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ABSTRACT. For a Radon measure μ and q, t e R, let 3?^* and &*>* denote the

multifractal Hausdorff measure and the multifractal packing measure introduced in

[L. Olsen, A Multifractal Formalism, Advances in Mathematics 116 (1996), 82-196].

Let t e R. We study the descriptive set theoretic complexity of the maps

Jfr(Rd) x Jΐ(Rd) x R -> R : (K,μ,q) -> -^''(AΓ),

x R -> R : (K,μ,q) -> 9*\K\

and related multifractal measure and multifractal dimension maps; here j ( Γ ( R d ) denotes

the family of non-empty compact subsets of R^ equipped with the Hausdorff metric, and

Jt(Rd ) denotes the family of Radon measures on R^ equipped with the weak topology.

CONTENTS
1. Introduction.
2. The Setting.
3. Analysis of the Multifractal Hausdorff Measure and the Multifractal

Hausdorίf Dimension.
4. Analysis of the Multifractal Packing Measure and the Multifractal Packing

Dimension.
5. An Example: Measurability of Multifractal Slices.

References

1. Introduction

Recently there has been a great interest in the multifractal structure of
Borel measures μ on metric spaces. For α > 0 write

= < x e suppμ
,

lim — α
r\o logr
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where suppμ denotes the topological support of μ and B(x,r) denotes the

closed ball with center x and radius r, i.e. Aμ(a) denotes the set of those x

for which μB(x,r) behaves like rα for r close to 0. The family {Jμ(α)|α > 0}

can be viewed as a "multifractal decomposition" of the support of μ into a

family of (typically fractal) sets Δμ(y) indexed by α. The main problem in

multifractal analysis is to compute the Hausdorίf dimension and the packing

dimension of /4μ(α), i.e. to compute

fμ(a) = dim^(α), Fμ(aΐ) = Dim^(α)

where dim and Dim denote Hausdorff dimension and packing dimension

respectively. The functions fμ and Fμ (and similar functions) are generically

known as "the multifractal spectrum of μ". The function /(α) = fμ(a) was

first explicitly defined by the physicists Halsey et al. in 1986 in their seminal

paper [HJKPS].

The multifractal spectra functions fμ and Fμ have been computed for

various classes of measures, cf. e.g. [AP, CM, EM, LN, MR, Oil, O12, O13,

Pey, Ra]. However, recently Olsen [Oil], Pesin [Pes] and Peyriere [Pey]

proposed a general multifractal formalism suited for analysing the properties

of the spectra functions fμ and Fμ for very general measures. This formalism

is based on certain multifractal generalizations of the Hausdorίf measure and

the packing measure tailored for multifractal purposes, and has now been

investigated further by a large number of authors, cf. Ben Nasr [BeN], Das

[Dal, Da2], Levy-Vehel & Vojak [LV], Olsen [O12, O13, O14, O15], O'Neil

[O'Nl, O'N2] and Taylor [Ta]. For a Radon measure μ on a metric space X

and q, / e R, let Jtf^* and 3?^* denote the multifractal Hausdorff measure and

the multifractal packing measure. For each q e R, using the measures #f^1

and ^f'', we define, analogously to the Hausdorff dimension and the packing

dimension, a multifractal Hausdorff dimension ά\mq

μ(E) and a multifractal

packing dimension Ό\mq

μ(E) of subsets E of X (details will be given in the next

section). It is natural to study the "smoothness" of the multifractal decom-

position provided by the formalism in [Oil, Pes, Pey]. We do this by studying

the descriptive set theoretic complexity of the maps

x Jί(Λd) x R -> R : (K,μ,q) -> ^l(K), (1.1)

Jf(Rd) x Jt(Rd) x R -> R : (K,μ,q) - 9*\K\ (1.2)

JfT(Rd) x Jί(Rd) x R -* R : (K,μ,q) -> dim^(^), (1.3)

x Jί(Rd) x R -> R : (K,μ,q) -+ Dim^A:), (1.4)
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and related multifractal maps; here tf(Rd) denotes the family of non-empty
compact subsets of R^ equipped with the Hausdorff metric, and Jί(Rd) denotes
the family of Radon measures on R^ equipped with the weak topology. We
prove that the multifractal Hausdorff measure map (1.1) is measurable with

respect to the σ-algebra generated by the analytic sets, and that the multifractal
Hausdorff dimension map (1.3) (restricted to a suitable subspace determined by
the family of doubling measures) is of Baire class 2. The measurability of the
multifractal packing measure map (1.2) is discussed in Section 4, Remark (1),
and we prove that the multifractal packing dimension map (1.4) (restricted to
a suitable subspace determined by the family of doubling measures) is mea-
surable with respect to the σ-algebra generated by the analytic sets. Some of
our results can be viewed as multifractal extensions of the results in Mattila &
Mauldin [MM]. For a Polish space X and a dimension function #, Mattila &
Mauldin study the set theoretic complexity of the maps

and related measure and dimension maps; here 3C9 and &9 denote the
Hausdorff measure and the packing measure generated by g, and 3f(X) denote
the family of non-empty compact subsets of X.

A further reason for studying the measurability properties of the maps
defined by (1.1) through (1.4) (and related multifractal maps) is provided by
the following. The formalism based on the multifractal measures ^^ and

2?^* leads to a multifractal geometry for measures which is analogous to the
classical fractal geometry for sets, cf. [O14, O15, O'N2]. However, many argu-

ments in [O14] and [O15] require (in order to apply Fubini's Theorem and
Fatou's Lemma and other standard results from measure theory) that various
maps defined in terms of Jtf^* and 3P^1 are (analytically) measurable. In fact,
the measurability results in § 5 for slices of measures play an important part in
the study of multifractal slices and negative dimensions in [O15].

