HiROSHIMA MATH. J.
29 (1999), 479-527

On the Gysin isomorphism of rigid cohomology
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ABSTRACT. We prove a comparison theorem of logarithmic Monsky-Washnitzer
cohomology and rigid cohomology with overconvergent coefficients. Using this
comparison theorem, we construct the Gysin isomorphism in rigid cohomology with
overconvergent coefficients on small pairs of affine smooth varieties of positive char-
acteristic. The Gysin isomorphism under the assumption “‘small” is sufficient to apply
it to the finiteness problem of rigid cohomology with coefficients. We prove the
finiteness theorem, Poincaré duality and Kiinneth formula of rigid cohomology for unit-
root overconvergent F-isocrystals by our previous result of finite local monodromy
theorem for them.

1. Introduction

The rigid cohomology with coefficient of overconvergent isocrystals, which
was introduced by P. Berthelot, is a good candidate of the p-adic cohomology
theory of varieties of positive characteristic p. If the rigid cohomology is a
good cohomology, then it must have several expected properties, the finiteness,
Poincaré duality, Kiinneth formula and so on. In [6] and [7] Berthelot proved
the finiteness, Poincaré duality and Kiinneth formula of the rigid cohomology
with the constant coefficient. In his proof the Gysin isomorphism played an
important role.

In this article we construct the Gysin isomorphism of the rigid cohomology
of overconvergent isocrystals on sufficiently small affine smooth varieties. For
overconvergent F-isocrystals, this Gysin isomorphism commutes with Frobenius
structures. We apply it to the finiteness, Poincaré duality and Kiinneth formula
of the rigid cohomology of overconvergent unit-root F-isocrystals.

Let us explain the method of the construction of the Gysin isomorphism.
First we introduce a logarithmic Monsky-Washnitzer cohomology and prove
the comparison theorem with overconvergent coefficients between the log-
arithmic Monsky-Washnitzer cohomology and the rigid cohomology for an
affine smooth variety with normal crossing divisor over a spectrum of field
of positive characteristic. This comparison theorem is a p-adic analogue of
A. Grothendieck and P. Deligne’s comparison theorem of the logarithmic
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de Rham cohomology of complex analytic varieties. (See [11] and [12].)
Applying the comparison theorem, we construct the Gysin isomorphism as in
[12]. For the constant coefficient, our Gysin isomorphism coincides with the
one in [6] and the commutativity of the Gysin isomorphism and Frobenius
structures was proved in [8]. In the case of varieties over a finite field, the
Gysin isomorphism was studied in [14] using p-adic functional analysis.

The key assertion of the comparison theorem is Lemma 3.7.5. The idea is
essentially similar to that of P. Monsky, who studied the Gysin isomorphism of
Monsky-Washnitzer cohomology for the pair of an affine smooth variety and
its nonsingular hypersurface in [16].

We explain the contents of this paper. In §2 we review the theory of rigid
cohomology. In §3 we define a logarithmic Monsky-Washnitzer cohomology
with coefficients and prove the comparison theorem with overconvergent co-
efficients. In §4 we construct the Gysin morphism of rigid cohomology over a
sufficiently small affine smooth variety. In §5 we give a comparison theorem
between the crystalline cohomology and the rigid cohomology with coefficients.
This comparison theorem is used in §6. In §6 we prove the finiteness theorem,
Poincaré¢ duality and Kiinneth formula of rigid cohomology for unit-root over-
convergent F-isocrystals on a variety over a perfect field of characteristic p.

Throughout this paper, we fix the notation as follows;

p: a prime number;

k: a field of characteristic p;

V: a complete discrete valuation ring of mixed characteristics with

residue field k;

m: the maximal ideal of V;
K: the field of fraction of V;
| |: an absolute value of K;
o: the Frobenius map on k.

We also denote by o a lift of Frobenius endomorphism on V (resp. K) if it
exists. If we mention F-isocrystals or Frobenius structures, we suppose the
existence of a lift of Frobenius on K and we fix a Frobenius ¢ on K.

For a V-module M, we put Mx = M ®y K.

Let (a;) be a matrix with entries in R. For a function f (resp. a norm | |)
on R, we put /((a;)) = (/(ay)) (resp. |(ay)| = max{layl}).

The author would like to thank F. Baldassarri, P. Berthelot, B. Chiarellotto,
B. Le Stum and F. Trihan for useful conversations.

2. Several properties of rigid cohomology

In this section we review several properties of rigid cohomology which are
needed later. (See [4], [5], [6] and [9].) Throughout this section, we denote



Gysin isomorphism of rigid cohomology 481

by X, X, and 2 a separated scheme of finite type over Speck, a proper scheme
of finite type over Speck with a k-open immersion j: X — X, and a formal
scheme of finite type over Spf ¥ with a closed immersion X — # such that 2 is
smooth over Spf ¥ around X, respectively. We denote by Isocf(X/K) the
category of overconvergent isocrystals on X/K and, for a positive integer a, by
F-Isoc'(X/K,c%) the category of overconvergent F-isocrystals on X/K with
respect to the Frobenius ¢¢ on K.

(2.1) For an object (.#,V) in Isoc’(X/K), we denote by DR*(.#) the de Rham
complex

14 1 1% 2 v o
— 0= M= ®j'01i[, Qg x = ®f'f01i[; Qxk
of K-sheaves on | X[, associated to .#, where we put .# at the degree 0.
Let Z be a closed subscheme of X over Speck, and put U = X — Z with
the open immersion j; : U — X. For a sheaf & of abelian groups on | X[,
we put

[l (&) = ker(¢ — j6)

Iz(8) = T(1X[5,T],,(6))

to be the sheaf of overconvergent sections of & with supports in |Z[; and the
group of global sections of & with supports in |Z[;, respectively. For an
object (.#,V) in Isoc' (X /K), the complex RIz(DR*(.#)) is independent of the
choices of X and 2 in the derived category of complexes of K-vector spaces
bounded below. We put

RIZ,i,(X/K, M) = RT7(DR*(M))

and the rigid cohomology H} ., (X/K,.#)=R'Tz(DR*(#)) with supports
in Z. When Z=2X, we simply denote RI,(X/K, #)=RIx(DR*(M))
and H,’,.g(X /K,,//l):HA’,’,ig(X /K, #). We define a distinguished triangle
Arig(X’Zﬂ/”) by

Rz, ig(X /K, M) — RTyig(X /K, M) — REig(U/K, jl. M) = .
By the similar proof of [3, Proposition 2.4, 2.5] we have

PROPOSITION 2.1.1.  With the notation as above, let (M,V) be an object in
Isoc (X /K).

(1) If U is an open subscheme of X over Speck such that Z = U, then
there is a canonical isomorphism

RIz ,if(X/K, M) — RTz, ,io(U/K, ji, ).
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(2) If Z is a disjoint union of closed subschemes Z) and Z, of X over
Speck, then there is a canonical isomorphism

RIz, ,iy(X /K, M) ® Rz, ig(X/K, M) — RI 2 ,iy(X /K, M).

(3) If T is a closed subscheme of Z over Speck and if we put Y =X — T
and Zy = Z — T, then there exists a distinguished triangle
. 1
RT7ig(X /K, M) — RTz ig(X /K, M) — RTz, ,ig(Y /K, jYytl)
Here we denote by jy:Y — X the open immersion.
Moreover, the induced K-homomorphisms on the rigid cohomology in (1), (2)
and (3) commute with Frobenius structures for an object in F-Isoc'(X /K, a9).

Let K’ be an extension of K which is complete under the extension of
valuation of K and denote by k' the residue field of K'. We put X' =X Xspeck
Speck’ (resp. Z' = Z Xspeck Speck’, resp. X=X Xspeck Speck’, resp. P =
P xspf v Spf V') and denote by j': X' — X' (resp. TK/K ]A_"[g;/ — |X[;) the
open immersion (resp. the natural morphism). Then 74k induces the inverse
image functor

Txok Isoc!(X/K) — Isoc'(X'/K").

If ¢/; K’ — K’ is an extension of the Frobenius ¢ on K, then 7/ x induces the
inverse image functor

Tk - F-lsoc! (X /K,6%) — F-Isoc! (X /K', (0")%)

for a positive integer a.

For an object (#,V) in Isoc!(X/K), if we put (M',V') =15, (M, V),
then the natural homomorphism r‘lrle(./%) — []TZ,[(/%' ) induces a canonical
morphism

Tk RIz ,iy(X/K, M) ®x K' — Rz ,ig(X'/K', M")

in the derived category of complexes of K’-vector spaces. As a generalization
of [6, Proposition 1.8] with coefficients we have

PROPOSITION 2.1.2.  With the notation as above, if K' is a finite extension of
K, then the morphism

T;(’/K : RFZ»”'!}(X/Ka M) ®g K' — RrZ’,rig(X//Kl’ M)

is an isomorphism. Moreover, if the Frobenius o extends to the Frobenius on
K', then the induced K'-homomorphism t}, /K on the rigid cohomology commutes
with Frobenius structures for any object in F-Isoc'(X/K,a%).
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Proor. By Proposition 2.1.1, one may assume that Z = X. Consider-
ing the Cech cohomology, the assertion follows easily from the fact
that T(z7' (W), (j")'0,5) =T(W,j'0,g) ® K’ and that H'(W,.l)=
H'(t7\(W),#') =0 for [ #0 for any sufficiently small open affinoid W
in | X|. O
(2.2) We explain the relation between the rigid cohomology and the Monsky-
Washnitzer cohomology. (See [5, 2.5].) We assume that there exists an affine
smooth scheme Z = SpecA of finite type over Spec V' with X = % Xspec v
Speck. We fix a presentation

V[xl,...,xN]/I ~ A4

over V. Put Z to be the Zariski closure of Z in PV (Spec V'[x] is the open
subscheme defined by xo # 0), Z to be the p-adic completion of Z and X to be
the closure of X in Z. For 4> 1, we put a V-algebra

A, = VI[x|,/IV[x];,
where

Vi), = {Zap_cf & Vibay o]

i20

az € V
la;) A4 — 0(Ji| — o0) [’

i is a multi index and |i| =i +---+iy. We define a Banach norm || ||, on
Vixl]; by

|32 asxd]| = sup{lasia}

and define a Banach norm || |4, on 4; by the quotient norm of || [|; on V[x];.
We define a V-algebra A and its norm || ||,+ by

Al = lim 4,
A—1t
I 1lgt =11i}11 Iz,

A" is the weak completion of 4 over V, independent of the choices of the
presentation up to canonical isomorphism, and noetherian [17, Theorem 1.5,
2.1].

An algebra homomorphism ¢ : 4T — A" is called Frobenius if and only if
it is o-linear and the induced map on I'(X,Oy) = A'/mA' is the p-th power
map.

Let dty,...,dt, be a local basis of the sheaf 'QSIZ"/SpecV of the differential
module of & over Spec V' and let 4y, ...,0, be a dual basis of dry,...,dt, in the
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sheaf Der(Z /Spec V) of derivation. Then 0; can extend on A’ and we use the
same symbol 0; for this extension.

Let V: M — M®,Q), ;v be a connection of a finitely generated Ak-
module. Since M is finitely generated, there is a finitely generated A; k-
module M, with a connection V;: M, - M; ®, QL v for any A>1
sufficiently close to 1 such that (M;,V;) ®,, , 4 x = (M;,V,) for 1 <A’ < 4
and hm (M,l,Vl) (M,V). We say that the connection V: M — M ®, QA/V
is overconvergent if it is integrable and, for any # < 1, there exists 4 > 1 such
that

Ll!m(@f)(m)

710 (= )
A

for any me M,. Here, | |, is a quotient norm of M; which is determined
by the fixed presentation of M; over A4, g, i! =1i!---i,! and o= 6{" 6,’,
The condition of overconvergence is independent of the choices of the
presentation of M over AL and the basis of the derivation Der(%/Spec V). A
morphism of A}}-modules with overconvergent connection is a horizontal A}<-
homomorphism. We denote by Conn(%/K) the category of finitely generated
A,T(-modules with overconvergent connection. The category of Conn'(Z/K) is
independent of the choices of the affine smooth lift Z of X and the presentation
of A over V up to canonical isomorphisms [5, Proposition 2.5.2]. If (M,V) is
an object in' Conn!(%Z/K), M is projective over A;L.

Let ¢ be a Frobenius on At and let a be a positive integer. For an object
(M,V) in Conn'(%/K), a horizontal isomorphism @ : (¢p%)*M — M is called
a Frobenius structure on (M,V) with respect to ¢?. A morphism of A}}-
modules with overconvergent connection and Frobenius structure is a hori-
zontal A}(-homomorphism which commutes with Frobenius structures. We
denote by F-Conn'(%Z/K,¢%) the category of finitely generated AL-modules
with overconvergent connection and Frobenius structure. The category of
F-Conn'(Z/K,?) is independent of the choices of the affine smooth lift Z of
X, the presentation of 4 and the Frobenius ¢ on A’ up to canonical iso-
morphisms [5, Théoréme 2.5.7].

For an object (M,V) in Conn'(Z/K), we define a de Rham complex
DR*(M) of K-vector spaces by

s 0-MLMeR, L MeR, S
where we put M at the degree 0. We denote by Hj, (X/K,M) the
Monsky-Washnitzer cohomology H!(DR®*(M)). For an object (M,V,®) in
F-Conn'(Z/K,p?), the Frobenius structure @ on M induces the Frobenius
structure on H}; (X/K, M) and we also denote this Frobenius structure by @.
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ProposiTioN  2.2.1. (1) [5, Proposition 2.5.2, Théoréme 2.5.7] The
functor T()X [ ?) gives canonical equivalences

Isoc'(X/K) — Conn'(Z/K)
F-Isoc' (X /K,0%) — F-Conn'(Z'/K, ¢%)

of categories.
(2) (6, Proposition 1.10] For an object (.#,V) in Isoc'(X/K), if we put
M=T(X [i’%)’ then the functor T'(|1X [i, ?) induces the canonical isomorphism

DR*(M) — RT,y(X /K, M)

in the derived category of complexes of K-vector spaces.
For an object in F-Isoc'(X/K,0%), the isomorphism Hl (XK, M) —

H,’,H(X /K, M) commutes with Frobenius structures.

