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ABSTRACT. Mathematical models of a general class for muscle contraction are studied

in terms of linear semigroup theory. Two-state and four-state cross-bridge dynamics

are described as nonlocal nonlinear transport systems. The initial-value problem for

the nonlinear transport equation is reformulated as an abstract evolution equation

in certain weighted L1 spaces and a natural notion of mild solution to the evolution

problem is introduced. The existence, blowing-up at a finite time, and uniqueness of

the mild solutions are discussed under natural assumptions.

1. Introduction

This paper is concerned with nonlocal nonlinear transport systems of the
form

τ'(ί)dxu = ?(*,*, »,z(f)), (f,x) e (0, Γ) x R,

(NNS) <J / f+°°α+oo \

wb) «(ί,^)έfy , ίe[0,Γ].
-oo /

Here u : [0, T] x R —> R^ is an unknown function, [0, T] is a given time in-
terval, TV is a given positive integer, dt and dx stand for the partial differential
operators with respect to the time and space variables, respectively, z' means
the time derivative of z, and w(y) - u(t, y) means the inner product of H> and
u in R^. Moreover, the function φ : [0, T] x R x E x R —> R^ is supposed
to be continuous in (/,n,z), where E = { ( w 1 , . . . , U N ) e RN \ w 1 , . . . , U N > 0,
u1 -\ h UN < 1}, φ need not be continuous in x, L : (α,6) —> R is a con-
tinuous, decreasing function, and w : R —» R^ is a continuous weight function
whose components are all nondecreasing. The precise assumptions for the
system are made later.

The coefficient z'(t) of dxu in (NNS) may vanish and need not have a
constant sign. Hence the system (NNS) of partial differential equations
may degenerate to a system of ordinary differential equations. Further, the
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transport term z'(i)dxu is a product of the space derivative of the unknown
function u and the function z ' ( t ) which contains u in a nonlocal way. The
nonlocal nonlinearity of this type is not straightforward to treat.

In case N=l, many authors have treated (NNS) under various as-
sumptions and discussed the existence and uniqueness of solutions. In early
works [8, 26], the inhomogeneous term φ(t,x,u,z) is of a linear form

y(t)f(x)(\ - u) - g(x)u and is assumed to be smooth, w(x) = x, L(τ] is a
specific function and the initial data is identically equal to zero. Under these
conditions, classical solutions or Lipschitz continuous strong solutions with
compact support were studied. In [4, 13], Lipschitz continuous strong solu-
tions with compact supports are investigated in the case where φ is of the
form F(t,x,z) — G(t, x, z}u and is locally Lipschitz continuous in x, L(τ) is
a general function, and the initial function has a compact support. Using

the vanishing viscosity method, Colli and Grasselli [7] treated the equation
in L2(R) for φ(t, x, u,z) = F(t, x,z) - G(t, x,z)u. For the function φ of the
general form, Kato and Yamaguchi [17] chose the space of bounded, uniformly
continuous functions on R as the base space. In addition, in [15] the equation

in Ll(R) is treated in the cases where φ(t,x, u, z) = γ ( t ) f ( x , z)(l — u)p —
g(x,z)u? and γ ( t ) f ( x , z ) ( \ — up) — g(x,z}uP with p, p > 1. In the recent paper
[21], Matsumoto, Oharu and Yamaguchi have considered weak solutions with
compact supports and showed the well-posedness in Ll(R) in the case where
φ(t, x, w,z) = F(t, x, z, u) — G(t, x,z, u)u, w(x) is of class C1 and bi-Lipschitz
continuous, L(τ) is a general function, and the initial data have compact

supports.
In case TV = 4, Comincioli et aί [11] studied the case where φ =

<*ij(t,x)uj - a f l f a x W ] , i= 1 ,2,3,4,
j=i±l

flι,/±ι (*>*)> i— 1 5 2, 3,4, are bounded and of class C1 on [0, T] x R, w(jc) =
(0, 0, x — δ, x] (δ a constant), and

( Γ+0° \
1 + [(x - δ)ul(x) + xu*(X)}dX - log(l + τ),

J-oo /

a = — 1 and b = -hoo. Here (MQ, W Q , W Q , UQ) stands for an initial datum. They
established existence and uniqueness theorems for global classical solutions.
See [1, 3, 5, 6, 7, 9, 10, 15, 16, 20, 27] for the mathematical researchs in the
other model equations.

The unknown function u(t, x) = ( u λ ( t , x ) , . . . , uN(t, x)} represents an TV-
vector of densities or that of populations. Therefore each component is not
always continuous in x, and it is preferable that those should be found in
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Ll(R)N. Furthermore, the function φ(t,x,u,z] proposed originally by A. F.
Huxley is discontinuous in x, and a solution is required to have the

property that x H-» w(x) u(t,x) is integrable on R because the integral

§-™w(χ}'u(tϊχ}dx has to make sense in (NNS). For these reasons, it is
most suitable that the system is treated in the product space X =

L !(R; (1 + w l ( x ) \ ) d x ) x - x L !(R; (1 + \wN(x)\)dx) of weighted L1 spaces by

1 + |w'(x)|, / = ! , . . . , N. Here w'( c), ί — 1 , . . . ,7V, are components of H>(JC).
The precise definition of the weighted L1 spaces is given in §5. On the other

hand, as seen later, it is possible to assume that the function φ can be

eventually smooth in t.

The purpose of the present paper is to study the local existence together

with blowing-up phenomena, global existence, and the global uniqueness of

weak solutions to the Cauchy problem for (NNS) formulated in the weighted

L1 spaces. The main theorems may be stated as follows (the precise state-
ments are given in §5):

THEOREM A (THEOREM 5.4; LOCAL EXISTENCE). Suppose that w is smooth
enough, and that L is strictly decreasing and locally Lίpschίtz continuous.
Assume that φ is Lίpschitz continuous in (w, z) and grows at most linearly in w,

and furthermore that φ enjoys a sub tangential condition. Let an initial value

«o e X be such that UQ(X) e E a.e. and a < J^ w(jc) u$(x)dx < b. Then the

Cauchy problem for (NNS) has a local weak solution. Moreover, if [0, Tmax),

?maχ < T, is the maximal interval of existence of weak solutions, and if u is
a weak solution on [0, Γmax), then

lim sup G
+oo \ I

w(x) u(t,x)dx\\ = oo.
-oo / I

THEOREM B (THEOREM 5.5; GLOBAL EXISTENCE). Assume that H>( ) =

(0, . . . , 0, w^( ) , . . . , WN( )) and wk( ),..., WN( ) are bi-Lίpschitz continuous for

some 1 < k < N. Suppose also that the functions φ and L satisfy the same
conditions as in the previous theorem. Let UQ e X be such that UQ(X) e E a.e.

and a < J^ w(x) u$(x}dx < b. Then the Cauchy problem for (NNS) has a

weak solution on the whole interval [0, T].

THEOREM C (THEOREM 5.7; UNIQUENESS). Suppose that the functions w and

L satisfy the same conditions as in the first theorem. Assume that φ is Lipschίtz

continuous in (w, z), sufficiently regular in x, and grows at most linearly in u.

Then weak solutions to (NNS) are uniquely determined by the initial data.

As for the nonlinearity of φ(t,x,u,z], we consider not only the Lipschitz

continuity with respect to u but also the quasi-dissipativity with respect to u.

This kind of generalization and the introduction of weighted L1 spaces have



532 Toshiyuki YAMAGUCHI

not been made so far in the study of mathematical models of muscle con-
traction. Treating the system in the product space X, we regard the mapping
W (Λ') •"* ί-π w(x) u(t,x)dx as a continuous linear functional on X.

One may discuss strong solutions of (NNS), but it is necessary to assume
that x H-> φ(t, jc,u, z) is absolutely continuous, since the first equation is hy-
perbolic and any smoothing effect can not be expected. Accordingly, we do
not treat strong solutions here because we are interested in the nonlinear term
φ which is discontinuous in x.

In a way similar to the past researches, we first reduce (NNS) to an
equivalent equation for z(t) rather than u(t,x). The main reason is that if
u(t,x) is first regarded as the unknown function then (NNS) becomes a fully
nonlinear system, and so that the approach from this point of view is not

straightforward. Therefore we make an attempt to formulate an appropriate
equation for z( ) and find the nonlocal term z( ) by applying Schauder's fixed
point theorem. Such z( ) is obtained on a "small" subinterval of [0, T]. We

then prolong z(t) onto [0, T] step by step. This approach is essentially made
in [20] for the parabolic regularizations and does not require a priori esti-
mates. In the previous papers, various a priori estimates for z(t) were given to
guarantee the global existence of z(t).

The notion of "weak solution" does not mean a solution in the sense of

distributions which does not make sense in (NNS) if z(t) is not difΓerentiable.
Therefore it is natural to employ mild solutions in the theory of abstract
evolution equations. (See Definitions 2.2, 3.1 and 5.2 below.) For this reason
we convert the evolution problem for (NNS) to an abstract nonlinear

evolution system (AES) in a real ordered Banach space X. The system may be
formulated as a semilinear evolution equation coupled with a nonlinear
constraint:

( AFSΪ , , , t e (0, Γ),
1 ]

Here u : [0, T] -» X and z : [0, T] -> R are unknown functions, A : 9>(Λ) c X
— » X is the generator of a linear Co -group on X, D stands for a natural class
of elements of X in which solutions u take their values, and F : [0, T] x D x
R — > X is a continuous nonlinear mapping. In the nonlinear constraint,
/ : X — > R is a continuous linear functional on X, a multi-valued function
Γ : 3$(Γ) c= R — > 2R is a nonlinear m-dissipative operator in R, and ' stands for
the differentiation with respect to t.

A one-parameter family {S(OheR °f continuous linear operators from a
Banach space (X, || ||) into itself is said to be a linear Co-group on X, if
S(s + 1) = S(s)S(t) for all s,teR, S(0) = Ix, the identity operator in X, and

\\S(ήv - v\\ -» 0 as / -» 0 for v E X. The generator A of {S(/)}?eR is defined
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by 9>(A) = {υe X\ l im/^oh~ l (S(h)υ - v) exists in X] and Aυ = limΛ_»oh~ l -
(S(h)v - v) for v e 2(A). The Co-group {S(t)}teR is of type ω e R, if 115(011
< eωl'l for all t E R. Let A be a nonlinear, possibly multi-valued, operator in
X. Its range <%(A) is defined by 3t(A) = {JUE@(A\Au. We often write (M, t;) e
A if u E Q)(A] and υ E Au. In case X = R, A is ra-dissipative if and only if
Oi - v2)(u\ - u2) < 0 for O/, t;/) 6 v4, / = 1,2, and #(/ - λA) = X for A > 0;
in other words, -^4 has a maximal monotone graph. In what follows, we deal
with a real Banach space (X, || ||) equipped with a partial ordering ^.

Namely, u\ ^ HI in X implies u\ + υ ̂  ^2 + v and αwi ^ αι/2 in ^ for i; e X
and α > 0. We denote by X+ the positive cone in X, i.e., A"+ =
{HEX w ^ O in A^}. The system (X, || ||, ^) is called an ordered Banach
space, whenever X+ is norm closed. We refer to [2, 12, 25] for linear (semi-)
groups, [2, 22] for nonlinear dissipative operators, and [2, 12] for ordered
Banach spaces.

This evolution system (AES) is of a specific form, although it extracts the
characteristic features of the nonlocal nonlinear transport system (NNS) in such
a way that (NNS) is reduced to a nonlinear evolution equation in X coupled
with a nonlinear constraint in terms of a continuous linear functional / on X.

This paper is organized as follows: §2 is devoted to the analysis of
semilinear evolution equations (SE z) formulated for a given function z( ):

(SE; z) u' + z'(ί)Λu = F(t, u, z(f)), t E (0, Γ).

This analysis is required to reduce the abstract evolution system (AES). In §3,
the notion of mild solution to (AES) is introduced and our main results
concerning the local and global existence and uniqueness of the mild solutions
are stated. The uniqueness theorem for (AES) is proved in §3. In addition,
we describe the reduction from (AES) to equivalent equations for z( ). In §4
we discuss the existence theorems for (AES) via a fixed point argument. In § 5
our main results for (NNS) are stated. We make basic assumptions for w>, φ
and L in (NNS) here and introduce weighted L1 spaces and then the notion
of weak solution to (NNS). Moreover, we give a local existence theorem
together with a result concerning blowing up solutions and then a global
existence theorem as well as a uniqueness theorem for weak solutions. These
results are proved in §6 by applying the abstract results given in §3. Finally,
in §7, we prove some technical estimates for mild solutions to (SE z).

Features of the model. The evolution system (NNS) is interpreted as a
mathematical model describing the cross-bridge dynamics in muscle contraction
phenomena. The constitutive unit of a muscle is called a sar comer e which
consists of a thick filament (myosiri) and thin filaments (actins). Pioneering
researches in muscle contraction were made by H. E. Huxley and A. F. Huxley.
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Nowadays there is a general agreement that muscle contraction can be
explained in terms of sliding filament theory proposed by A. F. Huxley.
According to his theory, the generation of muscular force is due to interactions
between myosins and actins. Under the influence of the intercellular calcium

ions which are emitted through nerve impulses, the so-called cross-bridges
connect the thick filaments and the thin filaments, and then act like Hookean
springs. As a result, the muscular force is generated and works on relative
slides between those filaments. The cross-bridges are composed of myosin
molecules standing out from the myosin filaments, and it is inferred that they

are approximately governed by the linear elasticity.
The x-axis is placed on a myosin (thick) filament and the origin (x = 0)

is taken at the root of each cross-bridge. Then the position x represents the
orthogonal projection to the x-axis of each subfragment-1 (myosin head). See,
for instance, [8, 11, 26] for more explanations. Two states of the cross-bridges
can be considered: the state in which a cross-bridge attaches to the actin and

the state in which a cross-bridge does not attach the actin. We then denote
by ul(t,x) and u2(t,x), respectively, the detached and attached cross-bridge
densities in the half-sarcomere under observation at time t and position x.
Then the functions ul and u2 are governed by

dtu
i^Ό(t)dxu

i = φi(t,x,ul,u2,z(t)), ( f , * )6(0,Γ)xR, ι = l , 2 ,

where dtu
l 4- v(t)dxu

l indicates the material derivative of u*(t,x) and z(t) stands
for the length (of shortening) of the half-sarcomere at time t. Furthermore,

v(t) stands for the velocity of contraction, and hence υ(i) — z'(i). The func-
tions φl and φ2 take the forms of φλ(t,x,ul,u2,z) = g\(x)u2 — y ( t ) f \ ( x ) u l and
φ2(t,x,ul,u2,z) — γ ( t ) f 2 ( x ) u l — g2(x)u2. Here ft(x) and gι(x) are the attach-
ment and detachment rate functions, respectively; y(t) stands for the change
in time of the concentration of calcium ions and is a nonnegative smooth
function. If the contraction is twitch, y(t) rises from zero to a single peak soon
and then decays back to zero; if it is tetanus, y(t) rises from zero to a peak soon
and keeps up the maximum till the arrival of the last impulse, and then decays
back to zero. For TV = 2, the interpretation of the first equation of (NNS)
may be made in this way. The force generated by the attached cross-bridges
at x is given by κxu2(t,x) (K being a positive constant). The support of
function u — (ul,u2} is contained in a sufficiently large bounded interval of the
space variable, because the lengths of cross-bridges are bounded above. The
density is normalized in the sense that the total density of cross-bridges of
the position x in the half-sarcomere under observation is the unity, namely,
u1 + u2 = 1 on such interval.