We now give a brief description of the organization of the paper. In § 2
we collect the multifractal and topological (descriptive set theoretical) definitions
and preliminary results we shall need. § 3 contains our analysis of the multi-

fractal Hausdorff measure map (1.1) and the multifractal Hausdorff dimension
map (1.3), and §4 contains our analysis of the multifractal packing measure
map (1.2) and the multifractal packing dimension map (1.4). Finally, in §5 we
apply the measurability results established in §3 to study the measurability of
multifractal slices.
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2. The setting

2.1. Ordinary and multifractal Hausdorff measures and packing measures

We first recall the definition of the Hausdorff measure, the centered
Hausdorff measure and the packing measure. Let X be a metric space, E c x
and δ > 0. A countable family & — (B(xi,ri})i of closed balls in X is called a
centered ^-covering of E if E c \J.B(xi,ri), xt e E and 0 < rl < δ for all /.
The family & is called a centered ^-packing of E if xι E E, 0 < rl < δ and
B(xi, Ti) Π B(XJ, />•) = 0 for all i ^ 7. Let E c Jf , / > 0 and <S > 0. Now put

- inf I diam(^y E c y £n diam^ < (5
1
V .

J

The /-dimensional Hausdorff measure 3?\E} of E is defined by

= sup
c5>0

Next we define the centered Hausdorff measure introduced by Raymond &
Tricot in [RT]. Put

/,r I ))l is a centered (5-covering of E.
ι=l J

The /-dimensional centered pre-Hausdorff measure ^ .̂E1) of E is defined by

^\E] = sup <ίfj(£).
<5>0

The set function (βt is not necessarily monotone, and hence not necessarily an
outer measure, c.f. [RT, pp. 137-138]. But Ή* gives rise to a Borel measure,
called the /-dimensional centered Hausdorff measure ^(E] of E, as follows

<$\E} = sup ^(F}.
F^E

It is easily seen (c.f. [RT, Lemma 3.3]) that 2~'«" < tf* < ̂ l . We will now
define the packing measure. Write

&l

δ(E) = sup< ^2(2nY \ (B(xί,ri)}i is a centered ^-packing of E \.
( i=\ )

The /-dimensional prepacking measure ^l(E] of E is defined by
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The set function 2P* is not necessarily countable subadditive, and hence not
necessarily an outer measure, c.f. [TT]. But &l gives rise to a Borel measure,
namely the ί-dimensional packing measure &\E} of E, as follows

9\E) = inf V &\EΪ).
*SLCι*tί

The packing measure was introduced by Taylor and Tricot in [TT] using
centered J-packings of open balls, and by Raymond and Tricot in [RT] using
centered J-packings of closed balls.

Also recall that the Hausdorff dimension dim(£t), the packing dimension
Όim(E) and the pre-packing dimension Δ(E) of E is defined by

dim(£) = sup{t > 0 tf l(E] = 00}

Όim(E) = sup{t > 0 1 &\E) = 00}

We refer the reader to [Tr] and [RT] for more information on the centered
Hausdorff measure, the packing measure and the packing dimension.

Olsen [Oil] suggested that some multifractal generealizations of the centered
Hausdorff measure and the packing measure might be useful in multifractal
analysis. Let Jί(X] denote the family of positive Radon measures on X. For
μ e M(X\ E^X, q,teR and δ > 0 write

= inf

is a centered ^-covering of E > , E φ 0

•#$'(0) = o

'(£) = sup

We also make the dual definitions

is a centered ^-packing of E > , E φ 0
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= inf

It is proven in [Oil] that ffl^1 and ̂ '' are measures on the family of Borel
subsets of X. The measure tfffi* is of course a multifractal generalisation of
the centered Hausdorff measure, whereas ̂  l is a multifractal generalisation of
the packing measure. In fact, it is easily seen that the follwing holds for t > 0,

The next result shows that the measures «^f'r, &fil and the pre-measure
^f5/ in the usual way assign a dimension to each subset E of X.

PROPOSITION 2.1.1. There exist unique extended real valued numbers
Aq

μ(E] e [-00, oo], Dim^(jE') e [-00, oo] and dim^(£) e [-00, oo] such that

Γ αo for t < Δ«μ(E)
9£\E) = {

\0 forA«(E)<t

f oo /or ί < Όimq(E)
9£\E) = <

μ (0 for Όimq

μ(E) < t

f oo for t < dimq(E)
&*>'(£) = \

μ 1 0 for dimq(E) < t

PROOF. See [Oil, Proposition 1.1]. Q

The number dimq(E) is an obvious multifractal analogue of the Hausdorff
dimension dim(E) of E whereas Όimq(E) and Δq

μ(E] are obvious multifractal
analogues of the packing dimension Όίm(E) and the pre-packing dimension Δ(E)
of E respectively. In fact, it follows immediately from the definitions that

dim(E) = d i m ) , Όim(E) - Dim^0(^), Δ(E) = A«μ(E). (2.1.2)

We now define the family of doubling measures and list some useful
properties of the measures tf^1 and 3P^* (see Proposition 2.1.2 below). For

μ e Jt(X) and a > 1 write Ta(μ) := lim suprχo ( sup^p^ μ y ̂  ) and define
V μn\x, r) /

the family Jί$(X) of doubling measures on X by Jto(X) = {μ e
Ta(μ) < oo for some a > 1}. It follows from [Oil] that the definition of
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is independent of the number a > 1, i.e. Ta(μ) < oo for all a > 1 if
and only if Ta(μ) < oo for some a > 1. The results in Proposition 2.1.2 below
will be used tactically in several of the proofs in §3 and §4. Let 0*(X) denote
the family of subsets of X. Recall that a set function D : 0>(X} — > [-00, oo] is
called monotone if D(E) < D(F) for all E, F c x with E c F, and that D
is called σ-stable if D(\JneNEn) = supn(END(En) for all countable families
(En)nGN of subsets of X.