(2.3) Keep the notation in 2.2. Let f:% — &% be an etale morphism of
affine smooth V-schemes of finite type such that f is surjective on the special
fiber, and put 4 =I'(%,0) and B=T(%,04). For an object (M,V) in
Conn'(%/K), we define a double complex DR*(%*/K, M) of K-vector spaces
by the Cech complex

DR*(f'M) — DR*((f*)'M) — DR*((f*)'M) —

for the hypercovering induced by f, where (f"* YM=MQ® n (B®y - ®y B)}<
(v tlmes) and fTM is of bidegree (0,0). For an object (M,V,®) in F-
Conn'(%Z /K, »?), the Frobenius structure & induces the Frobenius structure on
the double complex DR*(%°*/K, M).

PrOPOSITION 2.3.1.  With the notation as above, if (M,V) is an object in
Conn'(Z/K), then the natural homomorphism

DR*(M) — Tot(DR*(¥*/K, M))

of complexes of K-vector spaces is a quasi-isomorphism. Here
Tot(DR*(%°/K,M)) is the total complex of the double complex
DR*(%*/K,M). For an object in F-Conn'(Z/K, %), the induced homo-
morphism of cohomologies commutes with Frobenius structures.

Note that f1: A" — Bt is faithfully flat. Indeed, the p-adic completion A
(resp. B) of A (resp. B) is faithfully flat over the weak completion 41 (resp. B)
(See the proof of [6, Proposition 3.6].) and B is faithfully flat over A4 since
B/m'B is faithfully flat over A/m'A4 for any L.

Since M is projective over A,T(, Proposition 2.3.1 easily follows from
Lemma 2.3.2 below.
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LEMMA 2.3.2. With the notation as above, the Cech complex
0—- 4" - B' - (B®,B) — (B®,B®,B) — -
of Af-modules is exact.

Proor. By [5, Proposition 2.1.8] the assertion is local, hence we
may assume that & is a standard etale extension over affine space on Spec V'
and that % is a finite disjoint sum of standard etale extensions over %,
that is, A4 = V([x][y,z]/(s(y),t(y)z—1) (resp. % =[], Spec B;, B; = Au;, v;]/
(pi(us), qi(ui)v; — 1)), where s(y) (resp. p;(u;)) is a monic irreducible polynomial
over V[x] (resp. A) which is separable over the field of fraction of ¥[x] (resp.
A), t(y) (resp. gi(u;)) is a non-zero polynomial over V[x] (resp. 4) such that
s'(y) (resp. pi(w;)) is invertible in A (resp. B;). Denote by d; (resp. e;) the
degree of p;(u;) (resp. gi(u;)). Fix a lift p,(w;) (resp. §;(u;)) of polynomial in
V(x, y,z,u;] of degree d; (resp. e;) on u; such that p,(u;) is monic. Then we
have a compatible system of presentations

V[)_C,J’,Z] —— A
ILVix, y,z,ui,vii —— B

of A and B as V-algebras and also a compatible presentation
(IL Vix, y,z,u;,0])®" — B®" for any r, where (IL Vix, y,z,u;,v;))®" is the
tensor product of r copies of [[, V[x,y,z,u;,v;] over V[x,y,zl. For A=
(A1,42,23) (4 > 1), define a V-subalgebra I (resp. I/ (reZsx)) of A; (resp.
(B®"),) which consists of elements a with ||a||, < 1. Here the norm | ||, is
defined as in 2.2 using the triple A for the coordinate (x,(y,z),(4,v)),
respectively. Let ¥°, €; and #; be the complex in the assertion,

O—‘)AA——’BA—> (B®AB),{_) (B®AB®AB)/1_’7
0—)1;?—»121 —>I/12—>If—>---,
respectively, which is induced by the Cech complex

0— V[E,J’,Z] - H V[Q_va727uiyvi]
i

- <H V[.lC, V52, uia”i]) ®V[)_c,y,z] (H V[)_C,y,Z uivvi]) e
i i

Here we put V[x, y,z] at degree 0.
Choose rational numbers /; (j=1,2,3) which are greater than
1 such that, if we fix elements 7z; (j=1,2,3) in the algebraic closure
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of K with |nj| = /l“ and V, = V[ny,n, 13, ngeg(s(y))s(nl‘ly_c,nz‘ly) (resp.
s p,(n1 x, 5 (y,2), n31u,-)) is a monic polynomial in V;[x,y] (resp.
Vilx, y,z,ui]) of degree deg(s(y)) (resp. d;) on y (resp. u;) whose reduction
modulo the maximal ideal m; of V; is a monomial, and af(n]'x,75'y) (resp.
%q;(ny %, m3" (y,2),75'w;)) is a polynomial in Vi[x,y] (resp. Vilx,y,z,u))
whose reduction modulo m; is a non-zero monomial of degree deg(¢(y)) on y
(resp. e; on u;) for some element a (resp. o;) in ¥V, which is contained in m;.

Such A exists if we take ;] « A; « A3 for any A3. We define V;-algebras
A; = Vilx, 3,2/ (" s(m x5 ), at(m 75 )z = )
Bivl = A~).[u,‘,U,']/(7t3diﬁi(7ll_1)_C, nz_l(yv Z)vn;lui)7aiqi(n1_1-lcv 752_1(}’7 Z)ynglui)vi - 7[3“!')7

and put B; =[], B;;. We denote by A ) (resp. liil?r)h the p-adic completion of
A, (resp. B®) modulo mj-power torsions and by ‘6; the Cech complex

0— A; — B, — (B; ®4, B;) — (B; ®y, B; ®4, B;) —

where we put A,1 at degree 0. Since there is a section B,{/mABA — Al/mAA,l,
one gets H' (‘gl/mfg ) =0 for any . Since 4, (resp. B, ) is free over V;, we
have H' ((gl/m,'{%l) =0 for any n and /. Hence, we have

H'(§}) = lim H'(&} /m} ;) = 0.

Since H'(¢°®) = lim H’(%) it is sufficient to prove H!(43) = 0 for any I
Here we take the direct limit above by max;{4;} — 1. Since V; over V is a
finite extension of complete discrete valuation rings, H'(%; ®y V;) = 0 implies
H (3) =0. So We may assume that V' = V). Then, there is an isomorphism
A; — I (resp. B,1 — I]) defined by x — 71x, (p,2) — m2(p,2), (u,0) — 73(u, v)
by the umversalxty of tensor products and inverse limits. This map induces an
isomorphism % , — F; of complexes. Hence we have H'(#3)=0.

Now we consider the exact sequence 0 — % 2 &5 — %;/p%; — 0 of
complexes of A;-modules. Since 4;/pA; = A/pA (resp. (B®"),/p(B®"), =
(B®")/p(B®")) and f is surjective on the special fiber (hence, B/pB is faithfully
flat over 4/pA), we have H!(¢3/p%;) = 0. In other words, the multiplication
p map on H!(%3) is bijective. Since any element of (B"),/I] is p-power
torsion, any element is so in H/(43;/.#;). From the exact sequence 0 — .#§ —
%; — €¢;/F; — 0, we have an isomorphism

H'(%3) = H'(€;/53).

A

Hence, we have H!(43) =0. This completes the proof. O
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By Proposition 2.2.1, 2.3.1 we have

COROLLARY 2.3.3. With the notation as above, if (M,V) is an object in
Isoc!(X/K) and if we put M = I“(]A_’[f,//l), then there is an isomorphism

RT,;,(X/K,.#) = Tot(DR*(¥* /K, M))

in the derived categories of complexes of K-vector spaces. Moreover, for an
object in F-Isoc'(X/K, %), the induced homomorphism of cohomologies com-
mutes with Frobenius structures.

(2.4) Let Z (resp. Z) be a closed subscheme of X over Speck (resp. the closure
of Zin X) and puti : Z — X (resp. j; : Z — Z) to be the correspondent closed
(resp. open) immersion. We define functors

Ji[*: Isoc! (X /K) — Isoc'(Z/K)
Ji[*: F-Isoc'(X/K,6%) — F-Isoc'(Z/K, %)

of the inverse image as follows. For an object (.#,V), we put Ji[*4 =
lil” //I@H j10, ]ZOJZ[ Put |X[;: to be the tubular neighbourhood of the

diagonal embeddmg of X in #? and denote by pr; : | X[ — X[, the natural
projection of tubes for i =1,2. Since V is overconvergent, the stratification
e: pri# = pr3/ which is induced from the connection V extends on a strict
neighbourhood of |X[;.. Hence, the extension of & determines a stratification
on the strict neighbourhood of ]Z[;. since the strict neighbourhood of ]X|
includes the strict neighbourhood of |Z[. The functor Ji[" is independent of the
choice of the formal scheme 2 and commutes with tensor products and duals.

Now we assume that both X and Z are affine smooth and there exist an
affine smooth scheme Z = SpecA4 of finite type over Spec V' and an affine
smooth closed subscheme % = SpecC of Z over SpecV such that X =
X Xspecv Speck and Z = Z Xspec v Speck. We fix Z and X (resp. Z and Z)
as in 2.2. Let (M,V) be an object in Conn' (EK/K) If u e A vanishes in C,
then the image of du under the prOJectlon QL i .QC/V vanishes and V
induces a connection itV on itM = M ® " C}. TIf we fix a presentation of 4
over V, then this presentation determines a presentation of C and ||if(u)|, <
||ullg, for any 2> 1. Hence, the connection i'V is overconvergent. We define
a functor

it : Conn(%/K) — Conn'(Z/K)

by if(M,V)=(MQ, t cl,itv).
If ¢ is a Frobenius on 4! such that ¢ induces a Frobenius on C1, then one
can easily see that the functor i’ induces the functor

it : Conn(Z /K, p?) — Conn'(Z'/K,p?).
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By definition, we have
PROPOSITION 2.4.1. Under the assumption as above, the diagram

Isoc’(X/K) I, Isoc'(Z/K)

rﬁg(m;,?)l lr,ig(lzl )

Conn'(#/K) ——— Conn'(Z/K)
of categories is commutative. The same holds for overconvergent F-isocrystals.
(2.5) We recall the definition of rigid cohomology with compact supports in

[4, Sect. 3, 4.2]. Let 1:]X — X[; — ]X[; be the corresponding immersion.
For a sheaf & of abelian groups on ]X|[;, we define a sheaf on |X[; by
I:]X[j(éa) = ker(é“ — l*l*(o@).
Let (.#,V) be an object in Isoc’(X/K) and let W be a strict neigh-
bourhood of ]X[; in |X[; such that there exists a coherent Oy-module ./

and a connection Vi on 4y with j L,(ﬂw, Vw) = (#,V). Here we denote by
Jw: W —]X[; the open immersion. We define a complex

RLig(X/K, M) = RT(1X[5, Ly ,(DR*(Mw)))

in the derived category of complexes of K-vector spaces bounded below. The
complex above is independent of the choices of W, X and 2 up to the
canonical isomorphism. The rigid cohomology with compact supports for
(M,V) is defined by

H!, (X/K,M)= R'T, ,iy(X /K, A).

If & is a sheaf of coherent O]Y[)-module, then R'1,*€ =0 for [ #0.
Hence, for a short exact sequence ’

0 — (M, V1) — (M2, V2) — (M3,V3) — 0
in Isoc’(X/K), there exists a distinguished triangle
R, iy (X /K, M1) —> RT, ,ig(X /K, M3) — Ry iy (X /K, M3) = .

The natural homomorphism Iy (&) — & of complexes of sheaves on
] X[, induces a homomorphism

RI, ,iy(X /K, M) — RL,iy(X /K, M)

of complexes of K-vector spaces for an object (./#,V) in Isoc'(X/K). In the
case where X = X the homomorphism above is an isomorphism by definition.

Let Z (resp. Z, resp. U) be a closed subscheme of X over Speck (resp. the
closure of Z in X, resp. U=X—2Z) and put i : Z — X (resp. jz:Z — Z,
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resp. jy:U — X) to be the corresponding closed immersion (resp. open
immersions).

PROPOSITION 2.5.1.  For an object (M,V) in Isoc'(X/K), there is a ca-
nonical distinguished triangle

RFc,,ig(U/K,jI,//Z) — RI,iy(X /K, M) — RT, ,ix(Z/K, Ji[* M) ANy
We denote the triangle above by A ,iy(X,Z, H).

PrOOF. Let W be a strict neighbourhood of |X[; in ]X[; such that
jly(Mw,V) = (#,V) with a coherent Op-module .#y. Since Ji[]i[" My =
(Mw)lw_yx(, and Ji], is exact,

0 — Ly (M) — Tyx((tt) = i, Liz(Ji[" M) — 0

is an exact sequence of sheaves of OH—,[é-modules. This completes the
proof. ' O

PROPOSITION 2.5.2.  With the notation as in Proposition 2.1.2, if K' is a
finite extension of K, then the morphism

RIC iy(X /K, #) ®x K' — R, ;y(X'/K', M")

induced by r,‘(}/KI_“]X[j(,//Z) —>[]X,[?’(//l') is an isomorphism in the derived
category of complexes of K'-vector spaces.

