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ABSTRACT. We classify positive proper solutions of a class of Emden-Fowler equations

in terms of their asymptotic behaviors. We obtain further the uniqueness of positive

decaying solutions in some cases.

1. Introduction

In this paper we consider the second order Emden-Fowler equation

(1.1) u" ± (1 + ε(t))ebt uλsgnu = Q, t > tQ > 0,

where b and λ are real numbers satisfying b φ 0, λ φ 0, 1, and the function ε(t)
is sufficiently small in some sense. A nontrivial solution u of (1.1) is said to be
proper if it is defined in some neighborhood of +00, and is nontrivial in any
neighborhood of +00. We shall confine ourselves to the study of proper
solutions throughout the paper.

The study of the Emden-Fowler equation

(1.2) + ^ l s g n >; = (), x > x0 > 0,

where /?, μ, λ are real constants, has been one of the main objects in the field
of nonlinear analysis in recent years since the appearance of the excellent
monograph due to R. Bellman [1]. When p Φ 1, it is well known that a
suitable change of variables (x, y] ι-» (t,u) transforms (1.2) into the equation of
the form

-TT ± tη\u\λ sgnw = 0at2-

with η a constant. For the case where λ > 1, the classification of all proper
solutions was established by Bellman [1] in terms of their asymptotic behaviors
near +00. The analogous results for the case where λ e (0, 1) and for the case
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where λ < 0 were established by Chanturiya [2] and Usami [7, 8], respectively.
Many results for the generalized Emden-Fowler equations containing the
equation (1.2) were collected by Wong [9]. On the other hand, if p = 1, the
change of variables x = eί, u(t) = y(et) transforms (1.2) into the equation

with a constant ξ, which has the form (1.1). It seems that systematic studies
for such a type of equations have not yet been carried out. Motivated by this
fact, we here intend to develop an asymptotic theory for the equation (1.1),
and make an attempt to find analogous results to those obtained by Bellman,
Chanturiya, and others.

It is convenient to classify the equation (1.1) further into four types
according by the signs of the coefficient function and the exponent b. That is,
we will discuss the following four equations separately:

(E++) ι*'' + (l+e(0)*>|λ sgn ι* = 0,

(£+_) u" + (1 + ε(t])e-Λt\u\λ sgn u = 0,

(£_+) u" - (1 + ε(t))e*'\u\λ sgn u = 0,

°>|A sgn u = 0,

where α > 0 and λ e R\{0, 1} are constants. When λ < 0, we often put λ
— σ, σ > 0, and hence (E+ + ) can be rewritten in the form

The function ε(t) is assumed to be of class C1 near -hoc throughout the paper.
When ε = 0, it should be noted that the equations (E+ + ) may have exact

solutions of the form u$(t) — ce^ with c > 0, β being real constants. In fact,
we find that the functions

(1.3) «o(/) Ξ «Λ where c = \β\2/(λ~l\ β = ™P β =

solve the equations (E-+) [resp. (E __ )] with ε = 0. However, the equations
(E++) with ε = 0 do not possess exact solutions of such a form. This exact
solution UQ will play important roles in our asymptotic theory.

The organization of the paper is as follows: In §2 we prepare auxiliary
lemmas which will be employed later in various places. In §§3, 4 and 5 the

asymptotic forms of positive proper solutions of (£+-), (E-+), and (E __ ) are
determined, respectively. In §6, we give uniqueness theorems for positive
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proper solutions u of (E ) satisfying lim^oo u(t) = 0 on the basis of the result
in §5. Since the equation (E++) has no positive proper solutions [9], this type
is actually precluded from our consideration.

Finally we mention several works treating the equations (E+ + ). For the
equations (E-+) with λ > 1, Taliaferro [6] obtained related results to ours.
Kiguradze and Chanturia [4] have obtained asymptotic forms for positive
solutions of (E+-) and (£-+) with λ > 1 and 0 < λ < I as special cases of their
asymptotic theory for more general Emden-Fowler type equations. Actually,
Thorems 4.1 and 5.1 and some parts of Theorems 4.2 and 5.2 follow from [4].

2. Auxiliary lemmas

In this section we collect auxiliary lemmas which will be used later.

LEMMA 2.1. Let feCl[T, oo). Assume that /' is bounded, and
J°° \f(t)\pdt < oo for some p>\. Then lim/_00/(0 = 0.