PROPOSITION 2.1.2. Let μ e Jί(Rd) and q,teR. Then
( i ) &£* < 9£l for μ e J f Q ( R d ) , and &** < &** for μ e Jt(Rd).
(ii) dim* < Dim^ < Aq

μ.
(iii) dim* and Dim* are monotone and σ-stable, and Δq

μ is monotone.

PROOF. See [Oil]. Π

REMARK. The main importance of the measures 3tf£* and 3P^1 to
multifractal analysis is due to the following relationship between the spectra
functions fμ and Fμ, and the dimensions dim* and Dim*. Define multifractal
dimension functions bμ,Bμ:R-^[-co, co] by bμ(q) = dim^(supp//) and Bμ(q) =
Dim^(suppμ). It now follows from [Oil, Theorem 2.17] that fμ<b* and
Fμ < B* where b* and B* denote the Legendre transform of bμ and Bμ respec-
tively (for a real valued function / : R — > R, we define the Legendre transform
/* : R — > [-00, oo] of / by f*(x) = infj,^ + f ( y } ) } These inequalities can
be viewed as rigorous mathematical analogous of the so-called "Multifractal
Formalism" in the physics literature (cf. [HJKPS]).

2.2. Topological definitions and preliminaries

The Hausdorff metric and
For a metric space ( X , d ) , let Jf(X) denote the family of non-empty

compact subsets of X. We will always equip j f ( X ) with the topology
generated by the Hausdorff metric D on

D(K,L) = maxί sup d(x,L), sup d(x,K)
\xeK xeL

where d(x. A) — inf{J(jc, d)\a e A} for x e X and A ^ X. It is well-known that
Jf(X) is Polish if X is Polish (cf. e.g. [En, 4.5.23]). We also consider the
Hausdorff metric D0 on j f ( X ) U {0},

if A: = 0 and L = 0,

D0(K,L) — ^ 1 if exactly one of the sets ^Γ and L is 0,
if ^ ̂  0 and L φ 0
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and the space Jf (JΓ) U {0}will always be endowed with the topology generated

by D0.

The weak topology and

The weak topology on the space Jί(X] of positive Radon measures on a
metric space X is the topology generated by the functionals

Jt(X)^R:μ-*lφdμ,

where φ varies over the family of continuous non-negative functions on X with
compact support. We remark that the weak topology on M(X} is also some-

times called the vague topology. The family Jt(X} of Radon measures will
always be equipped with the weak topology. It is well-known that J^(Rd) is a

Polish space (cf. e.g. [Ma2, Remark 14.15]). In particular, the space Jf (Rd) x

x R is Polish.

The Borel Hierarchy and Baire functions.

We will now briefly describe the Borel Hierarchy used in the classification

of the smoothness of the maps in (1.!)-(!.4). Let X be a metric space. For

an ordinal γ with 1 < γ < ω\ (where ω\ is the first uncountable cardinal) we

define the Baire classes Σ°(X) = Σ® and 77° (Z) = 77° inductively by

Σf(X) = {G c χ\G is open}, Π^(X) = {F c X F is closed},

and

yQf Y\ — = {n;=1

We then have the following diagram

Σ»(X)

Π»(X) Π°2(X) 773°(JSr)

in which any Baire class is contained in any Baire class to the right of it; this
is known as the Borel Hierarchy, cf. [Ke, p. 68]. Is is known that

I I r° = I I 77° =
\Jy<ω\ γ Wy<ωι V

where @ί(X} denotes the Borel σ-algebra on X. The Borel hierarchy therefore
gives a ramafication of the Borel sets in (at least) ωi levels. Sometimes we will

use the traditional notation, &(X) = &, for the family of open subsets of X,
and the traditional notation, ϊF(X) — J ,̂ for the family of closed subsets of

X. Hence,
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A function / : X — > Y between metric spaces X and Y is said to be of Baire
class rceNU{0} if / is Σ°+l(X) -measurable, i.e. if f~l(G) e Σ®+1 for every
open subset G of 7. Hence, functions of Baire class 0 are continuous,
functions of Baire class 1 are "1 step away from being continuous", et.c. It is
well-known (see for example [Ke, Theorem 24.3]) that a function /is of Baire
class n e N if and only if /is the pointwise limit of a sequence of functions of
Baire class n — 1 .

Analytic sets.
Finally we recall the definition of an analytic set. A subset A of a Polish

space is X is called analytic if it is the continuous image of a Polish space, i.e. if
there exist a Polish space Y and a continuous map / : Y — > X such that
f ( Y ) = A. More generally, a subset A of a separable metric space X is called
analytic if there exist a Polish space Y with X c Y and an analytic subset B of
Y such that A = XΓ\B (cf. [Ke, p. 197]). For a seperable metric space X, we
let £/(X] denote the family of analytic subsets of X. It is well-known that
every Borel set is analytic, i.e.

In particular, we see that every Borel measurable map is σ(^(X)} -measurable,
where σ(sf(X)) denotes the σ-algebra generated by the family, jtf(X), of
analytic subsets of X.

Throughout the paper we will write R = [—00,00].

3. Analysis of the multifractal Hausdorff measure and the multifractal
Hausdorίf dimension

The purpose of this section is to prove Theorem 3.4 and Theorem 3.5
regarding the set theoretic complexity of the multifractal Hausdorff measure
map (1.1) and the multifractal Hausdorff dimension map (1.3). For xeRd

and r > 0, B(x, r) denotes the closed Euclidean ball with center x and radius r,
and U(x,r) denotes the open Euclidean ball with center x and radius r.