On the other hand, the generation of muscular force or tension of a whole
muscle is generally explained in terms of rheology by using three-component
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model of Hill. In this model a muscle is composed of a contractile component

CC, a series elastic component SEC and a parallel elastic component PEC.

The active contraction of muscles is due to CC which represents the half-
sarcomere. The components of SEC and PEC are passive in the sense that

they generate the force only when the whole muscle is activated by the outer

and inner force. Both elastic components represent muscular tissues, tendons,

blood vessels, and so on. They are not Hookean springs but assumed to be
nonlinear elastic systems. This assumption implies an exponential relation

between the contractile force τ := J^ κxu2(t, x)dx generated by CC and the

length ζ + const, of the (half-)sarcomere (ζ := z(t)). Roughly speaking, con-
sidering the inverse of the exponential relation, we obtain the second equation

of (NNS). In this case the weight function w(x) is given by w(x) = (0,τoc). If

the contraction is isometric, the function L(τ) is given by L(τ) = —log(l 4-τ),

a — — 1, b — +00; if it is isotonic, L(τ) = log[(β - τ)/q(\ + τ)], a = — 1,

b — Q for some 0 < q < Q < +00; if it is ίsometric-isotonic, L(τ) =

log[(#— (τ — Q + q)+}/q(\ +τ)], 0 = — 1 , b = Q for some 0 < q < Q < +00,
where c+ = max{c, 0}. We refer to [26] for the derivations of these functions
L(τ). In addition, we refer to [1] for different models of the isometric or

isotonic contraction phenomena; and we refer to [9] for a model which is

considered the nonlinear viscoelasticity in place of the nonlinear elasticity.

In the above models we have considered two states in which cross-bridges
connect or do not connect with actin filaments. In this sense the model is

called a two-state cross-bridge model. In the past researches, (NNS) with TV =
1 had been considered as the standard model equation for a two-state cross-

bridge model: The attached cross-bridge density u(t,x) is governed by

dtu + z'(ήdxu = φ(t,x, u,z(f)), (ί,x) e (0, T) x R,

G
+oo \

w(y)u(t,y)dy\, t e [ Q , T ] .
-oo /

In particular, the function φ proposed by A. F. Huxley is of the form

φ(t,x,u,z) = γ ( t ) f ( x ) ( \ — u) — g(x)u. Here f ( x ) and g(x) are the attachment

and detachment rate functions which are, respectively, given by

> > Oc) =
0, otherwise, k-$x/h, otherwise,

where k\, ki, k $ and h are positive constants. Notice that the detached cross-

bridge density is represented by 1 — u(t,x). Put ul — 1 — u and u2 = u. Then
u=(ul,u2) is (formally) a solution of (NNS) with N = 2. In this case,

φ=(φl,φ2) is given by φ2(t,x,u\u2,z) = -φl(t,x,u1,u2,z) = y ( t } f ( x ) u l -
g(x)u2, and w = ( w 1 , w 2 ) is given by wl(x) = 0 and w2(x) = w(x). Thus, the
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case TV = 1 can be considered as a special case of the system with N = 2.

Accordingly, we should adopt the system with N = 2 as a two-state cross-

bridge model rather than the case N = 1 .
In the two-state cross-bridge model we consider only two states in which

cross-bridges connect with actin filaments or not. On the other hand, there is

a model such that a cross-bridge connects with an actin filament in two states

and not in the other two states. This is called a four-state cross-bridge model.
States 1 and 2 are states in which cross-bridges do not connect with actins.

The other two states are specified in such a way that if the attached cross-

bridges do not generate forces when the attachment angle between the sub-

fragment- 1 and actin filament is 90° (resp., 45°) then the state is called State 3
(resp., State 4). Introducing the space variable x in a way similar to the case

TV = 2, we put the origin at which the cross-bridge in State 4 does not generate

force. Thus, the force generated by the cross-bridges of the position x in State
4 is expressed by K4xu4(t,x) (κ$ being a positive constant, u4(t, x) the density of

the cross-bridges in State 4 at t and x). If the cross-bridge in State 3 does not

generate force at x = δ(>0), then the force generated by the cross-bridges in
this state at x is given by κ^(x — δ)u3(t,x) (KI > 0, u3(t, x) denotes the density

of cross-bridges in State 3 at t and x).

The density function (w1, w 2 ,M 3 ,w 4 ) describing the respective states in which

cross-bridges are is governed by the equations

d,n'' + KOθjH1' = ̂  M',*K -^MKl, i = 1,2,3,4.
7=ϊ±l

Here υ(t) represents the contracting velocity of a half-sarcomere. Hence υ(t) =
z ' ( t ) and z(t) + const, means the contracting length of a half-sarcomere. The
coefficients ay(t,x) are the rate functions of the transition from State j to State

i. In a way similar to the case N = 2, a rheological model implies a relation

( r+oo r+oo \

1 + κ3(x - δ)ul(x)dx + κ4xu*(x)dx - log(l + τ)
J — oo J — oo /

between the length of a half-sarcomere and the contractile force, where

(UQ,UQ,UQ,UQ) is Si vector of initial densities of respective states of cross-bridges

and the contractile force τ generated by the cross-bridges in a half-sarcomere is
expressed by

f+o

=
J— 0

In this case, w(x) is chosen as w(x) = (Q,Q,κι(x — δ),κ$x). We may interprete
(NNS) for N = 4 in this manner. We refer to [11] and the references therein
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for detailed explanations for the four-state cross-bridge models and refer to [18]
for related topics.

Therefore, it is natural to employ (NNS) as a mathematical model for the
two-state and four-state cross-bridge models of muscle contraction phenomena.
It is interesting to compare the two models from a mathematical point of view.
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2. Semilinear evolution equations associated with (AES)

In this section we study the semilinear evolution equation (SE z) for a
given function z( ).

We first state our basic hypotheses. Condition (BS) below is a hypothesis
on the Banach space X and (GR) is a hypothesis on the linear operator Λ:

(BS) (X,\\ ||, <) is a real, ordered Banach space. D is a nonempty,
closed subset of X which is contained in the positive cone X+. Moreover,
u, v, v — u e X+ (i.e., 0 ̂  u ̂  v in X) imply \\u\\ < \\v\\i

(GR) The linear operator —A : &(A) a X — > X generates a Co-group
{5(σ)}σeR of type ω > 0 on X such that S(σ)X+ c X+ and S(σ)D c D for
σ e R .

Let T be an arbitrary but fixed positive number. We hereafter assume
that the nonlinear mapping F : [ 0 , Γ ] x D x R — >^ is continuous. In addi-
tion, we put conditions (Fl) and (F2). (Fl) implies the Lipschitz continuity
in u and (F2) is the so-called subtangential condition. For the subtangential
conditions, we refer to [19, 23, 24].

(Fl) For each r > 0 there exists a constant K(r) > 0 such that

for r e [0, T], u\,u2eD and z e [-r,r];

(F2) For each (ί, w,z) e [0, T] x D x R, liminf/^o/r1^ + hF(t, w,z),D)
= 0 holds, where d(v,D) stands for the distance from v to D, that is, d(v,D) =
mfueD\\v-u\\.

To define a mild solution to (SE z), we need an evolution operator Uz(t,s)
determined by A and z( ). For z e Wl'l(Q, T) and for almost every t e (0, T),
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we define a linear operator Az(t) in X by

Moreover, for each z e C([0, Γ]), we put t72(M) = S(z(t) - z(s)), j, / e [0, Γ],
where {^(σ)}σeR is the Co-group generated by —A. Then we obtain the
following proposition, cf. [14].

PROPOSITION 2.1. Assume (BS) and (GR). Let z e C([0, Γ]). Γλe/i fλe
two-parameter family {Uz(t,s)}t se^ τ\ has the following properties:
( i ) Uz(t,s) : X -+ X is a continuous linear operator for (t,s) e [0, Γ] x [0, Γ].
(ii) (t,s) i— > U z ( t , s ) is X-strongly continuous on [0,7"] x [0, Γ].

(iii) C/ z(M)E/z(ί,r)=E/zM, Uz(s,s)=Ifor r,s,te[0,T].
(iv) t/ z (f,s)Γc= 7, αfld (/,S)H-* Uz(t,s) is Y-strongly continuous on [0, Γ] x

[0, Γ], >v/z^r^ Γ := 3>(A) is endowed with the graph norm of A.

(v) If ze ^(OjΓ) α/irf u e 7,

Uz(t,s)u-u= \ Az(τ)Uz(τ,s)udτ= [ Uz(t,τ)Az(τ}udτ,
Js Js

(vi) ΓAβ operator Uz(t,s) is ίnvertible and Uz(t,s}~1 = Uz(s,t) for s, t e [0, Γ].

TTzM s, {C4(ίj S')} / ls 6[o r] ^ α unique (linear) evolution operator on X generated
by [Az(t)}t.

Let 0 < s < ς < T. Given z e C([s,ς]), we define mild solutions to

(SE; z) u' + z'(t)Λu = F(t, u, z(0), ί e (s, ς).

DEFINITION 2.2. A function u : [s,ς] -+ X is called a mild solution to
(SE z) on [s, ς], if w e CQ s, ς];/)) and satisfies the integral equation

u(S) + f ' S(z(/) - z(τ))F(τ, ιι(τ), z(τ))£/τ, ί e [s, ς}.
Js

iί(0 = S(z(ί) - z(s))

Here the integral is taken in X in the sense of Bochner.

Our first goal is to prove the following theorem.

THEOREM 2.3. Assume (BS), (GR), (Fl) and (F2). Let 0 < s < ς < Γ,
z e C([,y, ς]) fl«ί/ useD. Then the Cauchy problem for (SE z) on [s, ς] wz'/λ
initial condition u(s) = us possesses a unique mild solution uz in C ( [ s , ς ] ; D ) .

To prove this theorem we adopt the "method of characteristics" which
has been employed in most of the papers concerning mathematical models for
muscle contraction phenomena.
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Let 0 < s < ς < T. Given z e C([s, ς]) and us e D, we formulate an initial-
value problem for the ordinary differential equation

(ODE z) v'(i) = S ( - z ( t ) ) F ( t , S ( z ( t ) ) v ( t ) , z ( t ) ) , te fcς],

in X with initial condition v(s) = S(—z(s))us, or equivalently, the integral
equation

(2.1) v(t) = S(-z(s))us + \' S(-z(τ))F(τ, S(z(τ))v(τ),z(τ))dτ, t e (s, ς],
J s

where {S(σ)}σeR is the Co-group generated by —A.

PROPOSITION 2.4. Assume (BS) and (GR). Let 0 <s < ς <T, z e

C([j,ς]) and us e D. Then the initial-value problem for (SE z) with u(s) = us

and the initial-value problem for (ODE z) with v(s) = S(—z(s))us are equivalent

in the following sense:
(i) Let ueC([s,ς\,D) be a mild solution of (SE z) with u(s) = us and put

v(ή = S(-z(t))u(ή. Then v e C([s,ς] D) ΓΊ C l ( [ s , ς ] ; X ) gives a classical
solution of (ODE z) satisfying v(s) = S(—z(s))us'9

(ii) Let v e C ( [ s , ς ] ] D ) Γ \ C l ( [ s , ς ] ] X ) be a classical solution of (ODE z)
with v(s) = S(-z(s])us and put u(t) = S(z(t)}v(t). Then ueC([s,ς]\D)

becomes a mild solution of (SE; z) with u(s) — us.

PROOF, (i) Let u e C([j,ς];D) be a mild solution to the initial-value
problem for (SE; z) on [s, ς] with u(s) = us. Set v(t) = S(-z(t})u(ή. Then it is
clear that υ e C([s,ς]\B) and it satisfies (2.1) by (GR), and so υ e
C l ( [ s , ς ] ] X ) . Notice here that the operator S(σ) is invertible and S(σ)~{ =
S(—σ) for any σ E R. The implication from (ii) to (i) is verified. Π

PROPOSITION 2.5. Under the same assumptions as in Theorem 2.3, the
initial-value problem for (ODE z) on [s,ς] with initial condition v(s) —

S(-z(s))us has a unique classical solution vz in C ( [ s , ς ] ; D ) Γ \ C l ( [ s , ς } ,X).

PROOF. We begin by extending F(t,u,z) to R x D x R by

z), if f <0,

:,z), if t> T.

Hence we may assume that F e C(R x D x R; X) and satisfies (Fl) and (F2)

for all t e R.
Fix z e C ( [ s , ς ] ) and set

'z(j), if t<s,

if t > ς.