PROOF. To see this, it suffices to notice the identity

I/WIVW ^ \fCn\pf(T) + (/>+!) [' \ f ( s } \ p f ' ( s ) d s , t > T.
JT

LEMMA 2.2. ([3, 5]) Consider the equations

(2.1) υ" - mvf + lυ = 0,

(2.2) w" - mwf + (/ + L(t))w = 0,

where m > 0, / are constants, L is a continuous function, and suppose that these
equations are nonoscillatory. Let v\, V2 be linearly independent solutions 0/(2.1).

then every solution w of (2.2) has the asymptotic behavior

w(0 = cι( l+o(l))ϋι(ί) + c 2(l+o(l))ι;2(0 as f-» oo,

where C\,CΊ are constants.

LEMMA 2.3. ([!]) Consider the system

(2.3) w' = (A + B(t))w,

where A is a constant matrix with simple characteristic roots and B(t] E C[7", oo),
||5(ί)|| —> 0 as t —» oo. Then, corresponding to any characteristic root K of A,
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there is a solution w of (2.3) satisfying the inequalities

cιexpί(Re *)/-</! f \\B(s)\\ ds] <\\w(t)\\
L JT J

Γ f 1
<c2exp (Rejc)f + έ/2 \\B(s)\\ds\,

I Jr J

for some constants c\,cι,d\,dι > 0.

The following is a variant of ΓHospitaΓs rule:

LEMMA 2.4. Let f ( t ) and g(t) be continuously differ entiable functions
defined near oo and g'(t) φ 0. Then, we have

liminf < liminf < limsup ^ l™sup
^00 gl(f) ^oo ^(^ ^^^ ^(^ ^^^ ^/(^

// either linii^oo g(t) = oo or Hindoo g(t) = lim^oo /(ί) = 0 holds.

Finally, we present a simple lemma. We use this lemma when we show
that some positive proper solutions of (E-±) are asymptotic to UQ given by

(1.3).

LEMMA 2.5. Let u be a positive proper solution of (E- + ) and UQ be the
positive proper solution of (E-±) with ε(t) = 0 given by (1.3):

Put v = U/UQ. Then v satisfies the equation

(2.4) v" + 2βvf + β2(v - (1 + ε(t))vλ) = 0.

3. The equation (E+-)

The next result is simple. But for future reference, we prove the next result.

THEOREM 3.1. If λ e R\{0, 1}, α > 0 and lim^oo ε(t) = 0, then all positive
proper solutions u of

possess one of the following asymptotic forms

(3.1) M = fl

(3.2) « = β-

where a > 0, a\ > 0, ai are constants.
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PROOF. Case 1. The case where λ > 0. Since u" < 0, u' is monotone
decreasing, and hence there are two possibilities for u' as t -* oo:

(A) κ'\0;
(B) u'\a\, where a\ is a positive constant.

When case (A) occurs, u is monotone increasing, since u'>0. Further-
more there are two possibilities for u as t — » oo :
(A-l) K / + Q O ;

(A-2) u / a, where « is a positive constant.
Let us first show that the case (A-l) is impossible. Since u' \ 0, we get

an estimate for u

(3.3) u < t for large t.

Since w / ( o o ) = 0 , integrating (£+_) we obtain

ft | 0

Jto JS

» [u(r)\λdrds,

where ci is a constant. Hence by considering the estimate (3.3), we have
w(oo) < oo, which leads to a contradiction.

Let case (A-2) occur. Since M'(OO) = 0 and w(oo) —a, integrating (E+-)
from t to oo twice, we get

/•oo poo

κ(f) = a-\ (\+ε(r))e-*r[u(r}]λdrds.
Jΐ Js

From this identity we can easily get the asymptotic formula (3.2).
When case (B) occurs, the asymptotic behavior of u is u ~ a\t. We easily

find that u — a\t has a finite limit a^ as t — > oo by the assumption for ε(t). By
integrating (£+_) from / to oo twice, we get

poo poo

- (\+ε(r})e-*r[u(r)]λdrds,

which implies the asymptotic form (3.1).
Case 2. The case where λ < 0. As in the proof for Case 1, we obtain the

possibilities (A) and (B). When case (A-l) occurs, we obtain a contradiction

from the estimate

u > C2 for large t,

where CΊ is a positive constant. The remainder of the proof is carried out as in
Case 1. The proof of Theorem 3.1 is complete.
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4. The equation (£_+)

The following result follows directly from [4, Theorem 20.27].