LEMMA 3.1. Let f , c e R and δ>0. Then {(K,μ,q}eJf(Rd)xJΐ(Rd)xR\

W < c} ίs open.

PROOF. Let

(K,μ,q)eJir(Rd) x Jί(Rd] x R

there exist n e N, z\ , . . . , zn e K, ε\ , . . . , εn e (0, δ)

and s\ , . . . , sn > 0 with s\ -\ ---- + sn < c such that

(i) K^(JllU(zhεi)

(ii) μ(U(Zi,εi)}q(2εi)
1 < st for all i= 1, ...,«}.
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An easy compactness argument shows that

{(K,μ,q) e jT(Rd) x Jt(Rd] xR\tfβ(K) < c} = G.

Write F = (JίΓ(Rd) x Jί(Rd) x R)\(?. We must now prove that F is closed.
Let (K,μ,q) e 3Γ(Rd) x Jt(Rd] x R and let (Km,μm,qm)m be a sequence in F

with (Km,μm,qm] -> (K,μ,q). We must prove that (K,μ,q) e F. Fix Λ e N,

zi , . . . , zπ e ΛΓ, fii , . . . , fiΛ e (0, <5) and ,sι , . . . , JΛ > 0 with sΉ ----- h ̂  < c. We
must now show that

*£U.[/(Z;,£/) (3.1)

or

μ(U(zhεi))q(2ε)t>si for some / e {!,...,«}. (3.2)

If (3.1) is satisfied, then we are done. We may therefore assume that (3.1)

is not satisfied, i.e. we are assuming that

K^(jiU(zi,εi) (3.3)

Since K is compact, (3.3) implies that there is an ηQ > 0 such that

K <Ξ U . U(zh 6t -η) for 0 < η < ι/0. (3.4)

We now prove the following claim.

Claίm(*). For each 0 < η < ηQ there exists an i(η) e {1, ...,«} such that

^ Γ μ(U(zi(η],εi(η] - η))q(2(εi(η} - ϊη))' for q < 0

5ί(l/) ~ \ μ(U(zί(η],εi(η]})q(l(εi(η] - |^))r for 0 < q

Proof of Claim (*). Fix 0 < η < ηQ. It follows from (3.4) and the fact that

Km — > AT that we can choose an integer M such that

Km c y . C/(zf, e/ - η) for m > M, (3.5)

and

KmΓ\U(zi^ή) 7^0 for m > M and / e {!,..., π}.

Now fix m > M and choose zm>/ e A^m Π U(zi,\η) for / = ! , . . . , « . Observe

that

t/(zf ,e/- i7) c t/(zw > /,e/-|i7) c t/(z/,β. _ 1^). (3.6)

In particular,

^cy.^z^.,^-^). (3.7)
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We infer from (3.7) and the fact that (Km,μm,qm) eF that

μm(U(zm,i(m},εί(m} - lη}}qm(2(εi(m] - |τ/))' > si(m] for some

ί(m)e {!,...,*}. (3.8)

Next choose / = i(η) e {1, ...,«} such that there exists a strictly increasing

sequence (wik)k °f P°sitiye integers with z(ra&) = / for all k.
Since μmk — > μ weakly, (3.6) implies that

μ(U(zi,εi-ή)) < linynf μmk(U(zi,εi - η)} < liminf μmk(U(zmk , / , £ / - |^))

= lim^inf //W j f c(t/(zW j f c > / ( m f c ),e / ( W j f c ) - 1//)) (3.9)

and

O&feε;-^)) > limsup μmk(U(zmic, /,ε, - |//))
A: /:

= lira sup μmk(U(zmkAmk],εi(mk) - \η)). (3.10)
k

For fc write w^ = μmk(U(zm^i(mk),εi(m^- |//))5 andpbserve that (3.9) and (3.10)
imply that (uk)k is a bounded sequence, whence uq

k

 q™k -* 1 as k — > oo. Hence,
if ^ < 0, then inequalities (3.8) and (3.9) imply that

/*(C/(z,, f i l - η))q(2(εi - &))' > limsup u9

k

m* u^9"* (2(ε, - |^))r

A:

= lim sup «f*(2(e/(wt) -!>/))'
k

> limsup j/(mjfc) =sh
k

and if 0 < q, then equations (3.8) and (3.10) imply that

μ(U(zi,εi))"(2(εi -\η))' > limsup «*"*«Γ*"*(2(e/ - |ι/))'
A:

= limsup ufk (2(εi(mk} -
k

This completes the proof of Claim (*).
It follows from Claim (*) that there exist a sequence (ηm)m of positive reals

and an ϊ e {1, . . . , n} such that ηm — > 0 and i(ηm) = i for all m, i.e.
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s_<ίμ(U(zi,εl-ηm)) 9(2(ε, -&„))' for q < 0

\μ(U(zhεί})q(2(εί - \ηm))' for 0 < 4

Letting m — > oo yields (3.2).

LEMMA 3.2. Let μ e ^(Rd) and q,teR.
(i ) JF/'CE) < Jr<>'(E)Jar E c Rd.
(ii) ^'(K) = sup JF/''(L) /or co/npαcf

L £ Λ

L compact

PROOF, (i) Let e,J > 0 and let ( B ( x i , r i ) } i be a centered <5-covering of E.
Since /?(.*/, r/ -f η) \ ^(Λ:/, rz ) as η \ 0, there exists 0 < ηi < δ such that
r, + ηt<δ and

< ^(J»(jc/, rί))^(2r/)
ί + for all Λ, fc e R satisfying

r/)) < a < μ(B(xi, rt + 17,.)) and r, < Z> < r, + ̂  . (3.11)

Now pick ^/ e^ίx/, rz -— J Π^1, and observe that (3.11) implies that

/*(*(*;, r,+^7^^ (3.12)

Since (5(^',r/ + ̂ /))/ is a centered δ covering of E, (3.12) shows that

'</(£)< ̂ M^/,^ +^/))'(2(r/ +^ί.))/< Σ,^(Λ(x, ,rI.))^(2r/)
ί-he. Hence,

'/(^) < J!f£s(E) + e. Letting J,e \ 0 now yields the desired result.
(ii) This follows easily from (i). Π

LEMMA 3.3. Let μ e J((Rd) and q,teR.
( i ) If q < 0, then there exists a constant c > 0 such that 3tf^* <

. r1

(ii) I f O < q and μ e J?o(R ), ί/z^w ίΛ^r^ exwi^ β constant c > 0
.