Then z e C(R). Put G(t,υ) := Gz(t,υ) := S(-z(t))F(t,S(z(t))υ,z(ή) for (ι,υ) e
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R x D. Then G E C(R x Z>; X) since the Co-group {S(σ)}σeR is of type ω > 0.
By (Fl), we see that G ( t , v ) is Lipschitz continuous in v uniformly for t e R:

\\G(t,υι)-G(t,υ2)\\£e2ωrK(r)\\vl-V2\\, t e R, ι>ι , ι> 2 e/>,

where r = supτeR |z(τ)| = supί<τ<ς|z(τ)| < oo and K(r) is the constant employed
in (Fl). As a result, G is quasi-dissipative in the following sense:

(2.2) (1 - λCr)\\υι - v2\\ < \\Vl -v2- λ[G(t, v,) - G(t, v2)}\\,

where Cr = e2ωrK(r). Moreover, G satisfies the subtangential condition

(2.3) liminf h~ld(v + hG(t,v),D) = 0, ίeR, t; e D,
Λ|0

where d(u,D) = mfveD\\u - v\\ for u e X. In fact, S(-σ)S(σ) = I and S(σ)D
= D for σ e R by (GR). Therefore we know that

d(v + hS(-σ)F(t, S(σ}v, σ),D) < eω\σ\d(S(σ)v + */*(*, S(σ)υ, σ),D)

for A > 0 and (/, ι>, σ) e R x Z) x R. Thus, by (F2), it follows that

liminf h~ld(v + hS(-σ)F(t,S(σ)v,σ),D) = 0, (t,υ,σ) e R x Z) x R,
ΛJ.O

which implies (2.3).
Given vs e Z), we consider the integral equation

(2.4) υ(t) = vs+\ G(τ, v(τ))dτ, t e [s, +00).
*/5

Since G belongs to C(R x Z); ̂ ) and satisfies (2.2), (2.3), we can apply Pavel
[23, Corollary 1.1] to obtain a unique solution v e C([s, oo);£>) of (2.4).
Consequently, for 0 < s < ς < Γ, z e C([s, ς]) and us e D, the integral equation
(2.1) has one and only one solution vz e C([s,ς]-,D). Since (2.1) is equivalent
to (ODE z) with v(s) = S(—z(s))uS9 the proof is complete. Π

PROOF OF THEOREM 2.3. The proof follows directly from Propositions 2.4
and 2.5. Π

We next investigate the continuous dependence of solutions of (ODE z)
and (SE; z) on the function z. To do this, we need the Lipschitz continuity of
F in z:

(F3) For every r > 0 there exist a nonnegative function vr E Ll(Q, T) and
a nondecreasing function ρr : [0, oo) —» [0, oo) with pr(+Q) = 0 such that

\\F(t,U,Zl)-F(t,U,Z2)\\<ZVr(t)pr(\Zl-Z2\)

for almost every f e (0, Γ), u € D with \\u\\ < r, and zι,Z2 e [—r,r].
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LEMMA 2.6. Assume (BS), (GR) and (Fl) through (F3). Let 0 < s < ς <
T and us e D. Let vz e C([s, ς]; D) be a solution of the initial-value problem for

(ODE z) on [s,ς] with initial condition vz(s) = S(—z(s))us. Then z ι-> vz is a
continuous mapping from C([s,ς]) into C([s,ς]-,X). Here the spaces C([s,ς\)
and C([s, ς]; X) are equipped with the supremum-norm | 1^ and the usual norm

Mao = sup5<,<ς|KOII, respectively.

PROOF. Suppose that zn -* z in C([s,ς]) and that vn,v e C([s,ς];/)) are
solutions of (ODE;z«) and (ODE z) on [s, ς] such that υn(s) = S(—zn(s))us and
v(s) = S(—z(s))us, respectively. Then we have

IMO - "(Oil

< \\S(-zn(s))us - S(-z(s))u,\\

+ \'\\S(-zn(τ))[F(τ,S(zn(τ))vn(τ),zn(τ))-F(τ,S(z(r))V(τ),zn(τ))}\\dτ
JS

+ \ 1 \ \ S ( - z n ( r ) ) ( F ( τ , S ( z ( τ ) ) v ( τ ) , z n ( τ ) ) - F ( τ , S ( z ( τ ) ) υ ( τ ) , z ( τ ) ) } \ \ d τ
Js

+ \'\\[S(-zn(τ)) -S(-z(τ))]F(τ,S(z(τ))v(τ),z(τ))\\dτ, te[s,ς}.
Js

We here denote by J\ and /2, respectively, the second and third terms of the
right-hand side of the above inequality. Put r — supw zm|00. By (Fl), we obtain

/i < eωfK(r)\eωf f \\υn(τ) - υ(τ)\\dτ + f ' ||[S(zπ(τ)) - S(z(τ))]v(τ)\\dτ\,
I JS JS )

since {S(er)}σeR is of type ω. Let r = max{r,eω^supj<τ<ς||ι;(τ)||}. We have

vr(τ)dτpr(\zn-z\^}

by (F3). Here vreLl(Q,T) and the local modulas pr of continuity are the
functions employed in (F3). Thus, it follows that

where

f ||ι>Λ(τ) - t;(
Js

+ eωίK(r) \ς\\[S(zn(τ))-S(z(τ ))\v(τ)\\dτ + e™ Γ vr(τ)dτpr(\zn - .
Js JO

+ Γ ||[S(-zB(τ)) - S(-z(τ))]F(τ,S(z(τ»v(τ),z(τ))\\dτ.
Js
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GronwalΓs Lemma then gives

(2.5) sup \\υn(t) - v(ή\\ < Ύnexp(TK(r)exp(2ωϊ)).
s<t<ς

Since Ύn — > 0 by the Bounded Convergence Theorem, letting n — > oo in (2.5)
implies that υn — > v in C([s,ς]-,X). Thus, the desired result follows. Π

We put the following condition on the linear functional /

(LF) The continuous linear functional / : X — > R is not identically equal
to zero and the composition fΛ : 2 (A) c X —» R is continuous on the linear
subspace (2 (A), \\ - ||) of (X, \\ ||). Furthermore, the unique extension g offΛ
to X satisfies g(u) < 0 for all ue D.

REMARK 2.7. The domain 2 (A) of Λ is a dense linear subspace of X since
—A is the generator of a Co-group on X. Hence a continuous linear functional

fA on 2 (A) is uniquely extended to all of X as a continuous linear functional.

LEMMA 2.8. Assume (BS), (GR) β«J (LF). Then (i) /or eαcΛ v € X we
have

f(S(σ)v)=f(v)-\σg(S(τ)v)dτ, σ ε R,
Jo

(ii) ybr £flc/z r > 0 we

£ HffL*°>ι -σ2|, *ι,*2 6 [-r,r],

[I,, denotes the norm of continuous linear functionals on X.

PROOF, (i) Since 2 (A) is dense in X, it suffices to show that for υ e 2 (A)
the result holds. Let ve2(A). Since —A is the generator of {S(σ)}σeR, it
follows that S(σ)υ = v- $° ΛS(τ)vdτ for σ e R. Noting that fA = g on 2 (A)
by (LF), we see that

f ( S ( σ ) v ) =f(υ) - \° f(ΛS(τ)υ)dτ = f ( υ ) - \" g(S(τ)v)dτ, σeR
Jo Jo

Assertion (ii) follows directly from (i). Π

The next lemma asserts the continuous dependence of mild solutions of
(SE z) on z.

LEMMA 2.9. Assume (BS), (GR), (Fl) through (F3) and (LF). Let 0 <
s < ς < T, us e D, and let uz e C([s, ς];D) be a mild solution of the initial-value
problem for (SE z) on [s,ς] with uz(s) = us. Then zι— »/wz is a continuous
mapping from C([s,ς\) into itself, where C([s,ς\) is the Banach space endowed
with the supremum-norm \-\(X).
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PROOF. Let zn — > z in C([s, ς]) and let un,ue C([,s,ς];D) be the associated
mild solutions to (SE;zΛ) and (SE z) on [s,ς] satisfying un(s) = u(s) = us,
respectively. Set υn(t] = S(-zn(i)}un(t) and v(t) = S(-z(t))u(t). Then υn and
v are the solutions of (ODE z,,) and (ODE z) satisfying, respectively, vn(s) =

S(—zn(s))us and v(s) — S(-z(s))us by Proposition 2.4. Therefore, Lemma 2.8
(ii) implies that

\ f ( u n ( t ) ) - f ( u ( t ) ) \ = \f(S(zn(t))υn(ή)-f(S(z(t))υ(t}}\

ω'r\zn(t)-z(t)\ \\v(t)\\, t e ( s , ς ] ,

where f = sup^lz^l^. Taking the supremum over t e [s,ς] and then letting n — >
oo, we conclude that/w w — >/w in C([s,ς]) by Lemma 2.6. Π

REMARK 2.10. Under the assumptions in the above lemma, one can

not expect the Lipschitz or Holder continuity of zι->/wz : (C([s, ς]), |

The following lemma concerning the regularity of the function f(uz(f)) is
applied to the proofs of the existence theorems for (AES).

LEMMA 2.11. Assume (BS), (GR) and (LF). Let 0 < s < ς < T, 1 <p <
oo and uz a mild solution of (SE z) on [s,ς]. If z e Wl'p(s,ς), then f(uz( )) e

Wl*(s,ς) and

(fuz)'(t) = -z'(t}g(uz(t}} +fF(t,uz(t),z(ή) a.e. (s,ς).

PROOF. For υeX it is seen that (d/dt)f(S(z(t))υ) = -z'(t)g(S(z(t))v)
a.e. (s,ς) by Lemma 2.8 (i). Put vz(f) = S ( - z ( f ) ) u z ( t ) . Then vz e C([s,ς]]D)
Π Cl([s, ς]; X) and is a classical solution to (ODE z) on [s,ς] with vz(s) =
S(-z(s))uz(s).by Proposition 2.4. Hence fuz(t) =fS(z(t))vz(t). From this
we see that

This shows that ( f u z } ' ( } εLp(s,ς). The proof is now complete. Π

3. Semilinear evolution equations coupled with nonlinear constraints

In this section we discuss the existence and uniqueness of mild solutions for
the nonlinear evolution system (AES) which is an abstract form of (NNS). The
existence theorems are proved in the next section. As in the previous section,
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we assume that the nonlinear mapping F is continuous on [0, T] x D x R
throughout this section.

To establish our results for (AES), we need the following growth condition
on F.

(F4) There exist an X-valued function J^ e Ll(Q, T;X+) and a constant
M > 0 such that F(t, u, z) ^ &(ί) + Mu in X for almost every t E (0, Γ), u e D
and z e R.

On the function Γ, we impose a dissipativity condition:

(G) The multi-valued function Γ: 2(Γ] a R -* 2R is a nonlinear
ra-dissipative operator in R, and locally quasi-dissipative in the following sense:
For each r > 0 there exists a constant βr > 0 such that

(l+λβr)\ζl-ζ2\£\ζl-ζ2-λ(τl-τ2)\

for λ > 0 and ( f/ ,τ/) e Γ with |C/| < r, / = 1,2.

We consider the Cauchy problem for the semilinear evolution equation
coupled with the nonlinear constraint:

• u'(ί) + z'(ί)Λu(t) = F(t,κ(0, *(0), t E (0, Γ),
(AES) I /(ιι(O)eΓ(z(O), ίe[0,:Γ],

under the initial condition (1C)

DEFINITION 3.1. A pair of functions (z, u) e C([0, T}) x C([0, T];D) is
said to be a ra/W solution of (AES) on [0, Γ], if the function w is a mild
solution of (SE z) on [0, Γ], and (z(ί),/(w(ί))) e Γ for t e [0, Γ] in the sense
that z(ή E @(Γ] and f(u(ή) E Γ ( z ( t ) ) .

We are now in a position to state the local existence theorem for the mild

solutions to the Cauchy problem (AES)-(IC).

THEOREM 3.2. Assume (BS), (GR), (Fl) through (F4), (LF) ΛJW/ (G). Let

(ZO,MO) e ®CO x £> and f(uQ) E Γ(z0). 77*£>rc ί/zere exwί f e (0, Γ] ίwd Λ wiW
solution (z,«) e C([0, f ]) x C([0, f];Z>) to ίAe initial-value problem (AES)-(IC)
on [0, f] such that z, fu E Wl^(Q, f}. Furthermore, let [0, Γmax) be the
maximal interval of existence of mild solutions, 0 < Γmax < Γ, and let (z, M) be
a mild solution on [0, Γmax). If Γmax < Γ, ί/ze« limsup/TΓmaχ |z(ί)| = oo.

To obtain the global existence result we need the following additional
hypotheses which are naturally satisfied for the system (NNS).

(AdLF) For the continuous linear functionals /, h : X — > R, σ E R and
u E X+, f ( u ) > 0 and h(S(σ)u) = h(u). There are constants C\, €2 > 0 such
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that 0 < C\h(u) < —g(u) < C2h(u) for nonzero ue X+. Furthermore, the
composition fΛ is continuous on the linear subspace (β(Λ), || ||) of (X, \\ ||),
and its unique extension g on X satisfies \g(u)\ < —g(u) for ueX+\

(AdF) F(t, M, z) ^ -MM holds in X for (ί, M, z) e [0, T] x Z) x R.
Moreover, there exists a nonnegative function £eL°°(0, T) such that

\fF(t, M, z)| < ί(ί) -f Mf(u) for almost every ί e (0, T) and (M, z) e £> x R.
Here M is the same constant as employed in (F4);

(AdG) The multi-valued function Γ satisfies either 0 φ 0t(Γ) or (0, 0) e Γ.

Under these conditions we have the following

THEOREM 3.3. Assume (BS), (GR), (Fl) through (F4), (LF), (G), (AdLF),

(AdF) and (AdG). Let (z0, MO) e ®(Γ) x D and f(uQ) E Γ(zQ). Then there
exists a mild solution (z, w) to ί/ze initial-value problem (AES)-(IC) o« [0, Γ]

z, /we FΓ1'00^,^.

To guarantee the uniqueness, we need an additional hypothesis which
impose the Lipschitz continuity of the function σ \-> S(—σ)F(t,S(σ)u,z).

(F5) For each r > 0 there exists a nonnegative function θreLl(Q,T)
such that

\\S(-σl)F(t,S(σι)u,z)-S(-σ2)F(t,S(σ2)u,z)\\ < θr(ή\σ{ - σ2\

for almost every t e (0, Γ), u e D with \\u\\ < r, and σ\, σ2, z e [— r, r].

Then we obtain the following uniqueness result.

THEOREM 3.4. Assume (F5) in addition to (BS), (GR), (Fl), (F3) with
pr(s) = Crs (Cr being some constant), (F4), (LF) and (G). Then for any pair
of mild solutions (z/,w/), / = 1,2, to (AES) on [0,7*] we

(3.1) |z, -zzU < C\\S(-zm)»m ~ S(

Here \ \^ denotes the supremum-norm over [0, Γ]. The positive constant C

may depend upon a fixed number R > max{ri,r2J, where r\ = maxf lz i l^ , ^2!^}

and r2 = βωrι+^Γ(max{||wι(0)||, ||w2(0)||} + JQ

Γ \\&(τ)\\dτ). In particular, a mild
solution to (AES) is unique, if it exists.