THEOREM 4.1. If ' λ > 1 and ε(i) -» 0 as t — » ao, then all positive proper

solutions u of

(£_+) M"-(l+e(f)yV = 0

possess the asymptotic form

(4.1) W ~« 0 = cΛ / f = - ^ , c=\β\W~l\

The next result can be shown by [4, Theorem 20.23] when the condition
(4.2) below is assumed.

THEOREM 4.2. Let 0 < λ < 1 and either

(4.2) lime(0 = 0, Γ \d(i)\dt< oo
ί-+oo J

or

/•oo

(4.3) ,!™βW = 0, J [Φ)]2dt < oo

hold. Then all positive proper solutions u of (E-+) possess the asymptotic form

(4.1).

PROOF. It remains to prove the results under the condition (4.3).
As the first step we will show that

(4.4) limsup^ff^oo.

From the equation (£_+), u' is of constant sign near +00. When u' < 0
near -f oo, clearly (4.4) holds. Hence we shall consider the case where u1 > 0
near +00. It is easily seen from the equation (E-+) that w'(oo) = oo, and
hence lim,_oo u(t)/t = oo. We may assume that u' > 0 on [Γ, oo).
Integrating (E-+) twice, we have

[ \* (l
JT JT

+ε(r))e«r[u(r)]λdrds

£\cι\ + \c2\t + c3e*'[u(t)]λ, t>T,

for some constants c\,C2, and c^ > 0. In view of the relation
lim^oo u(t)/t = oo, it is easy to see that (4.4) holds.
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Put v = U/UQ. We know by Lemma 2.5 that v solves

(4.5) υ" + 2βυf + β2(v - (1 + e(t))υλ) = 0,

and by (4.4) that

(4.6) lim sup υ(t) < oo.
/—>oo

On the basis of (4.6) we next show that υ'(t) is bounded on [T1, oo). Clearly
(4.6) implies that lirninf/-^ ι/(OI = 0. Suppose the contrary that limsup^^
11/(01 = oo. We can find a sequence {/„} such that

lim tn = oo, lim \v'(tn}\ = oo, v"(tn) = 0, n E N

by Rolle's theorem. Putting t = tn in equation (4.5), we obtain

2βv'(tn)+β2(υ(tn) - ( l + e ( t n ) ) [ υ ( t n ) ] λ ) = 0, n e N,

implying that

\ v ' ( t n ) \ < £ \ v ( t n ) - ( l + ε ( t n ) ) ( v ( t n ) } λ , n e N .

Since v is bounded, this inequality contradicts the hypothesis |t/(fw)| —> oo,
« —» oo. Accordingly, υ'(t) is bounded on [Γ, oo). Furthermore we know
from (4.5) that v"(t) is also bounded.

Multiplying (4.5) by υ' and integrating the resulting equation on [TV], we

obtain

(4-7) ^-r—1-2/M (v'}2ds-\— , = £4 + β2 \ ε(s)vλv'ds, t>T,
2 )τ 2 A + l )τ

where €4 is a constant. Invoking Schwarz's inequality, we have

i
t / PCX) \ 1/2 / /.oo \ 1/2

\s(s}vλvf\dS<c5(\ [s(s)}2ds) [vf(s)}2ds) ,
r \Jr / \Jr /

where c$ > 0 is a constant. Since u,ι/ = 0(1) and β < 0, (4.7) implies that

f°° 9
(4.8) J [υ'(t)]2Λ«x>.

From the above consideration we know that lim^oo v'(t) =0 via Lemma
2.1. Accodingly it follows from (4.7) that the limit of (v2/2-υλ+l/(λ+l))
must exist as a finite value, that is, v has a finite limit 7. Letting / —> oo in

(4.5), we have Hindoo v" = β2(lλ - 7). If lλ - I φ 0, then the boundedness of
v' is violated. Hence lλ — I = 0, i.e., 7 = 0 or 1. Below we show that 7 = 1 .
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Suppose that / = 0. Noting (4.5) and the fact that 0 < λ < 1, we easily
see that there exist a large t\ such that v' < 0 for t > t\. From (4.5) we obtain

υ" > β 2 ( ( \ + ε ( t ) ) v λ -v)

for large t, since 0 < λ < 1 and υ \ 0. Multiplying the above inequality by t/
and integrating from t to oo, we find

-v'(t) > ί— ^+')/2, t > ί, for large ί,.