Proor. Considering the Cech cohomology, the assertion follows easily
from the fact that, if we choose a strict neighbourhood W of |X| where ./
is defined, then F(T;}/K(U),[‘]X,[(O]ﬂ)):I“(U,[]X[(O]A—,[)) ®k K’ and that
H'(l_/, Cyy((Mw)) = H’(r,‘(3/K(U),I_“]X,[(;/%;’_(I,/K(W))) =0 for / #0 and any ad-
missible affinoid subspace U of | X]. O

Let ¢ be a lift of Frobenius on #2 with respect to o. For a strict
neighbourhood W of ]X[;, if we choose a sufficiently small strict neigh-
bourhood W' of ]X[;, then ¢ induces a map ¢: W' — W [5, 2.4.1.3]. There
is a Frobenius structure on T jy((.#) for an overconvergent F-isocrystal
(M,V,®D) and all induced homomorphisms of cohomologies with compact
supports above commute with Frobenius structures.

(2.6) We discuss on the relative cases of rigid cohomologies. Let

y 2. v ., 3
(2.6.1) 4 l s J f’
X X P

Jx ix
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be a commutative diagram which satisfies the following conditions: X and Y
are separated schemes of finite type over Speck, X (resp. Y) is a compac-
tification of X (resp. ¥) over Speck with an open immersion j (resp. jy), 2
(resp. ) is a formal scheme of finite type over Spf V, iy (resp. iy) is a closed
immersion, # (resp. 2) is smooth around X (resp Y), f is smooth and w is
smooth around Y.

Denote by wg : ] Y[; — ] X[, the induced morphism of analytic spaces by
w. Since w is smooth around Y, there is a strict neighbourhood U (resp. W) of
1X[5 in ]X[; (resp. |Y[; in ]Y[;) such that wg(W) = U and wg is smooth on
W by [5, Proposition 1.2.7]. Then the sequence

0 — (Wk|w) " Qu/x = Quy/x — Ly — 0

of sheaves of Ow-modules is exact. Let (M,V) be an object in Isoc’(¥/K)
such that there exists a sheaf .#y of coherent Op-module with an integrable
connection Vi : My — Mw @, QIW/K and that jL,(,//lW,VW) ~ (M,V),
where jy :]Y[;— W is the corresponding open immersion. Then the con-
nection Vi on 4y induces a relative integrable connection

VW/U My — My ®0W ‘Q}/V/U'

We denote by Aw ®o, 2y, the induced relative de Rham complex of
sheaves of Wl Oy-modules

Vv 1 Vw v 2 Vwu
. —>O—>%W — 'ﬂW@OWQW/U — ﬂW@OWQW/U —_

where we put ./ at the degree 0. By the similar proof as in Theorem 1 and
Theorem 2 in [4, Sect. 2] we have

PROPOSITION 2.6.2. Under the assumption as above, let

/ iyt

QLN )
7ol

Y — Y —— 9
Jy ly

be a commutative diagram such that jy. is an open immersion, g is proper, Y'is
a closed subscheme of the formal scheme 9’ of finite type over Spf V and v is
smooth around Y. 1If we put v :|Y'[; — Y[, to be the induced morphism of
analytic spaces, W' = v (W) and My = vg' My ®iz10, Ow, then the natural
morphism jy, — (Ok|w).JwOk|y:)" induces an isomorphism

ﬂW ®0W Q;V/U - R({)KlW/)*(‘/%W' ®0W' Qb//u)

in the derived category of complexes of sheaves of WKI;VI Oy-modules bounded
below.
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If Uy is a strict neighbourhood of |X[; in U and if we put W)=
wg'(Uy)) N W, then W is a strict neighbourhood of |Y[; and there is a ca-
nonical morphism

]l_lllR(WKIW)*(%W ®OW Q;V/U) - R(wK|W1)*('///W' ®0W1 ;VI/UI)‘

Here jy, : Uy — ]X[;. Now we define a complex

(Rfrig*'/ﬂ)ﬁ = ijl*R(leWl)*('/”Wl C)bowl 'Q;V|/U1)
U

of jXO] P -modules. Here U, runs over all strict neighbourhood of |X[; in
] X[, and W; =Wwg '(U)NW. The complex (Rf,,,.#); is independent of the
choice of ¥ and 2 by Proposition 2.6.2.

We define a decreasing filtration

Fil"(Mw @o,, 2 /k)
= Image <Z Mw ®oy, Lk Oyl oy Wkl QY x = Mw o, Q;V/K)
s=0
of Mw ®o,, 2} k- Since both W/U and U/K are smooth, we have
grea(Mw ®oy ‘Q;V/K) Mw Qo, 'QW/U ®wk|wou WK}WQU/K

The edge morphism induces an integrable connection
VEM R (Wk|w). (Mw ®o, 23yju) = R (x| w).(Mw ®o, L3yu) ®o, Ly

Since W|w, = jy, © Wk|y for a strict neighbourhood U; of |X[; in U and
Wy = wg!(U) N W, we have a Gauss-Manin connection

VGM (R[f;tg*'/%) (le;ig*'/[)? ®0y Q;J/K

We fix a Frobenius ¢, (resp. ¢;) on P (resp. 2) with WOQ;=0z0W.
We may assume that such Frobenius always exists since w is smooth around Y.
Let (#,V,®) be an object in F-Isoc'(Y/K,c%). If we choose a sufficiently
small strict neighbourhood U, of | X[, in U and put Wy = wg!(Uy)N W, then
¢; induces a o-linear homomorphism ¢ : le (2% il 0y WK'WQU/K)
Q' x ®uK|W 0y, K|W,~QU, k- The Frobenius structure

D jiy, (Mw o, Ly y) — Mw, ®o,, L, v,

induces a o®linear homomorphism @™ on (f,,..4),.
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THEOREM 2.6.3. With the notation as above, assume furthermore that X is
smooth over Spec k and that f is finite etale. Then we have

(1) (R'f,,-g*///)ga=0 SJor 1#0 and (fgM)y is a sheaf of coherent
jf‘, O, 3(,-module.

(2) If we denote by VM the Gauss-Manin connection on ( Srige) j, then
is overconvergent. We denote by f,q,(M,V) or f, M the corresponding
object (( f,ig*/l)ga,VGM ) in the category Isoc!(X/K).

(3) If (M,V,®) is an object in F-Isoc'(Y/K, o%), then the induced o®-
linear map ®°M on ( JrigeM) j is a Frobenius structure. ~Moreover, if @ is unit-
root, then the induced Frobenius structure ®°™ is also unit-root. We denote by
Srigi( MV, ®) or f..M the corresponding object (( f”-g*/%)g:,VGM , DM in the
category F-Isoc'(X/K,a?).

VGM

ProoF. Since the assertion is local on X and f is finite etale, we may
assume that both X and Y are affine integral. By Proposition 2.6.1 we
may choose # and 2 as follows. We choose a smooth integral affine lift ' of
X of finite type over Spec V' by [13, Théoréme 6], embed % into a projective
space over Spec V' and denote by 2 (resp. X, resp. ?7) the Zariski closure of &
in the projective space (resp. the Zariski closure of X in &, resp. the p-adic
completion of #). By our assumption there is a finite integral closed affine
scheme % over & such that ¥ = % Xspecy Speck. We denote by 2 (resp. Y,
resp. ) the normalization of 2 in % (resp. the Zariski closure of Y in 2, resp.
the p-adic completion of 2). Since Y is etale over X, 2 is finite over £.
Hence, 2 is finite over 2.

For an object (.#,V) in Isoc'(Y/K), we can choose a strict neigh-
bourhood U in ]X[; such that, if we put W =wi!(U), there are a
coherent Oy-module .#y and an integrable connection Vi on .4y with
b (M, V) = (M,V). Since (Wk|,),Ow is finite over Oy, (Wkly),Mw is
a coherent Oy-module. If we choose a sufficiently small U, then Qy,,,; =0
for any s > 0 since the etaleness is an open condition. Hence, we have the
assertion (1).

Put |X[;: (resp. ]Y[;) to be the tubular neighbourhood of the di-
agonal embedding of X (resp. Y) in #? (resp. #?) and denote by pri :
X[ — X[, (resp. pri :]1¥[; —]Y[;) the natural projection of tubes for

i=1,2. Since the connection Vy of .#y is overconvergent and W% :

((pry) ™ (W) N (pr3) ™' (W) — ((prk)™ (V)N (prd)" (U)) s finite etale [5,
Proposition 1.2.10], there is a strict neighbourhood U; of | X[ . such that (i)
the strict neighborhood W, = (w2)~'U; of ] Y[ is included in (pri)y™'(w)n
(pry)~" (W), (ii) there exists an isomorphism & : (pri|y, )" Mw = (prily,)" Mw
which satisfies the usual cocycle condition and (iii) ¢ induces the connection Vy
of .w by [5, Proposition 2.2.6]. Since .# is coherent, Wwg|y is finite and
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prily, (1=1,2) is flat, ¢ induces the isomorphism

(prylu,)” Ovklw).tw = (Wglw,).(Prylw,)" Aw

= (W§(|Wl)*(P'§/|W,)*v/”W

= (prilu,)” (vklw).Hw

by Lemma 2.6.4 below. One can check that the isomorphism above satisfies
the cocycle condition by the same method and this isomorphism induces the
overconvergent connection VM on ( Jrige#) 5. Hence, we have the assertion
(2).
The assertion (3) is easy. O
LemMA 2.6.4. With the notation as in the proof of Theorem 2.6.3, the
commutative diagram

1
pr
w, — w

“712<|W,J JVM."K!W

u, — U
pri

is cartesian for 1 =1,2.

Proor. The proof is similar as in [10, 1.7]. Consider the commutative
diagram

Y[p — W — Y

J((Wilw1 pry) j(w,(,id)

]iy’{éz —— Ui Xy W —— |X[3x] 7.

(WK, pry)

Here U x,,; W means the fiber product for the map pri : Uy — U. Since
Wi|y is finite etale, (W}(,id) induces an isomorphism between W and U, Xprt
W by [5, Théoréme 1.3.5]. O

COROLLARY 2.6.5. Under the same assumption as in Theorem 2.6.3, let Zx
be a closed subscheme in X and put Zy = f~'Zx. Then, for an object (M,V)
in Isoc'(Y/K), we have a natural isomorphism

H‘éx,rig(X/th;‘ig*%) = Héy,rig(Y/Ka ﬁﬂ)

of K-vector spaces for any l. For an overconvergent F-isocrystal, the isomor-
phism above commutes with Frobenius structures.
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COROLLARY 2.6.6. Under the same assumption as in Theorem 2.6.3, we
have a natural isomorphism

Hc[,rig(X/K’f;ig*'ﬂ) = Hcl,rig(Y/Kv '/%)

of K-vector spaces for any object (M,V) in Isoc'(Y/K) and any I. For an
overconvergent F-isocrystal, the isomorphisms above commutes with Frobenius
structures.

(2.7) Assume that X is smooth over Speck and that f is finite etale in
the diagram 2.6.1. Denote by f;, : Isoc'(X/K) — Isoc'(Y/K) (resp. f;;,:

F-Isoc' (X /K,0%) — F-Isoc'(Y /K, 0_2)) the inverse image functor as over-
convergent isocrystals (resp. as overconvergent F-isocrystals).

Let (#,V) be an object in Isoc!(X/K) (resp. F-Isoc'(X/K)). We define
an adjoint map

ad: M — frgSrig M

by m— 1 ®m for me /4. Then, one can easily check that the adjoint map
ad is a morphism in Isoc’(X/K) (resp, F-Isoc!(X /K, %)) and that Jrig and fr,
are adjoint each other by the adjoint map ad.

We define a trace map

tr: frigeJrigH — M

which is a morphism in Isoc’(X/K) (resp. F-Isoc'(X/K,c?)) as follows. In
general, the construction of the trace map is a local problem. Hence, we may
assume the local situation as in the proof of Theorem 2.6.3. Since W is finite
etale over U, we can define a trace map

try : (Wklw).Ow — Oy
and define a trace map try : (Wkl|y),(Wk|w) My — My by
0ok w). Ok lw) " Mo = (k| ). (Ow @ )10, FKlw) ™ Hu)
= ((Wx|w).Ow) ®o, My
O ay.

One can easily check that the trace map #r commutes with connections. If we
denote by r the degree of Y over X, then the composition

d * r
M a_> frt’g*f;igﬂ ; M

of the adjoint map and the trace map is rid 4, where id 4 is the identity map
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on /. One can easily see that the trace map #r commutes with Frobenius
structures for F-isocrystals.

3. Local comparison theorem

(3.1) First we fix our situation. Let & = Spec 4 be an affine smooth scheme of
finite type over Spec V. We suppose that

(3.1.1) there exists a system #,f,...,t, € A
of coordinates of # over Spec V.

In other words, the V-morphism
Z — A},

which is defined by the system {¢,...,t,} is etale. Let d be a nonnegative
integer < n. We denote by % (resp. %,) the open subscheme SpecB =

1
SpecA[ ] (resp. the open subscheme Spec B, = Spec 4 [—}) of Z and put

ooty ty
Jy ¥ — X (tesp. j,: %, — Z, resp. j,: ¥ —%¥,) to be the corresponding
open immersion (resp. for 1 < u < d). We also denote by 2 (resp. Z,) the
divisor of & which is defined by the equation #; ---z; = 0 (resp. by the equation
t,=0). WeputX, Y, D, Y, and D, to be the special fiber of &, ¥, 2, ¥,
and 9, respectively.

