has a maximal monotone graph. In what follows, we deal
with a real Banach space (X,| -||) equipped with a partial ordering <.
Namely, u; <u; in X implies u; + v <wup+v and ou; <owup in X for ve X
and «>0. We denote by X, the positive cone in X, ie., X;=
{ueX|u=0in X}. The system (X,| |, <) is called an ordered Banach
space, whenever X, is norm closed. We refer to [2, 12, 25] for linear (semi-)
groups, [2, 22] for nonlinear dissipative operators, and [2, 12] for ordered
Banach spaces.

This evolution system (AES) is of a specific form, although it extracts the
characteristic features of the nonlocal nonlinear transport system (NNS) in such
a way that (NNS) is reduced to a nonlinear evolution equation in X coupled
with a nonlinear constraint in terms of a continuous linear functional f on X.

This paper is organized as follows: §2 is devoted to the analysis of
semilinear evolution equations (SE;z) formulated for a given function z(-):

(SE;z) u' +z2'(t)Au = F(t,u,z(1)), te(0,T).

This analysis is required to reduce the abstract evolution system (AES). In §3,
the notion of mild solution to (AES) is introduced and our main results
concerning the local and global existence and uniqueness of the mild solutions
are stated. The uniqueness theorem for (AES) is proved in §3. In addition,
we describe the reduction from (AES) to equivalent equations for z(-). In §4
we discuss the existence theorems for (AES) via a fixed point argument. In §5
our main results for (NNS) are stated. We make basic assumptions for w, ¢
and L in (NNS) here and introduce weighted L' spaces and then the notion
of weak solution to (NNS). Moreover, we give a local existence theorem
together with a result concerning blowing up solutions and then a global
existence theorem as well as a uniqueness theorem for weak solutions. These
results are proved in §6 by applying the abstract results given in §3. Finally,
in §7, we prove some technical estimates for mild solutions to (SE;z).

Features of the model. The evolution system (NNS) is interpreted as a
mathematical model describing the cross-bridge dynamics in muscle contraction
phenomena. The constitutive unit of a muscle is called a sarcomere which
consists of a thick filament (myosin) and thin filaments (actins). Pioneering
researches in muscle contraction were made by H. E. Huxley and A. F. Huxley.
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Nowadays there is a general agreement that muscle contraction can be
explained in terms of sliding filament theory proposed by A. F. Huxley.
According to his theory, the generation of muscular force is due to interactions
between myosins and actins. Under the influence of the intercellular calcium
ions which are emitted through nerve impulses, the so-called cross-bridges
connect the thick filaments and the thin filaments, and then act like Hookean
springs. As a result, the muscular force is generated and works on relative
slides between those filaments. The cross-bridges are composed of myosin
molecules standing out from the myosin filaments, and it is inferred that they
are approximately governed by the linear elasticity.

The x-axis is placed on a myosin (thick) filament and the origin (x = 0)
is taken at the root of each cross-bridge. Then the position x represents the
orthogonal projection to the x-axis of each subfragment-1 (myosin head). See,
for instance, [8, 11, 26] for more explanations. Two states of the cross-bridges
can be considered: the state in which a cross-bridge attaches to the actin and
the state in which a cross-bridge does not attach the actin. We then denote
by u'(¢,x) and u?(t,x), respectively, the detached and attached cross-bridge
densities in the half-sarcomere under observation at time ¢ and position x.
Then the functions u! and u? are governed by

ouul + o()osu’ = ¢'(t,x,u' 12, 2(1),  (6,x) € (0,T) xR, i=1,2,

where 0,u’ + v(¢)0.u' indicates the material derivative of u’(z, x) and z(¢) stands
for the length (of shortening) of the half-sarcomere at time z. Furthermore,
v(#) stands for the velocity of contraction, and hence v(¢) = z/(f). The func-
tions ¢! and ¢? take the forms of ¢!(t,x,u',u? z) = g1 (x)u® — y(¢) f;(x)u' and
0% (t, x,u',u?,z) = y(t) fo(x)u' — ga(x)u®. Here f;(x) and g;(x) are the attach-
ment and detachment rate functions, respectively; y(¢) stands for the change
in time of the concentration of calcium ions and is a nonnegative smooth
function. If the contraction is twitch, y(¢) rises from zero to a single peak soon
and then decays back to zero; if it is tetanus, y(t) rises from zero to a peak soon
and keeps up the maximum till the arrival of the last impulse, and then decays
back to zero. For N =2, the interpretation of the first equation of (NNS)
may be made in this way. The force generated by the attached cross-bridges
at x is given by wxxu®(t,x) (x being a positive constant). The support of
function # = (u',u?) is contained in a sufficiently large bounded interval of the
space variable, because the lengths of cross-bridges are bounded above. The
density is normalized in the sense that the total density of cross-bridges of
the position x in the half-sarcomere under observation is the unity, namely,
u' +u?> =1 on such interval.

On the other hand, the generation of muscular force or tension of a whole
muscle is generally explained in terms of rheology by using three-component
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model of Hill. In this model a muscle is composed of a contractile component
CC, a series elastic component SEC and a parallel elastic component PEC.
The active contraction of muscles is due to CC which represents the half-
sarcomere. The components of SEC and PEC are passive in the sense that
they generate the force only when the whole muscle is activated by the outer
and inner force. Both elastic components represent muscular tissues, tendons,
blood vessels, and so on. They are not Hookean springs but assumed to be
nonlinear elastic systems. This assumption implies an exponential relation
between the contractile force 7:= [ kxu?(t,x)dx generated by CC and the
length {+ const. of the (half-)sarcomere ({:=z(¢)). Roughly speaking, con-
sidering the inverse of the exponential relation, we obtain the second equation
of (NNS). In this case the weight function w(x) is given by w(x) = (0,xx). If
the contraction is isometric, the function L(7) is given by L(z) = —log(1 + 1),
a=-1, b=+o0; if it is isotonic, L(z)=1log[(Q—1)/q(l+71)], a=—1,
b=Q for some 0<g< Q< +oo; if it is isometric-isotonic, L(t)=
logl(g— (= Q+¢q)")/q(1 +7)], a=—1, b=Q for some 0<gq< Q< +00,
where ¢t = max{c,0}. We refer to [26] for the derivations of these functions
L(7). In addition, we refer to [1] for different models of the isometric or
isotonic contraction phenomena; and we refer to [9] for a model which is
considered the nonlinear viscoelasticity in place of the nonlinear elasticity.
In the above models we have considered two states in which cross-bridges
connect or do not connect with actin filaments. In this sense the model is
called a two-state cross-bridge model. In the past researches, (NNS) with N =
1 had been considered as the standard model equation for a two-state cross-
bridge model: The attached cross-bridge density u(¢,x) is governed by

O+ z'(8)0u = ¢(t, x,u,z(1)), (t,x) e (0,T) xR,

+ o0
A0 =L(] wome ). rep.T)
In particular, the function ¢ proposed by A. F. Huxley is of the form
o(t,x,u,z) = p(£) f(x)(1 —u) — g(x)u. Here f(x) and g(x) are the attachment
and detachment rate functions which are, respectively, given by

f(x)={klx/h’ if 0<x<h, ():{kz, if x<0,

0, otherwise, kix/h, otherwise,

where ki, ky, k3 and h are positive constants. Notice that the detached cross-
bridge density is represented by 1 — u(¢,x). Putu! =1 —u and > =u. Then
u= (u',u?) is (formally) a solution of (NNS) with N =2. In this case,
o= (p',0%) is given by ¢?(t,x,u',u? z) = —p'(t,x,u',u? z) = y(t) f(x)u' —

g(x)u?, and w = (w!,w?) is given by w!(x) =0 and w?(x) = w(x). Thus, the
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case N =1 can be considered as a special case of the system with N =2.
Accordingly, we should adopt the system with N =2 as a two-state cross-
bridge model rather than the case N = 1.

In the two-state cross-bridge model we consider only two states in which
cross-bridges connect with actin filaments or not. On the other hand, there is
a model such that a cross-bridge connects with an actin filament in two states
and not in the other two states. This is called a four-state cross-bridge model.
States 1 and 2 are states in which cross-bridges do not connect with actins.
The other two states are specified in such a way that if the attached cross-
bridges do not generate forces when the attachment angle between the sub-
fragment-1 and actin filament is 90° (resp., 45°) then the state is called State 3
(resp., State 4). Introducing the space variable x in a way similar to the case
N =2, we put the origin at which the cross-bridge in State 4 does not generate
force. Thus, the force generated by the cross-bridges of the position x in State
4 is expressed by xaxu(t,x) (x4 being a positive constant, u*(z, x) the density of
the cross-bridges in State 4 at ¢ and x). If the cross-bridge in State 3 does not
generate force at x =J(>0), then the force generated by the cross-bridges in
this state at x is given by x3(x —)u’(¢,x) (k3 > 0, u3(¢,x) denotes the density
of cross-bridges in State 3 at ¢ and x).

The density function (u!, 42,43, u*) describing the respective states in which
cross-bridges are is governed by the equations

o' + v(t)ou' = Z [aii(t, x)u’ — a;(t, x)u'], i=1,2,34.

j=itl

Here v(¢) represents the contracting velocity of a half-sarcomere. Hence v(¢) =
z'(t) and z(f) + const. means the contracting length of a half-sarcomere. The
coefficients a;;(z, x) are the rate functions of the transition from State j to State
i. In a way similar to the case N = 2, a rheological model implies a relation

+ 00

() =tog 1+ | st apdax + | wevi(x)ax ) ~tog(1 +1

) —00

between the length of a half-sarcomere and the contractile force, where
(ug,us, u3, ug) is a vector of initial densities of respective states of cross-bridges
and the contractile force 7 generated by the cross-bridges in a half-sarcomere is

expressed by

-+ 00 +00
T= J K3 (x — 0)ud(t, x)dx + J reaxu(t, x)dx.

-0 -0

In this case, w(x) is chosen as w(x) = (0,0,x3(x —J),k4x). We may interprete
(NNS) for N =4 in this manner. We refer to [11] and the references therein
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for detailed explanations for the four-state cross-bridge models and refer to [18]
for related topics.

Therefore, it is natural to employ (NNS) as a mathematical model for the
two-state and four-state cross-bridge models of muscle contraction phenomena.
It is interesting to compare the two models from a mathematical point of view.
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2. Semilinear evolution equations associated with (AES)

In this section we study the semilinear evolution equation (SE;z) for a
given function z(-).

We first state our basic hypotheses. Condition (BS) below is a hypothesis
on the Banach space X and (GR) is a hypothesis on the linear operator A:

(BS) (X,]l-|l, <) is a real, ordered Banach space. D is a nonempty,
closed subset of X which is contained in the positive cone X.. Moreover,
u,v,v—ue X, (e, 0<u<vin X) imply |ju|| <|v|;

(GR) The linear operator —A: 2(A) =« X — X generates a Cp-group

{S(0)},cr of type @ >0 on X such that S(g)X, < X, and S(o)D < D for
geR.

Let T be an arbitrary but fixed positive number. We hereafter assume
that the nonlinear mapping F :[0,7] x D x R — X is continuous. In addi-
tion, we put conditions (F1) and (F2). (F1) implies the Lipschitz continuity
in u and (F2) is the so-called subtangential condition. For the subtangential
conditions, we refer to [19, 23, 24].

(F1) For each r > 0 there exists a constant K(r) > 0 such that
||F(t,u1,z) - F(Zv u27z)“ < I?(r)”ul - uz“
for te[0,T], uj,up e D and z € [—r,r];

(F2) For each (t,u,z)€[0,T]x D x R, liminf,joh~'d(u+ hF(t,u,z),D)
= 0 holds, where d(v, D) stands for the distance from v to D, that is, d(v, D) =
infyepllv — u.

To define a mild solution to (SE;z), we need an evolution operator U.(t,s)
determined by A4 and z(-). For ze W1(0,T) and for almost every ¢ € (0, T),
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we define a linear operator A4,(r) in X by

2(4,(1)) == {i(/l)’ :i ;8 ig: A,(t) == =Z' (1) 4.

Moreover, for each z e C([0,T]), we put U,(1,5) = S(z(¢) — z(s)), s,2€[0,T],
where {S(0)},cg is the Cy-group generated by —A. Then we obtain the
following proposition, cf. [14].

PROPOSITION 2.1. Assume (BS) and (GR). Let ze C([0,T]). Then the
two-parameter family {U.(t,5)}, ;<07 has the following properties:
(i) U.(t,s): X — X is a continuous linear operator for (t,s) € [0,T] x [0, T].
(ii) (¢,8) — U.(¢,s) is X-strongly continuous on [0,T] x [0, T].
(i) U.(t,8)U.(s,r) = U.(t,r), Us(s,s) =1 for r,s,t€(0,T].
(iv) U.(t,8)Y =Y, and (1,5) — U,(t,s) is Y-strongly continuous on [0,T] x
[0,T], where Y := 9(A) is endowed with the graph norm of A.
(v) If ze WhHI(0,T) and ue Y, then
t

A, (t)U.(7, s)udt = J U.(t,7)A;(7)udr,

S

t

U (t,5)u—u= J

(t,5) € [0, T] x [0, T].