PROOF. Conditions (F5) and (Fl) together imply that for each r > 0 there
is a nonnegative function θreLl(Q,T) such that

(3.2) (1 - λθr(t))\\uι - u2\\ - λθr(ή\σι - σ2\

< ||W l _ U2 _ λ[S(-σι)F(t,S(σι)uι,z) - S(-σ2)F(t,S(σ2)u2,z)]\\

for λ > 0, almost every f e ( 0 , 71), MI, u2eD with | |M Z || < r, and σ\, σ2ί ze



546 Toshiyuki YAMAGUCHI

[—r,r]. Furthermore, it follows from (3.2) and (F3) with pr(s) = Crs that for
each r > 0 there is a nonnegative function θreLl(Q,T) such that

(3.3) (1 - λθr(t))\\uι - u2\\ - λθ,(t)\σι - σ2\

< \\ul-u2-λ[S(-σl}F(t,S(σl)ul,σl)-S(-σ2)F(t,S(σ2)u2,σ2)}\\

for λ > 0, almost every t e (0, Γ), u\, u2 E D with \\Uj\\ < r, and σ\, σ2 E [—r, r}.
Let (z, , MI), z = 1,2, be any pair of mild solutions to (AES) on [0, T]. Put

Vf(t) = S(-Zi(t)}ui(i). Then vf is a solution to (ODE z/) on [0, Γ] by
Proposition 2.4. In order to establish (3.1), we first show that

(3.4) βr\zl(t)-z2(t)\<\\fleωr\\vl(t)-υ2(t)\\, t e [ 0 , T ] ,

where βr is the constant employed in (G) and r > r\ = maxj lzi l^, ^lool If
'z\(t) = z 2 ( t ) at t, then (3.4) is trivial. We then suppose that z\(t) < z2(t) at
some t. Since Γ is a dissipative operator in R and (zι(ί),/(«/(/))) e Γ, we see

that ( Z l ( t ) -z2(0)(/(«ι(0) -/(«2(0)) < 0, and hence that/(m(0) >/(^(0).
Thus, we obtain the estimate

βr\z\(t) — z2(i)\ < \f(uι(t)) —f(u2(t})\ —f(u\(t)) — f ( u 2 ( t ) )

by the local quasi-dissipativity of Γ. Moreover, noting that σ \ - * f ( S ( σ ) v \ ( t ) )
is nondecreasing by Lemma 2.8 (i) and using the fact that f ( u i ( t ) ) =
f(S(zi(t))vi(t)), we have

β,\Zl(ή-Z2(ή\ < f ( S ( z 2 ( t ) ) v { ( t ) ) - f ( S ( z 2 ( t ) ) v 2 ( t ) ) < ||/||^WI||t;ι(0-ϋ2WI|.

This implies (3.4). We next demonstrate that

(3.5) \\Vl(ή-v2(ή\\

G
T \ ( f λ

θR(τ)dτ lkι(0)-t;2(0)| |+ θR(φι(τ) - z 2 ( τ ) \ d τ )
o / V Jo /

f o r ί e [ 0 , Γ ] ,

where ΘR( ) E Ll(0, Γ)+, R > max{n,r2} and

ri = eωrι+^rfmax{||ιι1(0)||, ||«2(0)||} + [
V Jo

Let 0 < h < t < T. Then vt satisfies

Vi(ί) = Όi(t-h)+ f S ( - z i ( τ ) ) F ( τ , S ( z i ( τ ) ) υ i ( τ ) 9 z i ( τ ) ) d τ
Jt-h

= Vi(t- h) +hS(-zi(t))F(t,S(zi(t))υi(t),zi(t)) + 0i(h]

and hence
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(3.6) υ t ( t ) - hS(-Zi(t))F(t, S(zi(t))vi(ή, zt(ή) = Vi(t - A) 4- o/(A),

where 0/(A) depends on f but A"1]^/^)!! — > 0 as A J, 0. We then use the next
estimate which is proved in §7.

LEMMA 3.5. Let z e C([0, Γ]) αwd w0 e D. If vz e C([0, Γ]; D) is a solution

of (ODE z) o/i [0, Γ] w/fA /wfw/ condition vz(Q) = 5(-z(0))ιι0,

/or 0 < ί < T.
o

In view of the above estimates, we have | | t y (OII ^ rι f°r ^ e [0» T\ Therefore,
by (3.3) with r = R and (3.6), it follows that

-hθR(t)\Zl(t) -z2(t)\

\\v, (t) - υ2(t) ^h[S(-zl(t))F(t,S(zl(t))vl (0,Z! (0)

-S(-z2(t))F(t,S(z2(t))υ2(ή,z2(t)

This leads us to the estimate

_ Λ) _ ^(r _ A)||

< θR(t)(\\Vl(t) - Γ2(ί)|| + |Z1(0 - Z2(ή\) + O(h)/h,

where o(h)/h -^ 0 as A | 0. Taking the limit suprema of both sides as A j 0,

we have

ZT IMO - i^OII < 0jι(0(lkι(0 - ^ W l l + |zι(ί) - z2(ί)|) a.e. (0, Γ),

where D~f(t) = limsupA:TOA:~1(/(/ + k) - /(*))• Solving this differential in-
equality, we get (3.5). Notice that we do not use the relation that /(w/(ί)) e

Γ(z/(0) to show (3.5).
It is clear from (3.4) with r = R and (3.5) that

|zι(ί) - z2(0| < cf ||ι;ι(0) - %(0)|| + [' θ R ( τ ) \ Z l ( τ ) - z 2 ( τ ) \ d τ ] , ί e [0, Γ],
V Jo /

for some positive constant C depending on R. By GronwalΓs Lemma, we get

|z!(0 - z2(ί)| < C||t;ι(0) - «2(0)||expf C \* θR(τ)dτ] for ί 6 [0, Γ],
V Jo /

which implies (3.1).
It remains to show that (3.1) implies the uniqueness. Assume that

(zι(0),«ι(0)) = (z2(0),M2(0)). Then it is obvious that z\ = z2 by (3.1). If a
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mild solution uz to the Cauchy problem for (SE; z) on [0, T] is at most one for
ze C([0, 71]), then we deduce that u\ = u2, and hence that (z\,u\) = (z2,u2).
Namely, a mild solution to (AES) is at most one.

Now, (3.5) implies the uniqueness of solutions to (ODE z) on [0, T] for
z e C([0, Γ]). Consequently, a mild solution of (SE z) on [0, Γ], if it exists,
is uniquely determined for z e C([0, Γ]). See Proposition 2.4. The proof of
Theorem 3.4 is now complete. Π

REMARK 3.6. In the proof of the uniqueness, z\(Q) = Z2(0) follows from

Mι(0) = M2(0) and the local quasi-dissipativity of Γ plays an important role.

The following condition, (F6), is more general than the combination of
(Fl) and (F3), but Theorems 3.2 through 3.4 are still valid under (F6).

(F6) For each r > 0 there is a positive constant Cr such that

(\-λCr}\\υl-v2\\-λCr\zl-z2\

< | j l ? 1 -v2-λ[S(-zl}F(t,S(zl}vλ,zl)-S(-z2)F(t,S(z2)v2,z2)}\\

f o r λ > 0 , f e [ 0 , Γ ] and (t^z/) e/> x [-r,r], ι = l,2.

THEOREM 3.7. /« Theorems 3.2 α«d 3.3 (Vesp. /« Theorem 3.4), assume

(F6) wwtew/ 0/(Fl) αwrf (F3) (rap. instead of (PI), (F3) αwrf (F5)Λ Then the
same assertions are valid.

The remaining part of this section is devoted to the reduction of the
Cauchy problem for (AES) to equivalent problems. Given (zs, us) e R x X,
consider the following problems which are equivalent to (AES) on [s,ς] with

initial condition (z(s),u(s)) = (zs,us):
Find zeC([s, ς]) satisfying the nonlinear constraint

(NC) (z(0,/(«z(0))' e Λ r e [j, ς], or equivalently,

z(t)eD(Γ) and /(κz(ί)) 6 Γ(z(f))

and the initial condition (z(s),uz(s)} = (zs,us), where uz is a mild solution of
the initial-value problem for (SE z) on [s,ς] with initial condition uz(s) —us\

Find zeC([,s,ς]) satisfying the equation

(FE) z(/) = (/

for some positive constant /I which is independent of t, as well as the initial
condition (z(s),uz(s)) = (zs,us), where uz is a mild solution of the initial-value
problem for (SE z) on (s, ς] with uz(s) = us and / the identity operator in R.
Notice that an inverse function (I — λΓ)~l( ) of / — λΓ is defined on all of R
as a single- valued function, since Γ is an m-dissipative operator in R.
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THEOREM 3.8. Assume (BS), (GR), (Fl), (F2), (LF) and (G). Let 0 <
s < ς < T. Under the initial condition (z(s), u(s)} = (zs, us), the initial-value
problems for (AES), (NC) and (FE) on [s,ς] are equivalent to each other in the
following sense:
( i ) If (z, u) is a mild solution to (AES), then z is a solution to (NC) and u =

wz;
(ii) If z is a solution to (NC), then (z,uz) is a mild solution to (AES);
(iii) z is a solution to (NC) if and only if this function is a solution to (FE).
Here uz is a unique mild solution to the initial-value problem for (SE; z) on [s, ς]
with initial condition uz(s) = us.

PROOF. We see from the definitions of solutions and Theorem 2.3 that
(i) and (ii) are satisfied. We then verify (iii). If zeC([s,ς\) satisfies z(t) e

2(Γ) and f(uz(t}} e Γ(z(t)) on [s,ς], then z(t) e 2(Γ) and z(t) - λf(uz(ή) e
(I-λΓ}(z(t}} on [s,ς] for all λ > 0. Therefore, it follows that (I - λΓ)~l

(z(t) - λ f ( u z ( t } ) } = z(t) on [s,ς] for all λ > 0. Conversely, if z e C([s,ς]) and
satisfies (/ - λoΓ)~l(z(t) - faf(uz(t))) = z(t] on [j,ς] for some λQ > 0, then
z(t)e2(Γ) and f(uz(ή) e Γ(z(ή) on [s,ς\. It should be noted at this point
that if z e C([j,ς]) satisfies z(t) = (I - λQΓ}~l(z(t) - λQf(uz(ή}) for some A0 > 0,
then for any λ > 0 the function z satisfies z(t) = (I-λΓ}~\z(t)-λf(uz(t))}. Π

REMARK 3.9. Theorem 3.8 states that if (z, uz) is a mild solution of

S), then z is
and vice versa.
(AES), then z is a fixed point of the mapping z ι—> (/ - λΓ) l ( z ( - ) — A/(wz( ))),

4. Fixed point argument

In this section we give the proofs of Theorems 3.2, 3.3 and 3.7 stated in
the previous section by applying Schauder's Fixed Point Theorem.

PROOF OF THEOREM 3.2. In view of Theorem 3.8, it suffices to show the
existence of a solution z to equation (FE).

Let (z0, wo) e @(Γ) x D and /(w0) e Γ(z0). Suppose that 0 < s < T, and
that z e ^1'°°(0,s) is a solution to (FE)-(IC) on [0,-s]. We put

)α+ sup \\F(τ,u(s),9)\\),
0<τ<Γ

+r, ε = (βl+r -h/l)"1^"1, and ς = minj^-j-e, 71}.
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Here M, K(r), and βl+r denote the constants employed, respectively, in (F4),
(Fl), and (G) with 1 + r; J^ ) is the Jf-valued function in (F4); ή( ) is a mild
solution to (SE z) on [0,j] with w(0) = WQ, which is obtained by Theorem 2.3.
The symbol || 1^ denotes the operator-norm of continuous linear functionals
on X. Note that the continuous linear functional / is not identically zero.
Hence α, λ, r, K, δ and ε are positive and finite. We also note that 0 < s <
ς < T and ς < s + ε. We then define an operator ψ : Jfs —» C([j,ς]) by

(4.1) Jrs = {ζeWl'*>M\ζ(s) = W, 1C'«,£*},

(4.2) (Ψζ)(t) = (I-λΓ}-\ζ(t)-λf(uζ(t})}, te fcς], for £ e Jf,,

where w^ is a unique mild solution to the initial-value problem for (SE;£) on
[s, ς] with Uζ(s) = ύ(s), which is obtained by Theorem 2.3, and | 1^ denotes the
supremum-norm over [s,ς]. Then Jfs is a compact convex subset of C([s,ς])

endowed with | 1^. We here apply Ascoli-Arzela's Theorem to discuss the
compactness.

Furthermore, we have

LEMMA 4.1. The operator Ψ is well-defined as a continuous mapping from

(jr,,HJ into (C([j,ς]),|-|J.

PROOF. The multi-valued function Γ is m-dissipative in R by (G). Thus,
the resolvent (/ — λΓ)~l of Γ is defined on R as a contraction operator on R:

(4.3) | (/-AΓΓ 1 (Cι)-(/-lΓ)- 1 (C 2 ) |< |Cι-C2l, Cι ,C 2 eR.

Let ζe tfs. Since ζ( ) is Lipschitz continuous, f ( u ζ ( )) is also Lipschitz
continuous by Lemma 2.11. Therefore, it follows from the definition of Ψ

that (Ψζ)( ) is Lipschitz continuous, that is, Ψζ e Wl>°°(s,ς), and so Ψ : tfs ->
C([5 ,ς]) is well-defined.

We next prove the continuity of Ψ. Let z r t,ze 3fs and \zn — z\^ —> 0.
Then, by (4.3) we see that

\(Ψzn)(ί) - (Ψz)(ί)\ < \zn(t}-z(t)\ + λ\f(uzn(t}} -f(uz(t))l t e [j,ς],

and hence \Ψzn -Ψz\^< \zn - z\^ 4- λ\fuZn -fuz\^ -* 0 by Lemma 2.9. This
shows that Ψ is continuous. Π

LEMMA 4.2. The mapping Ψ has its values in Ctfs, that is, Ψtfs c tfs.

PROOF. Let z e Jf^. We have already shown that !fz e PΓ1'00^, ς) in the
proof of Lemma 4.1. Since f(u(s)) e Γ(z(s)), we have

(I - λΓΓl(z(s] - λfluΛs^} = (I- λΓΓl(z(s] - λf(u(s}}} =
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This means that (Ψz)(s) = z(s).' If {(ΨzYl^ < δ, then the desired result
follows. Let t \ , t 2 e [ s , ς } . By the local quasi-dissipativity of Γ in (G), Γ
satisfies

(4.4) (1 + 4S1+r)|C, - C2| < KCi - Aτ,) - (fc - Aτ2)|

for (C,.,t, )eΓ, |C,. |<l+ r , i

We first choose

C, : = (!Pz)(/,) = (/ - λΓ)-\z(tί} - λ f ( u z ( t i ) ) ) ,

τ,. : = r'[(7 -

for i = 1, 2. Then it follows that (C, , T/) e Γ, z = 1, 2. Indeed, £((/ -
), and hence £; e 2(Γ). By the property of nonlinear dissipative

operators, we see that τ, e Γ(7 - /lΓ)~1(z(ί/) - A/(Mz(ί, ))) = Γ(C, ), and hence
(C/,τ,)6Γ.