Keep the notation as in 2.2. Now we fix a presentation

Vixi,...,xy]/I = A

of the V-algebra 4 with x, — ¢, (1 = <n). For A> 1, we define V-algebras
by

Ay = VIx];/1V[x],
B; = Vxo,x];/(I, (xox1 - xa — 1)) V[x0, x];,
By,; = V[xou, X];/ (I, (xouxu — 1)) V[X0u, X]-

We denote by || ||y, (resp. || [l ;, tesp. || [lg, ;) the quotient norm as in 2.2.
If we define a homomorphism jy ; : A; — B (resp. j, ; : Az — By ;, resp. j;’;,x :
B, ; — B;) of V-algebras by the natural injection (resp. by the natural injection,
resp. by j,'l(XO/t) = XoX1X2 - X4/x, and j/’l(xv) =x, (1£v=<N)). Then, jy,
(resp. ji, 1, Tesp. Jj, ;) commutes with the Banach norms, that is, ||jy 1(a)lls ; <
lally, , for ae A;. We also denote by || [|4 (resp. || |4, resp. || [l4,) the norm
on A' (resp. BY, resp. B;) asin 2.2. Then, jL (resp. j/t, resp. (j;l)T) commutes
with the norms.
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Define a sheaf of differential module 2} sspec v(2) on & over Spec V' with
logarithmic poles along 2 by an Og-submodule of ;, /Spec V which is generated
by

dt; dt;
JA"'AiAdthlA”'Adtjl
tjl j:

for s<min{/,d}, 1<, <---<j,<d and d+1=Zj,, < ---<j;<n By
the assumption 3.1.1, QA/V(Q) l"(él” Qg/spec,,(@)) is a free A-module of
finite rank. We put QA*/K(Q) AK ®y A/V( ) and denote by d: AK

Q! AL/ x(2) the natural K-derivation.

We denote by d, = i the dual differential operator of dt, of 4 and put

ot,

=1 (1susn)

1 .
’ “(00 ==y 1susd
ol =
u
L
= 0,0} " p=d+1

for any nonnegative integer i. By the condition 3.1.1, we have

LemMMA 3.1.2. Let V) = Spec AV (resp. '® = Spec A? ) be a smooth
affine scheme of finite type over Spec V which satisfies the condition 3.1.1 and let
t(ll) t,,l) (resp. t(2) (2) ) be the fixed system of parameter of ¥ M (resp.
), If there is an zsomorphzsm IRR/AY) XSpec V Speck — @ Xspec v Speck of
k-algebra with 1(1) (modmAM)) = {7 (modmA®) (1 <u<d), then there

exists a unique V-algebra isomorphism
a0t 40f
such that i(t “)) = t,, for any u and that the diagram

ATl (@)

Ak
I'J lﬂ
ot 4 1
AK —_— QA(KZ)t/K(g)

is commutative.

We define a Frobenius on 4! as in 2.2. Later we use a Frobenius ¢ on
A" which satisfies the condition

(3.1.3) o(ty) = thuy for some u, e 1 +mA' (l=su=sd).
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(Note that u, is a unit in A7.) Then ¢ induces a o-linear homomorphism
dt dy, du

0: 2y (9) 2l (@) with p(TE) = p P+ (1S usd) and the

diagram

AKLMQ

wl J«)
AL 4. 0! (2)
K AL/K
commutes. By [8, Lemma 3.1.1] there always exists a unique Frobenius on 4}
with ¢(#;) =t (1 £i < n) under our condition 3.1.1.

(3.2) We define a logarithmic overconvergent connection on A};. In the case
where d =0, a logarithmic overconvergent connection is a usual over-
convergent connection in [5, 2.5] (See 2.2.).

DeFiNiTION 3.2.1. (1) Let M be an AL-module. A K-homomorphism
V.M->MQ® 4l Q;}( /K(Q) is a connection with logarithmic poles along 2 if
and only if V is additive and satisfies the relation V(am) = aV(m) + m ® da for
meM and a e AT A connection V is integrable if and only if V2 = 0, where
we define V:M®, AT/K(’@) - M®, Q;ﬁ'/K(Q) by V(m® w) =V(m)A
o+m@do. A morphlsm of AT -modules ‘With a logarithmic connection
along 2 is a horizontal 4 K—homomorphxsm.

(2) Let M be a finitely generated A,T(-module with a logarithmic con-
nection V along 2 and choose a real number A; > 1 such that there exists a
pair (M, ,V) of an A; g-module of ﬁnite presentation and a logarithmic
connection with (M,V) =~ (M,,,V )®A/1 KAK We fix a presentation of M),
over A, and denote by | |, the quotlent norm on M, =~ M; ®, K A, x which
is determined by the fixed presentation for 1 < A < 4;. The connection V is
overconvergent if and only if it is integrable and, for any # < 1, there exists
A>1 such that

V@) m) " =0 (li] = o)

for any me M;. Here oI = 5["1 -ol" We denote by Conn'((Z,2)/K) the
full subcategory of 4 K—modules with a logarithmic connection along 2 which
consists of overconvergent objects.

(3) Let ¢ be a Frobenius on A}< which satisfies the condition 3.1.3 and let
a be a positive integer. For an AL-module M with an integrable logarithmic
connection V along 2, we say that an AL-homomorphism :

®: (p")"(M,V) — (M, V)
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is a Frobenius structure with respect to ¢ if and only if @ is a horizontal
isomorphism. Here (p?)*(M,V) is the induced logarithmic connection by the
scalar extension ¢ : A}} — A}}. A morphism of A}}-modules with a log-
arithmic connection along 2 and a Frobenius structure is a horizontal A}-
homomorphism which commutes with Frobenius structures. We denote by
F-Conn'((Z,2)/K,¢?) the category of A-modules with an overconvergent
logarithmic connection along 2 and a Frobenius structure with respect to ¢?.

In our definition the finitely generated A;-module with integrable log-
arithmic connection is not always projective. For example, if d = 1, then M =
A} /1AL with a connection £,d;, is an object in Conn'((Z,2)/K).

It is clear that the category Conn((%,2)/K) (resp.
F-Conn'((#,2)/K,p?)) is abelian and it has tensor products. We define the
dual (M,V,(®))" = (MV,VY,(®Y)) of (M,V,(D)) by

MY = Hom (M, Ay)
VY0 () m) = 0,(f(m)) = f(V(G,)(m))  for I susnfeM' meM
Y (f) = (idy ®0) o (idy ® f)od™  for fe M.

It is clear that, if M is projective over A}(, we have (MV)' = M.
By Lemma 3.1.2 we have

PROPOSITION 3.2.2. (1) The category Conn'((%,%)/K) depends only on X
and D.

(2) The category F-Conn'((%,2)/K,¢") depends only on X and D and it
is independent of the choice of Frobenius ¢ which satisfies the condition 3.1.3.

Proor. The assertion (1) follows from Lemma 3.1.2. (2) It is sufficient
to see the independence on the choice of Frobenius by Lemma 3.1.2. Let ¢,
and ¢, be Frobenius on A}( which satisfy the condition 3.1.3 and put

vy = ¢f(t,u)

We define a functor
a(pf, @5)" : F-Comn'((Z,2)/K, of) — F-Conn'((Z,2)/K, ®5)

as follows. Let (M,V,®) be an object in F-Conn'((Z,2)/K,¢f). We define
an AL-linear homomorphism

w(of,05) : (95)"M — (pf)"M
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by Taylor’s series

a(pf, 5)(m®@1) =Y V(al)(m) @ vt.
ieN”"

o(pf,p5) is well-defined since V is overconvergent. One can check that
o(pf,95) commutes with connections, a(p% %) =1 and a(pf,¢f) =
o(es, p5)a(ef,95) by explicit calculations. Moreover, @ o a(¢pf,p5) is a Fro-
benius structure on (M,V) with respect to the Frobenius ¢§. Now we define
the functor by a(¢f,p$)"(M,V,®) = (M,V,® o a(pf,¢5)). Then a(pf,ps)" is
an equivalence of categories. O

(3.3) For an object (M,V) in Conn'((Z,2)/K), we denote by
DR*((%,2)/K,M) the complex
= 0-M —>M®A 0!

@)% M, 2 (D) -

Aal/k A'/K

of K-vector spaces, where we put M at the degree 0. We define the log-
arithmic Monsky-Washnitzer cohomology H}; ((X,D)/K,M) by the coho-
mology of the complex DR*((%,2)/K,M). The logarithmic Monsky-
Washnitzer cohomology is functorial for (M,V) and H}, ((X,D)/K,M) =0
for /<0 and />n by definition. For any short exact sequence in
Conn'((Z,2)/K), we have a long exact sequence of K-vector spaces as
usual. In general, the K-vector space H},, ((X,D)/K,M) is not of finite
dimension over K.
By Lemma 3.1.2 and Proposition 3.2.2 we have

ProposITION 3.3.1. The logarithmic Monsky-Washnitzer cohomology
Hl, ((X,D)/K, M) depends only on X and D.

Now we fix a Frobenius ¢ on 4! which satisfies the condition 3.1.3. For
an object (M,V,®) in F-Conn'((%,2)/K,¢?), we define a ¢*linear endo-
morphism

@ : Hyy (X, D)/K, M) — Hy ((X,D)/K, M)
by m® w+— &(m) ® ¢°(w) for me M and weQ' Lk
K

PROPOSITION 3.3.2.  With the notation as above, the o?-linear endomorphism
@ on Hi,,((X,D)/K, M) is independent of the choice of the Frobenius on A'
which satisfies the condition 3.1.3 under the canonical equivalence of categories in
Proposition 3.2.2.

Proor. The proof is the same as in the case without logarithmic
structures. [17, Sect. 5] Let ¢, and ¢, be Frobenius on A! which satisfy the
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condition 3.1.3. We keep the notation as in the proof of Proposition 3.2.2.
Define a K-homomorphism A, : M — (¢¢)"M by

I+1
S )VEhme A u<d
0<i<l<w # l+1 =
h'u(m) - 0 il DL‘F]
Z V(S pzd+1
— 1+1

Since the connection V is overconvergent, the infinite sums are convergent in
M. We define a K-homomorphism

H : DR*((Z,2)/K, M) — DR*((Z,2)/K, (¢?)" M)
of degree —1 by Hm® (A, @,)) = X/, (=1)* "k, (m) @ (/\iss @), Where

dx
wuz—” for u<d and w, =dx, for p=d+1. One can see oa(pf,¢4)" o

Xu
(@) — (pf)" =HoV 4+ (pf)'VoH. Hence, H gives a homotopy. This
completes the proof. O

(3.4) We define a functor
j% . Conn'(#/K) — Conn'((#, 2)/K)

as follows. For an object (M,V) in Conn'(Z/K), we put jiYM = M and
V(t,0,)(m) =t,V(0,)(m) (1 =u=<d). For n<1, if we choose A>1 with
() (m)

i!

72 — 0 (|i| — o) for any m e M;, then we have
p

V@) (1) i,y 2y — 0 (|| = o0)
. A ) )
since 5[’] = —t’a’ (1 £u=d). Hence, the connection jl;"’V is overconvergent.

It is clear that the functor ji is fully faithful.
We define a functor

]; : Conn'((Z,2)/K) — Conn'(#/K)
: Conn'((#,2)/K) — Conn'((¥,, j,'2)/K)

by the extension jy Al x— Bf (resp. ]/l AT — Bfl k) of the scalar. Let M be
an object in Conn'((Z, 9) /K). For <1, if we choose A>1 with
[V (@l (m)],7/1/2 — 0 (|i| — o0) for any m e M, then we have

IV @) gz -0y

< |(x0x1 ...xd)lilv(éli])( 1) | min -1/ };7 -0 (|i] — o0)
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for any m € Moy, y-0/e@s1py Since xoxp - --xq =1 and 5/[51 = x;‘,a;; (12usd).
Hence, the connection jI,V is overconvergent. Similarly, one can see that the
connection j):V is overconvergent. The functor j;r, (resp. j;) is neither faithful
nor full. By definition we have j,f, = (j/’l)fj;, where (j,): % — ¥,

Let ¢ be a Frobenius on 4 which satisfies the condition 3.1.3. One can
easily see that the functors j;ﬁ’g, j; and j; induce the functors

j®4 . F-Conn'(Z /K, ¢°) — F-Conn'((Z, 2)/K, ¢°)

: F-Conn' (%, 2)/K, ¢") — F-Conn' (% /K, ¢*)

~

J
j/ﬁ : F-Comn'((Z, 2)/K, ¢%) — F-Connf((@ﬂ,jf@)/K, 09).
It is clear the functor jifg is fully faithful.
(3.5) Let (M,V) be an object in Conn'((%,2)/K). The natural homo-
morphism
DR*((%,2)/K,M) — DR*(¥/K, j, M)
DR*((Z,2)/K, M) — DR* (%, J,' 2)/K, j\M)
of complexes of K-vector spaces induces a K-linear homomorphism
(J9)" : Hygw((X, D)/K, M) — Hypy (Y/K, j3 M)
()" Hyw((X, D)/K, M) = Hyyy (Y Ji;' D)/ K, jLM).
By the construction we have (j})* = ((j/’l)T)*(j;)*. If (M,V,®) is an object

in F-Conn'((%Z,2)/K,?), the transformation (j‘;,)* (resp. (j):)*) above
commutes with g?linear endomorphisms & of both sides.

TueorREM 3.5.1. Let (M,V) be an object in Conn'(%/K). Then the
natural transformation

(J3)" : Hipw (X, D)/K, jy* M) — H}y (Y /K, jL M).
is bijective.

When M is algebraic, the assertion has been proved in more general
situations in [1].

In the case where d = 0, there is nothing to prove since ¥ = #. Since
jf jl}‘,’gM arises from an object in Conn!(%;/K) canonically, Theorem 3.5.1
follows from Theorem 3.5.2 below by the induction on d.