(vi) The operator U,(t,s) is invertible and U.(t,5)™" = U.(s, ) for s,t€ [0, T].
Thus, {U:(t,5)}, ;e p0,r) is a unique (linear) evolution operator on X generated

by {A:(1)},.

Let 0<s<¢<T. Given ze C([s,¢]), we define mild solutions to

(SE;z) u' + 2/ () Au = F(t,u,z(1)), te(s,¢).

DEerFINITION 2.2. A function u:[s,¢] — X is called a mild solution to
(SE;z) on [s,g], if ue C([s,¢]; D) and satisfies the integral equation

t

u(t) = S(z(t) — z(s))u(s) +J S(z(t) — z())F(z,u(z), z(1))dr, tes,gl

s

Here the integral is taken in X in the sense of Bochner.
Our first goal is to prove the following theorem.

THEOREM 2.3. Assume (BS), (GR), (F1) and (F2). Let 0<s<¢<T,
ze€ C([s,¢]) and u;e D. Then the Cauchy problem for (SE;z) on [s,¢] with
initial condition u(s) = u; possesses a unique mild solution u, in C([s,g]; D).

To prove this theorem we adopt the “method of characteristics” which
has been employed in most of the papers concerning mathematical models for
muscle contraction phenomena.
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Let0<s<¢<T. Givenze C([s,¢]) and u; € D, we formulate an initial-
value problem for the ordinary differential equation

(ODE; z) v'() = S(=z())F(1,S(z(1))v(0), 2(1)),  telsg],

in X with initial condition v(s) = S(—z(s))u;, or equivalently, the integral
equation

t

(2.1)  ov(®) = S(—=z(s))u, —I—J S(—z(t))F(z, S(z(7))v(7), (1) )dT, tels,g,

N

where {S(0)},.g is the Co-group generated by —A.

PropPOSITION 2.4. Assume (BS) and (GR). Let 0<s<¢<T, ze€
C([s,¢]) and use D. Then the initial-value problem for (SE;z) with u(s) = us
and the initial-value problem for (ODE;z) with v(s) = S(—z(s))us are equivalent
in the following sense:

(1) Let ue C([s,c]; D) be a mild solution of (SE;z) with u(s) =u, and put
v(t) = S(—z(2))u(t). Then ve C([s,¢]; D) N C([s,g]; X) gives a classical
solution of (ODE;z) satisfying v(s) = S(—z(s))us;

(i) Let ve C([s,g];D)NC'([s,¢]; X) be a classical solution of (ODE;z)
with v(s) = S(—z(s))u; and put u(t) = S(z(t))v(t). Then ue C([s,c];D)
becomes a mild solution of (SE;z) with u(s) = u;.

Proor. (i) Let ue C([s,¢];D) be a mild solution to the initial-value
problem for (SE;z) on [s,¢] with u(s) = u;. Set v(¢) = S(—z(¢))u(f). Then it is
clear that ve C([s,¢];D) and it satisfies (2.1) by (GR), and so ve
C!([s,¢]; X). Notice here that the operator S(¢) is invertible and S(o)”' =
S(—a) for any o € R. The implication from (ii) to (i) is verified. [

PROPOSITION 2.5. Under the same assumptions as in Theorem 2.3, the
initial-value problem for (ODE;z) on [s,g] with initial condition v(s)=
S(—z(s))us has a unique classical solution v, in C([s,g]; D) N C([s,¢]; X).

ProoF. We begin by extending F(t,u,z) to Rx D xR by
F(0,u,z), if t<0,
F(t =
(u,2) {F(T,u,z), if 1> T.
Hence we may assume that F € C(R x D X R; X) and satisfies (F1) and (F2)

for all reR.
Fix z e C([s,¢]) and set

2(t) = {z(s)7 if 1<y,

z(¢), if t>¢.
Then z € C(R). Put G(¢,v) := G,(t,v) := S(—z(¢))F(¢,S(z(¢))v,2(t)) for (¢,v) €
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R x D. Then G e C(R x D; X) since the Cy-group {S(o)}, g is of type @ > 0.
By (F1), we see that G(z,v) is Lipschitz continuous in v uniformly for 7€ R:
1G(t,01) = G(t,0)[| < " R()llos —vall,  t€R, vi,02€D,
where r = sup, .g|z()| = sup,<. . |z(7)| < co and K(r) is the constant employed

in (F1). As a result, G is quasi-dissipative in the following sense:
(22) (1 =2C)[lor = va|| < [Jor = v2 = A[G(1,01) = G(1, )],

A>0, teR, v, €D,
where C, = e>”K(r). Moreover, G satisfies the subtangential condition

(2.3) lir?l%)nf h~'d(v+ hG(t,v),D) =0, teR, veD,

where d(u, D) = inf,cp|lu —v|| for ue X. In fact, S(—0)S(s) =1 and S(o)D
=D for 6 e R by (GR). Therefore we know that

d(v+ hS(—0)F(t,S(0)v,0),D) < e®ld(S(c)v + hF (1, S(0)v,0), D)
for >0 and (¢,v,0) e R x D x R. Thus, by (F2), it follows that
lir;ll%)nf h~'d(v + hS(—a)F(t,S(0)v,0), D) = 0, (t,v,0) e Rx D xR,

which implies (2.3).
Given v, € D, we consider the integral equation

t
(2.4) v(2) = vs +J G(t,v(1))dr, te[s,+o0).
Since G belongs to C(R x D; X) and satisfies (2.2), (2.3), we can apply Pavel
[23, Corollary 1.1] to obtain a unique solution ve C([s,00); D) of (2.4).
Consequently, for 0 <s<¢ < T, ze C([s,¢]) and u, € D, the integral equation
(2.1) has one and only one solution v, € C([s,¢]; D). Since (2.1) is equivalent
to (ODE;z) with v(s) = S(—z(s))u,, the proof is complete. []

Proor oF THEOREM 2.3. The proof follows directly from Propositions 2.4
and 2.5. [

We next investigate the continuous dependence of solutions of (ODE;z)
and (SE;z) on the function z. To do this, we need the Lipschitz continuity of
Fin z:

(F3) For every r > 0 there exist a nonnegative function v, € L!(0, T') and
a nondecreasing function p, : [0, ) — [0, o) with 5,(+0) = 0 such that

1£(2,u,21) = F(t,u, 22)I| < vi(0)p,(|21 — 22])

for almost every t€(0,7), ue D with |ju|| <r, and zj,z; € [-r,7].



Nonlocal nonlinear transport systems 541

LeMMA 2.6.  Assume (BS), (GR) and (F1) through (F3). Let 0 <s<¢<
T and u;e D. Let v, € C([s,¢]; D) be a solution of the initial-value problem for
(ODE;z) on [s,¢] with initial condition v,(s) = S(—z(s))u;. Then z— v, is a
continuous mapping from C([s,q]) into C([s,c];X). Here the spaces C([s,c])
and C([s,c]; X) are equipped with the supremum-norm |- |, and the usual norm
l[ull o = sups< <cllu(D)ll, respectively.

Proor. Suppose that z, — z in C([s,¢]) and that v,,ve C([s,¢]; D) are
solutions of (ODE; z,) and (ODE;z) on [s,¢] such that v,(s) = S(—zx(s))us and
v(s) = S(—z(s))us, respectively. Then we have

llon(2) — v(D)]
< 18(=zn(8))us — S(—2(5))us|

+ J: I1S(=2n(2))[F (7, S(z(7))1n(7), 2n(7)) = F (2, 8(2(7))0(7), 2a(2))] | d7

o [1S(=2n(2))[F (7, S(2(2))v(2), 2a(7)) — F(z, $(2(2))v(2), 2(2))][|d=

t

+ | NIS(=2a(2)) = S(=z(2)]F(z, S(2(7))v(2), 2(z))l|dz, 1€ ]s,g].

Js

We here denote by J; and J;, respectively, the second and third terms of the
right-hand side of the above inequality. Put# = sup,,|z,|,,. By (F1), we obtain

< ewﬁm){ewf j Jon(®) = o)+ | 1SGale)) - S(z(r»]v(rnwr},

since {S(0)},cg is of type w. Let r = max{# e sup,...|lv(7)||}. We have

T
Jr < e“’;J v (t)dp, (|20 — 2| ,,)
0

by (F3). Here v,e L'(0,T) and the local modulas p, of continuity are the

functions employed in (F3). Thus, it follows that
t

lon() = v(0)]] < L + > K(7) J l[oa(z) = v(D)lldz, 1€ s,g);

S

where

T = I[S(=zn(s)) — S(=2(s))usl
< (T
+ew?1?<f>j 11S(zn(2)) = S(z(e))lo(x)lldz + e L v ()T, (12— 2l)

+ JC I[S(=z2x(7)) = S(=z(2))]F (7, S(z(x))o(z), 2(2)) || d7.
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Gronwall’s Lemma then gives

(2.5) sup |lva(2) — v(2)|| < Y,exp(TK(7) exp(2wt)).

s<t<L¢
Since T, — 0 by the Bounded Convergence Theorem, letting n — oo in (2.5)
implies that v, — v in C([s,¢]; X). Thus, the desired result follows. []

We put the following condition on the linear functional f.

(LF) The continuous linear functional f : X — R is not identically equal
to zero and the composition f4:2(A) = X — R is continuous on the linear
subspace (2(A4),] - ||) of (X,]|-||). Furthermore, the unique extension g of fA
to X satisfies g(u) <0 for all ue D.

REMARK 2.7. The domain 2(A) of A4 is a dense linear subspace of X since
—A is the generator of a Cy-group on X. Hence a continuous linear functional
fA4 on 9(A) is uniquely extended to all of X as a continuous linear functional.

Lemma 2.8. Assume (BS), (GR) and (LF). Then (i) for each ve X we

have
g

ﬂﬂ@wzﬂw—jgwmmm, ceR,

0
(i) for each r >0 we have

I£S(a1) —fS(a)l. < lgll.e”|or —0al, 01,02 € [-r,1],
where || - ||, denotes the norm of continuous linear functionals on X.

ProoF. (i) Since 2(A) is dense in X, it suffices to show that for v € 2(A)
the result holds. Let ve 2(A4). Since —A is the generator of {S(0)},cg, it
follows that S(a)v = v — [ AS(r)vdr for o € R. Noting that f4 =g on 2(A)
by (LF), we see that

g

ﬂa®m=ﬂm—jfuawWh:ﬂw—jgmmwm, seR.

0

Assertion (ii) follows directly from (i). [J

The next lemma asserts the continuous dependence of mild solutions of
(SE;z) on z.

LemMA 2.9. Assume (BS), (GR), (F1) through (F3) and (LF). Let 0 <
s<¢<T, useD, and let u, € C([s,g]; D) be a mild solution of the initial-value
problem for (SE;z) on [s,¢] with u,(s) =u;. Then zvw— fu, is a continuous
mapping from C([s,g]) into itself, where C([s,c]) is the Banach space endowed
with the supremum-norm |- |.
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Proor. Let z, — z in C([s,¢]) and let u,,u € C([s,¢]; D) be the associated
mild solutions to (SE;z,) and (SE;z) on [s,¢] satisfying u,(s) = u(s) = us,
respectively. Set v,(#) = S(—z,(t))un(¢) and v(¢) = S(—z(¢))u(¢). Then v, and
v are the solutions of (ODE;z,) and (ODE;z) satisfying, respectively, v,(s) =
S(—zu(s))us and v(s) = S(—z(s))us by Proposition 2.4. Therefore, Lemma 2.8
(ii) implies that

f (un(2)) —f ()] = | £ (S(za(2))0n (1)) £ (S(z(1)) (1))

<If1l.e” lloa() =v(@)l| +Ilgll e |za(r) (D) llo(O, € Is,6],

where 7 = sup,|z,|,,. Taking the supremum over ¢ € [s,¢] and then letting n —
oo, we conclude that fu, — fu in C([s,¢]) by Lemma 2.6. [

ReEMARK 2.10. Under the assumptions in the above lemma, one can
not expect the Lipschitz or Holder continuity of z — fu, : (C([s,¢]), | |) —

(C(ls; 6D |- loo)-

The following lemma concerning the regularity of the function f(u.(¢)) is
applied to the proofs of the existence theorems for (AES).

LemMma 2.11.  Assume (BS), (GR) and (LF). Let0<s<¢<T,l1<p<
oo and u, a mild solution of (SE;z) on [s,¢]. If ze WhP(s,¢), then f(u.(-)) e
whe(s,c) and

(fuz)'(1) = =2'(0)g(u:(0)) + fF(t,u:(2),2(2))  ace. (s,).