Integrating again from t\ to t, we conclude that

and this is a contradiction. Hence, / = 1, i.e., u ~ ceβt. The proof of
Theorem 4.2 is complete.

THEOREM 4.3. Let λ = -σ < 0.

(i) IfQ < σ < I and lim^oo ε(i) = 0, then all positive proper solutions u of

have the asymptotic form (4.1).
(ii) If σ > \, and either (4.2) or (4.3) holds, then all positive proper

solutions of (E-+) have the asymptotic form (4.1).

PROOF. We first show that

(4.9) 0 < liminf ̂  < limsup ̂  < oo.
t-+n eP* t->ac eP*

From (E-+), we have u"uσ = (1 +ε(ί))eαr and integrating from to to t, we
obtain

uσu' -σ! uσ-\u'}2ds = -e«t+ f φ)Λ& + Cl.
Jίo α J/o

This yields

uσu' > c2e«t,

where c\,C2 > 0 are constants. Integrating the above inequality from to to ί,
we have

(4.10) u>c3e
βt, for large t,

where £3 is a positive constant.
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On the other hand, by integrating (E-+) from r0 to t twice, and from
(4.10), we get

u < €46^, for large ί,

where £4 is a positive constant. Hence we conclude that (4.9) holds.
Let υ = U/UQ. We then have (4.5). By (4.9) we know that

0 < k = liminf υ(t) < limsupι>(ί) = / < oo.
'̂ °° r-^oo

We first consider the case (i). Define the new function / by f ( t ) =
(1 + ε(0)1/(1+σ) for sufficiently large t. Clearly lim^oo f ( t ) = 1. If vf = 0 and
v > /(/), then v" > 0 there, by (4.5). This means that only minima can occur
in the region υ > f ( t ) . Similarly, if v' = 0 and 0 < v < f(i), then υ" < 0 there.
This means only maxima can occur in the region 0 < v < f(f). This simple
observation works essentially below.

We may assume that f ( t ) oscillates around 1 as t —> oo since the other
case is even simpler. For sufficiently small δ > 0, we can find two strictly
increasing sequences {tn} and {tn} satisfying

( lim tn = lim tn = oo,

t> tn,

t>tn, n eN.

Obviously, if υ(t) attains extrema at points (ί, v) satisfying

V(t)

then only minima can occur. Similarly, if v(t) attains extrema at points (ί, t;)
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satisfying

i /l _2ί i _i «•«+!) v ^ "W ^ A j 5

then only maxima can occur. This observation implies that k < 1 < /.
Invoking Lemma 2.4, we obtain

u" u"
(4.11) liminf — <k < 1 < / < limsup—,

t~>CO UQ t^cC UQ

and hence

(4.12) liminf +*j * M < / : < ! < / < limsup +^.-t "

This means that Γσ < k < 1 < / < A:~σ

5 i.e., 1 < klσ and kσl < 1. Since 0 < σ
< 1, the inequalities (4.11) and (4.12) can hold only if k = I = 1. This implies
lim^oo υ(t) = 1, i.e., u - ce#.

Next we consider the case (ii). As in the sublinear case, we can establish

the boundedness of v' and v", and J°°(i/)2ifa< oo. We find therefore that
lim^oo v'(t) = 0. Proceeding exactly as before we can get the desired con-
clusion lim^oo v(t) = 1, i.e., u ~ ceβt. The proof of Theorem 4.3 is complete.

5. The equation (£__)

For the equation (E __ ), the next result also follows from [4, Theorem
20.26].

THEOREM 5.1. If λ > 1, α > 0, and ε(t) -> 0 as t — > oo, then all positive

proper solutions of

possess one of the following asymptotic forms

(5.1) tt = fllί + fl2

(5.2) « = β + ̂

(5.3) u-uo^cef1', β

where a > 0, a\ > 0, a^ are constants.
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The next result can be shown by [4, Theorem 20.21] when (5.4) below is
assumed.

THEOREM 5.2. Let 0 < λ < 1 and either

(5.4) l i m e ( f ) = 0 , Γ \ε'(t)\dt<
f-*oo J

00

or

J
oo

[e(0]2Λ< °°

hold. Then all positive proper solutions of (E __ ) possess one of the asymptotic
forms (5.1), (5.2), and (5.3).