We next claim that |C, < 1 + r for i = 1,2. In view of the choice of £,
and (4.3), we see that

(4.5) |C | < \z(tί) - λf(uz(tί})\ + \(

z(s)-λf(u(s))\+ Γ
Js

To estimate the last expression, we need the following

LEMMA 4.3. (i) For ze W l ί C O ( s , ς ) with [z'l^ < δ, we have

(ii) For z e C([^ς))ΠL00(.y,ς)5

This lemma is proved in §7. Using the first estimate (i) in this lemma,
we can check that | | t t z(OII < α for ί e [s,ς] since ς < T and δ(ς - s) < δε < 1.
Hence, it follows that \z(s) - λf(ύ(s}}\ < \z(s)\ + 1 and -λg(uz(ή) < 1 for t e
[s, ς] by the definition of λ. Since g is nonpositive on Z), and so 0 < 1 +
λg(uz(t)) < 1 for t e [j,ς]. Noting that |z(ί)| < z(j)| + J/ |z ;(τ)|rfτ < |z(j)| 4- 1
< r for t 6 [j,ς], and using (Fl), we get

for
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Therefore, it follows from Lemma 2.4 that

(4.6) [ \z'(τ)-λ(fuz)'(τ)\dτ < f'[|z'(τ)| \ \ + λ g ( u z ( τ ) ) \ + λ \ f F ( τ , u 2 ( τ ) , z ( τ ) ) \ } d τ
JS JS

<(δ + λκ)(ti -s)< (κβ~l + λκ)(ς -s)<l.

By (4.5), (4.6) and the fact that \z(s) - λf(u(s))\ < \z(s)\ + 1, we have \ζt\ <
1 -f r as claimed.

Thus, we have \ ( Ψ z ) ( t l ) - ( Ψ z ) ( t 2 ) \ = |d - ζ2 < (1 + λβl+,Γl\(ζι ~ λn) -
(£2 - λτ2}\ by (4.4). Moreover, it is easy to check that

|(ί, - AT,) - (C2 - Aτ2)| = |(z(f,) - A/(«z(r,))) - (z(/2)

- t2\ < (1 + λβλ

and so \(Ψz](t\] - (Ψz)(t2)\ <δ\t\- h for t\,t2e [s,ς]. This completes the
proof of Lemma 4.2. Π

We then complete the proof of the local existence result. Lemmas 4.1 and
4.2 together allow us to apply Schauder's Fixed Point Theorem to get a fixed
point z e J f i of Ψ. It is clear that z is a solution of (FE) on [s,ς] with

(z(s),ΰ(s)) = (z(s),ύ(s)). Setting

(47) z(t}-Γz(t} f o r ' e tM>
( J ( ) U(0 f o r f G ( * , ς ] ,

we see that

r^(0 for fe[0,*],
Uz(ΐ) \ΰ(t} for ίe(,,ς],

and ze JF1'00^) is a solution of (FE)-(IC) on [0,ς]. Note that f(uz( )) e

W l > ° ° ( 0 , ς ) by Lemma 2.11.
Choosing s = 0 in the above argument, we obtain a solution of (FE)-(IC)

on [0,ςι] for some ςι e (0, T]. Next, choosing s = ς\, we obtain a solution on

[0,ς2] for some ς2 e [ς1? T]. Repeating this argument, we can extend a solution
to some (maximal) subinterval [0, Γ) of [0, T].

It remains to show that the solution blows up at f. Let [0, Γmax) be
the maximal interval of existence of solutions to (FE)-(IC) (or, equivalently,
(AES)-(IC)) and z a solution on [0, Γmax). Let us show by contradiction that

7"maχ < T implies that limsupί|ΓmaJz(/)| = oo. Suppose that limsup/τ:Γmaχ|z(/)|
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< oo. Then we conclude that ρ := sup0<τ<:Γmaχ|z(τ)| < oo. If not, then there

is a sequence {τn} a [0, Γmax) such that τn | ^inax and \z(τn)\ > n, which

contradicts the assumption that limsupr|Tmaχ|z(/)| < oo. Thus, it follows from

Lemma 4.3 (ii) that

\\uz(t)\\ I*
Jo

and so that sup0<T<:ΓmJMτ)|| < oo.
Choose a sequence {?„} in (0, Γmax) such that ίπ T Γmax. Put

/ (T

α = eMT+ω sup ||wz(τ)|| + max
\0<τ<Γmaχ Jθ

λ = (αmax{||/|L, \\g\l}Γ\ r = 1 + Q + |(7 - λΓ)~\ϋ)\,

- sup
0<τ<Γ

\9 \<r

ε = mm{T - Γmax, (βϊ+r + λ)~lκ~1}, and ςn = tn + ε.

Moreover, we define a mapping ^ : tftn —> C([ίΛ,ςΛ]) by (4.1) and (4.2) with

s = tn, ζ = ζn

 an<l ^ — z Then, in the same way as above, we are able to
extend the solution z on [0, /„] to [0, ςn] for every n. In view of the choice of

{tn} and the fact that ε is independent of «, it is clear that ςn = tn + ε | Γmax + ε

as n —> oo. Thus, the solution on [0, Γmax) can be extended beyond Γmax since

ε > 0. This contradicts the definition of rmax. The proof of Theorem 3.2 is

now complete. Π

We next prove the global existence theorem.

PROOF OF THEOREM 3.3. In a way similar to the proof of Theorem 3.2,

it suffices to show the existence of a solution z to (FE). We split the proof

into four steps.

Let (z0, w0) 6 ®(Γ) x D and /(w0) e Γ(z0). Suppose that 0 < s < Γ, and

that z e W1'00^) is a solution to (FE)-(IC) on [0,j].

1. We assume that u(s) φ 0. Put

f Γ
Js

and ς =
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Here M is the constant appeared in (F4); C\ and C2 the constants employed in
(AdLF); ξ( ) the function stated in (AdF); and ή( ) a mild solution to (SE z)

on [0,^] with w(0) = UQ obtained in Theorem 2.3. Note that λ, ρ, K and δ are
positive and finite. In addition, 0 < s < ς < T and ς <s + δ~l.

We then define an operator Ψ : JITS -> C([s,ς\) by (4.1) and (4.2). Then
we see that tfs is a compact convex subset of (C([Λ ,ς]), | 1^), and that ίP" is
well-defined and continuous as seen in the proof of Theorem 3.2.

Let z e tfs Then we see in a way similar to the proof of Lemma 4.2 that
Ψze Wl^(s,ς) and (Ψz)(s) =z(s). In order to show that \(Ψz)'\^ <δ, we
choose s < t\ < ti < ς. Then it follows from (4.3) and Lemma 2.11 that

(4.8) \(Ψz)(tι)-(Ψz)(t2)\ < \ ί 2 ( \ z ' ( τ ) \ \ l + λ g ( u z ( τ ) ) \ + λ \ f F ( τ , u z ( τ ) , z ( τ ) ) \ } d τ .
J t\

To estimate further, we require the following lemma whose proof is given in § 7.

LEMMA 4.4. For zeC([s,ς]), we have:
( i ) e~^(t~s">h(uz(s)} <h(uz(ή] < e^^~s">(h(uz(s)} + ^h(3?(τ))dτ) for t e [s,ς].

(ii) g(uz(ή] < -de-ΰC-^hfaW) for t e [ s , ς ] .
(iii) If ze Wl^(s,ς) and \z'\^ <δ, then

< ̂ '̂  [/(«,/(«,(/)) < ̂ '̂  /(«, W) +

for t e [ s , ς ] .

Using (AdLF) and Lemma 4.4 (i), we see that —g(uz(t)) < λ~l for t e [j,ς].
Hence

(4.9) 0 < 1 + ̂ (wz(0) <l-λρ for / 6 [j, ς]

by Lemma 4.4 (ii). Furthermore, we have

(4.10) \fF(t,uz(t},z(t}}\<κ for t e [ s , ς ]

by (AdF) and Lemma 4.4 (iii). Thus, it follows from (4.8) through (4.10) that

\(Ψz)(tι) - (Ψz)(t2}\ < [0(1 - λρ)+λκ](t2 - t})=δ(t2 - t,).

This implies that \(Ψz}'\^<δ as desired. Since ΨJίs c Jf5, we can apply
Schauder's Fixed Point Theorem to find a fixed point z e tfs of Ψ. We see in
the same way as in the proof of Theorem 3.2 that the function z defined by

(4.7) is a solution of (FE)-(IC) on [0,ς], and z e_Wl>«>(0,ς).
Finally, it should be noted that h(uz(t}) > e-M^h(u(s)} > 0 by Lemma

4.4 (i) and (AdLF), and so that uz(t) / 0 on [j,ς].
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Step 2. Assume that UQ φ 0. Letting s = 0 in Step 1, we obtain a solution z 6

Wl>°°(Q,ςι) of (FE)-(IC) on [0,ςι], where

λι = C2e
τhM + h(^(r))dr , βl = Cι^Γ%o),f

Jo

= If lL-(o,

<5ι = 0Γ1|Cι» and £ι

If ςι = T, then this z is the desired global solution.
Let ςi < Γ, that is, ςj =<?j"1. Since wz(ςι) / 0, letting ^ = ςi in Step 1

gives a solution ze W^1'°°(0,ς2) on [0,ς2]. Here

<52 = ft 1|C2, and ς2 = minfe ^J^1, T7}.

By Lemma 4.4 (i), we see that ρ2 > ρ\ and λ^ l < λ\λ . Using Lemma 4.4 (iii),
we have

Jo V Jo / J

Since A^1 < λj"1, we have

κ2 < \ξ\Lτ^Me^τf(u,} + (^(τ}}dτ

Tλ\ <2κι.

Therefore, by this relation we deduce that

since Q2>Q\. This shows that ς2 = min^^H-^ !, Γ} > min{(l -f 2~1)^1, T}.
If ς2 = Γ, then the z above is the desired global solution.

Repeating the above argument, we find ςn such that ςn >

min{(l + 2~l -\ ----- h n~l)S^l,T} at the nth step. Since Σ%=1 k~l / +00 as
n — > +00, we see that ςm = T for some m.
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In this way, for UQ φ 0, we obtain a solution z on the whole interval [0, T].
Notice that z is in Wl^(0, Γ), and so that fuz is also in Wl^(0,T) by
Lemma 2.11. Therefore, in the case that 0 φ $(Γ), the proof of Theorem 3.3
is complete. In the case that 0 e ffl(Γ), we further proceed to Steps 3 and 4.

Step 3. We assume that ύ(s) vanishes. Since z is a solution to (FE) on [0,s]
by assumption, it follows that 0 =f(ύ(s)} e Γ(z(s)). In addition, 0 e Γ(0) by

(AdG). Using the local quasi-dissipativity of Γ, we infer that z(s) = 0. Put

τ)||, l}dτ, λ = (αmax{||/L, |

sup ||F(τ,
0<τ<Γ

ε= (β\ + /l)~1κ~1, and ς = nώψ + e, Γ},

where M, K(\) and βλ are the constants employed, respectively, in (F4), (Fl)
and (G) for r = 1. Note that (/ - AΓ)~1(0) = 0, z(s) = 0 and u(s) = 0. Then,
in a way similar to the proof of Theorem 3.2, we obtain a solution z in

Wlt°°(s,ς) such that z(s) = z(s)(=0). It is evident that the function z defined
by (4.7) is a solution of (FE) on [0,ς] and z e WliCO(0^). Since ε is inde-
pendent of s, we can extend z(t) to any subinterval of [0, Γ], whenever wz(ί)
vanishes.

4. Assume that UQ = 0. Choose s = 0 in Step 3. Then we get a so-
lution z e Wl'°°(Q,ς) for ς = min{ε, T}. If ε > T, then this z is the desired
global solution. Let ε < T. If uz(ε) φ 0, then we repeat the same arguments
as in Steps 1 and 2, and can extend z(t) to [0, T]. On the other hand, if
uz(ε) = 0, then taking s = ε in Step 3, we have a solution z e ^1)00(0,ς) for
ς = min{2ε, T}. If 2ε > T, then this z is the desired solution on [0, T]. Let
2ε < T. If uz(2ε) φ 0, then one employs the same arguments in Steps 1 and 2.
If wz(2ε) = 0, then choose s = 2ε in Step 3. Repeating these arguments finite
times, we gain the desired solution z on the whole interval [0, T]. Since z,/wz

e ^1)00(0, Γ), the proof of Theorem 3.3 is now complete. Π

We conclude this section with the proof of Theorem 3.7.

PROOF OF THEOREM 3.7. It is similar to the proofs of Theorems 3.2-3.4.
In the proofs of Theorem 2.3 and Proposition 2.5, we apply (F6) instead

of (Fl). In the proof of Lemma 2.6, we apply (F6) in place of both (Fl) and
(F3) to obtain (3.5). This leads to an inequality analogous to (2.5). Thus,
Lemma 2.9 is valid under (F6) instead of (Fl) and (F3). Moreover, we
employ (F6) in place of (3.3) in the proof of Theorem 3.4. We can prove the
remaining part in the same way as in the proofs of Theorems 3.2-3.4. Π
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5. Main results for the nonlocal nonlinear system

In this section we state the existence and uniqueness results for weak
solutions to the Cauchy problem for (NNS). These results are all proved in
the next section.

We need some preparations to state our results. We begin by defining
a weighted L1 space to be our base Banach space. First, we formulate the
following class of functions w from R into itself:

(W) w : R —> R is absolutely continuous on bounded intervals, non-
decreasing and satisfies

KWIess.sup—!—, , ' < oo.
*6R 1 + M*)I

For a function w(x) satisfying (W), we define an L1 space with weight
l + |Hφc)| by

Γ f+0°
:= < . t ; : R —> R measurable bW|(l + |w

I J-oo

and its norm by

\v\w:= \+C°\υ(x)\(\ + \w(x)\)dx for reL».
J-oo

It is clear that ( L l ( w ) , \ \w) is a real Banach space. Note that if w(x) = 0
then Ll(w) is the usual Ll(R), and that a measurable function v : R —» R
belongs to L^w) if and only if both v and wv belong to ^(R).

Let TV > 2 be an integer. (For the case TV = 1, see Remark 5.12 below.)
We need at least a condition (W)# on the weight function:

(W)τv w = (w1,..., WN) : R —> R^ is not identically equal to zero and
each component satisfies condition (W) and

ι + K'WI ,„

For such weight function w, we can define a product space L'(M>) :=
Ll(w}) x x Ll(wN) equipped with the norm v\w = \vl\w\ + + vN\wN for
v=(vl,...,vN). Set

1 + \w'(x)\
max sup - - ; — ., . .

<i<N-lx€% l + W'+l

Since 1 + \w'(x)\ < C(l + |wί+1(x)|) on R for i = 1, . . . ,N - 1 by (5.1), L\wl)
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Furthermore, for a function w satisfying (W), we define

:= < v : R -> R measurable < - - ry^y a e for some c >

and its norm \\v\\ w := ess. supxeR |u(x)|(l + |w(x)|). If H>(X) = 0, then L°°(w) is

the usual L°°(R).