ProoF. For ve X it is seen that (d/dt)f(S(z(f))v) = —z'(£)g(S(z(2))v)
a.e. (s,¢) by Lemma 2.8 (i). Put v,(¢) = S(—z(¢))u.(¢). Then v, € C([s,¢]; D)
NC'([s,¢]; X) and is a classical solution to (ODE;z) on [s,¢] with v,(s) =
S(—z(s))u.(s). by Proposition 2.4. Hence fu,(t) =fS(z(¢))v.(z). From this
we see that

(fuz)'(2) = (fS(z(1)) v:(2) + £S(2(2))v1(2)

= —2'(0)g(S(z(1))v:(1)) + £ S(z(1))S(=z())F (2, S(z(1) v:(1), 2(1))
= ~2/(0gu:() +FF(Lw(0),2(0) e (s,0).

This shows that (fu,)'(-) € L?(s,c). The proof is now complete. []

3. Semilinear evolution equations coupled with nonlinear constraints

In this section we discuss the existence and uniqueness of mild solutions for
the nonlinear evolution system (AES) which is an abstract form of (NNS). The
existence theorems are proved in the next section. As in the previous section,
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we assume that the nonlinear mapping F is continuous on [0,7] x D x R
throughout this section.

To establish our results for (AES), we need the following growth condition
on F.

(F4) There exist an X-valued function # e L'(0,T; X,) and a constant
M > 0 such that F(t,u,z) < #(t) + Mu in X for almost every 1€ (0,T), ue D
and zeR.

On the function I', we impose a dissipativity condition:

(G) The multi-valued function I':2(I') =R — 2R is a nonlinear
m-dissipative operator in R, and locally quasi-dissipative in the following sense:
For each r > 0 there exists a constant f, > 0 such that

(1486 = Gl <16 = & = Aln — )
for A>0 and ({;,7;) e I’ with |{;| <r, i=1,2.

We consider the Cauchy problem for the semilinear evolution equation
coupled with the nonlinear constraint:

w'(t) + 2/ (1) Au(t) = F(t,u(1),z(t)), te(0,T),
s fu(t) € T (=(0), (e[0.7],
under the initial condition (IC)
(IC) (2(0),u(0)) = (20, u0)-

DEerFINITION 3.1. A pair of functions (z,u) e C([0,T]) x C([0, T]; D) is
said to be a mild solution of (AES) on [0,T], if the function u is a mild
solution of (SE;z) on [0,7], and (z(¢),f(u(¢))) e I" for t€[0,T] in the sense
that z(¢) e 2(I") and f(u(t)) € I'(z(2)).

We are now in a position to state the local existence theorem for the mild
solutions to the Cauchy problem (AES)-(IC).

THEOREM 3.2. Assume (BS), (GR), (F1) through (F4), (LF) and (G). Let
(zo,up) € D(I') x D and f(uo) € I'(z9). Then there exist T e (0,T] and a mild
solution (z,u) € C([0, T]) x C([0,T]; D) to the initial-value problem (AES)—(IC)
on [0,T] such that z, fue W“°(0,T). Furthermore, let [0, Tnmax) be the
maximal interval of existence of mild solutions, 0 < Tyax < T, and let (z,u) be
a mild solution on [0, Tmax). If Tmax < T, then limsup,r_ |z(f)| = oo.

To obtain the global existence result we need the following additional
hypotheses which are naturally satisfied for the system (NNS).

(AdLF) For the continuous linear functionals f, h: X — R, s eR and

ue X, f(u) =0 and h(S(o)u) = h(u). There are constants C;, C; > 0 such
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that 0 < C1h(u) < —g(u) < Goh(u) for nonzero ue X;. Furthermore, the
composition fA4 is continuous on the linear subspace (2(4), ] - ||) of (X, ),
and its unique extension § on X satisfies |g(u)| < —g(u) for ue X,;

(AdF) F(t,u,z) > —Mu holds in X for (t,u,z)e(0,T]x D xR.
Moreover, there exists a nonnegative function &e L*(0,7) such that
|fF(t,u,z)| < &(t) + Mf(u) for almost every te(0,7) and (u,z) e D xR.

Here M is the same constant as employed in (F4);
(AdG) The multi-valued function I satisfies either 0 ¢ (") or (0,0) e I

Under these conditions we have the following

THEOREM 3.3.  Assume (BS), (GR), (F1) through (F4), (LF), (G), (AdLF),
(AdF) and (AdG). Let (zo,up) € 2(I') x D and f(up) € I'(z9). Then there
exists a mild solution (z,u) to the initial-value problem (AES)—(IC) on [0, T]
such that z, fue WH*(0,T).

To guarantee the uniqueness, we need an additional hypothesis which
impose the Lipschitz continuity of the function o — S(—0a)F(¢,S(0)u, z).

(F5) For each r> 0 there exists a nonnegative function 6, € L'(0,T)
such that

IS(=01)F (2, S(o1)u, 2) — S(=02) F(t, S(o2)u, )| < B, (Dl — ]
for almost every t€ (0,T), ue D with ||lu| <r, and oy, 03, z € [—1,1].
Then we obtain the following uniqueness result.

THEOREM 3.4. Assume (F5) in addition to (BS), (GR), (F1), (F3) with
p,(s) = Cs (C, being some constant), (F4), (LF) and (G). Then for any pair
of mild solutions (z;,u;), i =1,2, to (AES) on [0,T] we have

(3.1) |21 = 2], < CYIS(=21(0))u1(0) — S(—22(0))u2(0)]].

Here |- |, denotes the supremum-norm over [0,T]. The positive constant C
may depend upon a fixed number R > max{rl,rz} where ri = max{|zi|, |22}
and ry = e M T (max{||u; (0)]], ||lu2(0 N+ fo |Z (v)||d7). In particular, a mild
solution to (AES) is unique, if it exists.

Proor. - Conditions (F5) and (F1) together imply that for each r > 0 there
is a nonnegative function 6, € L'(0,T) such that

(3.2) (1 =26,(1)|lur — wua|| — A0,(1)|oy — 02
< ||u1 — Uy — l[S(—O'l)F(I, S(al)ul,z) - S(— )F(t S Gz)uz, ]||

for 4 >0, almost every t€(0,T), uj, upe D with ||u;|| <r, and oy, 02, z €
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[-r,r]. Furthermore, it follows from (3.2) and (F3) with p,(s) = C,s that for
each r > 0 there is a nonnegative function 6, € L'(0, T) such that

(3.3) (1 =46, ()lw — ual| — 20,(1)|o1 — 2]
< I|u1 — Uy — /I[S(—O'l)F(t, S(O’])u],a']) — S(—O’z)F(l, S(O’z)uz,az)]”

for A > 0, almost every ¢t € (0, T), u;, u, € D with ||u;]| < r, and o1, 03 € [-1,7].
Let (z;,u;), i = 1,2, be any pair of mild solutions to (AES) on [0, T]. Put

vi(t) = S(—zi(#))ui(f). Then wv; is a solution to (ODE;z) on [0,T] by

Proposition 2.4. In order to establish (3.1), we first show that

(34) B/lz1(2) = z2(0)| < |If e llor(t) —v2(0)ll,  2€[0,T],

where f, is the constant employed in (G) and r > r; = max{|zi|,|22|o}- If
z1(f) = z,(t) at ¢, then (3.4) is trivial. We then suppose that z;(f) < z2(¢) at
some ¢. Since I is a dissipative operator in R and (z;(¢), f(u;(2))) € I', we see
that (z1(1) — 22(1)) (f (w1 (1)) — f(u(1))) <0, and hence that f(u1 (1)) = f(us(2)).

Thus, we obtain the estimate

Blz1(2) = 22(0)] < |f (w1 () = f (w2(2))] = f (w1 () — f (u2(0))
by the local quasi-dissipativity of I. Moreover, noting that ¢ — f(S(o)v1(?))
is nondecreasing by Lemma 2.8 (i) and using the fact that f(u(f)) =
f(S(zi(2))vi(2)), we have

Brlz1(0)=z2(0)] < £(S(z2(1))o1 (1))~ (S(z2(0)v2(2)) < Il e Jor (1) —v2()]].

This implies (3.4). We next demonstrate that

(35) a0 - 0200l
T t
< exp( [ 0nedc) (100(0) = 02001 + | Oa(o)lr(6) ~ (ol )

for t€(0,T],
where Og(-) € L'(0,T),, R > max{ri,r;} and

ry = e@n+MT (max{l]ul M 12 (0)]1} + J )”dT)

Let 0<h<t<T. Then v; satisfies
vi(t) = vi(t—h) + Jt—h S(=zi(7))F(z, S(zi(7))vi(7), 2i(1))d

= v;(t — h) + hS(—zi(2))F(t, S(z;(¢))vi(2), z;i(£)) + 0i(h),

and hence
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(3.6) v;(£) — hS(—=z;i())F (¢, S(zi(8))vi(¢), z:(2)) = vi(t — h) + 0;(h),

where o;(h) depends on ¢ but A~!|jo;(h)|| — 0 as & | 0. We then use the next
estimate which is proved in §7.

LemMma 3.5. Letze C([0,T)) and uge D. If v, € C([0, T); D) is a solution
of (ODE;z) on [0,T] with initial condition v,(0) = S(—z(0))uo, then
_ T
lo-Oll < e+ (] + | 17 @lar)  for 05T,
0
In view of the above estimates, we have ||v;(¢)|| < r, for t€[0,T]. Therefore,
by (3.3) with r = R and (3.6), it follows that
(1 = hOr(D)|01(1) — v2(D)I] — hOR(1)|21(2) — 22(1)]
< loi(2) — va(1) = A[S(=21(0))F (2, S(z1(£))v1(2), 21(1))
= S(=22(1))F (¢, S(22(2)) v2(1), z2(1))] |
< loi(t = h) —va(t = h)|| + [lor (A)]] + [lo2(A)]]-
This leads us to the estimate
(Ilor(z = h) = va(t = h)|| = |lv1 (2) — v2(D)]1)/ (—h)
< Or(D)(lv1(2) = v2(Ol + 21 (2) — 22(2)]) + o(h) /A,

where o(h)/h — 0 as h | 0. Taking the limit suprema of both sides as 4 | 0,
we have

D7 ||oi () — va2(D)| < Or()([lv1(2) — 02Ol + |21(1) — 22(0)]) @ (0,7),

where D~ f (1) = limsup,ok~'(f(¢ + k) — f(¢)). Solving this differential in-
equality, we get (3.5). Notice that we do not use the relation that f(u;(¢)) €
I'(z;(¢)) to show (3.5).

It is clear from (3.4) with r = R and (3.5) that

21() - 2(0)] < c(uvl(m )] + L 0 (1)1 (x) - zz<r>|dr), (e 0,7,

for some positive constant C depending on R. By Gronwall’s Lemma, we get
t
|z1(2) — z2(2)] < C||lv1(0) — v2(0)||exp(CJ OR(r)a’r) for te[0,T],
0

which implies (3.1).
It remains to show that (3.1) implies the uniqueness. Assume that
(21(0),u1(0)) = (22(0),u2(0)). Then it is obvious that z; =z, by (3.1). If a



548 Toshiyuki YAMAGUCHI

mild solution u, to the Cauchy problem for (SE;z) on [0, 7] is at most one for
ze C([0,T]), then we deduce that u; = u,, and hence that (z1,u;) = (z2,u2).
Namely, a mild solution to (AES) is at most one.

Now, (3.5) implies the uniqueness of solutions to (ODE;z) on [0, T] for
ze C([0,T]). Consequently, a mild solution of (SE;z) on [0,T], if it exists,
is uniquely determined for z € C([0,T]). See Proposition 2.4. The proof of
Theorem 3.4 is now complete. []

REMARK 3.6. In the proof of the uniqueness, z;(0) = z,(0) follows from
u1(0) = uy(0) and the local quasi-dissipativity of I" plays an important role.

The following condition, (F6), is more general than the combination of
(F1) and (F3), but Theorems 3.2 through 3.4 are still valid under (F6).

(F6) For each r > 0 there is a positive constant C, such that
(1 =AC)[lor = w2l = AGy|z1 = 2
< lor = v2 = A[S(=z1)F (8, S(z1)v1, 21) — S(—=22) F (1, S(z2)v2, 22)]|
for A>0, te0,T] and (v;,z;) € D X [-r,r], i =1,2.

THEOREM 3.7. In Theorems 3.2 and 3.3 (resp. in Theorem 3.4), assume
(F6) instead of (F1) and (F3) (resp. instead of (F1), (F3) and (FS)). Then the
same assertions are valid.