(iii) If_ q<0, then dim^(£) = inφ e R \ tffs(E) = 0} - sup{s e R |
tf$s(E} = 00} /or ^ c R^.

(iv) T/* 0 < q and_μ e ^(R^), then dim*(£) = mf{s e R \ tf*5(E) = 0} =
sup{* 6 R I tf*s(E) = 00} /or £ c R^.

PROOF, (ii) Since μ satisfies the doubling condition, there exists a constant
> 0 such that

Let c = 2'cι. Fix E £ Rd and let F £ £. Let δ > 0 and let (£(*,•, /•,-)),• be
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a centered ^-covering of E. Write / = {/\5(x, ,r, ) ΠF φ 0}. For each / e
I choose yt e B(XΪ, r, ) Π F, and observe that 5(y/, 2r/) £ j?(xt, 3r/), whence
μ(B(yi,2ri}}q < μ(B(xi, 3r/))^ (because 0 < 0). Also observe that (B(yi,2ri))iel

is a centered 2J-covering of F. We therefore infer that

I

,r, ))?(2r, )'. (3.13)

It follows from (3.13) that JF/^(F) <cJ?fy(E). Letting 5\0 now yields
''(F) < €&**(£) for all f1 c ̂ , whence V/^(£) < €&**(£).

(i) The proof of (i) is very similar to the proof of (ii).
(ϋi)-(iv) Follows immediately from (i) and (ii) since tff* < tf^ . Π

We are now ready to state and prove the main results in this section.

THEOREM 3.4. Let t e R and δ > 0.
( i ) The map

x R -* R : (K,μ,q) -

is upper semi-continuous; in particular of Baire class 1.
(ii) The map

x R -» R : K,μ,q -

x R

is of Baire class 2.
(iii) The map

w σ(s#}-measurable where σ(stf) denotes the σ-algebra generated by
the family d of analytic subsets of tf(Rd] x Jt(Rd) x R.

PROOF, (i) This follows immediately from Lemma 3.1.
(ii) Follows from (i) since tff'(K) =]χmntf*'{l/n](K) for all (K,μ,q)e

x Jί(Rd) x R.
(iii) We must prove that {(K,μ,q) e J f ( R d ) xJ/(Rd) xR \ JHf«>t(K)>c} is

analytic for all c e R. Fix c E R. Define the projection π : Jf(Rd) x Jΐ(Rd) x
R x JΓ(R^) -> Jf(Rd) x Jt(Rd) x R by

It now follows from Lemma 3.2 that
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c}

xR\

there exists a compact subset L of K with ^^(L) > c}

= π({(K,μ,q,L)etf(Rd) x Jί(Rd) x R x J f ( R d ) \ L <Ξ A:}

n{(K,μ,q,L)e Jfr(Rd)xJ((Rd)xRχJίr(Rd)\ ^'(L) > c}). (3.14)

Since the set {(K,μ, q,L) e J f ( R d ) x Jt(Rd] x R x jf(Rd) \L^K} clearly is

closed and the set {(K,μ,q,L) e tf(Rd] x Jΐ(Rd) x R x jf(Rd) \tf«>t(L)>c}
is Borel (by (ii)), (3.14) shows that {(K,μ,q)e JίT(Rd) x Jί(Rd) x R\

> c} is analytic. Π

x R -> R : (K,μ,q) -+ dimq

μ(K)

THEOREM 3.5.
(i) The map

is σ(stf}-measurable where σ(<stf) denotes the σ-algebra generated by the
family */ of analytic subsets of Jί(Rd) x Jί(Rd] x R.

(ii) Write Γ - ( j f ( R d ) x Jt(Rd] x (-00, 0]) U (jtT(Rd) x JtQ(Rd) x R).
The map

is of Baίre class 2 and not of Baire class 1 .

PROOF, (i) Follows from Theorem 3. 4. (Hi).

(ii) It follows from Lemma 3.3 and Theorem 3.4.(ii) that if s, f e R, then

{(K,μ,q)eΓ\s<dίm«(K)<t}

= ΓΠ K,μ,q) e JfRd x Jt(Rd x R K

Π \Jn{(K,μ,q)etf(Rd} x Jί(Rd) x

(3.15)

It follows from (3.15) that the map Γ -* R : (K,μ,q) -> dim^(A:) is of Baire
class 2.

We will now prove that the map Γ — > R : (K,μ,q) — »• dim^(A:) is not of
Baire class 1. Since dim^ = dim (cf. (2.1.2)), it suffices to show that dim:
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->R is not of Baire class 1. Let X = {M\ M c Rd is finite} and
Y = {LU M I L is a compact line segment in R^ of positive length, M ^Rd is
finite}. Since X and Y are dense in jf(Rd) and dimM = 0 for M e X and
dim M = I for M e Y, dim is everywhere discontinuous and hence not of Baire
class 1 by [Ke, Theorem 24.15]. Π

REMARKS. (1) In Theorem 3.5.(ii) we found the exact Baire class of the
multifractal Hausdorff dimension map Γ-^R : (K,μ,q)—*dim^(K). However,
we have not been able to determine the exact set theoretic complexity of the
multifractal Hausdorff measure map JtT(Rd) x Jί(Rd) x R -> R : (K,μ,q) ->
J^^l(K). Theorem 3. 4. (Hi) shows that the multifractal Hausdorff measure
map is measurable with respect to the the σ-algebra generated by the family of
analytic subsets of jf(Rd) x Jί(Rd] x R. It is natural to ask if this result can
be improved. We do not believe that this is the case and make the following
conjecture.