THEOREM 3.5.2. Let (M,V) be an object in Conn'(Z/K). Then the
natural homomorphism
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DR*((Z,2)/K, jy*M) — DR*((%, ji'2)/K, jl j¥' M)

of complexes of K-vector spaces is a quasi-isomorphism.

COROLLARY 3.5.3. For an object (M,V,®) in F-Conn'(Z/K,p?), the
induced K-homomorphism

U¥)": Hiw((X, D)/K, j¥*M) — H}yy (YK, jy M).
is bijective and commutes with Frobenius structures.

We prove Theorem 3.5.2 in the rest of this section.

(3.6) To prove Theorem 3.5.2, one may assume the following conditions (1) (2)
simultaneously. (1) 2, is connected and there is a smooth morphism g : & —
2, such that the diagram

2, x Al

N

@l —_— A’;/_l

is commutative. Here the morphism 2, — A% (resp. Al — Al!) is de-
termined by the system f,,...,t, of coordinates. (2) M is a free A,T{-module.

Indeed, one may choose a union %~ of open affine smooth V-subschemes
of & X1 D1 1I(Z — 2,) such that, if we denote by f:# — % the etale
structure morphism, then (i) f~'2; =~ 2, and fis surjective on the special fiber,
(i) if the intersection between a connected component of ¥ and f~'2@; is
not empty, the restriction of the divisor in the connected component is a
section as in the assumption (1) and (iii) the inverse image f'M is free over
L(#,0y4)k. Note that M is free over A} if and only if M®, Ak is free
over Ag since A is faithfully flat over A' (see 2.3), where A is the p-adic
completion of A. Since M is projective, we can choose such #" as in the
condition (iii).

We put #7 = W—f'9 and # =W xg---xa W (r times). One
can easily see that the triple (#', (f’)_l@,(f’)le;’g(M,V)) satisfies the
assumptions (1) (2) simultaneously for any r. We define a double complex
DR'(("/I/‘,f"@)/K,jI;,’gM) of K-vector spaces by

DR (W, f7'D)/K, f1j3M) — DR* (W xa W, (f}) ' D) /K, (/) j¥' M)
— DR (W xa W xa W, (') /K, (£} j¥M) — -,

where we put f7 jl,‘,’gM at the bidegree (0,0) and we define the derivation of the
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double complex as usual. Then the natural injection induces a commutative
diagram

DR*((%,2)/K,j¥’M) ——  Tot(DR*(W*,f~'2)/K, j¥’M))

| l

DR*((%1,j7'2) /K ,j1j3"M) —— Tot(DR* (W}, (f1y:)”'2) /K. j{ f /M)

of complexes of K-vector spaces. Both horizontal arrows are quasi-
isomorphisms by Lemma 3.6.1 below and the right vertical arrow is
a quasi-isomorphism by the assumption. Hence, the left vertical arrow is a
quasi-isomorphism. Therefore, we may assume the situations (1) (2) above
simultaneously.

By Lemma 2.3.2 we have

LemMa 3.6.1. Let f: W — X be an etale morphism of affine V-schemes of
Sfinite type such that f Xspecv Speck : W Xspecv Speck — W Qgpec y Speck is
surjective. For an object (M,V) in Conn'((%,2)/K), the natural homo-
morphism

DR*((%,2)/K,M) — Tot(DR*((W*, f~'2)/K, M))

of complexes of K-vector spaces is a  quasi-isomorphism. Here
Tot(DR*((W*, f~'2)/K,M)) is the total complex of the double complex
DR*((w*, f'2)/K, M).

(3.7) We continue the proof of Theorem 3.5.2. Put ij: 4, — A/11A = C; to
be the natural projection. By our assumptions (1) in 3.6 there is a smooth
homomorphism g : C; — A of smooth V-domains such that the diagram

C 1 4

2N };

is commutative. We fix a presentation of V-algebra A4 as follows; first we fix a
presentation

V[XQ, X3, .. ,XN/] - C]
with x; — t; (2 < j<n) and then we fix a presentation

V[xl’x2,"-$xN’axN’+la"->xN] — A4
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such that xj +— #;, the value of x; (2<j<N’') is determined by the pre-
sentation of C; above and that x; (j = N'+ 1) goes to 0 in C;. Then one can
easily see that, for any 4 > 1, C;; and the Banach norm of C; ;g is inde-
pendent of the choice of two presentations above. We denote by || ||, ; (resp.
Il 91) this Banach norm on C K (resp. the limit norm on CIT k). We put
gt: Cl y — A} (resp. if : Ak — C] 4, resp. i1 ;¢ Ak — Ciux) to be the
induced K-algebra homomorphism from g (resp. i).

Lemma 3.7.1. (1) There exists a positive integer o which is independent of
the choice of A such that
1
i!

ia000)| < llallg, 4"
X, A

for a€ A, x and for any nonnegative integer i.

(2) Let B be a positive integer. For aeA}(, aetf}A}( if and only if
ilT(afa) =0 for 0<i<p. Moreover, a=0 if and only if i;'(@{a) =0 for all
i=0.

Proor. (1) By Leipnitz’s rule it is sufficient to see that there exists a

1., .

E&{ (%u) ; A§ A" for
n+1=<u=<N, where X, is the image of x, in 4. LetYFV()_c)zo
(n+1=v=N) be a system of equation of 4 in V[x]. Since & is etale over

positive integer a which does not depend on A such that

v

. . (0 . .. .
A7, the image ¢ of the matrix in My_,(A) is invertible. We
v

xﬂ>n+1§,u,v_£_N
denote by y the maximum of the total degree of the presentations of the entries

of ¢! in V[)_c] and the total degree of F, (n+1=<v < N). By careful cal-
culations of 0{F, the sum

il oh 0% o (5
Zm(gggﬂ ) Fy(x)) I#I (%))

with Ij + (m™ + - +m Y+ ]+ +md)=iand m{ <--- < m

Sn+1

is 0 in A for any positive integer i. We have

é )'(4i—2)y

inductively. Hence, it is sufficient to take o = 4y.
The assertion (2) follows from the fact ¢; is a prime divisor of A}( and
Byt _
mﬁgo tdg =0. O



506 Nobuo Tsuzuki

We define Clt x-algebras

there exists A > 1 such that a; € Cy ; ¢ for all i
&P = Z?Ooa'ti and that, for any # < 1, there exists 1 <A’ <A
=

1
with [|a||g, ;n' =0 (i — )
there exists A > 1 such that a; € C; ;¢ for all i,
R = ZOO a;t’ ZZO a;it' € & and that there exists 7 < 1

i=—o

with ||a,~||9|,,177" —0 (i > —00).

T — © U
T = {Zi=_w at' e R

Since Cj ; k is complete under the norm || |5 ; and since ||allg, » < |lallg, ;
for ae Cy ;¢ if A" <4, the multiplication of # (resp. J) is well-defined.
Define a map

supiadlg, < oo}

| |77 — Rxo

by |Z[‘f_oo ait'| 7 = sup;||aillg,. Then, | |, is a norm on J. We also define
0:(3 a;t’) = S ia;t™™!'. Then 0, is a Cllf’K-derivation on & (resp. &, resp. 7).
We define a map
1: A;( -9

1. :
by 1(a) = Y% ilt (_—'(6;a))t’. By Lemma 3.7.1 1 is well-defined and we have

LemMma 3.7.2. 1 is an injective homomorphzsm of C x-algebras such that
l1(a@)|y < |la|ly and 1(01a) = da(a) for aeAK
Now we will extend the map : above to the map
1: BI, x— 7.
For a € B g, there exists a non-negative integer f with tlﬁ a € Ak and we define
the extension of 1 by am— t‘ﬂt(tfa). This definition does not depend on
the choice of B. Let ae B, x for 1> 1 sufficiently close to 1. Fix a lift
i ; iy, ,xOx of a under the presentation of B; , x in V[xp,x ]11{ and, for a
non-negative integer f, put a'¥) to be the image of Y ;<% Xg X in
B k. Here |(iv, I)| means the sum of i, and all indices of i. Then, tﬂa(ﬁ € A
and [|tfaP| 0 < |5, @00 x|, (A)F for any A/ <2, where | |l is the
Banach norm on V[xo, x]; x. Define a¥ (i 2 p) by 1(al)) = Z;‘i_ﬂa}mt’.

. 1 .
Since ma}”’z(z{’a(ﬂ)) =afﬂ) + (higher terms on f), we have

-1 — i 2 i
la{? = al" Vg, 1 < 16 (@# = @)y (1) < i ﬂ|a,-0,£-1<z'><“+ i
10,1)|=
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for any ' < 4 by Lemma 3.7.1 and 3.7.2. Here « is as in Lemma 7.3.1. We
choose a real number 4; > 1 with A““ < A. Then, if we fix i, the sequence
of {a ﬂ)}l,>, is convergent in C;; x for f— oo since |a;,; |A| 0Dl _,
(|(d, )] = ), and we denote the limit in C; ; x by a;. Then one gets

io .0
E iy, iXg X

-1
(373 lailg, s < max{la)” —a’Vllg, ;. }

A
A
where we put a,(.i_l) =0. Hence >-;ait’ is an element in J. We define the
extension I:B;‘QK T by 1(a) = a;it’.

We check the well- deﬁnedness of the extension 1. If ", a;x! is contained
in the kernel of the surjection V([xo,x|; x — Bi ik, then li(tPaP)|, — 0 for
p — oo since [|a'P)]4 ; < || 32 5pax!];. Hence, all coefficients a; of i(a) are 0
and our definition is independent of the choice of the lifting in V[xo, x]; x-
The independence of the choices of A and A’ is trivial.

By the relation 3.7.3 and Lemma 3.7.2, 3.7.1 we have

LemMMA 3.7.4. The extension 1 : B;r x —  is an injective homomorphzsm of
CI“VK-algebras such that |i1(a)|, < ||a||@l and 1(01a) = 0,(a) for aeBl‘K.

Note that z(A;r() is contained in I N&.

LemMa 3.7.5. The natural A}(-homomorphism

i:Bl ¢ /Ak > T /(TN
which is induced by 1 is an isomorphism.

Proor. Let Z,;l_oo a;it' € 7. Then there is a 4 > 1 sufficiently close to 1
such that a; € C ; k and that |la; 4, ; A0 (i — —o0). Then one can easily
see that a =3 _gi(a)tl is convergent in By, x and i(a) = Y\ ait'.
Hence, 7 is surjective. To prove the injectivity of 7, it is suﬁiment to see that,
if aeBT (mBlUA'), 1(a)¢ TNS. Let ae Bl — (mBlUA'). Then a=
tfao + a; for some age Af,a; mBJr and some negative integer f with ap # 0
(mod ((#;) + m)A'). By definition and the relation 3.7.3 the coefficient of ¢ is
ap modulo ((#;) +m)A'. Hence, 1 is injective. O

Since /% =7 /(7 N&) by definition, we have

COROLLARY 3.7.6. With the notation as above, 1 induces the commutative
diagram

0 —— Af B} B x/Ak —— 0

Lol

0Oo—r ¥ — B2 — R — 0
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of Ak-modules such that two horizontal rows are exact, the first and the second
vertical arrows are injective and the third vertical arrow is bijective. ~Moreover,
all arrows commute with derivations.

(3.8) We continue to assume the situation in 3.7. Let (M,V) be an object in

Conn'(Z/K) such that M is free over 4}. We put ' (resp. 2") to be a sub-

( dt, dtd
resp. —

1t

,dt
t td d+1,

which is generated by an

A} -module of Q! ;
1

ALK
dt,,). Define a connection

V:M— M®, Q'
K
(resp. V': M — M®, Q")

dt#

by V/<m>=v<r1a.><m>®f—j‘ (resp.  V"(m) = S, V(t,0,)(m) @ 2 +

> —d+1V( ) (m) ®dt,). Then the complex DR'((Q”,@)/K,]’,‘,""M) is natu-
rally quasi-isomorphic to the total complex of the double complex

M - M®A}( Q" - T M®A}< (/\:119”)

| l l

MR Q — M@, Q@2 — —— M®, 2, (A} Q")
as complexes of K-vector spaces. The same holds for DR*((#%,7'2)/
Ji JI}‘,’gM ). To see that the natural morphism
DR*((#,2)/K, M) — DR*((%,j;'2)/K, j{ M)
is a quasi-isomorphism, it is sufficient to prove that the natural inclusion
M — M®A;< Q- [M ®A}< BI,K - (M ®A}< BI,K) ®A}< Q')

is a quasi-isomorphism of complexes of K-vector spaces by the argument of
spectral sequences.

Put Moy =M@ 4] & (resp. Mg =M ® ) #) and define a connection on
Mgy (resp. Mgp) by t@,(m@a) V(t101)(m )®a+m®t6( ) for me M and
ae (resp. ae #). Since M is free over A;(, the diagram

0 M M®, Bl y — M®, B /4y — 0

l l |

0 My Mg — Mg/ My — 0
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is commutative such that two horizontal rows are exact, the first and the second
vertical arrows are injective, the third vertical arrow is bijective by Corollary
3.7.6 and each arrow commutes with connections. Hence, we obtain

LemMMA 3.8.1. The following two conditions are equivalent:
(i) the natural morphism

M- M@, Q1—[M®, Bl x — (M®, B 1) ®, 2

is a quasi-isomorphism of complexes of K-vector spaces,
(i) the natural morphism

My — My ®A’r( Q') — Mg — Mg ®A,1( Q'
is a quasi-isomorphism of complexes of K-vector spaces.
Therefore, Theorem 3.5.2 follows from Lemma 3.8.2 below.
Lemma 3.8.2. (1) There is a basis ey,...,e, of My such that
t0,(ey,...,e) =0;
(2) The natural morphism
My — My ®A,‘( Q'] — (Mg — Mg ®A;< Q']
of complexes of K-vector spaces is a quasi-isomorphism.