The remaining part of this section is devoted to the reduction of the
Cauchy problem for (AES) to equivalent problems. Given (zy,u;) €R x X,
consider the following problems which are equivalent to (AES) on [s,¢] with
initial condition (z(s),u(s)) = (zy, us):

Find z € C([s,¢]) satisfying the nonlinear constraint

(NC) (z(t), f(u(2)) eI’y te]s,gl, or equivalently,
z(t) e D(I') and  f(u.(1)) € I'(z(2))
and the initial condition (z(s),u,(s)) = (zs, us), where u, is a mild solution of

the initial-value problem for (SE;z) on [s,¢] with initial condition u.(s) = u;
Find z € C([s,g]) satisfying the equation

(FE) 2(t) = (I = A) 7 (z(t) = Af (uz(0))), 1€ [s,q]

for some positive constant A which is independent of ¢, as well as the initial
condition (z(s),u(s)) = (zs,us), where u, is a mild solution of the initial-value
problem for (SE;z) on [s,¢] with u.(s) = u; and I the identity operator in R.
Notice that an inverse function (I — AI')"'(-) of I — A" is defined on all of R
as a single-valued function, since I" is an m-dissipative operator in R.
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THEOREM 3.8. Assume (BS), (GR), (F1), (F2), (LF) and (G). Let 0 <
s<¢<T. Under the initial condition (z(s),u(s)) = (zs,us), the initial-value
problems for (AES), (NC) and (FE) on [s,g] are equivalent to each other in the
following sense:

(1) If (z,u) is a mild solution to (AES), then z is a solution to (NC) and u =

Uz,

(ii) If z is a solution to (NC), then (z,u,) is a mild solution to (AES);
(iii) z is a solution to (NC) if and only if this function is a solution to (FE).
Here u, is a unique mild solution to the initial-value problem for (SE;z) on [s,¢]
with initial condition u,(s) = u;.

Proor. We see from the definitions of solutions and Theorem 2.3 that
(i) and (ii) are satisfied. We then verify (iii). If z e C([s,g]) satisfies z(f) €
2(I') and f(u,(t)) € I'(z(t)) on [s,g], then z(¢) e 2(I") and z(t) — Af (u.(2)) €
(I — AT')(z(t)) on [s,¢] for all A>0. Therefore, it follows that (I — AI')™"
(z(2) — Af(u.(2))) = z(¢) on [s,¢] for all A >0. Conversely, if z e C([s,g]) and
satisfies (1 — Aol") ' (z(£) — Aof (u-(1))) = z(r) on [s,¢] for some 1 >0, then
z(t) e 9(I') and f(u.(t)) e I'(z(r)) on [s,g]. It should be noted at this point
that if z e C([s, ¢]) satisfies z(¢) = (I — 2oI") "' (2() — Aof (u(1))) for some Ay > 0,
then for any A > 0 the function z satisfies z(f) = (I—AI') ™ (z(£) = Af (u=(2))). O

ReMARK 3.9. Theorem 3.8 states that if (z,u,) is a mild solution of
(AES), then z is a fixed point of the mapping z — (I — AI') ™' (z(-) — Af (u=(-))),
and vice versa.

4. Fixed point argument

In this section we give the proofs of Theorems 3.2, 3.3 and 3.7 stated in
the previous section by applying Schauder’s Fixed Point Theorem.

ProoF OF THEOREM 3.2. In view of Theorem 3.8, it suffices to show the
existence of a solution z to equation (FE).

Let (zo,up) € 2(I") x D and f(up) € I'(z0). Suppose that 0 <s < T, and
that 2e W1 *(0,s) is a solution to (FE)—(IC) on [0,s]. We put

— T
%= eM(T‘“‘)+°"(IIi4(S)II+J max{[|Z (7)]|, 1}d7>» A= (aemax{||fIl., llgll. )",

N

r=1+ [+ -D)70),  x=fIL2K(r+ 2 [I1F (e, i(s), DI,

19<r

(5:165’1;1,, €= ([;’;Ll,+i)_llc_1, and ¢=min{s+¢ T}
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Here M, K(r), and fB,,, denote the constants employed, respectively, in (F4),
(F1), and (G) with 1+r, #(-) is the X-valued function in (F4); #(-) is a mild
solution to (SE;2) on [0,s] with #(0) = uy, which is obtained by Theorem 2.3.
The symbol || - ||, denotes the operator-norm of continuous linear functionals
on X. Note that the continuous linear functional f is not identically zero.
Hence a, 4, r, k, § and ¢ are positive and finite. We also note that 0 < s <
¢<T and ¢ <s+e& We then define an operator ¥ : /#; — C([s,g]) by

(4.1) A= {Le Wh2(5,0)|L(s) = £(s),  |¢']., <),

42) (PO =T =D - M (w (),  telse],  for e,

where u; is a unique mild solution to the initial-value problem for (SE;{) on
[s,¢] with w(s) = (s), which is obtained by Theorem 2.3, and |- |, denotes the
supremum-norm over [s,¢]. Then J; is a compact convex subset of C([s,c])
endowed with || . We here apply Ascoli-Arzela’s Theorem to discuss the
compactness.

Furthermore, we have

LeMMA 4.1. The operator ¥ is well-defined as a continuous mapping from
(A5, |+ |op) into (C([s,6]), |- |o)-

ProoF. The multi-valued function I is m-dissipative in R by (G). Thus,
the resolvent (I — AI')™" of I' is defined on R as a contraction operator on R:

@3) -0 - =D))< =Gl GG eR.

Let (e A;. Since {(-) is Lipschitz continuous, f(u(-)) is also Lipschitz
continuous by Lemma 2.11. Therefore, it follows from the definition of ¥
that (¥¢)(:) is Lipschitz continuous, that is, ¥{ € W1 ®(s,¢), and so ¥ : A —
C([s,¢]) is well-defined.

We next prove the continuity of ¥. Let z,,z€e X#; and |z, —z|, — 0.
Then, by (4.3) we see that

[(¥2n) () = (P2) ()] < |2n(2) — 2(0)| + A S (e, () = f (D)), 2€s6],

and hence |¥z, — ¥z|, < |z» — 2|, + A|fuz, — fu:|,, — 0 by Lemma 2.9. This
shows that ¥ is continuous. []

LemMa 4.2. The mapping ¥ has its values in A, that is, YA < A.

ProOF. Let z€ #;. We have already shown that ¥z e W *(s,¢) in the
proof of Lemma 4.1. Since f(i(s)) € I'(¢(s)), we have

(I — A M zs) — Af(u (V) = (I — AT N (3(s) — Af((s)) = 2(5).
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This means that (¥z)(s) = (s). If |(¥z)'|, <J, then the desired result
follows. Let f1,% € [s,¢]. By the local quasi-dissipativity of I" in (G), I
satisfies

(44) (1 +v'1Bl+r)|C1 =0l < (G = 4An) = (G = An))|
for ({,r)el, || <1+r, i=12.

We first choose
o= (Y2)(t) = (I = AD) ™' (z2(t:) — Af (u:(1))),

7= AT (= A0) T = 1)(2(6) — Af (ue(1))
for i=1,2. Then it follows that ({;,7;) e I', i = 1,2. Indeed, 2((I — AI')™")
=9(I'), and hence {;e€ 2(I'). By the property of nonlinear dissipative
operators, we see that 7, € I'(I — Al') " (z(t;) — Af (u:(1;))) = I'((;), and hence
Chw)el.
We next claim that |{;] < 1+7r for i=1,2. In view of the choice of {;
and (4.3), we see that

@45) (Gl < |2(6) = Af (ua(t:))| + (T = A7) 7' (0)]

< |2(s) — Af (a(s))| + J |2/ (2) = Afuz) (D)ldz + |(T = A7) (0)].

N

To estimate the last expression, we need the following

LemMa 4.3. (i) For ze Wh®(s,q) with |2'|, <3, we have

(1) < e re9e=s (uuz(s)u n j W(r)ndr), rels.ql

S

(i) For ze C([s,¢))NL*(s,c), we have

— 9
(0] < e (o)l + [ 17 @lac). relso)

This lemma is proved in §7. Using the first estimate (i) in this lemma,
we can check that ||u,(¢)|| <« for € [s,¢] since ¢ < T and d(c —s) <de < 1.
Hence, it follows that |2(s) — Af(&(s))| < |2(s)| + 1 and —Ag(u.(¢)) <1 for t€
[s,¢] by the definition of A. Since g is nonpositive on D, and so 0 <1+
Ag(u.(t)) <1 for te[s,c]. Noting that |z(r)| < [2(s)| + [ |2/ (z)|dT < |2(s)| + 1
<r for t€|s,¢], and using (F1), we get

|fF(t,u.(1),2(0)| < |IF I (I1F (2, u(2), 2(2)) — F(t,(s), z(2))]]
+ | F(t,a(s),z()]]) <k for t e [s,g].



552 Toshiyuki YAMAGUCHI

Therefore, it follows from Lemma 2.4 that

111 t

|2/ (1) = A(fuz) (r)]dz < J (12" ()| 11429 (uz(0) |+ AL f F (7, u: (1), 2(7)) 1 d=

s

(4.6) J

s

< 0+ M)t — 5) < (P, + M) (G —5) < 1.

By (4.5), (4.6) and the fact that |z(s) — Af(&(s))| < |2(s)| + 1, we have |{;| <
1 +r as claimed.

Thus, we have |(¥2)(1)— (¥2)(22)] = 16 — Gl < (1+ 2By) (61 — F1) —
(£, — A1p)| by (4.4). Moreover, it is easy to check that

(61 = 411) = (& = 4| = [(2(0r) — Af (u:(11))) — (2(22) — Af (:(22)))]

<

j 2(1) — A(fus) () lde

n

< 0+ )|t — 6| < (14 ABy,,)0ln — nl,

and so [(¥z)(t;) — (¥Yz)(r2)| < 9|ty — 12| for £, €s,g]. This completes the
proof of Lemma 4.2. [J

We then complete the proof of the local existence result. Lemmas 4.1 and
4.2 together allow us to apply Schauder’s Fixed Point Theorem to get a fixed
point Ze A of ¥W. It is clear that Z is a solution of (FE) on [s,¢] with

(2(s),u(s)) = (2(s), t(s)). ~Setting

2(1) = {;g) for € 0,s],

(47) ) for t e (s,¢],

we see that

_ fa(t)  for te]0,s],
uz(t) = {IZ(Z) for te (S, C]v

and ze W1*(0,¢) is a solution of (FE)—(IC) on [0,¢]. Note that f(u.(-)) €
w°(0,¢) by Lemma 2.11.

Choosing s = 0 in the above argument, we obtain a solution of (FE)—(IC)
on [0,¢] for some ¢ € (0, T]. Next, choosing s = ¢;, we obtain a solution on
[0,¢5] for some ¢, € [¢1, T']. Repeating this argument, we can extend a solution
to some (maximal) subinterval [0,7) of [0, T].

It remains to show that the solution blows up at T. Let [0, Trmax) be
the maximal interval of existence of solutions to (FE)—(IC) (or, equivalently,
(AES)—(IC)) and z a solution on [0, Thax). Let us show by contradiction that
Tmax < T implies that limsup, s, |2(¢)| = co. Suppose that limsup,z, [2(7)|
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< oo. Then we conclude that ¢ :=supy, 7, |2(7)| < co. If not, then there
is a sequence {7,} = [0, Trmax) such that 7, 7 Tmax and |z(z,)| > n, which
contradicts the assumption that limsup,z, [z(¢)] < co. Thus, it follows from
Lemma 4.3 (ii) that

_ T
(0]l < ez‘“@ew(nuon - ||9'<r)udr), €10, Ta),

and so that supy..r.[lu:(7)|| < co.
Choose a sequence {#,} in (0, Tpax) such that #, T Thax. Put

a:emm( sup ||uz(r)||+J

0<7<Tmax 0

T

max{||# (7)|, l}dr>,

A= (max{|fll,lgl.)7",  r=1+0+| i) (0),

= ~—1
= AL RO ol + sup [Flrm, ), o=xBr,

T
|9 <r

. ~—] _
& =min{T — Tpax, (B, + 4) IK_I}, and Ch=1,+e

Moreover, we define a mapping ¥ : #;, — C([tn,c,]) by (4.1) and (4.2) with
s=t,, ¢=¢, and 2=z Then, in the same way as above, we are able to
extend the solution z on [0,#,] to [0,¢,] for every n. In view of the choice of
{t,} and the fact that ¢ is independent of n, it is clear that ¢, =, + & 1 Tax + €
as n — oo. Thus, the solution on [0, Tmax) can be extended beyond Tmax since
&> 0. This contradicts the definition of Tp.x. The proof of Theorem 3.2 is
now complete. []

We next prove the global existence theorem.

PrROOF OF THEOREM 3.3. In a way similar to the proof of Theorem 3.2,
it suffices to show the existence of a solution z to (FE). We split the proof
into four steps.

Let (zo,u0) € 2(I') x D and f(up) € I'(z9). Suppose that 0 < s < T, and
that 2e W1 *(0,s) is a solution to (FE)—(IC) on [0,s].

Step 1. We assume that #(s) # 0. Put

A= [cze"_m-s) (h(a(s)) + J

s

-1
Th(«?"(f))df)] . o= CeMTIn(u(s)),

K= |é|L°°(O,T) + MQM(T_X) (i(ﬁ(s)) + JTi(.o/'-(T))dT) + MeMTA—l,

s

0=0"'k, and ¢=min{s+067!, T}.
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Here M is the constant appeared in (F4); C; and C, the constants employed in
(AdLF); &(-) the function stated in (AdF); and #(-) a mild solution to (SE;Z)
on [0,s] with #(0) = uy obtained in Theorem 2.3. Note that 4, g, ¥ and J are
positive and finite. In addition, 0 <s<¢<T and ¢ <s +67L

We then define an operator ¥ : #; — C([s,¢]) by (4.1) and (4.2). Then
we see that J; is a compact convex subset of (C([s,c]),|-]|,), and that ¥ is
well-defined and continuous as seen in the proof of Theorem 3.2.