PROOF. Note that in this case β < 0. It remains to prove the assertion
under the condition (5.5). The asymptotic forms (5.1) and (5.2) are obtained
by the same method as in the proof of Theorem 3.1. Put v = U/UQ. We know
by Lemma 2.5 that v solves

(5.6) Ό" + 2βv' + β2(υ - (1 + ε(t))υλ) = 0.

We shall show that v — > 1 or v — > oo as t — > oo.
Step 1. We first show that v has a finite or infinite limit.
Let v be unbounded. To see ι (oo) = oo, suppose the contrary that v has

no limits. Then for sufficiently large N there exists an increasing sequence {tk}
with lim^oo f* = oo such that v(tk) = N, v(t) < N for t2k-\ < t < t2k, υ(t) > N

for t2k < t < t2k+ι Let {ξ2k} and {£2^-1} be the sequences such that v(ξ2k) =
max{ι>(f) :t2k<t< t2k+\] and v(ξ2k_l) = min{ι;(ί) : ί^-i < t < t2k+i}7 and let
vι = v(ξι). We may assume that lim^oo v2k = oo. Multiplying (5.6) by ι/,

and integrating the resulting equation on [ζ2k,ζ2k+\], we obtain

(5.7)

\

ε(s)vλv'ds, fceN.

Since {v2k+\} is a bounded sequence, and β < 0, we find that

ι < c, + + + Φ ) ' * , ^ ε N ,

where c\ > 0 is a constant. Schwarz's inequality implies that
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rtu+i / r&k+\ \1/2 / fξu+i λ 1 / 2

(5.8) \ε(S)υλv'\ds<vU\ [φ)]2Λ (v')2ds\ .
Jξlk \J£2* / \Jί2* /

Let us put for simplicity Ik = l*+ί (v' ds , and εk =
From (5.7) and (5.8), we have

- y ̂  + ̂ Γf 4+1 + ^2 + W2\4 + 2βll > 0, A: ε N,

where C2,C3 > 0 are constants. This ineqality can be rewritten as

from which we have

Since ε^ — >• 0 as fc — > oo, this contradicts the assumption that lim^oo ^ik = °0
Therefore lim^oo v(t) = oo.

Next let v be bounded. We show that a finite lim^oo υ(t) exists.
Multiplying (5.6) by v1, and integrating the resulting equation on [ft,/], we
obtain

fί

= ^92 ε^t ^i 'ώ,
J?o

where C4 is a constant. As in the proof of Theorem 4.2, invoking Schwarz's

inequality in the right hand side of this formula, we have

where C 5 , C 6 > 0 are constants. We can easily see that J°°(ι/)2ίfa < oo, and
Lemma 2.1 shows that lim^oo v '(t) =0. That is, returning to (5.9), we find
that lim^oo v(t) exists as a finite value.

From the above consideration it follows that

lim υ(t) = oo, lim v(t) =0 or lim υ(t) = 1.
ί->oo /^co ί— KX)

Step 2. We show that actually lim^oo v(t) = 0 does not occur.
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Suppose the contrary that lim^oo v(t) = 0. Recall, then, that lim^oo v'(t)
= 0 and $™(v')2ds < oo. We easily see that there exists a large t\ such that
ι/ < 0 for t > t\. From (5.6) we obtain

v" <β2(l+ε(t))vλ for large t.

Multiplying the above inequality by υ' and integrating from ί to oo, we have

2 ~ λ + 1

It should be noted that the condition (5.5) ensure the convergence of the
integral on the right hand side. ΓHospitaPs rule therefore implies that

2β2vλ+l

(5.10)

2λ+l

( l+«ϊ ι ) for large ί,
A ~r I

where δ\ > 0 is a sufficiently small constant. Since 0 < λ < 1, for such a δ\ we
can choose δ such that 2λ(\+δ\)/(λ+\) <δ<\. Furthermore for this δ,
there exists /2 such that

(1 -δ)vλ-v>0 for t> h.

We apply this estimate to (5.6). Then

v" + 2βv'>δβ2vλ.

Multiply the above inequality by v~λ and integrate from t\ to t and apply the
estimate (5.10). Then,

where c\ is a constant, this contradicts the assumption for δ. Thus the limit of
v is 1 or oo.

To show that the solution v with infinite limit corresponds to the solution
of (E __ ) satisfying (5.1) or (5.2), we use Lemma 2.2.