For convenience, we introduce the cyclic rule on the indices: i=j

(mod TV), that is, for instance, 0 = N and N + 1 = 1.

We denote by R^ the positive cone in R^ : R^ - {(ϋ1, . . . ,υN) e RN \

vl,...,vN >Q}. Put E = {(vl,...,vN)eR!l vl + - - - + VN < 1}.

Let 0 < T < + 00 be an arbitrary but fixed number. On the function φ —

( φ 1 , . . . , φN) : [0, T] x R x E x R -> R^, we impose the five conditions (Pl)-

(P5) below for the local existence.

(PI) A function t i-> φ(t,x,u, z) is measurable on R for every (t, u, z) e

[0, T7] x E x R, and (/, M,Z) i-^ φ(t,x,u,z) is continuous on [0, Γ] x E x R for

almost every Λ: e R;

(P2) For every r > 0 there exist nonnegative functions f^ί+1 e L°°(R), / =

1, . . . ,7V - 1, f'1 e L°°(w"), f r

l ϊ A Γ e L°°(R), f/'1'-1 e L°°(ιvO, / - 2, . . . ,7V, and a
constant A"(r) > 0 such that every component φl satisfies

\φ'(t, x, u, z) -φ'(t, x,v,z) \ < ̂  ̂ (x)\UJ - v*\ + K(r) ̂  u> - υ*\
j=i±\ J=i

for t e [0, T], almost every x e R, w = (w 1, . . . , U N ) , v = (u1, . . . , tΛ) e E, and z e

h^d;
(P3) For every r>0 there exist nonnegative functions (g/, . . . , g^) e

L^O, Γ L^w)) and a nondecreasing function /?r : [0, oo) -» [0, oo) with pr(+Q)

= 0 such that every component φi satisfies

\φi(t,x,u,zι)-φi(t,x,u,z2)\ <

for almost every (f, jc) e (0, Γ) x R, « = (w 1, . . . , U N ) e E, and zi, z2 6 [-r, r];

(P4) There exist nonnegative functions (Φ1, . . . , ΦN) e C([0, Γ]; L !(w))

and a constant M > 0 such that every φ1 satisfies

-Mul < φl(t, x, u, z) < Φz'(ί, x) +

for ί e [0, Γ], almost every x e R, n = (w1 , . . . , U N ) e E, and z e R;

(P5) (1) If u=(u\...,uN)εE satisfies E^w^l, then !̂

^ ' ( ί j Λ j i ί j Z ) <0 holds for ίe[0, 71], almost every x e R, and z e R;
(2) For every r > 0 there is a constant λr > 0 satisfying that w,

r e E and w ̂  v in R^ together imply

λru + p(f, x, tt, z) ̂  A rr + φ(t, x, v, z) in R^
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for t E [0, T], almost every x e R, and z e [— r, r}. Here ^ denotes the standard
partial order relation in R^ such that u = (w 1, . . . , UN) ^ v — (t;1, . . . , VN) in R^
if and only if ul < vl for / = 1, . . . , TV.

We then put a condition on the function L : (a, b) — > R.

(L) - o o < α < £ < + o o , L e C(a,b) is strictly decreasing, L(0 -f 0) =
+00 and L(b - 0) = — oo. Moreover, for every r > 0, there exists a constant
βr > 0 such that

(5.2) (1 + λβr)\L(τι) - L(τ2)\ < |L(Tl) - L(τ2) - A(n - τ2)|

for A > 0 and n, τ2 e [Zr^L-^-r)].

REMARK 5.1. In condition (L), L~l(r) and L~l(—r) make sense, since L
is a bijection. Similarly, L(TI) and Lfa) make sense, since a<L~l(r)<
L~l(—r) < b. Notice that (5.2) implies the local Lipschitz continuity of L with
the Lipschitz constant β~l. Theorems 5.4, 5.5, 5.7 and 5.10 below are valid,
even if the possibly multi-valued inverse L~l satisfies only condition (G) stated
in §3.

We next define weak solutions to the nonlocal nonlinear transport system

dtu + z'(ί)dxu = φ(t, x, «, z(ί)) , (* , x) e (0, T) x R,

(NNS) /r+°° \
z(t)=L(\ w(y) tt(t,y)dy}9

\J-oo /

DEFINITION 5.2. A function u : [0, T] x R — > R^ is called a weαfc solution
to (NNS) on [0,Γ], if u e C([0, Γj L^w)), «(*,*) eE for ίe[0,Γ], almost
every x e R , α < J^ w(x) u(t,x)dx < b for ίe[0, Γ], the function z(ί) :=
L( J^ w(x) w(f, x)rfx) is continuous on [0, T], and the functions u(t,x) and
z(ί) satisfy the integral equation

for (/,*) e [0, Γ] x R .

REMARK 5.3. The above notion of weak solution is same as the notion
of mild solution employed in the theory of abstract evolution equations rather
than the notion of weak solution in the sense of distributions, cf. Definitions
2.2 and 3.1. Since (NNS) has the strong nonlinearity z'(t)dxu, weak solutions
in the sense of distributions cannot be defined for (NNS) if z(t) is not
differentiate.

We now state a result of local existence for weak solutions to the Cauchy
problem for (NNS).
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THEOREM 5.4. Assume (W)#, (P1)-(P5) and (L). Let an initial data UQ e
L !(w) satisfy UQ(X) e E a.e. and a < J^ w(x) uo(x)dx < b. Then for some
f E (0, T], there exists a weak solution w e C([0, Γj L^w)) 0/ //*e initial-value
problem for (NNS) 0« [0, T7] swcλ ί/zαί the functions

M-oo / H-oo

/ 1— > w( c) w(ί, x)dx and L( w(x) -u(t,x)dx
J-oo \J-oo

belong to Wl^(Q, f). Moreover, let 0 < Γmax < T and [0, Γmax) the maximal
interval of existence of the weak solution u. If Γmax < Γ, then

f+oo

lim sup G
+CO \ I

w(x) u(t,x)dx ] = oo.
-oo / I

To establish the global existence of weak solutions, we need a stronger
condition than

(Ws) w e C0'1^) is strictly increasing and satisfies ess. inf^R w'(x) > 0.

In other words, w is strictly increasing and bi-Lipschitz. For the weight
function w we impose the following conditions:

(WsV For w = (w1, . . . , WN) : R -̂  R^, w1^), . . . , wk~l(x) are identi-
cally zero, and wk(x), . . . , WN(X) satisfy condition (Ws) for some \<k<N.

If k = 1, then (Ws)τv is understood in such a way that all components of w
satisfy (Ws). We now obtain the following result on the global existence.

THEOREM 5.5. Assume (Ws)#, (P1)-(P5) and (L). Let UQ e L !(w) fo? such
that UQ(X) e E α.e. and a < J_^ W(Λ:) u$(x)dx < b. Then there exists a weak
solution u to the initial-value problem for (NNS) on [0, T] such that the functions

/ ί +o

(
\J-o

ίo PF1'00^, T).

REMARK 5.6. If w : R — > R satisfies (Ws), then we have

C|Λ: — xol < \w(x)\ < C\x — XQ\ on R,

where c = ess. infx eR w'(x), C = ess. supxeR wf(x) and Λ:Q is a unique zero point

of w( ). Therefore, if w : R -> R^ satisfies (Ws)^, then L^w1') = L^R), i -

!,. . . ,£ -1, and L1^1') - L^R; (1 4-

We now introduce two classes of functions in order to state our uniqueness
result. First, for w satisfying condition (W), we employ the set (denoted by
8r(w)) of all measurable functions η : R2 — > [0, oo) such that for each r > 0 there
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exists a constant Cr > 0 and

Λ+OO

η(x + σι,x + σ2)(l + \w(x)\)dx< Cr\σ\ - σ2\ for σ\,σ2e [-r,r].
J — oo

We next employ the set (denoted by g(w, T)) of all measurable functions
η : (0, T) x R2 -> [0, oo) such that for each r > 0 there exists a nonnegative
function θr e Ll (0, Γ) and

H-oo

?/(?, x + σi, x + σ2)(l + |w(x)|)ίfe < 0r(0ki - σ2|
J —00

for ίe(0,Γ), <7i,(72e[-r,r].

Let vv(jc) = c and / : R — > R be a Lipschitz continuous function with com-
pact support. Then it is obvious that a function η defined by η(x, y) =

I/M-/OOI belongs to the class g(w), but that η(x, y) = \f(x) - f ( y ) \
defined for a Lipschitz continuous function / does not always belong to g(w) if
the support of / is not compact; for instance, f ( x ) = x. The continuity of a
function / or the boundedness of its support does not necessarily imply that the
function η(x, y) = \f(x] - f ( y ) \ belongs to δ(w). Such functions are found in
Example 5.8. On the other hand, for nonnegative functions θeLl(Q,T) and

η e 5(w), a function η(t,x, y) = θ(t)η(x, y} belongs to g(w, T).
In order to obtain a global uniqueness result, we assume the following

additional condition on the function φ on the right-hand side of (NNS):

(P6) For each r > 0 there exist functions ηl

r e S(w'> T}, ί = 1, . . . , TV, such
that the components φ\ i— 1 , . . . , 7 V , satisfy

\φl (t, xι , if, z) - φl (t, x2, u, z] \ < η l

r ( t , x\ , x2)

for almost all f e ( 0 , Γ), ^i, x2 e R, any w e E and ze[— r, r].

We now state our uniqueness theorem.

THEOREM 5.7. Assume (W)#, (PI), (P2), (P3) wzϊΛ /?r(j) = Crs (Cr being
some constant), (P4) and (L). Assume further that (P6) /zo/^k. L^ί ιiι ύ(«ί/ u2

be weak solutions to (NNS) on [0, Γ], α«rf set

G
+c

-o

+co

w W - i i ^ x J Λ c , ι = l , 2 .

Then we have

(5.3)

loo w ί/ze supremum-norm over [0,7"], | |w ί/ze worm o/ the product
space L^w), α«ί/ C .some positive constant determined for any fixed number



562 Toshiyuki YAMAGUCHI

Λ^max{rι,r 2}, where n = maxflzil^, jz^}, r2 - eωrι+MΓ(max{|m(0, -)L,

MO, )U + JoΓ lφ(τ> )I,A), ω - max^^ess. sup,6R|(W0'MI/(l + |W(x)|)
and Φ = (Φ1, . . . , ΦN). In particular, a weak solution to (NNS) is unique if it
exists.

EXAMPLE 5.8. In case N = 2, one can formulate the following model: We
first define H>(JC) = ( w l ( x ) , w2(x)} = (0, vφr)) for w(-) satisfying (Ws) and φ =

(φl,Ψ2} by

φl(t,x,ul,J,z) = gι(x)(u2γ» -n

(u^ -g2(x)(u2)p22,

with powers pu >p22>\ and p2l > pl2 > 1. Here yt(t\ ft(x\ gt(x\ i = 1,2,
are nonnegative functions which satisfy that yz e C([0, 71]), γ{ ( t ) > y 2 ( t ) on
[0,Γ], /15 ^eL°°(R), ^eLH^ΠL-CR), /2 e L1^) ΠL°°(w), ^(x) >
/2(x) and g\(x)<92(x) a.e. Moreover, functions (x, j) ̂  |/.(x) - /.(j;)|,

\gt(x) -9i(y}\ belong to gr(w f), / = 1,2. Then the functions f/'^ ), f r

2 > 1( ) and
the constant K(r) stated in (P2) are chosen as ^2(x) = pλlg\(x), f^ j l(x) =

Λi l^LΛW and ^W = m ax{A2l7ιlool/ιloo^22b2loo} 5 respectively. The
functions (Φ^Φ2) and the constant M in (P4) can be chosen as Φl(t,x) =

gι(x\ Φ 2(f,Λθ = y2(OΛW and M = m a χ{bιlool/ιloo5 l^loo}' respectively. The
constant λr in (P5.2) and functions η\ and ^^ in (P6) are defined to

be λr = max{/?12|yι ool/iloo^^l^L} and η\(t,x,y) = yί(t)\fi(x) - ft(y}\ +
I^/W — 9i(y)\> z — 1^2, respectively. In view of the specific properties of this
function φ, we can eliminate the condition that g\eLl(R). More realistic
forms of w, ft and gi9 i = 1,2, satisfying these conditions are given as follows:

w(x) = x,

k\x/h,

o,

*2,

kτx/h,

c,

if 0 < x < A,

otherwise,

if x < 0,

if 0 < x < d

otherwise,

where A:ι, fc2, £3, and /z are positive constants and c is any fixed constant with

c > k2.
For the function L : (a, b) — >• R, we consider the following forms: If

muscle contraction is isometric, we take

L(τ) = -log(l+τ), «=-!, b = +00;
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if muscle contraction is isotonic,

where 0 < q < Q < + 00; if it is isometric-isotonic,

where 0 < </ < Q < +00 and c+ = max{c, 0}. In these three cases we choose

g(l + g)g-' . ί _r -r

pr = e , - 5- , mm < e ,
2 ' '
5- , , - =- ,

(\+qe')2' ' (l+qe'f '

as the constant βr in (L), respectively. We can then apply Theorems 5.5 and
5.7 to each case.

EXAMPLE 5.9. In case N = 4, one can formulate the following model:
First, we define w(x) = (wl(x), w2(x), w3(», w4(x)) by (0,0, w3(x), w4(x)) for
w3 and w4 satisfying (Ws) and φ = (φl , φ2 , φ3 , φ4) by

P f(ί,x,ιι 1,ιι 2,ιι 3,w 4,z)= Y^la^x^u^-a^x)^}, ι = l, 2,3,4,
y=i±ι

with powers />/ ; ί ±ι >^|±1 >1, / = 1,2,3,4, respectively. In accordance with
the general cyclic rule for TV we introduced before (P1)-(P5), we here adopt
the cyclic rule for N = 4: ί=j (mod 4). Here the functions «/,/•+ i(i,x) and
<z/,/± i (*?*)> ^ = 1?2, 3,4, have the forms

Λι +ιW'

The functions 7 / ) / ± i(0 ? ?/ ,/±i(0> Λ ? ± ι W ' Λ / ± ι W are assume(i to ^e non~
negative and such" that γj±l,γu±ιe C([0,T])9 γiti±l(t) < y / i / ± i (0 on [0,7],

ι = 3,4, ^^LH^ΠL^ίR), / = 1 , 2 , /34 e L1^3) nL°°(R), ^eL^^jn
£°V3), Λ^ΛaeLH^ΠL^ίiv^^^L^ίR), / = 1,2,3,4, and fiιi±l(x)
<fii±ι (x) a.e., / = 1,2,3,4. Moreover, we assume that the functions (x, j) ι— >

I Λ / ± Γ W - Λ / ± ι W I ' \ f i ± ι , M - f i ± ι , ί ( y } \ belong to δ(wO for / = 1,2,3,4.
As L : («, ft) -̂  R, one can choose the logarithmic function

L(τ) = — log(l + τ) + const., a = — 1, ft = +00.