Conjecture 3.6. The map J f ( R d ) xJί(Rd) xR-^R : (K,μ,q)-^^\K] is,
in general, not Borel measurable.

It is instructive to consider the fractal counterpart of the multifractal Con-
jecture 3.6. For t > 0, ̂ l = #' where #' denotes the ί-dimensional centered
Hausdorff measure. Hence, for t > 0, Theorem 3. 4. (Hi) shows that the map
tf(Rd) —>R:K^> ^(K] is measurable with respect to the σ-algebra generated
by the family of analytic subsets of jf(Rd). It is natural to ask if this result is
the best possible. We believe that this is the case and make the following
conjecture.

Conjecture 3.7. The map J f ( R d ) -> R : K -> <g'(K) is, in general, not
Borel measurable.

Observe that the truth of Conjecture 3.7 implies the truth of Conjecture 3.6.
The (conjectured) complicated set theoretic behaviour of the centered Hausdorff
measure ^ is in sharp contrast to the simple set theoretic behaviour of the
usual Hausdorff measure: for any Polish space X and any dimension function g,
the map j f ( X ) ->R:K^ 3ίfg(K) is of Baire class 2 [MM, Theorem 2.2]. In
connection with Conjecture 3.7 we would like ask a slightly different question
regarding the "smoothness" of #'.

Question 3.8. Is the centered Hausdorff measure, Ή1 ', Borel regular, i.e.
does the centered Hausdorff measure satisfy the following condition: For each
E c Rd

y there exists a Borel set B c Rd such that E c β and <e*(E) = ^l(B).
(It is a well-known fact that the ordinary Hausdorff measure ffl1 is Borel regular,

cf. [Ma2]J
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Question 3.8 has been asked several times during the last 3 years by the author.
The question also appears in [Ed, p. 64, Question 1.8.1]. See Note Added in
Proof at the end of this paper.

(2) Theorem 3.5 shows that the multifractal Hausdorίf dimension map
restricted to the set Γ of doubling measures is of Baire class 2. It is natural to
ask if the doubling conditon can be omitted. We therefore pose the following
question.

Question 3.9. Is the map Jf(Rd) xJt(Rd) xR^R : (K,μ,q)-^dϊm*(K) of
Baire class 2?

4. Analysis of the multifractal packing measure and the multifractal

packing dimension

The purpose of this section is to prove Theorem 4.7 and Theorem 4.8
regarding the set theoretic complexity of the multifractal packing measure map

(1.2) and the multifractal packing dimension map (1.4). Recall that if x e Rd

and r > 0, then B(x, r) denotes the closed Euclidean ball with center x and
radius r, and U(x, r) denotes the open Euclidean ball with center x and radius r.

LEMMA 4.1. Let t,cεR and <5>0. Then {(K,μ,q)e Jfr(Rd)xJf(Rd)xR
> c} is open.

PROOF. Let

G = {(K,μ,q)eJίT(Rd) x Jί(Rd} x R

there exist n e N, z\ , . . . , zn e K, ε\ , . . . , εn e (0, δ)

and s\ , . . . , sn > 0 with s\ + •- + sn> c such that

(i) Bfaεi) nBfaεj) = 0 for i Φ j

(ii) μ(B(zί,8i^(2εi)
t>sί for all ί = l , . . . , / ι } .

Is is easily seen that

{(K,μ,q)Ejr(Rd) x Λ(Rd) xR\^(K) > c} = G.

The rest of the proof of Lemma 4.1 is very similar to the proof of Lemma 3.1
and is therefore omitted. Π

LEMMA 4.2. Let E^Rd, μe Jί(Rd) and qeR.

(ii) Ifq^O, then Δ«(E) = Δ«(E}.
(iii) IfQ<qandμe J^Q(Rd), then Δq

μ(E) = Aq

μ(E}.
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PROOF. See [O13, Lemma 6.5.1 and Lemma 6.5.2]. Π

LEMMA 4.3. Let K e JfT(Rd)9 μ e Jί(Rd) and qeR. If either: q<0 or:
0 < q and μ e Jt$(Rd), then

Όim<(K)= inf supzl^).
K-(Ji=lKi *
Kj compact

PROOF. Follows easily from Lemma 4.2. Π

LEMMA 4.4. Let αeR, Ketf(Rd), μeJ^(Rd) and qeR with 0>^a(K)>0
(this holds, in particular, if Όim^(K) > a). Then there exists a subset L c K

such that
(i) L is compact and non-empty.
(ii) If U c Rd is open and LΠ U / 0, then Dim*(LΠ U) > a, in par-

ticular Aq

μ(LΓ\U}>a.

PROOF. Let v be the restriction of 2P^a to K and put L = suppv. Then
clearly L c K and L is therefore compact. Since v(L) = v(Rd) = 0>*'a(K) > 0,
we deduce that L / 0. Finally, if U ^Rd is open with U Π L φ 0, then

v ( £ / ) > 0 whence &>«>a(UΓ\L) = v(UΓ\L) = v(U) > 0, which implies that
Dim^(C/ΠL) > a. (Incidentally, the set L = suppv is the largest subset L of
K satisfying (i) and (ii).) Π

LEMMA 4.5. Let ceR and let Γ be defined as in Theorem 3.5.(ii). Then

{(K,μ,q)eΓ\Όim«μ(K)>c}

= {(K,μ,q) e Γ\for all a < c there exists a subset L ̂  K such that

(i) L is compact and non-empty

(ii) if U ^Rd is open and LΠ U φ 0, then Δq

μ(Lΐ\Ό) > a}.