Let z € ;. Then we see in a way similar to the proof of Lemma 4.2 that
Yze Wh(s,c) and (¥z)(s) = 2(s). In order to show that |[(¥z)'|, <J, we
choose s < 1) <t <¢. Then it follows from (4.3) and Lemma 2.11 that

n

(4.8) I(Y’Z)(tl)—(S”Z)(lz)ISJ (12 ()| 114 2g(uz(2)) |+ AL fF (7, (1), 2(7)) | dz.

n
To estimate further, we require the following lemma whose proof is given in § 7.

LEMMA 4.4. For z e C([s,q]), we have:
(i) e M=Ih(u.(s)) < h(u-(1)) < M9 (h(u.(s)) + [/ h(F (v))d7) for 1€ [s,q].
(i) g(u:(t)) < —Cre= M9 h(u,(s)) for te sl
(i) If ze Wh*(s,c) and |'|, <6, then

t

Flus(1)) < M6 [f‘(uz(s» + [ 7@ @

S

+ (1 — s)eA?(t—S) (h(uz(s)) + Jrh(?(r))dr>] for te|[s,g].

s

Using (AdLF) and Lemma 4.4 (i), we see that —g(u.(¢)) < A~' for ¢ € [s,¢].
Hence

(4.9) 0<1+Ag(u.(2)) <1 -2 for € [s,¢]

by Lemma 4.4 (ii). Furthermore, we have

(4.10) |fF(tu.(2),z(2)] <k for 1 € [s,g]

by (AdF) and Lemma 4.4 (iii). Thus, it follows from (4.8) through (4.10) that
[(¥2)(n) — (¥2)(n)| < B(1 — Ao) + Ak](t2 — 11) = 6(t2 — 11).

This implies that |(¥z)’|, < as desired. Since ¥A; = #;, we can apply
Schauder’s Fixed Point Theorem to find a fixed point Z e 4 of ¥. We see in
the same way as in the proof of Theorem 3.2 that the function z defined by
(4.7) is a solution of (FE)-(IC) on [0,¢], and ze W"*(0,¢).

Finally, it should be noted that A(u.(z)) > e~ ~9h(i(s)) > 0 by Lemma
4.4 (i) and (AdLF), and so that u,(¢) #0 on [s,g].



Nonlocal nonlinear transport systems 555

Step 2. Assume that uy # 0. Letting s =0 in Step 1, we obtain a solution z €
wh®(0,¢;) of (FE)—(IC) on [0,¢], where

T

i = €2 (htun) + | h(f(r))dr)]_l, o1 = Cre " Th(up),

0

_ T —
K1 = |€| oo, 7y + MeMT (f(uo) + L f(f(r))dr) + MeMT )T

o= Ql_lkh and 61 = min{al_l’ T}

If ¢; = T, then this z is the desired global solution.
Let ¢; < T, that is, ¢ =51'1. Since u,(g;) # 0, letting s =¢; in Step 1
gives a solution ze W *(0,¢;) on [0,g;]. Here

_ T -1 _
xz=[czeM<T-c')(h<uz(gl>>+J h(f(r))dr)] o= e T p (o)),

S1

_ ~ T
K2 = Ele(o,7) + MeMT-50) (f(uz(cl)) +]

f(ﬁ"(‘r))dr) + MeMT);!,
Sl
0, = 92"1;(2, and ¢ = min{g, +52_1, T}.

By Lemma 4.4 (i), we see that g, > g; and A;' < A;'. Using Lemma 4.4 (iii),
we have

Flus(er)) < e [f(uo) + [ 7@+ ce (h<uo> ; JTh(g’(r))dr)] |

Since 4;' < 47!, we have

T

K2 < || pe(o, 1) t+ MeMT (f(”o) +J £

0

Y\
=
=
~
+
=
~
_+_
N
L4\]
N
S
=

=1+ MeMTATY < 2.
Therefore, by this relation we deduce that

o 467 =07 oy =07 + a1 (2k) T = (14270,

since g2 > g;. This shows that ¢, = min{d;' +d5", T} > min{(1 + 21)é;", T}.
If ¢, = T, then the z above is the desired global solution.

Repeating the above argument, we find ¢, such that ¢,>
min{(1 + 27" 4+---4+n~")9;', T} at the nth step. Since S ;_ k' /' +oo as
n — +o0, we see that ¢, = T for some m.
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In this way, for uy # 0, we obtain a solution z on the whole interval [0, T'].
Notice that z is in WH*(0,T), and so that fu, is also in W1 °(0,T) by
Lemma 2.11. Therefore, in the case that 0 ¢ #(I"), the proof of Theorem 3.3
is complete. In the case that 0 € #(I"), we further proceed to Steps 3 and 4.

Step 3. We assume that #(s) vanishes. Since Z is a solution to (FE) on [0, s]
by assumption, it follows that 0 = f(i(s)) € I'(2(s)). In addition, 0 € I"(0) by
(AdG). Using the local quasi-dissipativity of I', we infer that #(s) = 0. Put

_ T
o= M JO max{||# (2)|, 1}dz, A= («max{||f]., lgll.})7"

74 ~ 1

k=|fI.(KW)x+ sup [|F(7,0,9)), J=xB; ,

0<t<T
i9<1

&= (ﬁ_fl +i)"lic’1, and ¢=min{s+¢ T},

where M, K(1) and f, are the constants employed, respectively, in (F4), (F1)
and (G) for r = 1. Note that (I — AI')"'(0) = 0, 2(s) = 0 and a(s) = 0. Then,
in a way similar to the proof of Theorem 3.2, we obtain a solution Z in
Wl (s,¢) such that z(s) = 2(s)(=0). It is evident that the function z defined
by (4.7) is a solution of (FE) on [0,¢] and ze W*(0,5). Since ¢ is inde-
pendent of s, we can extend z(¢) to any subinterval of [0, 7], whenever u,(¢)

vanishes.

Step 4. Assume that uyp =0. Choose s=0 in Step 3. Then we get a so-
lution ze WH®(0,¢) for ¢ =min{e, T}. If > T, then this z is the desired
global solution. Let ¢ < T. If u,(¢) # 0, then we repeat the same arguments
as in Steps 1 and 2, and can extend z(¢) to [0,7]. On the other hand, if
u.(¢) = 0, then taking s =¢ in Step 3, we have a solution ze W1 *(0,¢) for
¢ =min{2¢, T}. If 2¢ > T, then this z is the desired solution on [0,7]. Let
2¢ < T. If u,(2¢) # 0, then one employs the same arguments in Steps 1 and 2.
If u,(2¢) = 0, then choose s = 2¢ in Step 3. Repeating these arguments finite
times, we gain the desired solution z on the whole interval [0, T']. Since z, fu.
e WH*(0,T), the proof of Theorem 3.3 is now complete. []

We conclude this section with the proof of Theorem 3.7.

PrOOF OF THEOREM 3.7. It is similar to the proofs of Theorems 3.2-3.4.

In the proofs of Theorem 2.3 and Proposition 2.5, we apply (F6) instead
of (F1). In the proof of Lemma 2.6, we apply (F6) in place of both (F1) and
(F3) to obtain (3.5). This leads to an inequality analogous to (2.5). Thus,
Lemma 2.9 is valid under (F6) instead of (F1) and (F3). Moreover, we
employ (F6) in place of (3.3) in the proof of Theorem 3.4. We can prove the
remaining part in the same way as in the proofs of Theorems 3.2-3.4. [
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5. Main results for the nonlocal nonlinear system

In this section we state the existence and uniqueness results for weak
solutions to the Cauchy problem for (NNS). These results are all proved in
the next section.

We need some preparations to state our results. We begin by defining
a weighted L' space to be our base Banach space. First, we formulate the
following class of functions w from R into itself:

(W) w:R— R is absolutely continuous on bounded intervals, non-
decreasing and satisfies

€ss. SHPM < 0
xeR 1+ |W(X)|

For a function w(x) satisfying (W), we define an L! space with weight
1 + |w(x)| by

LY(w) := L'(R; (1 + |w(x)])dx)

= {v : R — R measurable

| i+ e < oo},

—0o0

and its norm by

+00
v],, = J [v(x)|(1 + |w(x)|)dx  for ve L'(w).
— o0

It is clear that (L'(w),|-|,) is a real Banach space. Note that if w(x) =0
then L'(w) is the usual L'(R), and that a measurable function v:R — R
belongs to L'(w) if and only if both v and wv belong to L!(R).

Let N > 2 be an integer. (For the case N = 1, see Remark 5.12 below.)
We need at least a condition (W)y on the weight function:

(W)y w=w!...,w"):R— R is not identically equal to zero and
each component satisfies condition (W) and
1 i
(5.1) supM<oo, i=1,...,N—1.

xeR 1+ w1 (x)]
For such weight function w, we can define a product space L!'(w):=
L'(w') x -+ x L'(w") equipped with the norm |o|, = |v!|,i + -+ + |[v"]|,~ for
v=(v!,...;0"). Set

B 1+ [wi(x)|
¢= T R e lwitl(x)|”

Since 1+ |wi(x)| < C(1+ [w*!(x)]) on R for i=1,...,N — 1 by (5.1), L'(w})
S LY(w?) > --- o LY(wV).
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Furthermore, for a function w satisfying (W), we define

L*®(w) := {v : R — R measurable | [v(x) a.e. for some C > 0}

< ¢
T 14 w(x)l
and its norm ||v||,, := ess.sup,.g|v(x)|(1 + |w(x)]). If w(x) =0, then L®(w) is
the usual L*®(R).

For convenience, we introduce the cyclic rule on the indices: i=j
(mod N), that is, for instance, 0 =N and N+1=1.

We denote by RY the positive cone in RY :RY = {(v!,...,oV) e R"|
ol oV >0} Put E={(',....,oM)eRY|v' +.. .+ 0oV <1}

Let 0 < T < 400 be an arbitrary but fixed number. On the function ¢ =
(@',...,0"):[0,T] x RXxE xR — R" we impose the five conditions (P1)-

(P5) below for the local existence.

(P1) A function x — ¢(t,x,u,z) is measurable on R for every (t,u,z) €
[0,7] x E xR, and (t,u,z) — ¢(t,x,u,z) is continuous on [0,7] x E x R for
almost every x € R;

(P2) For every r > 0 there exist nonnegative functions f**! € L*(R), i =
I,...,N -1, ¥t eLewV), i*¥N e L*(R), f*~! e L*(w'), i=2,...,N, and a
constant K(r) > 0 such that every component ¢’ satisfies

N
[¢i(t7 X, U, Z) - (0[([’ X, U, Z)I < Z f:yj(x)luj - vjl + K(r) Z Iuj - Ujl

j=itl =i
for t€ [0, T], almost every x e R, u = (u!,...,u"), v=(v!,...,0V)€E, and z €
[_rv r];
(P3) For every r >0 there exist nonnegative functions (g!,...,g")e

L'(0,T;L'(w)) and a nondecreasing function p, : [0, 0) — [0, 00) with p,(+0)
=0 such that every component ¢’ satisfies

. . . N .
IQI(I,X, u, 21) - (p’(t? X, U, Z2)| < (g:(t7 X) + Zj:i uj)pr(lzl - ZZI)

for almost every (£,x) e (0,T) xR, u= (u',...,u") €K, and z|, z; € [-1,7];
(P4) There exist nonnegative functions (®',...,®")e C([0,T];L'(w))
and a constant M > 0 such that every ¢’ satisfies

—Mu' < ¢'(t,x,u,z) < ®'(t,x) + Mu'

for te[0,T], almost every xeR, u= (u',...,uV) €E, and zeR;
C(PS) (1) If u= (',...,uN) eE satisfies Y u'=1, then N,

@'(t,x,u,z) <0 holds for t€[0,7T], almost every xe R, and z€eR;
(2) For every r> 0 there is a constant A, > 0 satisfying that u,

veE and u <v in RY together imply

A+ o(t, x,u,z) < Lo+ o(t,x,0,2) in RV
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for t € [0, T'], almost every x € R, and z € [-r,7r]. Here < denotes the standard
partial order relation in R" such that u = (u!,...,u") <v=(v',...,0") in RY
if and only if u' < v’ for i=1,...,N.

We then put a condition on the function L: (a,b) — R.

(L) —o<a<b<+ow, LeC(a,b) is strictly decreasing, L(a+0) =

+o00 and L(b—0)=—oo. Moreover, for every r > 0, there exists a constant
B, > 0 such that
(52) (14 4B,)|L(71) — L(w2)| < |L(11) — L(12) — A(71 — 72)

for A>0 and 71, 72 € [L7}(r), L7 (—7)].