Proor. (1) Let ej,...,e, be a basis of M over A,T( and let G be a matrix
in M,(A}() such that V(0,)(e1,...,e;) = (e1,...,e)G. Then the entries of G
are contained in A; x for some A > 1. Define matrices G; € M,(4; k) by Gp =

1
1, and G; :;(61(G,-) — G;G) for i 21, where 1, is a unit matrix. Then the

matrix Q=57 if(G,-)ti satisfies the relation 0,(Q) + GQ =0 in M,(CITYK[[Z]]).
Let MY (resp. e),...,e’) be the dual of M in Conn!(%/K) (resp. the

1 .
dual basis of ej,...,e). Then, EV(ai)(el,...,e,) = (e1,...,e)'G; for any i.

Hence, for any 5 <1, there exists some A’ >1 such that ||Gi||, ;7" — 0
(i —» o0) and the entries of Q are contained in &%. By the existence of the
solution of the dual MY, Q is invertible in M,(¥).

(2) By (1) My is isomorphic to &" as #[d;]. So we have only to show
that the C lT x-homomorphism

h:(R]S) — (R]S)

which is defined by a+— td,(a)(aec (2/%)") is bijective. The injectivity is
trivial. Since |i'|p~" — 0 (i —» —o0) for any # < 1, h is surjective. O
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(3.9) We globalize our local result. Let & be a quasi-projective smooth scheme
of finite type over Spec V' and let 2 be a relative normal crossing divisor
over Spec V/, that is, any intersection of irreducible components is smooth over
Spec V after taking an etale covering of Z. We fix a completion Z of Z over
Spec V and put Z to be the p-adic completion of Z. Let X and D (resp. X) be
the special fiber of 2 and 2 (resp. the Zariski closure of X in Z) and put U =
X — D with the open immersion j; : U — X. Denote by Q. sspec v (2) the I-th
differential module of & over Spec V' with logarithmic poles along 2 as in 2.1.

For an object (,V) in Isoc'(X/K), we define a complex
DR*((X,D);/K,#) of K-sheaves on ]X[: by

Vv v
. =0 Hﬂ—»//(@%g;,/spec,,(@) _>,///®OQQ;[/SWV(9) ...

Here we put .# at the degree 0. We define

Hl

rig

((X,D);/K, M) =R'T(1X[z, DR*((X, D) z/K, M)

for any /. In the case that & is affine, the cohomology above coincides with
the logarithmic Monsky-Washnitzer cohomology.

THEOREM 3.9.1. With the notation as above, the natural morphism
DR*((X,D) z/K,.#) — DR*(j}, M)
of complexes of K-sheaves on | X| i induces a K-isomorphism

H!,(X, D) /K, M) = Hly(U/K, j},.40)
for any 1.

Proor. Take a hyper etale covering f : #* — & such that each piece of
the pair (#°, f*9) satisfies the assumption of Theorem 3.5.1. By the similar
argument of the proof of Proposition 2.3.1 and Lemma 3.6.1, the assertion
follows from Proposition 3.2.2 and Theorem 3.5.1. O

REMARK 3.9.2. It is expected to define the logarithmic rigid cohomology.
If one uses such cohomology theory, the statement of Theorem 3.9.1 will
become more functorial.

4. The Gysin isomorphism

(4.1) We keep the situation as in 3.1. For a subset u = {y,...,4} of Z° with
1S <---<p<d, we put D,=1,9, (resp. U, =% —2,) to be a
divisor (resp. an open subscheme) of Z and denote by Ju: U, — X the
corresponding open immersion. We put Z = Spec C = Spec 4/(t1,...,14)4,
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U =% — &, the closed immersion i : & — &, CT = A1/(¢t,...,t4)A" to be the
weak completion of C over V and the natural surjection if : 4T — CT. We
denote the special fiber of &, %,, Z and % by X, U,, Z and U, respectively.

Let & — P be the immersion which is determined by the fixed pre-
sentation of & over Spec V as in 2.2. We denote by Z (resp. &) the Zariski
closure of & (resp. Z) in P} and put Z (resp. &) to be the p-adic completion
of Z (resp. Z). We put X = Z Xgpec Speck and Z = Z Xspecy Speck and
use the notation j,:U — X (resp. Ju: Up— X, resp.i: Z — X) for the
corresponding structure map.

In this section we define, for an object (.#,V) in Isoc’(X/K), a Gysin
morphism

Gz/x : RUy(Z/K,)i[" M) — RIz ig(X /K, M)(2d]

in the derived category of complexes of K-vector spaces and prove the Theorem
4.1.1 below. Here ]i[*.# is the inverse image of .# in Isoc'(Z/K) defined in 2.4.

THEOREM 4.1.1.  With the notation as above, the Gysin morphism Gz x is
an isomorphism. In other words, the induced K-homomorphism

Gz/x : H, rtg (Z/K, i [ M) — H?rzzg(X/K,e//f)

is an isomorphism. Moreover, if (M,V,®) is an object in F-Isoc'(X/K,a?),
the Gysin morphism induces the isomorphism

GZ/X rxg(Z/K ] [ 'ﬂ) - HZ nd(X/K '/”)(d)

with Frobenius structure for any I Here (d) means the d-th twist of the
Frobenius structure, that is, the multiplication of the Frobenius structure with p~*

Theorem 4.1.1 follows from Corollary 4.2.3 and Proposition 4.3.1 below.
We will construct the Gysin isomorphism for unit-root objects in general cases
using Poincaré duality in 6.2. We also prove that our Gysin morphism
coincides with the one in [4, Sect. 5] in 6.2.

COROLLARY 4.1.2. Let X be a smooth scheme of finite type and pure of
dimension n over Speck and let Z be a closed k-subscheme of codimension = d in
X. If (M,V) is an object in Isoc' (X /K), then H}y,ig(X/K, M) =0 for 1 <2d
and for | > 2n.

Proor. We prove the assertion by induction on n —d. Since the rigid
cohomology with supports in Z does not change if we replace Z into the
reduced subscheme Z"*¢ of Z, we may assume that Z is smooth and connected
over Spec k by Proposition 2.1.1, 2.1.2 and the hypothesis of induction. If one
takes an affine open subscheme Z’ of Z over Speck, then the codimension of
Z—Z7'in X —Z' is greater than d. So we can assume the situation as in
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Theorem 4.1.1. Therefore, the assertion follows from the Gysin isomorphism

Gzyx : HY(Z/K)i[" M) — HF X (X /K, M)

and the fact H!

vig(Z/K, M) =0 for I <0 and for | >n since Z is affine. [

(4.2) We define a double complex DR*(ji.#) of sheaves of K-spaces on | X[
by the Cech complex

[[oR(jj, ) = T] DRy t) = --- = DR*(j}y. 4-#)
Hy

<ty

7

for the covering {U,} of U, where we put [] " jll./% at the bidegree (0,0). By
[5, Proposition 2.1.8] we have

PrOPOSITION 4.2.1. The natural morphism DR’(jL/Z) — DR*(ji) of
complexes of sheaves on | X| 3 induces an isomorphism

RT,(U/K, jl M) — RU(|X[ 5, Tol @R°(jiM))).
in the derived category of complexes of K-vector spaces.

Let (.#,V) be an object in Isoc’(X/K) and put (M,V) = F(]/\_’[f, (M,V)).
We define a double complex DR*( /9 M) of K-vector spaces which corresponds
to the Cech complex for the covering #. of %:

° Y/ ° .l
I1, PR (@, 24)/K. jiM) = ], .. DR* (X, D) /K. Jyi M) —
.= DR*((%,2)/K, j"M),

where we put [], jl’j:"M at the bidegree (0,0). We denote by
H!,((U.,D.)/K, M) the Ith cohomology of the total complex of
DR*(j9M). If ¢ is a Frobenius on 4! which satisfies the condition 3.1.3,
the Frobenius structure @ on (M,V) induces the Frobenius structure on
H!, ((U,,D.)/K, M) for any object (#,V,®) in F-Isoc'(X/K,o?).

THEOREM 4.2.2.  With the notation as above, there is a natural isomorphism
Rrr[g(U/K, j{]’ﬂ) — TOZ(DR.(]£09M))

in the derived category of complexes of K-vector spaces such that the induced
diagram

Hl (X/K,#) ——  H} (U/K,j}.)

| T

Hiw(X/K,M) —— H,,,((Us,D,)/K, M)
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is commutative. Here the top horizontal arrow is the restriction, the bottom
horizontal arrow is defined by the natural inclusion DR*(M) — DR*(jM) of
complexes and the left vertical arrow is the comparison isomorphism between the
rigid cohomology and the Monsky-Washnitzer cohomology in [5, Proposition
2.5.2]. For an object in F-IsocT(X/K,a“), the commutative square above
commutes with Frobenius structures.

Proor. By Proposition 2.2.1 there exists a canonical isomorphism
RT,y(Uy/K, jl-#) — DR*(j}M)

for any multi index p. The existence of the canonical isomorphism follows
from Theorem 3.5.1 and Proposition 4.2.1. The commutativity of the Fro-
benius structures follows from the fact that the Frobenius structure on the rigid
cohomology is independent of the choice of the embedding into formal schemes
and the lift of Frobenius. O

COROLLARY 4.2.3. The isomorphism in Theorem 4.2.2 induces an iso-
morphism

RIz ,iy(X/K, M) — Cone(DR*(M) — Tot(DR*(jiM)))[-1]

in the derived category of complexes of K-vector spaces. For an object in
F-Isoc(X/K,0%), the induced isomorphism of cohomologies commutes with the
Frobenius structures of both sides.

(4.3) Let (M,V) be an object in Conn'(Z/K). We define a morphism
Resy;z : DR*(jM) — DR*(it M)|—d]
of complexes of K-vector spaces by 0 at degree / < d and by

I-d)d .
Z My, -y ® Wy = (—1)( ) Z IT(mlz"'dﬂldH“'lll) ® w#/d+l"‘ﬂl

Uy <-<py ﬂ,:l(lgléd)

. .. dt

at degree / >d. Here i' : M — i'M is the projection, w, :t—” for u<d,
u

w, =dt, for u>d and wy,., =wy A -+ Awy,. Note that Resy/y =0 at

degree / <d and at degree / >n. One can easily check that Resy 4 is a
morphism of complexes of K-vector spaces. If ¢ is a Frobenius on 4! which
satisfies the condition 3.1.3, then Resy;y induces a morphism

Resyy : DR*(j®M) — DR*(i' M)[—d](~d)

of complexes which commutes with Frobenius structure @, where (—d) means
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(0%) w1...a

e A'. Note that, if p(z,) =
@12.-d

the twist of Frobenius structure i'® by

a\ *
A for 1 £ u<d, then szad.

©12..4
ProposITION 4.3.1.  With the notation as above, if (M,V) is an object in
Conn'(Z/K), then Resy g induces a quasi-isomorphism

Res[—d]

Cone(DR*(M) —— Tot(DR*(jM)))[-1] —— DR*(i' M)[-2d]

of complexes of K-vector spaces. If ¢ is a Frobenius on A' which satisfies the
condition 3.1.3, then the quasi-isomorphism above commutes with Frobenius
structures for any object in F-Conn'(Z'/K,¢%).

Proposition 4.3.1 follows easily from Lemma 4.3.2 below.
LemMma 4.3.2. The sequence

0— .Q Al — i<y <a QA*/K(Q/‘I) — H1<ﬂ1<ﬂz<d‘Q,4?/K(9#1ﬂz) _— .

' /K

QL (Dir-a) R‘“Q «—0

Al/k
is exact for any I

Proor. Denote by E(d,l) (d = 0) the complex

0—Q K/K_>H1<M<d H1<M<M<d k(D) =

= 2y (Pr2.a) = 0,

where QA /K(le...d) is at the degree 0. We prove that H°(E(d,l)) = Q'C ‘jK
and H™(E(d,l)) = 0 for any m # 0 by induction on d. One can easily see that

there is a natural exact sequence
0—-E(d-1,1)—>Ed]) — Ed-1[1]—-0

t
of complexes of A,T{-modules, where the first map is defined by dt; — %ﬁ and
d

the second map is defined by the projection. If we denote by C’' = A4/
(t1,...,ta-1)A, then the connecting homomorphism H~!'(E(d —1,1)[1]) —
H(E(d —1,1)) is a homomorphism

2 <077 S Q<C'>K/K
given by dt; — tdty and dt, — dt, (u # d) from the hypothesis of induction.
This completes the proof. d
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5. Comparison theorem between the crystalline cohomology and the rigid
cohomology

(5.1) Let j: X — X be an open immersion of separated k-scheme of finite type
and let X — 2 be a closed immersion with a formal V-scheme #2 of finite
type such that # is smooth over Spf V' around X.

Let K’ be a finite extension of K and keep the notation as in Proposition
2.1.2. Since gk 1 | X l[gs« — ]X[; is finite etale as rigid spaces, the Proposition
below can be proved using the similar methods as in Theorem 2.6.3 and 2.7.

ProPOSITION 5.1.1. (1) Rltg/ /g, t =0 for any 1+#0.
(2) tx/k induces the direct image functor

TR/ /K IsocT(X’/K’) — IsocT(X/K)

and it is a right adjoint of Txi k-
(3) If a';K' — K’ is the extension of the Frobenius o, then tg: /g induces
the direct image functor

ki F-Isoc! (X' /K, (6")*) — F-Isoc'(X /K, a?)
and it is a right adjoint of Ty, k.