PROOF, "c" Follows from the previous lemma.

"^" Let (K,μ,q) e Γ and assume that if a < c, then there exists a non-
empty subset L c K such that L is compact and Aq(LΓ(U) > a for all open
subsets U ^Rd with LΓΊ U / 0. We must now prove that Dirn^) > c.
Assume, in order to reach a contradiction, that Dim^(A^) < c. Now pick a
such that Όim^(K) < a < c. Since a < c, there exists a non-empty subset L ^ K
such that L is compact and Aq

μ(LΓ\ U) > a for all open subsets U ^ R^ with
LΓ\ U φ 0. Also, since Ό\mq

μ(K) < a, Lemma 4.3 shows that there exist com-
pact sets K\,K2,... such that K c (JnKn and

^ for all n. (4.1)
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The equation L= (Jn(LΓ\Kn) and Baire's Category Theorem now imply that
there is an open set U and an integer m with 0 Φ LΓiU c LΠ Km. We may

clearly choose an open set V such that L Π V φ 0 and V ^ U. It now follows
from (4.1) that a < Δq

μ(LΪ\ V) < Aq

μ(LΓ\ U) < Aq

μ(L^Km) < Aq

μ(Km] < a, which
yields the desired contradiction. Π

PROPOSITION 4.6. Let CeJf(R^). The map

Jf(R') Λ JΓ(RJ) U {0} : Jf -> A: Π C

is Borel measurable.

PROOF. For each positive integer k let Rd = B(Q,k] and define the map 4

by Jf(B^) ̂  JT(B^) U {0} : K -» JTΓI C. It follows from [En, 3.12.28] that Ik

is upper semi-continuous (see [Ku, §43, I] for the definition of an upper semi-
continuous set valued map), and since Rd is compact, we now deduce from
[Ku, §43, VII, Theorem 1] that Ik is Borel measurable (in fact, of Baire

class 1). Hence, if * is an open subset of JίT(Rd)\J{0}, then Γl(<%) =

U*Lι rkl (* n (•*"(**) u {0})) is a Borel subset of #(*). This shows that /
is Borel measurable. Π

We are now ready to state and prove the main results in this section.

THEOREM 4.7. Let t e R and δ > 0.
(i) The map

is lower semi-continuous; in particular of Baire class 1.
(ii) The map

JΓ(R^) x Jί(Rd) x R -* R : (K,μ,q) -> 9

is of Baire class 2 and, in general, not of Baire class 1.

PROOF, (i) This follows immediately from Lemma 4.1.

(ii) Since ^ί(ΛΓ)=limII^'(

ί

1/ll)(A:) for all (K,μ,q)εJf(Rd)xJΐ(Rd)xR,

part (i) shows that the map JΓ(R^) x J f ( R d ) x R -> R : (K,μ,q) -> ^^(AΓ) is
of Baire class 2.

We will now prove that the map jf(Rd) x Λf(Rd) x R -> R : (K,μ,q) ->

^(K) is not of Baire class 1. Since ^o, 1/2 = ^1/2 (cf (2.1.1)), it suffices to

show that ^/2 : Jf (Rrf) -> R is not of Baire class 1. Let X and Y be as in the

proof of Theorem 3.5.(ii). Since ^(M) = 0 for M ε X and ^/2(M) = oo
for Me Γ, ^1//2 is everywhere discontinuous and hence not of Baire class 1 by
[Ke, Theorem 24.15]. Π
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THEOREM 4.8. (i) The map

tf(Rd] x Jί(Rd] xR-^R:(K,μ,q)^ Aq

μ(K]

is of Baire class 2 and not of Baire class 1.

(ii) Write Γ = (JίT(Rd) x Jt(Rd) x (-00, 0]) U (tf(Rd) x Jtv(Rd] x R).
The map

is σ(stf(Γ})-measurable where σ(stf(Γ}) denotes the σ-algebra generated
by the family &4(Γ) of analytic subsets of Γ.

PROOF, (i) It follows from Theorem 4.7.(ii) that if s, t e R, then

{(K,μ,q)eJT(Rd) x Jί(Rd) xR\s<4*(K) < t}

= \Jn{(K,μ,q) 6 jT(Rd) x Jί(Rd] x R 1 < 0>q^l'n\K}}

Π (Jn{(K,μ,q)etf(Rd)xJί(Rd)xR\^t-Wn\K} < 1}

6 9*, (4.2)

It follows from (4.2) that the map Jf(Rd) x Jΐ(Rd] x R -> R : (K,μ,q) ->
Aq

μ(K] is of Baire class 2.
The proof of the fact that the map tf(Rd) x Jt(Rd] x R -* R : (K,μ, q) -+

Aq

μ(K] is not of Baire class 1 is similar to the proof of Theorem 3.5.(ii) and
Theorem 4.7. (ii) and is therefore omitted.