REMARK 5.1. In condition (L), L7!(r) and L~!(—r) make sense, since L
is a bijection. Similarly, L(r;) and L(r,) make sense, since a < L™'(r) <
L~'(-r) < b. Notice that (5.2) implies the local Lipschitz continuity of L with
the Lipschitz constant ﬁ,‘l. Theorems 5.4, 5.5, 5.7 and 5.10 below are valid,
even if the possibly multi-valued inverse L™! satisfies only condition (G) stated
in §3.

We next define weak solutions to the nonlocal nonlinear transport system

O+ 2'(1)0xu = ¢(t,x,u,z(1)), (t,x) e (0,T) x R,
(NNS) ) =L (Jfoow( 2 - ult, y)dy), te0,T).

DEFINITION 5.2. A function u: [0, T] x R — R¥ is called a weak solution
to (NNS) on [0, T], if ue C([0, T];L'(w)), u(t,x) eE for te[0,T], almost
every xeR, a< J‘fg w(x) - u(t,x)dx < b for te[0,T], the function z(¢):=
L(f{f w(x) - u(t,x)dx) is continuous on [0, 7], and the functions u(¢,x) and

z(t) satisfy the integral equation

t

u(t,x) = u(O,x—z(t)+z(0))+J o(t,x—z(t)+z(),u(t, x—2(t)+2(7)), 2(7) )dt
0

for (¢,x)e[0,T] x R.

ReMARK 5.3. The above notion of weak solution is same as the notion
of mild solution employed in the theory of abstract evolution equations rather
than the notion of weak solution in the sense of distributions, cf. Definitions
2.2 and 3.1. Since (NNS) has the strong nonlinearity z’(¢)0.u, weak solutions
in the sense of distributions cannot be defined for (NNS) if z(¢) is not
differentiable.

We now state a result of local existence for weak solutions to the Cauchy
problem for (NNS).
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THEOREM 5.4. Assume (W)y, (P1)—(P5) and (L). Let an initial data uy €
I:l(w) satisfy up(x) e E a.e and a< J‘jof w(x) ~1{0(x)dx < b. Then for some
T € (0,T), there exists a weak solution ue C([0,T];L'(w)) of the initial-value
problem for (NNS) on [0,T] such that the functions
+00

t— J+OO w(x)-u(t,x)dx  and L(J w(x) - u(t, x)dx)

—0 -0

belong to W' (0, T). Moreover, let 0 < Tyax < T and [0, Tiax) the maximal
interval of existence of the weak solution u. If Tmax < T, then

L(J+Oo w(x) - u(t, x)dx)

—00

lim sup = 0.

11 Tmax

To establish the global existence of weak solutions, we need a stronger
condition than (W)y.

(Ws) we C%!(R) is strictly increasing and satisfies ess.inf,cg w'(x) > 0.

In other words, w is strictly increasing and bi-Lipschitz. For the weight
function w we impose the following conditions:

(Ws)y For w=(w!,...,.w"):R—R"Y, wl(x),...,wk"!(x) are identi-
cally zero, and w*(x),...,w™(x) satisfy condition (Ws) for some 1 <k < N.

If k=1, then (Ws)y is understood in such a way that all components of w
satisfy (Ws). We now obtain the following result on the global existence.

THEOREM 5.5.  Assume (Ws)y, (P1)—(P5) and (L). Let ug € L'(w) be such
that uy(x) €E ae. and a < f_tf w(x) - ug(x)dx < b. Then there exists a weak
solution u to the initial-value problem for (NNS) on [0, T] such that the functions

+00

t— JW) w(x) - u(t,x)dx and L(] w(x) - u(t, x)dx)

- —®
belong to WhH*(0,T).
REMARK 5.6. If w:R — R satisfies (Ws), then we have
clx — x| < [w(x)| < Clx — xo| on R,

where ¢ = ess.infyer w'(x), C = ess.sup,.g w'(x) and xo is a unique zero point
of w(-). Therefore, if w:R — R" satisfies (Ws)y, then L'(w’) = L'(R), i =
l,...,k—1, and L'(w') = L'(R; (1 + |x|)dx), i =k,...,N.

We now introduce two classes of functions in order to state our uniqueness
result. First, for w satisfying condition (W), we employ the set (denoted by
&(w)) of all measurable functions 7 : R* — [0, o) such that for each r > 0 there
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exists a constant C, >0 and

+o0
J n(x + a1, x + 62)(1 + |w(x)|)dx < C/|la) — 73] for o1,0, € [—r,1].

—00
We next employ the set (denoted by (w,T)) of all measurable functions
7:(0,T) x R* = [0,00) such that for each r >0 there exists a nonnegative
function 6, € L'(0,T) and

+ 00
J n(t,x + 01, + 02)(1 + [w(x)|)dx < 6,()|or — ]

—o0
for te (0,T), 01,02 € [—r,71].
Let w(x) =x and f:R — R be a Lipschitz continuous function with com-
pact support. Then it is obvious that a function # defined by #(x,y) =
|f(x) = f(»)| belongs to the class &(w), but that zn(x,y)=|f(x)— f(»)
defined for a Lipschitz continuous function f does not always belong to F(w) if
the support of f is not compact; for instance, f(x) = x. The continuity of a
function f or the boundedness of its support does not necessarily imply that the
function #(x, y) = |f(x) — f(»)| belongs to F(w). Such functions are found in
Example 5.8. On the other hand, for nonnegative functions § € L'(0,T') and
ne &(w), a function 7(t,x, y) = 6(t)n(x, y) belongs to F(w,T).
In order to obtain a global uniqueness result, we assume the following
additional condition on the function ¢ on the right-hand side of (NNS):

(P6) For each r > 0 there exist functions 5/ € F(w',T), i =1,..., N, such
that the components ¢, i=1,..., N, satisfy

IQi(t, X1,U, Z) - (pi(ta xz,u,z)| < ’7:([7 X],Xz)
for almost all 1€ (0,T), x;, x2€R, any ueE and z e [-r,7].
We now state our uniqueness theorem.

THEOREM 5.7. Assume (W)y, (P1), (P2), (P3) with p,(s) = Css (C, being
some constant), (P4) and (L). Assume further that (P6) holds. Let u, and u,
be weak solutions to (NNS) on [0,T], and set

zi(t) = L(J+00 w(x) -u;(t,x)dx), i=1,2.

— 0

Then we have

(5.3) |21 = 22| < Clui (0, +21(0)) — u2(0, - + 22(0))],,.
Here |- |, is the supremum-norm over [0,T), |-|, the norm of the product
space L'(w), and C some positive constant determined for any fixed number
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R > max{ri,r;}, where r =max{|zi|,|z2|.}, r2=e*MT (max{|u;(0,)|,,
0200, )1, } + [ 1@z, ),de), © = max; i<y ess. supyerl(w) (¥)]/(1 + wi(x))
and ® = (®',...,®"). In particular, a weak solution to (NNS) is unique if it
exists.

ExaMmpLE 5.8. In case N =2, one can formulate the following model: We
first define w(x) = (w!(x),w?(x)) = (0,w(x)) for w(:) satisfying (Ws) and ¢ =
(¢',9%) by

o' (6,x,u' 12, 2) = g1 () (W) = (DA () ('),
oAt x, 't 2) = py (1) f5(x) ()P — galx) (u?)P2,

with powers p;; > py > 1 and p,; > p;, > 1. Here y,(¢), fi(x), gi(x), i =1,2,
are nonnegative functions which satisfy that y, e C([0,T]), y,(¢) = y,(¢) on
0,7], fi, 926 L*(R), gieL'(R)NL*(R), freL'(w)NL®(w), fi(x)=
f(x) and g;(x) < ga(x) a.e. Moreover, functions (x,y)+— |fi(x)— fi(»)l,
lg:(x) — gi()| belong to F(w'), i=1,2. Then the functions §"(-), f*'(-) and
the constant K(r) stated in (P2) are chosen as f'?(x) = p;;g1(x), f!'(x) =
Paulnlofa(x) and  K(r) = max{pp|yil, /il P22l92]},  Tespectively. The
functions (@', ®?) and the constant M in (P4) can be chosen as ®@!(z,x) =
91(x), B2(1,x) = 7,(1) (x) and M = max{[yi| |, 2].0}, respectively. The
constant A, in (P5.2) and functions #! and #? in (P6) are defined to
be 4= max{ppslyilolfile, Puloale} and mi(t,x,¥) = n(OLAHK) — i)+
lgi(x) — gi(»)|, i = 1,2, respectively. In view of the specific properties of this
function ¢, we can eliminate the condition that g; € L'(R). More realistic
forms of w, f; and g;, i = 1,2, satisfying these conditions are given as follows:
w(x) = x,

kix/h, if 0<x<h,
fi(x) = fo(x) = {

0, otherwise,
k, if x<O0,

g1(x) = g2(x) =< ksx/h, if 0<x<ch/ks,
c, otherwise,

where ki, kj, k3, and h are positive constants and c is any fixed constant with
c > kz.

For the function L: (a,b) — R, we consider the following forms: If
muscle contraction is isometric, we take

L(t) = —log(1l + 1), a=-1, b= +oo;
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if muscle contraction is isotonic,

L(x) = log%, a=-1, b=,

where 0 < g < Q < +oo0; if it is isometric-isotonic,

g— (- 0+q"

= 1 = — =
where 0 < ¢ < Q < 400 and ¢t =max{c,0}. In these three cases we choose
1 - —r
p=er, AT ] a1 Qe
(14 ge) (1+ge”)

as the constant f, in (L), respectively. We can then apply Theorems 5.5 and
5.7 to each case.

ExampLE 5.9. In case N =4, one can formulate the following model:
First, we define w(x) = (w!(x),w?(x), w3(x),w*(x)) by (0,0,w3(x),w*(x)) for
w3 and w* satisfying (Ws) and ¢ = (¢',¢?, ¢, ¢*) by

o'(t,x,ut,u? P ut z) = Z [ay(t, x) (/)P — a(t, x)(u'Yor), i=1,2,34,

j=i+1

with powers p; ;41 = p; ;v 21, i=1,2,3,4, respectively. In accordance with
the general cyclic rule for N we introduced before (P1)-(P5), we here adopt
the cyclic rule for N =4: i=; (mod4). Here the functions a; ;+(¢,x) and
a;i+1(t,x), i=1,2,3,4, have the forms

fi,iil(x)v i= 1727
aji+1(f,Xx) = .

Viie1 (DS i1 (%), i=3,4,
n j;',iil(x)? = 1727
iis1(t,x)=q A )

i1 (O 101 (%), i=3,4.

The functions y; ;41(8), 9;;41(8), fiiz1(x), fiix1(x) are assumed to be non-
negative and such that y;;.1,9; ;41 € C([0,T]), 7;,41(t) <P;;5.(1) on [0,T],
i= 3v49 f;’,iil € LI(R) an(R)’ i= 1729 f34 € Ll(ws) nLOC(R)> f‘32 € Ll(w3) N
LOO(W3), _f;“’f;B € LI(W4) nLOO(W4)7 ﬁ,ii—] ELOO(R), i= 17273,47 and fi,iil(x)
< ;,iil(x) a.e., i=1,2,3,4. Moreover, we assume that the functions (x, y) —

fiis1(¥) = foica D) 1fisr,i(x) = fi41,1(2)] belong to §(w') for i=1,2,3,4.
As L:(a,b) — R, one can choose the logarithmic function

L(r) = —log(1 + 1) + const., a=-1, b=+w.

L(-) may also be chosen in the same way as in Example 5.8.
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We can apply Theorems 5.5 and 5.7 to this model. In view of this choice
of ¢, we may replace the condition f; € L*(w*) by a weaker condition f4; €
L*(R).

We may formulate the following type of condition which corresponds to
(F6) introduced in §3.

(P7) For each r > 0 there exist nonnegative functions x+! € L*(R), i =
1,...,N=1, uMle L®(wV), ubN e L*(R), pb~' e L®(w'), i=2,...,N, 5l €

F(w'), i=1,...,N, such that the components ¢/, i =1,..., N, satisfy
! =o' = 4wl (x| — v7| = dni(x1,x2)
j=itl

< 'ui - - 1[¢i(t, X1, U, Zl) - wi(ta X2, 0, 22)]
for >0, te[0,T], almost all x;, x; eR, u= (u!,...,u")
E, and z;, z; € [-r,71].
THEOREM 5.10. In Theorems 5.4 and 5.5 (resp. Theorem 5.7), assume (P7)
in place of (P2) and (P3) (resp. in place of (P2), (P3) and (P6)). Then the
same results hold.

We mention a result concerning the supports of weak solutions of (NNS)
with N > 2. The proof is very easy, and omitted. The condition (5.4) below
is stronger than (P5.1), but natural in the mathematical models for muscle
contraction phenomena.

PrROPOSITION 5.11.  Assume that the function ¢ satisfies

N
(5.4) Z(/)i(t, x,u,z) =0 (resp. <0)  for (t,x,u,z)€[0,T] x Rx E xR.

i=1
Let u be a possible weak solution to (NNS) with initial value uy and set z(t) =
L([T2 w(x) - u(t,x)dx). Then we have
suppu(t,-) = suppug(-) +z(¢t) —z(0)  for te[0,T].
(resp. <)

In particular, if the initial function uy(-) is compactly supported, then the solution
u(t,-) is also compactly supported.