L( ) may also be chosen in the same way as in Example 5.8.
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We can apply Theorems 5.5 and 5.7 to this model. In view of this choice

of φ, we may replace the condition /43 e L°°(w4) by a weaker condition /43 e

We may formulate the following type of condition which corresponds to

(F6) introduced in §3.

(P7) For each r > 0 there exist nonnegative functions μl/+l E L°°(R), i =

1 , . . . , 7 V - 1, μ?>1 eLco(wN), μ^N e L°°(R), μ^~l eLcc(wi), / = 2,...,#, 17/6

^(w*), i— 1 , . . . , 7 V , such that the components φl, i= 1 , . . . , 7 V , satisfy

< ul - vl - λ[φl(t, xι, u, z\) - ^'(/, ̂ 2, v, z2

for / l > 0 , /6[0,Γ], almost all xι, x2eR, u = (u\ . . . , U N ) , v = (t?1, . . . ,VN) e

E, and zh z2 6 [-r,r].

THEOREM 5.10. In Theorems 5.4 and 5.5 (>βsp. Theorem 5.1), assume (P7)

IΛ ^/«ce o/ (P2) and (P3) fre^. /« place of (P2), (P3) α«ί/ (P6)Λ
results hold.

We mention a result concerning the supports of weak solutions of (NNS)

with N >2. The proof is very easy, and omitted. The condition (5.4) below

is stronger than (P5.1), but natural in the mathematical models for muscle

contraction phenomena.

PROPOSITION 5.11. Assume that the function φ satisfies

N

(5.4) ^ φ\t, x, ir, z) = 0 (resp. < 0) for (t, x, w, z) e [0, Γ] x R x E x R.

Let u be a possible weak solution to (NNS) with initial value UQ and set z(t) =
L(!-n WM ' u(t,x}dx}. Then we have

supp«(ί, -) - suppno( ) + z(ί) - z(0) for t e [0, T}.

(resp. ci)

In particular, if the initial function HQ( ) is compactly supported, then the solution

u(t, -} is also compactly supported.

REMARK 5.12. It should be mentioned that similar results are obtained

for the case N = 1. For TV - 1, conditions (W)# without (5.1), (Ws)τv, (PI),

(P3) through (P6) make sense and E= [0,1]. In Theorems 5.4, 5.5 and 5.7,
we may replace (P2) by:
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(P2)τv=ι For every r > 0 there exists a constant K(r) > 0 such that

\φ(t,x, u,z) - φ(t,x, v,z)\< K(r)\u - v

for t E [0, T], almost every x e R, w, υ e [0,1] and z e [-r, r].

Also, in Theorem 5.10, (P7) can be replaced by:

(PI)N=\ For each r > 0 there exist a constant Cr > 0 and a nonnegative
function ηr e g(w) such that

(l-λCr)\u-v -ληr(xι,x2)< u-v-λ[φ(t,xι,u,zι)-φ(t,x2,v,z2)}\

for λ > 0, t e [0, 71], almost every x\, x2 e R, w, t; e [0,1] and z\, z2 e [—r, r].

Under these conditions we obtain results similar to the case N >2.

We conclude this section with an example for the case N = I.

EXAMPLE 5.13. In case TV = 1, one can take φ(t,x,u,z) = y(t)f(x)(\ — u)p

-g(x)ιf. Here y e C([0, Γ]), / e Ll(w) nL°°(R) and 0eL°°(R). y, / and g
are nonnegative, p,p > 1 and the function w( ) satisfies (Ws). Moreover, the

functions (x,y) π-> \f(x) - f ( y ) \ , \β(x) ~ d(y}\ belong to g(w). The function
L : (α, 6) —> R is chosen in the same way as in Example 5.8. Then we can
apply the results stated in Remark 5.12. Even if we assume 0 <p < 1, in
place of p > 1, φ satisfies (P7)#=ι and hence the uniqueness result given in
Remark 5.12 is applicable again.

6. Proofs of the results for (NNS)

In this section we apply the abstract results, and prove Theorems 5.4, 5.5,
5.7 and 5.10. Let w : R —> R satisfy condition (W). We introduce the standard
partial order relation ^ in the weighted L1 space Ll(w), namely, u ̂  v in

Ll(w] if and only if u(x) < v(x) a.e. in R. Then it is seen that (Ll(w), |w, <)
is an ordered Banach space and its positive cone is given by L !(w)+ =
{i; e L l ( w ) \ v ( x ) > 0 a.e.}. Moreover, we introduce the weighted Sobolev space

WλΛ(w) := WlΛ(A\(\ + \w(x)\)dx) :={veL}(w)\vf eL\w}}

endowed with norm \υ\l;1 := v\w -f \v' w. It is easily seen that ( W l * l ( w ) , \ - \ l

w

1 }
is a Banach space and that C£°(R) is dense in ( L l ( w ) , \ \ w ) and ( W l > l ( w ) ,

•l^'1), respectively. Thus, Wl'l(w) is dense in (Ll(w), \ - \ w ) .
We then define three linear operators S±(σ) : Ll(w) -^ Ll(w) for σ e R

and A : 2(A) a Ll(w) -> Ll(w) as follows

(S+ (σ)u)(x) := u(x ± σ) for x e R, u e L1 (w), respectively,

(Au)(x) := u'(x) for x e R, ue 2(A) := ίΓ1'1^).

Then we have
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PROPOSITION 6.1. One-parameter families {S±(σ)}σGR of the continuous
linear operators in Ll(w) are Co-groups of type ω and their generators are ±A,

respectively. Here

\w'(x]\
(6.1) ω = ess. sup- - : — τ-ττ(< °o)
V ' *6R 1 + K*)Γ ;

PROOF. Notice that w(-) satisfies that

(6.2) !

Using (6.2), we obtain the results in a way similar to the proof of the fact that
the differential operator u ι-» u' generates a contraction Co -group in the usual
Ll(R). Note that it is not necessary to use the absolute continuity and the
monotonicity of w. Π

LEMMA 6.2. For every w e Wl^(w), the function wu belongs to the usual

Sobolev space Wl'l(R}. In particular, w(x)u(x) — >• 0 as \x\ — > oo.

PROOF. Let u e Wl^(w). Then it is clear that u, wu, u' and wuf belong

to L*(R) and (wu)'(x) = w'(x)u(x) +w(x)u'(x) a.e. in R. Hence

\(wu)'(x}\ < \w'(x}u(x}\ + w(x)u'(x)\ < ω(\ + w(x)\)\u(x)\ + \w(x)u'(x)\,

where ω is the constant defined by (6.1). Since the last expression belongs to
Ll(R), the derivative (wu)1 of wu also belongs to Ll(R). Thus, we conclude
that wu belongs to ^^(R). Finally, it is well known that functions in

W l > l ( R ) vanish at ±00. Π

Assume that (W)^ holds. Let X := L1^) - Lλ(wλ) x - - - x L1^) and
|| || := I In,. The order relation ^ is defined as follows: (w 1, . . . , UN) ^
(t;1,...,^) in J f i f and only if u* *ζ v* in Ll (w*) for all / = 1 , . . . , Λ Γ . Then the
positive cone X+ is given by X+ = Ll(wl)+ x ••• x L^w7^ and it is clear
that u,v,v — ueX+ imply ||w|| < ||ι?||. Moreover, we define

D := {(i;1, . . . , VN] E X+ I vl (x) + - - - + υN(x) < 1 a.e.}

= {(υl,...,vN)eX\(υl(x),...,υN(x))eE a.e.},

and linear operators A : ^(yi) <= X -^ X and 5(σ) : ̂  — > ̂  by

H/^^w1) x . - . x ίΓ1'1^),

Λu := ( ( u 1 } ' , . . . , (^);) for u = (u1 , . . . , UN) E 9(Λ\

(S(σ)u)(x) := u(x — σ) for x e R, u e X, σ e R.
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In addition, we set

ω :=ess.sup-
jceR 1

Then, using Proposition 6.1, we have the following

PROPOSITION 6.3. Assume (W)^. Then the one-parameter family {S(
of continuous linear operators in X gives a C^-group of type ω and its generator
is —A. In addition, S(σ)X+ c A+ and S(σ)D c D for any σ e R.

Next, we define two linear functionals on X by

j +oc H-oo

(6.3) /(if) := w(x] - u(x)dx, g(u) := - wf(x) - u(x)dx for u ε X,
J— oo J — oo

where w'(*) = ( ( w l ) ' ( x ) , . . . , (WN)'(X)). Then we get

LEMMA 6.4. {7«*fer condition (W)#, ίAβ linear functionals f and g defined
by (6.3) satisfy condition (LF) introduced in §2.

PROOF. Clearly, |/(#)| < ||n|| for w e A", and so /is continuous. For u =
(u1 , . . . , M^) e A', we have

Λ/" p+oop+oo ί +

«)| < £ KwO'Wiί 'WIΛc < Σω'Ί
z _l J— oo j —i J-

Thus, gf is continuous. Moreover, wl(x) > 0 for all / = ! , . . . , TV, and so
g(u) < 0 for w e D. By integration by parts and Lemma 6.2, we see that
f(Λu) — g(u) for ue@(Λ), and hence that /xί is continuous on (®(yl),|| ||)
and g is a unique extension of fΛ to A^ Π

We then consider a function L satisfying condition (L). Since L : (a,b) — >
R is continuous, L(α + 0) = +00 and L(b - 0) = -oo, it follows that 3t(L) =
R, i.e., L is onto. Since L is strictly decreasing, it has an inverse function.
Set ®(Γ) :=3t(L) =R and Γ :=L~l. Then it follows that Γ is dissipative
in R, because L~l is decreasing. Since L(a + 0) = +00 and L(ό — 0) = — oo,

we infer that Γ(ζ) — > α as C -̂  +°o and Γ(C) — > έ as C -̂  — °°> respectively.
Thus, (/ — Γ)(ζ) = ζ - Γ(ζ) — > ±00 as C^ +oo, respectively. This means
that the range condition ffl(I — Γ} = R holds, since Γ = L~λ is continuous
on R. Consequently, Γ is m-dissipative. From (5.2), we get the local quasi-
dissipativity of Γ. In view of the above-mentioned, we obtain

LEMMA 6.5. Assume (L). Then Γ \= L~λ is single-valued and satisfies (G)
introduced in §3.
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We now define a mapping F : [0, T] x D x R — » Jf by

(6.4) (F(i,if,z))(x):=f(i,x,ir(jc),z) for x e R, (f, w, z) e [0, Γ] x D x R.

LEMMA 6.6. Assume that (W)#, (PI) #«d (P4) are UΛ/H/. Γλew f w w//-
defined as a continuous mapping.

PROOF. By (P4), it is seen that F is well-defined. In order to show the

continuity, let (tn, »„, zπ), (f, w, z) e [0, Γ] x Z) x R, |ίΛ - f | + ||ιrn - ιr|| + zn - z\

-> 0, and let un = ( u l

n , . . . , u?),u = (i/1, . . . , w*). Usinβ (pl) and (P4) and

taking a subsequence if necessary, we see that for each i — 1 , . . . , TV,

φl(tn,x,un(x),zn} ->φl(t,x,u(x),z) as n -> oo, a.e. αc,

l^,^,^^)^,,)! < Φ f'(ίΛ,x) + M«i(x) a.e. x,

Φ1'^, •) + Mκi(.), Φ' (ί, -) + Mii1^.) E L1^),

Φ^/^O + Mw^ ) -» Φ^^O + Mw^ ) in L^w1') as n -> oo.

Then the application of the Lebesgue Dominated Convergence Theorem implies

that

φ\tn, , ιιπ( ), zn) ->^z'(ί, ,w( ),z) in L^wO a s r c ^ o o , ί = l , . . . , Λ Γ ,

and so that \\F(tn,un,zn) — F(t, n, z)|| ^0 as « -̂  oo. This shows that F is

continuous. Π

We are now in a position to prove Theorem 5.4.

PROOF OF THEOREM 5.4. We want to apply Theorem 3.2. By Proposition
6.3, Lemmas 6.4 and 6.5, we see that (BS), (GR), (LF) in §2 and (G) in §3

are satisfied. The mapping F is continuous by Lemma 6.6.
We next demonstrate that F satisfies (Fl) introduced in §2. Let t e [0, Γ],

u= (ul,...,uN),v= (υl,...,υN) eD and |z| < r. Noting that

(6.5) C:= max
1^/

is finite, we see from (P2) that

Γ° \φ*(t,x,u(x),z) - φ l ( t , x , υ ( x ) , z ) \ ( l + \wl(x)\)dx
J—00

f+0° 1 2 2 2 1

J —oo

r+oo

+ ll,<N(x)\uN(x) - vN(x)\(l + \W\x)\)dx
J—GO
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N Λ+OO

Σ i"
;=1 J-00

\,I2 _
U -

N

7=1

+c"-%1 "|βιΛ-ι,"u-

If TV > 3, then, for / = 2, . . . , TV — 1, we obtain in the same way as above

r+oo

\φ'(t,x,u(x),z)-φ'(t,X,v(x),z)\(l + \w'(x)\)dx
J-00

.w ~ 11
~ v

Recall that
same way,

+ I ). Furthermore, in the

Γ+OO

\φN(t,x,u(x),z) - φN(t,X,V(x),Z)\(l + \wN(x)\)dx
J-00

, +K(r)\uN-vlf\w*.

Therefore, it follows that \\F(t,u,z) — F(t, v,z}\\ < Cr | |w — 1?|| for some positive
constant Cr. This implies (Fl) with K(r) — Cr.

Thirdly, we show that F satisfies (F3) introduced in §2. Let te (0, Γ),
we/), | |w| | <r and z\,Z2 6 [— r, r\. Then, using (P3), we have

Γ+OO

|^(ί,x,tt(x),Zl) - φί(t,x,u(x),
J— 00

z2)\(\ + \w'(x)\)dx

for / = 1 , . . . , 7 V , where C is the constant defined by (6.5). Thus,

N / N \

This implies that (F3) holds for vr(t) = Σ^id^ OL' + 'Σ£ ̂ '"0 and ^r(

From (P4) it follows that F satisfies (F4) introduced in §3 for &(t)
(t, • ) , - . . , ΦN(t, }} and M = M.
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We now show that (F2) introduced in §2 is satisfied. To this end, it
suffices to show that for r > 0 there is a constant λr > 0 such that

(6.6) u+λ~λφ(t,x,u,z)εΈ< for λ > λr, (r,x,w,z) e [0, T] x R x E x [-r,r].