COROLLARY 5.1.2. Let (M,V) be an object in Isoc'(X'/K').
(1) If X is smooth over Speck and Z is a closed subscheme of X over
Speck, we have a canonical isomorphism

Rl"zy,,'g(X/K, TK’/K*‘%) — RrZ,rig(X//K,a ﬂ)

of K-complexes.
(2) We have a canonical isomorphism

RE‘,rig(X/K, IK’/K*'%) — er,fig(Xl/K,,ﬂ)

of K-complexes.

Moreover, for any object (M,V,®) in F-Isoc'(X/K,(a")*), the iso-
morphisms in (1) and (2) induce isomorphisms of K-vector spaces with Frobenius
structures with respect to o* on each cohomology group.

(5.2) We denote by Ky (resp. Vj, resp. e) an absolutely unramified subfield of K
with the residue field k, i.e., Ky is the maximal subfield such that p is a
uniformizer (resp. the integer ring of Kp, resp. the ramification index e =
[K : Kp) < ). We assume that the Frobenius ¢ on K is an extension of a
Frobenius oy on Kj.

THEOREM 5.2.1.  With the notation as above, assume furthermore that X is
proper smooth over Speck. For an object (M,V,®) in F-Isoc(X /K, (c)*), there
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exists a non-degenerated F-crystal (£, ®) on X [Vy with respect to a§ and a non-
negative integer s such that tx g, (M,V,®) = (&L, D")"(s). Here (s) is the s-th
Tate twist, that is, the Frobenius acts by p~*®'. If we choose such (¥, ®') and
s, then we have a Ky-isomorphism

Ry (X /Ko, Tk ket ) — RIery(X / Vo, £) Qy, Ko-
Moreover, the induced morphism
H}\ (X /Ko, Tk ko) — HL (X[ Vo, £) ®y, Ko(s)
is a Ko-isomorphism with Frobenius structures with respect to a§ for any I.

ProOF. By Proposition 5.1.1 and Corollary 5.1.2 we may assume that
K = Ky. The existence of (&, ®’) and s follows from [5, Théoréme 2.4.2]. If
we denote by Zx (resp. sp : Px — j’) the rigid analytic space over K associated
to 2 in the sense of Raynaud (resp. the specialization morphism), then there is
a natural isomorphism

RL,, (X /K, #) = RT(2,Rsp,(DR*(M)))

~ RI(2,sp, M ®o, -Q;%/Spf y):

Let 2P be the p-adic completion of the divided power envelope of # by the
ideal of definition of X. If we denote by uy,y: (X/V),, — Xz, the ca-
nonical morphism from the crystalline topos to the Zariski topos, then there is

a natural isomorphism
ch,-ys(X/ V, ‘3’) = RF(X, Rux/y*g)
= RF(X, ux/y*,%’ ®0j Q:jp[)/spf V)'

by [2, Chapitre V, Théoréme 2.3.2]. The comparison morphism is induced by
the canonical morphism sp,.# — uy,y.& ®y K of sheaves on X which
commutes with connections and Frobenius structures in [5, 2.4]. It is iso-
morphic by the argument of the spectral sequence for Cech covering of
X. (See [6, Theorem 1.9].) O

6. The finiteness theorem for overconvergent unit-root F-isocrystals

(6.1) We prove the finiteness theorem of rigid cohomologies for overconvergent
unit-root F-isocrystals. In the case of the constant coefficient it was proved in
[6] and in the case of curves it was proved in [10].

Let j: X — X be an open immersion of separated k-scheme of finite type
of dimension n. Let Z (resp. Z) be a closed subscheme of X over Speck (resp.
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the closure of Z in X) and denote by i:Z — X and i: Z — X the closed
immersion, respectively.

Let a be a positive integer. We say that an object (A4,V,®) in
F-Isoc'(X/K,o?) is unit-root if and only if, for any geometrically closed point
i; : 5§ — X, there is a basis {ej,es,...,e,} of i’.# such that if®(1®e,) =e,.
We denote the category of overconvergent unit-root F-isocrystals on X /K with
respect to ¢¢ by F-Isoc'(X/K, o)’

THEOREM 6.1.1. With the notation as above, assume furthermore that k
is perfect, X is smooth over Speck and (M,V,®) is an object in
F-Isoc' (X /K, o%)°.

(1) The rigid cohomology Hé”.g(X/K, M) with supports in Z is of finite
dimension over K for any .

(2) With the notation as in 2.1.2, if K'/K is an extension of complete
discrete valuation fields ( possibly infinite) and the Frobenius o extends on K', the
induced homomorphism

TI*(’/K:Hé,rig(X/K’ﬂ) ®KKI—>Hér (X//K/,,%l)

Jrig

is an isomorphism of K'-vector spaces with Frobenius structures.

Proor. (1) The argument of the proof is the same as in [6, Théoréeme
3.1]. We prove two assertions;

(@), Hr’,.g(X /K, ) is of finite dimension over K for the dimension X < d;

(b)y: H,,(X/K, M) is of finite dimension over K for the dimension
Z < d;
by induction on d simultaneously. The assertion (a), is trivial.

We prove (a), = (b),. Since the rigid cohomology with supports in Z
does not change if we replace Z into the reduced subscheme Z"*¢ of Z, we
may assume that Z is smooth over Speck by Proposition 2.1.1, 2.1.2 and
the hypothesis of induction. We can also assume the situation of the pair
(X,Z) as in Theorem 4.1.1. Therefore, the assertion follows from the Gysin
isomorphism.

We prove (b); = (a),,;- By [20, Theorem 1.3.1] one can find a smooth
scheme X’ over Speck with a smooth compactification j': X’ — X' and a
generically etale proper surjective morphism f : X’ — X and find a convergent
unit-root F-isocrystal 4" on X'/K with respect to ¢ such that Jrig = (J' )y,
Since the crystalline cohomology is of finite dimension [2, Chapitre VII,
Corollaire 1.1.2], the assertion (b); = (a),,, follows from Proposition 2.1.1,
2.1.2, 2.6.5, Corollary 5.1.2, Theorem 5.2.1 and the hypothesis of induction.

(2) The assertion follows from the same argument as in the proof of (1)
and the fact that the crystalline cohomology commutes with the arbitrary
extension of the base field [2, Chapitre VII, Proposition 1.1.8]. |
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THEOREM 6.1.2. With the notation as above, assume furthermore that k is
perfect and let (M,V,®) be an object in F-Isoc'(X/K,c)°.

(1) The rigid cohomology Hc’,,,-g(X /K, M) with compact supports is of
finite dimension over K for any .

(2) With the notation as in 2.5.2, if K'/K is an extension of complete
discrete valuation fields (possibly infinite), the induced homomorphism

Hc{,rig(X/K,'/”) ®KK/_'H1 (X//K/a'/%/)

¢, rig

is an isomorphism of K'-vector spaces with Frobenius structures.

Proor. We prove the finiteness Hc{n.g(X /K, #) by induction of the di-
mension of X. The rigid cohomology with compact supports is the same if we
replace X into the reduced subscheme X" in X. By Proposition 2.5.1 and
2.5.2. we may assume that X is smooth. By [20, Theorem 1.3.1], Proposition
2.5.1 and 2.6.6 we may assume that X is proper. The assertion follows from
Corollary 5.1.2, Theorem 5.2.1 and the finiteness of the crystalline cohomology.
The rest is the same as in Theorem 6.1.1. O

(6.2) We study Poincaré duality of the rigid cohomology. In the case of the
constant coefficient it was proved in [7] and in the case of curves it was proved
in [10]. First we recall the definition of the pairing in [7, Sect. 3]. Keep the
notation in 6.1 and assume that X is pure of dimension n over Speck. We
have H!, (X/K, jTO] 7)) =0 for /> 2n and there is a canonical trace map

¢, rig
Try : HZ (X /K, j1Oy5) — K
by [7, Proposition 2.1, 2.6]. If we also consider Frobenius structures, the trace

map
TrX : HZ"

c,rig(X/K’jTO]A_’[) — K(-n)
commutes with the Frobenius structures with respect to g by the theorem of
alteration [15, Theorem 3.1], Proposition 2.5.1, Corollary 2.6.6 and Theorem
5.2.1. Here K(—n) is the one dimensional K-vector space with the Frobenius
structure g (_, = p¥o°.

Let (.#,V) be an object in Isoc’(X/K) and let (.#",V") be the dual of
(#,V). The morphism

I:]Tz[(ﬂ) ®k []z{(]z[*//v) - E]x[(ﬂo],\"[)
of sheaves on ]X[; which is defined by the multiplication induces a pairing
RIz,ig(X /K, M) ®k RT, igy(Z/K,Ji[* M) — RT, ,;y(X /K, j1Oz).

in the derived category of complexes of K-vector spaces. The induced
morphisms of rigid cohomology groups commute with Frobenius structures.
Composing with the trace map 7ry and by Corollary 4.1.2, we can define a
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morphism
Nz x : RUzig(X/K, M) — RHomg (RI iy(Z /K, Ji[* M), K)[—2n]
in the derived category of complexes of K-vector spaces bounded above.
If we put U =X —Z (resp. j, : U— X), then the trace maps Try and
Try commute with the natural map Hc%';ig(U/K,jI,O]g[) — HZW(X/K, jTOg).
Hence, we have

LEMMA 6.2.1. With the notation as above, there is a morphism

(”Z,Xa ”X,X, ’7U, U) : Arig(Xv Z» '/%) - RHomK(AC,rig(Xa Z’ ﬂ)v K)[_Zn]
of distinguished triangles.

LEMMA 6.2.2. With the notation as above, assume that X is smooth over
Speck. Let f: Y — X be a finite etale morphism of degree r and put Y (resp.

Jy: Y = Y) to be the normalization of X in Y (resp. the open immersion).
(1) For any object A" in Isoc'(Y/K), the natural morphism

f;ig*'/V®f;ig*‘/Vv '—')f;'tq*('/V®'/VV) _’frig*j;o])—’[ i) j:r\’o]/\—’[
induces a duality (fiN)’ = frige N in Isoc'(Y/K) and a commutative
diagram

My, x

RGig(X /K, frie/) —— RHomg (RT. ig(X /K, fri0:/ ), K)[—21]

| T

RL,(Y/K,/) —21s RHomg(RT,,,(Y/K, N),K)[~2n],
where the vertical arrows are the isomorphisms in Theorem 2.6.3.
(2) For any object N in Isoc'(Y/K), the adjoint map ad :id — JrigeJrig
and the trace map tr: f,o. fr, — id in 2.7 induce commutative diagrams

Nx, x

RO, (X/K, ) — RHomg (RT ,iy(X/K, 4" ), K)[—2n]

ad J Jr”

* My, *
RUig (X /K, frigefrig#) —— RHOomg (RT 1ig(X /K, frigu frig# ), K)[=21]

Nx, x

Rr’ig(X/Kv frig*fr);g%) — R HomK(RFf,"fg(X/Kv frig*ﬁ?g'ﬂv ), K)

,rl l’ad

nx,x

R, (X /K, M) — R Homg(RIG i (X/K, 4" ),K).

Here 'tr (resp. 'ad) is the transpose of tr (resp. ad).



520 Nobuo Tsuzuki

(3) Let K' be a finite extension over K. For an object (M,V) in
isoc' (X /K) (resp. (M',V) in isoc'(X'/K")), the diagram

R, (X /K, M) ®c K' —*, RHomg: (R, yig(X /K, #") ®x K',K')[~2n
g ,rg

| |

RI,(X'/K', t,*(,/K//Z) LI Homg (RI, (X' /K, rl*(,/Ke/flv ), K')[—2n]
(resp.

RTiy (X /K, g jxatl’) 255 RHomg (R, ig(X /K, tx/xa(M)"), K)

J Al\lrk//K

Nx,x

RL,(X'/K', (M) —— RHomg (RI, ,x(X'/K',(M')"),K"))

is commutative. Here the vertical arrows are defined by the morphism in 5.1
(resp. by the morphism in 5.1 and the trace map trg.x : K' — K).

Proor. The assertions (1) and (2) follow from the commutativities Try =
Try otr and troad =rid. The assertion (3) follows from the commutativity

trK//KoTrX/K, = TrX/KorK,/K*. D

LEMMA 6.2.3.  With the notation as above, assume furthermore that there is
an affine smooth lift of the pair (X, Z) over Spec V which satisfies the situation in
4.1. If we denote by d the codimension of Z in X, then the diagram

Nz,z

RL,(Z/K,)i[*#) —= RHomg(RT, .;;(Z/K,)i[*#"),K)[-2(n—d)]

Gz,xl l

RIyi(X /K, #)[2d] 22 RHomg (R, i,(Z/K,)i[* 4" ), K)[-2(n - d)]

is commutative, where the left vertical arrow is the Gysin morphism and the right
vertical arrow is the identity.

Proor. Put M =T(]X[;,.#) and MY =T(|X[s #"). Then M is
defined on some strict neighbourhood of | X[, such that ]Z[; is smooth over K
in the neighbourhood. If W is an open affinoid in |X — X[, then the diagram

DR*(jlM) @k [DR*(jMY) —  DR*(jI*M"|y)]  —I[DR*(j™T(j10)z)) — DR*(jlT(Ow))]

Ra\'/,r®Rt’s,,,l J'Re.r,,,

DR*(i' M)[~d] @ [DR*(i1 M) — DR* (i M)" | 0 )ll~d] = [DR*(T(j10,z)) = DR*(F(Oy30)][~d]

is commutative, where Resy, s is defined in 4.3 and the horizontal arrows are
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natural pairings. If W runs through the set of affinoid coverings of | X — X[,
we get the diagram in the assertion. This completes the proof. O

By the construction of the comparison morphism between the rigid
cohomology and the crystalline cohomology in Theorem 5.2.1 and by [2,
Chapitre VII, Théoréme 1.4.6], we have

PROPOSITION 6.2.4. With the notation as above, assume furthermore that X
is proper smooth over Speck and that K is absolutely unramified. Let (M ,V,D)
be an object in F-Isoc'(X/K,a%) and let (&, ®) be the corresponding F-crystal
on X/V with respect to ¢* as in Theorem 5.1.2. Then the diagram

Nx, x

RL,,(X/K,.#) —%  RHomg(RTy,(X/K,.#"),K)[~2n]

l l

R, (X/V, %) ®y K —— RHomg(RIL(X/V,Z") ®y K, K)[—2n]

is commutative in the derived category of upper bounded complexes of K-vector
spaces, where the vertical arrows are the isomorphisms in Theorem 5.2.1 and the
bottom horizontal arrow is induced by the Poincaré duality of the crystalline
cohomology.