A linearized equation of the equation (5.6) is

This equation has linearly independent solutions w\ = e~βt, W2 = te~^. To use
this lemma, we must show

(5.11) Γ l+ε(s)\sυ(s)λ~lds'< oo.
j
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Since v — » oo, for arbitrary constant y e (0,1/2) there exists Ϊ2 such that

Ό" + 2βv'+β2υ>QJ

v" + 2βv'+β2(l-γ}v>0, for t < t2.

By performing change of variables v(i) = e~^x(t) in the above two inequalities,
we get

(5.12) x">0,

(5.13) x"<γβ2x,

respectively. According to (5.12) we find that x' is eventually of definite sign.
When x' > 0 for t > /2, integrating (5.12) from ^ to t twice, we have

where CΊ is a constant. This means that there exists a constant £3 > 0 such
that v(t) > c^te~βt for large t, and hence (5.11) is satisfied.

When x' < 0 for t > ^3, x has a finite limit. If lim^oo x(t) > 0, then the
condition of Lemma 2.2 is satisfied. If lim^oo x(t) = 0, then multiplying (5.13)
by x' and integrating from t to oo, we get

Λ,

Integrating further from ti to /, we obtain

where €4 is a constant. Consequently, it follows that

x(t) > c5e
β^,

where c$ > 0 is a constant. This means that (5.11) is satisfied. Hence υ(t) =
O(te~βt), and so u(t) = O(t). The proof of Theorem 5.2 is complete.

THEOREM 5.3. Let λ = -σ < 0.
(i) If 0 < σ < 1 and lim,-^ ε(t) = 0, then all positive proper solutions of

have one of the asymptotic forms (5.1), (5.2) or (5.3).
(ii) If σ>l, and either (5.4) or (5.5) holds, then all positive proper

solutions of (E __ ) have one of the asymptotic forms (5.1), (5.2) or (5.3).

PROOF. In this case β < 0. Positive solutions u satisfying u' > 0 near oo
have the asymptotic form (5.1). Positive solutions satisfying u' < 0 near oo and
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w(oo) e (0, oo ) have the form (5.2). We show that positive solutions satisfying
u' < 0 near oo and w(oo) = 0 have the form (5.3).

As in the first step of the proof of Theorem 4.3, rewriting (E __ ) as u"uσ =
(1 + £(t))e~^ and integrating on [ί, oo), we obtain

-u'uσ> \ (\+ε(s}}e-«sds.
Jt

One more integration yields

uσ+l

for large t with some c\ > 0. Thus we find that

(5.14) 0 < liminf ̂  < limsup ̂  < oo.
'->«> e& t^ao eP*

Put V = U/UQ. Hence (5.14) implies

0 < liminf v(ί) < limsupι (ί) < oo.
°̂o ^oo

The remainder of the proof will be carried out by the same method as in
the proofs of Theorems 4.2 and 4.3. We leave the detail to the reader.

6. Uniqueness of positive decaying proper solutions to the equation (E __ )

By the results in §5 we find that the equation (E __ ) may have positive
proper solutions u satisfying lim^oo u(t) = 0. Actually, when 0 < λ < 1,
Chanturiya [2] showed the existence of such solutions. When λ < 0, Usami
[7] constructed such solutions. Therefore, it is natural to ask whether positive
proper solutions u of (E __ ) satisfying lim^oo u(t) = 0 are unique or not. In
the final section we answer this question affirmatively in the case where λ e

THEOREM 6.1. Let 0 < λ < 1. Suppose that the assumptions of Theorem
5.2 hold. Then, (E __ ) has at most one positive proper solution u satisfying

lim^oo u(t) = 0.

PROOF. Let x(t) and y(t) be positive proper solutions of (E __ ) satisfying
x(oo) = XQO) = 0. By Theorem 5.2 we know that

(6.1) x(i),y(i) ~ceβt as f-> oo,

where c and β are given as in Theorem 5.2. Furthermore, it is easy to see that

(6.2) jc'(f), y'(*) - βceβt as t -> oo.
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Put z(t) = x(t) - y ( t ) . We show that z = 0. By using the mean value
theorem, we know that there exists a continuous function ξ(t) such that

(6.3) z" = λ(\+ε(t))e-«'[ξ(t)}λ-lz,

and ξ(t) lies between x(t) and y(t). By (6.1), ξ(t) ~ ce^', and this implies

\imλ(l+ε(t))e-M[ξ(t)]λ-l=λβ2.
/— >oo

Hence we can rewrite (6.3) as

(6.4) z" = (λβ2 + ε(ή)z,

where ε(t) — > 0 as ί — > oo. Now we reduce (6.4) to a first-order system by
introducing the new variables w\ = z,W2 = z':