ReMARK 5.12. It should be mentioned that similar results are obtained
for the case N =1. For N =1, conditions (W)y without (5.1), (Ws)y, (P1),
(P3) through (P6) make sense and E = [0,1]. In Theorems 5.4, 5.5 and 5.7,
we may replace (P2) by:
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(P2)y=; For every r > 0 there exists a constant K(r) >0 such that
lo(t, x,u,z) — p(t, x,0,2)| < K(r)|u—v|
for te[0, 7], almost every xeR, u, ve[0,1] and z € [—r,7].
Also, in Theorem 5.10, (P7) can be replaced by:

(P7)ny=1 For each r > 0 there exist a constant C, > 0 and a nonnegative
function 7, € §(w) such that

(1= AC)|u = v| = An,(x1, x2) < |u—v = Afp(t, x1,u,21) — (1, %2, v, 22)]}

for 1> 0, te[0,T], almost every x;, x2€R, u, ve[0,1] and z;, z; € [-r,7].
Under these conditions we obtain results similar to the case N > 2.
We conclude this section with an example for the case N = 1.

ExAMPLE 5.13. In case N = 1, one can take ¢(t, x,u,z) = p(t) f(x)(1 — u)?
—g(x)u’. Here ye C([0,T)), fe L'(w)NL®(R) and ge L*(R). 7, fand g
are nonnegative, p,p > 1 and the function w(-) satisfies (Ws). Moreover, the
functions (x, y) — |f(x) — f(»)|, |g(x) — g(»)| belong to F(w). The function
L: (a,b) — R is chosen in the same way as in Example 5.8. Then we can
apply the results stated in Remark 5.12. Even if we assume 0 <p < 1, in
place of p > 1, ¢ satisfies (P7)y—; and hence the uniqueness result given in
Remark 5.12 is applicable again.

6. Proofs of the results for (NNS)

In this section we apply the abstract results, and prove Theorems 5.4, 5.5,
5.7and 5.10. Letw : R — R satisfy condition (W). We introduce the standard
partial order relation < in the weighted L' space L'(w), namely, u <v in
L'(w) if and only if u(x) < v(x) a.e. in R. Then it is seen that (L'(w),|-|,, <)
is an ordered Banach space and its positive cone is given by L'(w), =
{ve L'(w)|v(x) > 0 a.e.}. Moreover, we introduce the weighted Sobolev space

whi(w) .= WH(R; (1 + |w(x)|)dx) := {ve L' (w)|v' € L' (w)}
endowed with norm [v|)! := o], + [v/|,. It is easily seen that (W1!(w),|- |1
is a Banach space and that C°(R) is dense in (L'(w),|-|,) and (W!!(w),
|- |51), respectively. Thus, Wh!(w) is dense in (L'(w),|-|,).

We then define three linear operators S (o) :L'(w) — L'(w) for e R
and 4: 2(A) « L'(w) — L'(w) as follows

(St (o)u)(x) :==u(x + o) for xeR, ueL'(w), respectively,
(Au)(x) :=u'(x) for xeR, ue 2(A4) := Wh(w).

Then we have
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PROPOSITION 6.1.  One-parameter families {S1(0)},.gr of the continuous
linear operators in L'(w) are Cy-groups of type @ and their generators are + A,
respectively. Here

w'(x)]

6.1 @ = ess.sup———— (< 00).
(6.1) S SPT ] <)

Proor. Notice that w(-) satisfies that

1+ w(x)|
1+ [w(y)]

Using (6.2), we obtain the results in a way similar to the proof of the fact that
the differential operator u — u’ generates a contraction Cp-group in the usual
L'(R). Note that it is not necessary to use the absolute continuity and the
monotonicity of w. [J

(6.2) < Pl for x,yeR.

LeMMA 6.2. For every ue Whl(w), the function wu belongs to the usual
Sobolev space W11(R). In particular, w(x)u(x) — 0 as |x| — oo.

ProoF. Let ue Wh1(w). Then it is clear that u, wu, u’ and wu’ belong
to L'(R) and (wu)'(x) = w'(x)u(x) + w(x)u'(x) a.e. in R. Hence

[(wa)' ()] < W' (x)u(x)] + [w(x)u' ()] < B(1 + [w(x)])u(x)| + [wlx)u' (x)],

where @ is the constant defined by (6.1). Since the last expression belongs to
L'(R), the derivative (wu)' of wu also belongs to L'(R). Thus, we conclude
that wu belongs to WUL!(R). Finally, it is well known that functions in
WLI(R) vanish at +o00. [J

Assume that (W)y holds. Let X :=L'(w)=L'(w!) x --- x L'(w") and
l-Il:=|-|,- The order relation < is defined as follows: (u!,...,u") <
(v',...,0") in X if and only if ' < v’ in L'(w') forall i =1,...,N. Then the
positive cone X, is given by X, =L'(w'), x---x L'(w"), and it is clear
that w,v,v —ue X, imply ||u|| < |v]|]. Moreover, we define

D:={0w,. .., oM eX, [v'(X)+---+0V(x) <1 ae}
={@',...,0M eX| (' (x),...,07(x)) €E ae.},
and linear operators 4 : 2(A4) = X — X and S(o): X — X by
G(A) = W (w!) x oo x W),
Au:=(",...,™))  for u=(u',...,u") e 2(A),
(S(o)u)(x) := u(x — o) for xeR, ue X, oeR.
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In addition, we set

. wt ! X .
w' = ess.supl(—)(.l, w:= max w'.
xer 1+ |wi(x)| 1<i<N

Then, using Proposition 6.1, we have the following

PROPOSITION 6.3.  Assume (W),. Then the one-parameter family {S(0)},.r
of continuous linear operators in X gives a Cy-group of type w and its generator
is —A. In addition, S(6)X, < Xy and S(o)D = D for any o€ R.

Next, we define two linear functionals on X by

(6.3) f(uw):= JHO w(x) - u(x)dx, g(u):= —J+w w'(x) - u(x)dx for ue X,

where w'(x) = ((w))'(x),...,(w")'(x)). Then we get

LeEMMA 6.4. Under condition (W)y, the linear functionals f and g defined
by (6.3) satisfy condition (LF) introduced in §2.

Proor. Clearly, |f(u)| < ||u|| for u € X, and so fis continuous. For u =
(u',...,u) e X, we have

N (+o0 ) N +oo ) )
o0l < D[ 1 lde Do [ (1 Wl < ol

i=1 J—o© i=1
Thus, g is continuous. Moreover, wi(x) >0 for all i=1,...,N, and so
g(u) <0 for we D. By integration by parts and Lemma 6.2, we see that
f(Au) = g(u) for ue P(A), and hence that f4 is continuous on (2(A),]| - ||)
and g is a unique extension of f4 to X. [

We then consider a function L satisfying condition (L). Since L : (a,b) —
R is continuous, L(a+0) = 400 and L(b—0) = —oo, it follows that Z(L) =
R, ie., L is onto. Since L is strictly decreasing, it has an inverse function.
Set Z(I') :=R(L) =R and I' ;= L~'. Then it follows that I" is dissipative
in R, because L~! is decreasing. Since L(a+0) = +oo and L(b—0) = —o0,
we infer that I'({) > a as { —» +o0 and I'({) — b as { — —oo, respectively.
Thus, (/ -TI'){)=(—-T({) - too as {— +oo, respectively. This means
that the range condition #(I —I') =R holds, since I = L' is continuous
on R. Consequently, I" is m-dissipative. From (5.2), we get the local quasi-
dissipativity of I'. In view of the above-mentioned, we obtain

LEMMA 6.5. Assume (L). Then I' := L™ is single-valued and satisfies (G)
introduced in §3.
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We now define a mapping F:[0,7] x D xR — X by
(6.4) (F(t,u,z))(x):= o(t,x,u(x),z) for xeR, (t,u,z)€[0,T] x D xR.

LEMMA 6.6. Assume that (W)y, (P1) and (P4) are valid. Then F is well-
defined as a continuous mapping.

Proor. By (P4), it is seen that F is well-defined. In order to show the
continuity, let (ty,u,,2,),(t,u,2) €[0,T] x D x R, |t, — t| + ||y — u|| + |20, — 2|
— 0, and let w, = (u},...,u)),u=(u',...,u"). Using (Pl) and (P4) and

A
taking a subsequence if necessary, we see that for each i=1,... N,

@' (t, x, uy(x),z,) — 0'(t, x, u(x),z) as n— oo, a.e. x,
[0 (£, X, Un(X), 20)| < D (tn, x) + Mul(x)  ae. x,
D (ty,-) + Mul()), D(t,-)+ Mu'(-) e L'(w'),
D (ty,) + Mul(-) — ®'(t,) + Mu'(-)  in L'(w') as n— .
Then the application of the Lebesgue Dominated Convergence Theorem implies
that
0 (tny - n(-),2n) — @' (t, - u(-),z) in L'(w) asn— o0, i=1,...,N,

and so that ||F(ty,un,z,) — F(t,u,z)|| > 0 as n — oo. This shows that F is
continuous. [

We are now in a position to prove Theorem 5.4.

PrOOF OF THEOREM 5.4. We want to apply Theorem 3.2. By Proposition
6.3, Lemmas 6.4 and 6.5, we see that (BS), (GR), (LF) in §2 and (G) in §3
are satisfied. The mapping F is continuous by Lemma 6.6.
We next demonstrate that F satisfies (F1) introduced in §2. Let 1€ [0,T],
u=(u,...,uM),v=(v",...,0N) e D and |z] <r. Noting that
L+ w()

6.5 = T+ witi(x)|
(6.5) €= I S T I ()]

is finite, we see from (P2) that

Jm lp! (1, x, u(x), 2) — 9" (1, x,0(x), 2)|(1 + [w' (x) ) dx

— 00

< j+°° 1020 u? (x) — 2|1+ ! () )dx

+ rw Fr (ol (x) = oM ()11 + [w! (x)])dx

— 0
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N (+o0
NS W) = I+ e

J=1

< CIf ol =02+ CV PN =0 |+ K () ZC’ Hd —ol],.
j=1

If N >3, then, for i=2,...,N — 1, we obtain in the same way as above

J "0t x,u(x),2) — 942, %, 0(0), 2)[(1 + ) e

—o0
< Clf ™! = o™ e + (1T el = 0™ i

N

r) Z Cl N — v,

i

Recall that ||f>~!||,; = ess.sup,g|f""~(x)|(1 + |wi(x)|). Furthermore, in the
same way,

Jml(/)N(t,x,u(x),Z)—w (t,2,9(x), 2)|(1+ " () ) dx

-0
< “erJ”leul - Ullwl + ”er’N_llle|uN_l - UN_IIW""I +K(r)|uN - UleN‘

Therefore, it follows that ||F(t,u,z) — F(t,v,z)| < C,||ju — v|| for some positive
constant C,. This implies (F1) with K(r) = C,.

Thirdly, we show that F satisfies (F3) introduced in §2. Let t€(0,7),
ueD, ||u| <r and zy,z; € [-r,r]. Then, using (P3), we have

|7 a1, 20) = 95,211+ b )

— 00

N
< (Igf(t, SINEEDD Cf‘i)pr(lzl — 1))

j=i
for i=1,...,N, where C is the constant defined by (6.5). Thus,

N

“F([,Il,Z])-F(t,u,Zz)H < Z(lgr w'+rzcj l) |Zl —22|)
i=1
This implies that (F3) holds for v,(£) = S, (18/(t, )|, + ijA:',- C/=) and p,(+)

= pr()
From (P4) it follows that F satisfies (F4) introduced in §3 for Z(f) =
(@'(t,),..., ®N(1,-)) and M = M.
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We now show that (F2) introduced in §2 is satisfied. To this end, it
suffices to show that for r > 0 there is a constant A, > 0 such that

(6.6) u+i'p(t,x,u,z)eE for A>1, (t,x,u,z)e[0,T]xRxE x [-r,7].

Indeed, if (6.6) holds, then, for (t,u,z) €[0,T] x D x R and % € (0, ir‘l] with
r=|z|, we have w+ hF(t,u,z) = u(-)+ ho(t,-,u(-),z) e D. This shows that
d(u+ hF(t,u,z),D) =0, and so that (F2) is obtained.

We then check (6.6). Let r > 0. First, using (P5.2), we easily see that

(P5.2) if w,veE satisfy u<vo in RY, then Au+ o(t,x,u,z) < v+
o(t,x,v,z) in RY holds for >4, t€[0,T], xeR, ze[-rr].

Let A> 4, (t,x,u,2)€[0,T] xR x E x [~r,r] and u= (u',...,u"). Then
(6.7) 0<¢(t,x,0,2) < Au+ o(t,x,u,z) in RY

by (P4) and (P5.2)'. On the other hand, there exists a vector d = (v',...,v")
€ E such that YN, v’ =1 and u < # in R, and so (P5.2)’ and (P5.1) together

imply

N N
Zlu+(ptxuz Zlv+(ptxvz))</l
i=1 i=1
This together with (6.7) yields (6.6). Consequently, F satisfies (F1) through
(F4).