Now we prove the Poincaré duality.

THEOREM 6.2.5. With the notation as above, assume that k is perfect and
that X is smooth over Speck. Let (.M,V,®) be an object in F-Isoc'(X /K,a%)°.
Then the morphism nz y is an isomorphism. Moreover, the induced perfect
K-pairing

HY (X /K, M) @k HE(Z /K )i[" M) — K(—n)

c,rig

commutes with Frobenius structures.

Proor. The argument of the proof is the same as in [7, Théoreme
3.4]. We prove two assertions;

(a)g : ny x is an isomorphism for the dimension X < d;

(b)g :nzx is an isomorphism for the dimension Z < d;
by induction on d simultaneously. The assertion (a), is trivial.

We prove (a); = (b),. Since the rigid cohomology with supports in Z
does not change if we replace Z into the reduced subscheme Z" of Z, we may
assume that Z is smooth over Spec k by Proposition 2.1.1, 2.1.2, Lemma 6.2.1,
6.2.2 and the hypothesis of induction. We can also assume the situation of the
pair (X,Z) as in Lemma 6.2.3. Therefore, the assertion follows from the
Gysin isomorphism (Theorem 4.1.1) and the hypothesis of induction.

We prove (b), = (a),,;.- By [20, Theorem 1.3.1] one can find a smooth
scheme X’ over Speck with a smooth compactification j’: X’ — X and a
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generically etale proper surjective morphism f : X’ — X and find a convergent
unit-root F-isocrystal /" on X' /K with respect to ¢“ such that Srig = (J' Y.
By the Poincaré duality of the crystalline cohomology [2, Chapitre VII,
Théoréme 2.1.3] the assertion (b); = (a),,, follows from Lemma 6.2.1, 6.2.2
and Proposition 6.2.4 and the hypothesis of induction. O

COROLLARY 6.2.6. Under the same assumption as in Theorem 6.2.5, let
iy : Y — X be a closed immersion of codimension e of smooth schemes over
Speck such that Y includes Z. We put Y (resp.iy: Y — X) the closure of Y
in X (resp. the closed immersion). If (M,V,®) is an object in
F-Isoc' (X /K,5%)°, then there is a canonical isomorphism

Gz/v,x : RUz,ig(Y/K,]iy[" M) — Rz ,ig(X /K, M)[2€]

such that the induced K-homomorphisms on the cohomology groups commute with
Frobenius structures. This isomorphism is a generalization of the Gysin mor-
phism Gz;x in Section 4. In the case of the constant object jTO]A—,[, Gz/y x
coincides with the Gysin isomorphism in [6, Théoréme 3.8]. We also call
Gz/y.x the Gysin isomorphism.

In the case of the constant coefficient B. Chiarellotto proved the com-
mutativity of the Gysin isomorphism and Frobenius structures on rigid
cohomologies [8, Theorem 2.4].

(6.3) We study Kiinneth formula of the rigid cohomology. In the case of the
constant coefficient it was proved in [7]. Let X, (resp. j,: X, — X,, resp.
X — @, resp. Z,, resp. Z,) be a separated scheme of finite type over Speck
(resp. an open immersion into a proper scheme of finite type over Speck, resp.
a closed immersion into a formal scheme of finite type over Spf ¥ such that 2,
is smooth over Spf V' around X,, resp. a closed k-subscheme of X,, resp. the
closure Z, in X,) for ve {1,2}. We put X = X Xspeck X2, X = X1 Xspeck X2,
P = 91 XSpf ¥ 9’2, Z =71 Xspeck Z2 and the closed immersion iv:Z,— X,
(resp.i: Z — X). We also denote by pr,: |X[; — |X v[5, the v-th projection.
Let (.#,,V,) be an object in Isoc'(X,/K) and put (4,V) = pri(4,V}) ®
pr3(M>,V,) to be an object in Isoc'(X/K). Then the natural morphisms

pry r]z,[(/%l)®1<1”’2 ] [(ﬂz)—al"]z[( )
pri ' Cix (M) ® pry ' Ty, (Mo) — D)y (M)
of sheaves on | X[, induce functorial morphisms
RIz, ,ig(X1/K, M) @k Rz, vig(X2/K, M>) — Rz ,ig(X /K, M)

(6.3.1)
ch,rig(Xl/Ka ﬂl) ®K ch,rig(XZ/K, %2) - ch,rig(X/K7 '///)
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If ¢, is a Frobenius on %, then one can easily see that the induced
homomorphisms of cohomologies from the morphisms 6.3.1 commute with the
Frobenius structures for any overconvergent F-isocrystal.

One can easily prove

LEMMA 6.3.2. With the notation as above, if Z, = X,, then the morphisms
6.3.1 induce the morphisms

Arig(XhZhﬂ]) ®K Rrrig(XZ/K,%z) - Arig(X’Z7 '/[)
Ac,rig(Xl,Zhr/ll) ®K ch,rig(XZ/Ka ﬂZ) . Ac,rig(Xa Z» %)

of distinguished triangles.

LemMA 6.3.3.  With the notation as above, assume that both X, and X, are
smooth over Speck. Let f:Y,— X, (resp. f:Y — X) be a finite etale
morphism for v=1,2 (resp. f = f| Xspeck [2)-

(1) The adjoint map ad :id — f,,,. f,r;, and the trace map tr: f,;g. foriy —
id in 2.7 induce commutative diagrams

Rrrig(Xl/K7=/”l)®K Rrrig(XZ/Kv =//l2) —_— Rrrig(X/KV//[)
ad ® ad J'ad

Rrrig(Xl /K? fl,rig*fitrig‘/”l) ®x an'g(Xz/K, fZ,rig*erig‘/”z) - Rrrig(X/K? f;ig*-ﬂ;g‘/”)

rtr J'tr

RL, (X1 /K, #) @k RLig(X2 /K, M) _ RLi,(X/K, H)
ch,rig(Xl/Kvﬂl)®Kch,rig(X2/Ky=/”2) - Rr‘c,rig(X/K»'/”)
ad ® ad lad

Rr‘c,’fg(Xl /K7 fl,rig*flfrig"”l) ®k er"ig(XZ/Kv fé,rig*thrig'/”Z) _— eryﬁ!](X/K’ ﬂig*f;;g'//{)

r@tr j/tr

ch,rig(Xl/Kw/”l)®KRR‘,rig(X2/K»=//{2) _— ch,rig(X/Kw/”),

where the horizontal arrows are the morphisms 6.3.1.
(2) For any object N, in Isoc'(Y,/K), if we put N = priNi ® pr3 N5,
then the diagrams

Rrrig(Xl/K’fl,rig*'/Vi) ®k Rrrig(Xz/K7fé,rig*M) - Rr’ig(X/varig*'/V)

| |

Rrrig(Yl/Ky'/Vi)®KRrrig(Y2/Ka~/V2) — ang(Y/Kw/V)
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RFC,rig(Xl/K’fl,rig*'/Vl)®K ch,rig(XZ/Kafz,rig*JVZ) - ch,rig(X/Kafrig*JV)

| |

ch,rig(Yl/K,'/Vl)®Kch,rig(Y2/K7'/V2) — ch,rig(Y/K"/V)

are commutative, where the horizontal arrows are defined in 6.3.1 and the vertical
arrows are isomorphisms which are defined in Theorem 2.6.3.

(3) For a finite extension K' over K, the morphisms in 6.3.1 commute with
both 71*<//1< and tgi /g, in 5.1

ProoF. We may assume that both X; and X; are affine by [5, Proposition
2.1.8]. Then the assertion easily follows from Proposition 2.2.1. O

LemMA 6.3.4.  With the notation as above, assume furthermore that there is
an affine smooth lift of the pair (X,,Z,) over Spec V which satisfies the situation
in 4.1 for v=1,2. If we denote by d, (resp. d) the codimension of Z, in X,
(resp. d =d) +d,), then the diagram

RLi(Z1 /K, Jir[" M) @k RUyig(Zo /K, Jia[* Mz)  —— RT,(Z/K,Ji[* M)
erl,r;g(Xl/K,./ﬂl)[Zd]] ®Kerzyrig(X2/K,,/ﬂ2)[2d2] _ eryn-g(X/K,./%)[Zd]

is commutative in the derived category of complexes of K-vector spaces, where
the horizontal arrows are the morphisms in 6.3.1 and the vertical arrows are the
Gysin morphisms.

Proor. Let X,, %, and 2, be as in the section 4. Put (M,,V)=
r(X.[; ,(#4,V)) and M =T(]X|[z (#,V)). Then (M,V)=(M,V)®x
(M,,V). One can easily see that the following diagram

DR*(ji¥ M) ® DR*(j*M;) —— DR*(jM)

Resz, )z, ®Resz, /12‘[ lRes )7

DR* (il My)[~d\] ® DR* (il My)[~dy]) —— DR*(i'M)[—d]
is commutative. (See the definition of Resy/y in 4.3.) This induces the

commutativity of the diagram. O

By [2, Chapiter V, Corollaire 4.1.2] and the construction of the com-
parison morphism between the rigid cohomology and the crystalline coho-
mology in Theorem 5.2.1, we have

PROPOSITION 6.3.5. With the notation as above, assume furthermore that
both X, and X, are proper smooth over Speck and that K is absolutely
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unramified. Let (M,,V,®D) (resp. (M,V,®)) be an object in F-Isoc'(X/K,a?)
(resp. (M,V,DP) = pri(M\,V,®P)Q pr;(M>,V,D)) and let (&£, D) (resp.
(&, D)) be the corresponding F-crystal on X |V with respect to ® as in Theorem
5.1.2 (resp. (&,®) = pr{(%1,P)® pr;(L2,P)). Then the diagram

R, (X1/K, M) ®xRLiy(X2 /K, M>) —— RLOu(X/K, #)

| |

(chryS(Xl/Vv g]) ®VK) ®K(chryS(X2/Va gZ) ®VK) - chryS(X/V» g) ®y K

is commutative in the derived category of complexes of K-vector spaces, where
the horizontal arrows are the morphisms in 6.3.1 and the vertical arrows are the
isomorphisms in Theorem 5.2.1.

Now we prove the Kiinneth formulas.

THEOREM 6.3.6. With the notation as above, assume that k is perfect. Let
(M,,V,,®,) be an object in F-Isoc' (X /K,6%)° for v=1,2 and put (M,V,d) =
prl*(,/%’l,V],'cD]) @ pr;(ﬂz, Vz, @2).

(1) If both X, and X, are smooth over Speck, then the first morphism in
6.3.1 is an isomorphism. Moreover, the induced K-homomorphism

®I,+IZ HQ] ”g(X1/K, jil) ®k Hézz r,g(Xz/K, ‘/%2) - Hé,rig(X/Kv ﬂ)

commutes with Frobenius structures for any I.
(2) The second morphism in 6.3.1 is an isomorphism. Moreover, the
induced K-homomorphism

@lﬁ-lz cng XI/K '//ll)®K cng(XZ/K ,/%2) - Hclng(X/Ka'/%)

commutes with Frobenius structures for any I.

Proor. (1) The argument of the proof is the same as in [7, Théoréme
4.2]. We prove two assertions;

(@), if Z, =X, (v=1,2), the first morphism in 6.3.1 is an isomorphism
for the dimension X £ d;

(b),: the first morphism in 6.3.1 is an isomorphism for the dimension
Z <d,
by induction on d simultaneously. The assertion (a), is trivial.

We prove (a); = (b),. Since the rigid cohomology with supports in Z
(resp. Z1, resp. Z,) does not change if we replace Z (resp. Zi, resp. Z») into the
reduced subscheme Z™? (resp. Zj°¢, resp. Z}?) of Z (resp. Z, resp. Z,), we
may assume that Z (resp. Zi, resp. Z;) is smooth over Speck by Proposition
2.1.1, 2.1.2, Lemma 6.3.2, 6.3.3 and the hypothesis of induction. We can also
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assume the situation of the pair (X,,Z,) (v=1,2) as in Lemma 6.3.4.
Therefore, the assertion follows from the Gysin isomorphism (Theorem 4.1.1)
and the hypothesis of induction.

We prove (b); = (a),,,. By [20, Theorem 1.3.1] one can find a smooth
scheme X, over Speck with a smooth compactification j!: X — X : and a
generically etale proper surjective morphism f : X, — X, and find a convergent
unit-root F-isocrystal .#, on X,/K with respect to o such that SorigH =
(j' )IM. By the Kiinneth formula of the crystalline cohomology [2, Chapitre
V, Théoréme 4.2.1], the assertion (b),; = (a),,, follows from Corollary 5.1.2,
Theorem 5.2.1, Lemma 6.3.2, 6.3.3, Proposition 6.3.5 and the hypothesis of
induction.

(2) The argument of the proof is similar as in Theorem 6.1.2 and
(1. 0O
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