(6.5) ^=(A

where

0 ' 1

β

The eigenvalues of ί̂ are ±\/rλβ. By Lemma 2.3, there exist solutions (vPi,

and (vv!,^) °f (^-^) satisfying

(6.6)
w2

-f

> 0 are constants. It is easily seen from (6.6) that
is a basis of the solution set of (6.5). Hence z is repre-

where ^1,^2,

{(wi, >V2), (HΊ,
sented by

(6.7)

(6.8)

where c$ and C6 are constants. We will show that c$ = ce = 0. If c5 / 0, then
we find from (6.7) and (6.8) that

(6.9)

By (6.6) we know that the left hand side of (6.9) tends to oo as t —> oo, while
the right hand side remains bounded. Hence we must have c$ = 0, that is,
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It follows therefore that

(6.ιo) N^^NMMM.

By (6.1) and (6.2), the left hand side of (6.10) is bounded, while the right hand
side of (6.10) is estimated as

Since 0 < λ < 1, if c& Φ 0, then the right hand side of (6.10) diverges as t — > oo
and this is a contradiction. Hence ce = 0, i.e., z = 0. The proof of Theorem

6.1 is complete.

THEOREM 6.2. Let λ = — σ < 0. Suppose that assumptions of Theorem 5.3
hold. Suppose moreover that

ι / / xhm sup ε (t) < .
σ+ 1

Then (E __ ) has at most one positive proper solution u satisfying lim^oo u(t) = 0.

PROOF. Let x(t) and y(ί) be positive proper solutions of (E __ ) satisfying

x(co) = y(oo) = 0. We know that

(6.11) x(t),y(i)~ceβt and x ' ( t ) , y ' ( ί ) ~ βceβt a s r ^ o o ,

where c and β are given in Theorem 5.3.
Firstly we consider the case where x(t) — y(f) is of definite sign for all

sufficiently large t. Without loss of generality we may assume that x(f) > y(f).
Integrating (E __ ) (with u = x,y) from t to oo twice, we have

x(t) = Γ

= y ( t ) .

Hence x = y near +00. Moreover we can easily show that x = y on the whole

interval.
Secondly we consider the case where x(i) — y(t) changes the sign infinitely

many times near oo. Put z(t) = x ( t ) / y ( t ) , and p ( t ) = (1 +e(/))^~αί for sim-
plicity. A computation gives

d2z 2x'(t) dz p ( t ) , σλ AI \ / I f \ / I —O \ f\ j «̂ ^ ^
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The change of variable τ — ^[x(f)]~2dr transforms this equation into

d2z
— + p ( t ( τ ) } [ x ( t ( τ } ) } 3 - σ ( z - z-*) = 0, τ > 0.

Moreover the change of variable s = ̂  p(t(ξ))l/2[x(t(ξ))](3~σ}/2dξ transforms
this equation into

(6.12) z - f ( s ) z + z - z~σ = 0, s > 0

where = d/ds, and

f(s) = - i MO](<"1)/2[/KOΓ3/V(')*(0 + (3 - *)XO*'(0}, s > o.
Our assumption (6.11) implies that f(s)>0 near +00, and z(oo) = 1.
Multiplying (6.12) by z, and integrating on [so,s], we have

(6,3) Mί
1 — σ

where c\ is a constant. We show that f™ f(s)[z(s)]2ds < oo. In fact,
assuming the contrary that J°° f(s)[z(s)]2ds = oo, we obtain \irΆs^(X)(z(s))2 = oo
since z(oo) = 1. But obviously this is a contradiction. Hence §™f(s)(z(s))2ds
< oo as stated above. Returning to (6.13) we find that \ims^ao(z(s))2 exists as
a finite value. The boundedness of z asserts therefore that lirn^oo z(s) — 0.

On the other hand, there is an increasing sequence {sn} such that
lim^oo sn — oo, and z(sn] = 1, n e N. This is an immediate consequence of the
fact that z(s) oscillates around 1. Multiplying (6.12) by z(s), and integrating
on [5n,jΛ+ι], we have

rS"+l f(s)[z(s)]2ds.

This is an obvious contradiction unless z = 0 near oo. Hence z = 1 near oo,
that is, x = y on the whole interval. The proof of Theorem 6.2 is complete.
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