For an initial function uy we assume that uy € L'(w) and uy(x) €E a.e.
Hence uye D. Put zp:= L( f:; w(x) - up(x)dx), then zoe (L) = 2(I") and
fwo) = [T w(x) - up(x)dx = L~ (z9) = I'(z0).

Therefore, rewriting (NNS) in the form (AES), we can apply Theorem 3.2
to get the desired results. [

ProoF oF THEOREM 5.5. For this purpose, we want to apply Theorem 3.3.
We first note that condition (Ws)y implies (W)y. Conditions (BS), (GR),
(F1)-(F4), (LF) and (G) are all satisfied in the same way as in the proof of
Theorem 5.4.

We first show (AdG) introduced in §3. Since Z(I') = 2(L) = (a,b),
(AdG) holds if 0 ¢ (a,b). Let a<0<b. If L(0) =0, then I'(0) = L7'(0) =
0, and (AdG) is satisfied. In case L(0) # 0, we reduce the proof to the case
L(0) =0. Indeed, we define

o(t,x,u,2) = gt x,u,2+ L(0),  L(x) = L(z) = L(0).
Then ¢ satisfies (P1) through (P5) and L satisfies (L). Moreover, L(0) = 0.

Let u(t,x) be a weak solution of (NNS) and z(¢) := L(fj;o w(x) - u(t,x)dx).
Set () :=z(t) — L(0). Then it is obvious that 2(¢) = L(J"2 w(x) - u(t, x)dx)

00
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and
u(t,x) = u(0,x—2(1)+2 ())+Jt ¢(t, x—2(1) +2(7), u(r, x—2(t) +2(7)), 2(1))dt

0

and hence u(?,x) is a weak solution to

O+ 2'(1)0xu = ¢(t,x,u,2(1)), (1,x) € (0,T) x R,
z(t) = Z,(J_Oow(y) -u(t, y)dy), tel0,T].

This shows that the problem is reduced to the case L(0) =0, if L(0) # 0.
To check (AdLF) and (AdF) introduced in §3, we consider condition
(Ws)y in the following two cases:
Case 1. k=1, that is, each component w'(x) of w(x) satisfies (Ws);
Case 2. there is a number 2 < k < N such that w!(x) = --- = wk7!(x) =
0, and w*(x),...,w¥(x) satisfy (Ws).

Case 1. We define linear functionals f, § and h by

fu) = J ) wl(x) - u(x)dx,  g(u) := —Jm Wl (x) - u(x)dx,

—© -

N (+o0
h(u) = ZJ_ u'(x)dx

for w=(u',...,u")eX, where |w|(x)=(w'(x),...,[wNx)]), w'(x)=
(W' W (x)l')  and  |wi(x)|" = (d/dx)|w'(x)|. Then |f(u)| < lul,
|(u)| < ||u|| and
N (+o ) N +oo ) )
lg(u)| < ZJ . [w! ()" (x)|dx < Z J L+ [w'(x)D)]u’ (x)|dx < of|ul|
i=1 Y- i=1 -
for u=(u',...,uV)e X, where o' =ess.sup,.g|l(w) (x)|/(1+|wi(x)]) and
o =max,<;<y@'. Thus, f, § and h are continuous on X. In addition, for
any nonzero u € X, it is clear that f(u) >0, h(u) > 0 and h(S(o)u) = h(u) for
oeR. We define

C = 11<I}1<nN esselnf(w V' (x), C, = max es)scesRup( wh' (x).
Then 0 < C; < C; < +0, because each w'(-) is bi-Lipschitz and increasing.
Recall that g(u) = +:OO w'(x) - u(x)dx. Therefore, Cih(u) < —g(u) < Crh(u)
and |§(u)| < —g(u) for any we X,. Moreover, by integration by parts and
Lemma 6.2, we have fAu = g(u) for any ue 2(A). Hence § is a unique
extension of f4, and (AdLF) holds.
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By (P4) and the choice of £, f and F, it is easy to check that (AdF) is also
satisfied for the function &(z):= N ffof |wi(x)|®(t, x)dx. Therefore, we
apply Theorem 3.3 to get the desired results for k = 1.

Case 2. Let f, g, f and § be the linear functionals treated above:

—00 i

N_ (+o . N_ p+to )
fo =3[ Wity g =-3 [ o) (witxan
i=k j=k Y —®

F =3[ wiowtods, g ==Y [ wiwlwar
i=k Y —®© i=k J—00
This time, the function &(-) is taken as &(2) = SN, [7 |wi(x)|®'(1, x)dx. We
define h by h(u) := lek fo‘f u'(x)dx. Furthermore, we define
C = kg}ian ess.eiRnf(w")'(x), Cy = Joax, es)sc.EsRup(w’)’(x).

Then (AdLF) and (AdF) hold except for the case where h(u) >0 for any
nonzero u € X;. It is not possible to apply Theorem 3.3 to the present case,
because A fails to satisfy A(u) > O for any nonzero u € X;. Therefore we prove
the theorem in the following way: We first note that for u = (u',...,u") e X,
the functional A satisfies A(u) >0 for (u*,... ,u")#0, h(u)=0 for (u*,...,u")=
0. In the proof of Theorem 3.3, we replace the condition #(s) # 0 in Step 1
by (#*(s),...,aN(s)) # 0; up # 0 in Step 2 by (uf,...,ul’) # 0; ai(s) = 0 in Step
3 by (it%(s),...,u"(s)) = 0; up = 0 in Step 4 by (uf,...,u)) =0, respectively.
Then we can employ the same arguments as in the proof of Theorem 3.3 and
complete the proof of Theorem 5.5. [J

PrOOF OF THEOREM 5.7. We here use Theorem 3.4. In a way similar to
the proof of Theorem 5.4, we may check the validity of (BS), (GR), (LF) and
(G) by Proposition 6.3, Lemmas 6.4 and 6.5. In addition, using (W)y, (P1),
(P3), (P4) and Lemma 6.6, we see that F is continuous and satisfies (F3) and
(F4). (FS) introduced in §3 follows from (P6). Finally, (F1) is shown in the
same way as in the proof of Theorem 5.4. The proof is complete. []

ProOF OF THEOREM 5.10. Employ Theorem 3.7. We can check the
assumptions in Theorem 3.7, similarly to the proofs of Theorems 5.4, 5.5 and
57. O

7. Proofs of the technical lemmas

In this final section we give the proofs of the technical lemmas, Lemmas
3.5, 43 and 4.4, which have been deferred. For convenience we give the
statements of the lemmas again.
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LemMA 3.5. Assume that (BS), (GR) and (F4) hold. Let z e C([0,T])
and upe D. If v, is a solution in C([0,T];D) to the Cauchy problem for
(ODE;z) on [0,T] with v,(0) = S(—2z(0))ug, then

_ T
lo:()]) < ew'Z'wW(uuon +[ ||.9«*<r>||dr), (e 0, 7).

Proor. Since v,(f) e D = X, and S(0)X, = X, we see from (F4) that

t t

S(—z(z))Z (t)dr + A_JJ v.(tr)dt  in X,

0 < v,(2) < S(—2(0))uy +J
0

0
te0,T).

Thus, (BS) and (GR) together imply that

t

T
lox(0)| < € g + e jo |7 (0)lldz + B L lo:(0)ldz, 10, T].

The application of Gronwall’s inequality implies the desired result. []

LemMma 4.3.  Assume that (BS), (GR) and (F4) are valid. Let 0 <s<¢ <
T and 6, r > 0. Then
(i) for ze Wh®(s,g) with |z

|, <9, we have

()| < el (nuz(s)n +| n%)ndr), re s,

s

(ii) for ze C([s,¢)) NL*(s,c) with |z|, <r, we have

(D) < 2re-) (uuz(s)n [ ||f«<r>ndr), e ls,0),

s

where u, is a mild solution of (SE;z).

Proor. (i) Since u,(t) e D = X, and S(0)X; = X, we see that

t

0 < u () < S(z(r) — z(s))uz(s) + J S(z(t) — z(2))[# (r) + Mu,(7)]dt

s

for t e [s,¢]
by (F4). Hence it follows from (BS) and (GR) that

t

luz ()] < O ju ()| +J e?FOZONF (0)|| + Mlu:(v)lllde,  tels,d].

s

Noting that |z(r) — z(7)| < [![z/(¢)|dé <6(t— ) for s<T<t<g, we have

= (D] < €2 luz(s)] + J e I|F (D)) + Mllu (<)),

s
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and hence

t 4
e lu (1) Se—“"“!luz(S)HvLJ e‘“’"’llg"(f)lldﬁl\_lj e ux(v)llde, e s,q).

s

By Gronwall’s inequality, we get

e lu:(1)l| < em’"s)e_“"k(lluz(S)ll +J Ilf(f)lldf), telsgl,

R

and (i) holds. We next set v,(¢f) = S(—z(¢))u:(f). Then v, is a solution to
(ODE;z) on [s,¢). In a way similar to the proof of Lemma 3.5, we obtain

lo=(2)]] < e@r 0= (Huz(S)II + Jg ||97(r)||dr>, 1€ [s,6).

Since [[uz(1)]| = |S(z(1))v:(1)[| < e ||v-(2)]], we have (). [

LEMMA 4.4. We assume (BS), (GR), (F4), (AdLF) and (AdF). Let 0 <
s <¢<T and u, a mild solution to (SE;z) on [s,¢]. Then for z e C([s,g]) we
have:
(i) e MIh(u,(s)) < h(u,(2)) < e (h(u:(s)) + [/ h(F (v))dr) for tels,q].
(i) g(u:(t)) < —CreM=Ih(u,(s)) for te[s,g].
(iii) If ze Wh*(s,q) and |z'|,, <0, then

Flus(t)) < ™0 [f(uz<s>> + F(F (@)

N

# Caolo =907 (hu) + [ HE @) o re )

s

Proor. We first show that
(7.1) uy(t) = e M=8(z(1) — z(s))uz(s) in X,  telsq].

Set v,(f) = S(—z(t))u.(t) for te[s,c]. Then v, e C([s,¢]; D)NC!([s,¢]; X) is a
classical solution of (ODE;z) on [s,¢] by Proposition 2.4. Hence,

M.(1) +vy(t) = S(—z(0) [Mu(1) + F(t,u:(1),2(1)] 20, tels,q]

by (GR) and (AdF). From this we see that (eM'v.(f)) >0 for e [s,c].
Integrating_ over [s,¢] and using the fact that X, is norm-closed, we obtain
v.(t) = e M=)y, (s) for te[s,c]. Consequently, it follows that

u(1)=S(z(2))v,(t) = e'ﬁ(’_S)S(z(t))vz(s):e_ﬁ(’_s)S(z(t)—z(s))uz(s), tels,g,
as desired. We next prove (i). By (7.1) and (AdLF), we have
e"ﬁ("s)h(uz(s)) = e MIRS(2(1) — z(s5))u=(s) < h(u=(1)), te[s, gl
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This implies the first inequality in (i). Since u, is a mild solution of (SE;z) on
[s,¢], the application of (F4), (GR) and (AdLF) implies

0 < h(u(t)) < h(us(s)) + J WF (1))dz + thh(uz(r))dr, te sl

N

t

Therefore, the second inequality in (i) follows from Gronwall’s Lemma.
By (7.1) and (AdLF), we obtain (ii). To show (iii), we first note that

[

(7.2) f(S(a)v)=f<v)—j §(S(0)0)dz

0
holds for 6 e R and ve X. This relation is obtained in a way similar to the
proof of Lemma 2.8 (i), because § is the extension of fA. It follows from
(GR), (F4), (AdLF) and (7.2) that

_ _ [2(r)=z(s)]
0 <f(u:(1)) <Sf(u:(s)) + J |9(S(0)uz(s))|do

0

+f [i(f(r) | Mus(2)

N

[z(#)=z(7)|
+ Jo 1g(S(0)(F (1) + Mu,(7)))|do |dx, te [s,gl.

Using (AdLF), we know that

|2(£)—z(s)|

|z(8)—z(s)|
L |a<S(a>uz<s>>|das—j0 9(S(0):(s))do

|z(t)=z(s)|
<G L (S(0)is(s))do

= Gy|z(t)—z(s) |h(u.(s)) < C6(t—s)h(u(s)), te€ls,g]

By the same reason, we also get that

t |2(t)—z(7)] t
J d‘cJ 1§(S(0)(Z (1)+ Mu,(1)))|do < CZJ O(t—1)h(F (1) +Mu.(1))dx,

K 0 s

tes,gl.

Thus, it follows that

t

0 < f(u (1)) < f(u:(s)) + Coo(t — 5) [h(uz(s)) + J h(Z (7) + Mu.())dt

N

t

+ Jr F(F(2)de + MJ Fu)ds,  telsd.

S N

By Gronwall’s Lemma and (i), we obtain the result. []
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