Indeed, if (6.6) holds, then, for ( f , i f ,z) e [0, Γ] x Z> x R and h e (0, A r~
!] with

r = | z | , we have u + hF(t,u,z) = «(•) +hφ(t, •,«(•),z) e D. This shows that
d(u + hF(t,u,z),D] = 0, and so that (F2) is obtained.

We then check (6.6). Let r > 0. First, using (P5.2), we easily see that

(P5.2)' if i f , ι ? e E satisfy u < v in R^, then λ» + φ(t,x,u,z] < λ» +
φ(t,x,v,z] in R^ holds for A > λr, f e [0, Γ], Λ: e R, ze[-r,r].

Let λ > Λ , Γ , ( f ,x , i f , z )e [0, 7] x R x E x [-r,r] and u= (ul,...,uN). Then

(6.7) 0 < φ(t, x, 0, z) < λu + p(f, x, u, z) in R^

by (P4) and (P5.2)'. On the other hand, there exists a vector v = (vl,..., VN)

e E such that ΣtL\ v* = ! and w ^ ί in R^, and so (P5.2)' and (P5.1) together
imply

N N

t;'' + ^!'(ί, x, ϊ,z}} < λ.

This together with (6.7) yields (6.6). Consequently, F satisfies (Fl) through
(F4).

For an initial function UQ we assume that UQ eL^w) and «o(x) ^E a.e.
Hence w0 e D. Put z0 := L(J^ w(x) - uQ(x)dx), then z0 e ^(L) = 2(Γ) and

/(«o) = C ̂ W «oWΛc = L-Hzo) = Γ(z0).
Therefore, rewriting (NNS) in the form (AES), we can apply Theorem 3.2

to get the desired results. Π

PROOF OF THEOREM 5.5. For this purpose, we want to apply Theorem 3.3.

We first note that condition (Ws)^v implies (W)#. Conditions (BS), (GR),
(F1)-(F4), (LF) and (G) are all satisfied in the same way as in the proof of
Theorem 5.4.

We first show (AdG) introduced in §3. Since St(Γ} = ®(L) = (a,b),
(AdG) holds if 0 φ (a, b). Let a < 0 < b. If L(0) - 0, then Γ(0) = L~l (0) -
0, and (AdG) is satisfied. In case L(0) Φ 0, we reduce the proof to the case
L(0) = 0. Indeed, we define

φ(t,x,«,z) := φ(t,x,u,z + L(0)), L(τ) := L(τ) - L(0).

Then φ satisfies (PI) through (P5) and L satisfies (L). Moreover, L(0) = 0.

Let ιι(ί,jc) be a weak solution of (NNS) and z(t) := L(^ w(x) u(t,x)dx).

Set z(t) := z(t) - L(0). Then it is obvious that z(t) = L(££ w(x) - u(t,x)dx)
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and

«(/,*) = κ(0,*-z(0+z(0))+[ φ(τ,x-z(ή+z(τ),u(τ,x-z(ή+z(τ)),z(τ))dτ,
Jo

and hence u(t,x) is a weak solution to

dtu + z'W^if = φ(t, *, w, z(ί)), (*, x) e (0, Γ) x R,

α+oo \

H<j;)X^yΛ fε[0,Γ] .
-00 /

This shows that the problem is reduced to the case L(0) = 0, if L(0) Φ 0.

To check (AdLF) and (AdF) introduced in §3, we consider condition

(Ws)τv in the following two cases:
Case 1. k=l, that is, each component w*(x) of w(x) satisfies (Ws);

Case 2. there is a number 2 < k < N such that wl(x) — = wk~l(x) =

0, and wk(x),...,wN(x) satisfy (Ws).

Case 1. We define linear functional /, g and h by

r+oo ί +oo

/(«) := M (*) «W^, ff(β) := - kl'W - «Wrfχ,
J— oo J —oo

N Λ

(«) := £
, =ι J

for u=(ul,...,uN)eX, where |HW = (k1 (x)|, .. . , K(x)|), IH'W =

(k1 Wl ' , - , w^WI') and \w'(χ)\' = (d/dx)\W'(x)\. Then |/(«)| < ||κ||,
|A(«)| < \\u\\ and

N Λ+OO -ίV f+oo

\g(u)\ < £) | |^»|VW|Λ< χ>< (l + I^WDI^WI^^ωH
/=! J-°° ι=l J-°°

for w = (w 1 , . . . ,^^) eJT, where ωl = ess.sup J c e R | (w /) /WI/(l H- W(Λ:)|) and
ω = maxi^/^Λ^ω'. Thus, /, ^ and A are continuous on X. In addition, for

any nonzero u e X+ it is clear that /(if) > 0, A(w) > 0 and h(S(σ}u) = A(if) for

σ e R. We define

Ci := min ess. inffw'Wx), C1? := max ess. supfw'Wx).

Then 0 < Q < Ci < +00, because each w'( ) is bi-Lipschitz and increasing.

Recall that g(u) - -J^ w'(x) - »(jc)έfc. Therefore, CιA(») < -g(u) < C2h(u)

and |gf(«)| < —g(u) for any n e X+. Moreover, by integration by parts and

Lemma 6.2, we have fΛu = g(u) for any ue@(Λ). Hence g is a unique

extension of fΛ, and (AdLF) holds.
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By (P4) and the choice of / / and F, it is easy to check that (AdF) is also
satisfied for the function ξ(ή := ΣΪLi J_^ K'(x)|Φ''(/, Jc)Λc. Therefore, we
apply Theorem 3.3 to get the desired results for k—\.

Case 2. Let / g, f and g be the linear functionals treated above:

N H-OO N H-oo

/(«) = Σ W

i(x)ui(x)dx, g(u) = -Σ\ (wΎ(Φ'(x)dx,
= J-°° i=k J-°°

A7" H-oo

This time, the function £(•) is taken as ξ(ί) = Σ?=k J-» IW'MIΦ'"^, *)<**. We
define Λ by A (if) := Σiwt ί-& ul(x)dx. Furthermore, we define

Ci := min ess. inf(w z) '(.*), C? := max ess. supfw'Wx).
V ' V '

Then (AdLF) and (AdF) hold except for the case where h(u) > 0 for any
nonzero w e X+. It is not possible to apply Theorem 3.3 to the present case,
because h fails to satisfy h(u) > 0 for any nonzero u 6 X+. Therefore we prove
the theorem in the following way: We first note that for u = (ul , . . . , UN) e X+
the functional h satisfies h(u) >0 for (uk, . . . , u N ) = £ Q , Λ(ιr) =0 for (uk, . . . , U N ) =
0. In the proof of Theorem 3.3, we replace the condition ύ(s) φ 0 in Step 1
by (uk(s), . . . , UN(S)) Φ 0; UQ Φ 0 in Step 2 by (κ£, ...,<) ^ 0; fi(j) - 0 in Step
3 by ( ύ k ( s ) , . . . , δ^(j)) = 0; w0 = 0 in Step 4 by (w£, . . . , ujf) = 0, respectively.
Then we can employ the same arguments as in the proof of Theorem 3.3 and
complete the proof of Theorem 5.5. Π

PROOF OF THEOREM 5.7. We here use Theorem 3.4. In a way similar to
the proof of Theorem 5.4, we may check the validity of (BS), (GR), (LF) and
(G) by Proposition 6.3, Lemmas 6.4 and 6.5. In addition, using (W)#, (PI),
(P3), (P4) and Lemma 6.6, we see that F is continuous and satisfies (F3) and
(F4). (F5) introduced in §3 follows from (P6). Finally, (Fl) is shown in the
same way as in the proof of Theorem 5.4. The proof is complete. Π

PROOF OF THEOREM 5.10. Employ Theorem 3.7. We can check the
assumptions in Theorem 3.7, similarly to the proofs of Theorems 5.4, 5.5 and
5.7. Π

7. Proofs of the technical lemmas

In this final section we give the proofs of the technical lemmas, Lemmas
3.5, 4.3 and 4.4, which have been deferred. For convenience we give the
statements of the lemmas again.
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LEMMA 3.5. Assume that (BS), (GR) and (F4) hold Let zeC([0,Γ])
and u^eD. If vz is a solution in C([0, T]-,D) to the Cauchy problem for

(ODE z) on [0, Γ] with υz(0) = 5f(-z(0))w0, then

\\vz(t)\\ <^l4cWw + Γ||* (τ)||rfτY t e [ 0 , T ] .
\ Jo /

PROOF. Since υz(t) e D a X+ and S(σ)X+ c X+, we see from (F4) that

0 < υz(t) < S(-z(0))«o + ί S(-z(τ))# (τ)έ/τ + M [ ι?z(τ)έ/τ
Jo Jo

n

Thus, (BS) and (GR) together imply that

o o

The application of GronwalΓs inequality implies the desired result. Π

LEMMA 4.3. Assume that (BS), (GR) and (F4) are valid. Let 0 < s < ς <
T and δ, r > 0. Then
(i) for ZE Wl>«>(s,ς) with z'\^ <δ, we have

\\uz(t)\\ ^ €+>*>«-* \\u2(s)\\+ \\3F(τ}\\dτ
V Js

(ii) for z e C([s,ς)) ΓιL°°(s,ς) with \z ̂  < r, we have

\\uz(t}\\ <e^eΰ(^\\uz(s}\\+ Q \\^(τ}\\dτ

where uz is a mild solution of (SE z).

PROOF, (i) Since u z ( t ) eD a X+ and S(σ)X+ a X+, we see that

0 < uz(t) < S(z(t) - z(s))uz(s) + ί S(z(t) - z(τ))[^(τ) + Muz(τ]\dτ
J s

for t e [j, ς]

by (F4). Hence it follows from (BS) and (GR) that

ί 6 j ,ς .

Noting that z(ί) - z(τ)| < Jτ

? |z'(^)|έ/ί < <J(ί - τ) for s < τ < t < ς, we have

f ̂ (/"τ)

J^
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and hence

e-ωδί\\uz(ή\\<e-ωδs\\uz(s)\\ + f e~ωδτ\\^(τ)\\dτ^M \ e~ωδτ\\uz(τ}\\dτ, t e [ s , ς ] .
J s J s

By GronwalΓs inequality, we get

\\uz(t)\\ < eΰ«^e-
ωδs(\\uz(S}\\ + \' \\^(τ)\\dτ), t e [ s , ς ] ,

V Js /
-ωδ'

and (i) holds. We next set v z ( t ) = S(—z(t))uz(t). Then vz is a solution to
(ODE z) on [s,ς). In a way similar to the proof of Lemma 3.5, we obtain

te[s,ς).

Since | |κz(f)| | = \\S(z(t))vz(t)\\ < eωr\\vz(t}\\, we have (ii). Π

LEMMA 4.4. We assume (BS), (GR), (F4), (AdLF) and (AdF). Let 0 <

s < ς < T and uz a mild solution to (SE z) on [s,ς]. Then for z e C([,y,ς]) we

have:

( i ) e-ΰ(<-sϊh(uz(s)) <h(uz(t}} < e^-s\h(uz(s}} + J/*(^(τ))rfτ) for t e [s,ς\.

(ii) g(uz(t)) < -Cie-
M^h(uz(s)) for t e [s,ς].

(iii) If ze Wl^(s,ς) and \z'\^ <δ, then

f(uz(t)) < eM^ \ f ( u z ( s ) ) + f
L Js

+ C2δ(t - S)e^'-^ h(uz(s)) + h(P(τ))dτ for t e [s,ς].

PROOF. We first show that

(7.1) uz(t) > e-ΰ«-*ΪS(z(ή - z(s}}uz(s] in X, tε [s,ς].

Set υz(t) = S(-z(t))uz(t) for ίe[j,ς]. Then ι;z e C([j,ς];/)) Π C^^ςj Jf) is a
classical solution of (ODE z) on [s,ς] by Proposition 2.4. Hence,

Mυz(t) + t#0 = S(-z(ί))[M«z(0 + F(t, u z ( t } , z ( t } ) \ > 0, ί e [*, ς]

by (GR) and (AdF). From this we see that (e^'t ^f))7 ^ 0 for ίe[^,ς].
Integrating over [s, ς] and using the fact that X+ is norm-closed, we obtain

v z ( t ) ^e-^^-s">vz(s] for te [s,ς]. Consequently, it follows that

uz(t) = S(z(t))υz(t) ^ e-t-^S(z(t)}υz(s) = e-t-s^S(z(t}-z(s}}uz(s}, t e

as desired. We next prove (i). By (7.1) and (AdLF), we have

e-"('-* h(uz(s)) = e-ΰ«-*hS(z(t) - z(s))uz(s) < A(«z(0), t e [s,ς].



t e [j,ς].
Js
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This implies the first inequality in (i). Since uz is a mild solution of (SE z) on
[s,ς], the application of (F4), (GR) and (AdLF) implies

0 < Λ(κz(0) < h(uz(s)} + f h(^(τ}}dτ + M \ h(uz(τ})dτ,
Js Js

Therefore, the second inequality in (i) follows from GronwalΓs Lemma.
By (7.1) and (AdLF), we obtain (ii). To show (iii), we first note that

(7.2) f(S(σ)v)=f(v)-\σg(S(τ)υ)dτ
Jo

holds for σ e R and υ e X. This relation is obtained in a way similar to the
proof of Lemma 2.8 (i), because g is the extension of fΛ. It follows from
(GR), (F4), (AdLF) and (7.2) that

r|z(/)-z(j)|

0 <f(uz(ή) <f(uz(s)} + \g(S(σ)uz(s))\dσ
Jo

Jo J

Using (AdLF), we know that

\Zt ^ \g(S(σ)uz(s))\dσ<-\Zt * * g(S(σ)uz(s))dσ
Jo Jo

< C2 f h(S(σ)uz(s))dσ
Jo

= C2\z(t)-z(s)\h(uz(s)) < C2δ(t-s}h(uz(s}), t e [ s , ς ] .

By the same reason, we also get that

(t r|z(/)-z(τ)| _ f t _

dτ \g(S(σ}(3?(τ} + Muz(τ)})\dσ< C2 δ(t-τ)h(3r(τ)+Muz(τ))dτ,
Js Jo Js

te[s,ς\.

Thus, it follows that

0 <f(uz(ή) <f(uz(s}) + C2δ(t - s) \h(uz(s)) -h f h(P(τ) + Muz(τ))dτ]
I Js J

+ f f(&(τ))dτ + M f f(uz(τ))dτ, t e [s, ς].
Js J s

By GronwalΓs Lemma and (i), we obtain the result. Π
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