(ii) Fix c e R . Let (*,•),. be a countable dense subset of R^ and let
(ri)i be an enumeration of the positive rationals. For positive integers ij,m

write

F = {(K,μ,q,L) e J f ( R d ) x Jί(Rd) x R x jT(Rd) \L^K},

By - {(K,μ,q,L) e JΓ(R^) x Jf(Rd) x R x JΓ(R^) | t/(jc/,ry) ΠL = 0},

Cmij - ίK,μ,q,Letf(Rd)x Jt(Rd] x R x

and define the projection π : jT(Rrf) x^(R^) xRx Jf(Rd)^ Jf(Rd)xJΐ(Rd) x

R by

It now follows from Lemma 4.5 that
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(K, μ, q) E Γ I there exists a subset L c K such that

(i) L is compact and non-empty

(ii) if U ^Rd is open and L Π U φ 0,

then Δ « ( L Γ ( U ) >c--\μ m J

ML) 6 Γ x jf(R') I L c= *}

Π<(K,μ,q,L)eΓχj(r(Rd)\ti / , y ' e N with U(xhrj)Γ\L ϊ 0,

then

where

^ n Π, ,y (By U Cmί,) S JΓ(Rd) x Jt(Rd) x R.

The sets F and #// are clearly closed, and it follows from Proposition 4.6 and
part (i) of the theorem that the set Cmy is Borel. Hence, A is an analytic
subset of J f ( R d ) x Jΐ(Rd) x R, and we therefore deduce that {(K,μ,q) eΓ\

> c} = ΓΓ\A is an analytic subset of Γ. Π

REMARKS. (1) We have not been able to determine the complexity of the

multifractal packing measure map

jr(Rrf) x Jf(Rd) x R -> R : (K,μ,q) -+ »^(K\ (4.3)

Mattila & Mauldin [MM] have recently shown that if X is a Polish space and g
is a dimension function satisfying the doubling condition (i.e. there exists c > 0

such that g(2t) < cg(t) for all t > 0), then the map

tf(X}->R:K-*0>g(K} (4.4)

is σ(j/(jΓ(Ar)))-measurable where σ(jtf(tf(X))) denotes the σ-algebra generated
by the family ^(JίT(X)) of analytic subsets of j f ( X ) . Moreover, Mattila &



Measurability of multifractal measure functions and multifractal dimension functions 455

Mauldin also provide an example showing that the map in (4.4) is not neces-
sarily Borel measurable. However, the ideas in [MM] do not apply to the
multifractal case. In order to prove that the map in (4.4) is σ(<stf(jf(X)))-
measurable, Mattila & Mauldin use the fact that if g satisfies the doubling
condition then 0*g has "the subset of finite measure" property, i.e. if A is an
analytic subset of X with @*9(A) = oo, then there exists a compact subset C of
A with 0 < &9(C) < oo. It is not difficult to see that the multifractal packing
measure &fil does not in general have "the subset of finite measure" property,
and the method used in [MM] does therefore not work in the multifractal case.
However, we do believe that the multifractal packing measure map in (4.3) is
analytically measurable, and we therefore make the following conjecture.

Conjecture 4.10. The map JT(R^) x Jί(Rd) xR-+R:(K, μ, q) -> 0>* *(K)
is measurable with respect to the σ-algebra generated by the analytic subsets of

x R.

(2) Theorem 4.9 shows that the multifractal packing dimension map
restricted to the set Γ of doubling measures is measurable with respect to the
σ-algebra generated by the analytic subsets of Γ. It is natural to ask if the
doubling conditon can be omitted. We therefore pose the following question.

Question 4.11. Is the map Jf(Rd) x Jί(Rd) x R^>R:(K,μ,q)-*Όim«(K)
measurable with respect to the σ-algebra generated by the analytic subsets of
Jί(Rd) x Jί(Rd] x R?

5. An example: Measurability of multifractal slices

We will now apply the results in § 3 to study the measurability of multi-
fractal slices. The results in this section play an important part in the study of
multifractal slices and negative dimensions in [O15].

Fix positive integers n and m with m<n. Let G(n,m) denote the
Grassmannian manifold of ra-dimensional linear subspaces of R". For 77 e
G(n,m), let ΠL denote the orthogonal complement of 77, and let ππ denote the
orthogonal projection onto 77. Furthermore, for 77 e G(w,m), x e Rn and δ >
0 write B(Π+x,δ) = {zeRn \ dist(z, 77+ *)<<$}. For a measure space (X,δ,μ)
and E e δ, let μ\-E denote the restriction of μ to E, i.e. (μ\_E)(F) = μ(EΓ\F)
for all F e $ . Now we define the slices of a Radon measure μ in R" by
m-dimensional planes. Fix μeJf(Rn) and 77 e G(n,m). For Jjfn~m almost
all x E 77^ the following limit Radon measure exists

n~m μL. B(Π + jc,J),

where weak-lim denotes limit with respect to the weak topology, cf. [Ma2,
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Chapter 10]. If Π e G(n,m) and xeRn are such that μΠy exists for y =
πΠJi(x), then we write μπ x = μπ^r The measure μπ x is the slice of μ by the
plane 77 + x. We are now ready to state and prove the main result in this
section. Recall that J^(R") denotes the family of closed subsets of Rn.

THEOREM 5.1. Let ίeR, μeJΐ(Rn) and F E 3?(Rn). The maps

G(n,m) xR" x R ^ R : (Π,x,q)

( tf^(F Π (77 + x)} if μπ^x exists
^ I ' \ /

[ 0 if μπ x does not exist

G(n,m) x R " x R-^ R : (Π,x,q)

^ ( dim«Πtχ(F Π (77 + x)) if μΠιX exists

1^0 if μπ x does not exist'

are σ(stf)-measurable where σ(s#} denotes the σ-algebra generated by the family
s/ of analytic subsets of G(«, m) x R" x R.

PROOF. If X is a Polish space, we write jtf(X) for the family of analytic
subsets of X. Let h denote the map in (5.1) and let d denote the map in (5.2).
Write Σ = {(Π,x) e G(n,m) x Rn \μπ^x exists} and observe that it follows from
[Mai] that Σ is Borel. Fix k e N and δ > 0 and define maps by

G(n, m) x R" JΓ(R") : (77, x) -> F Π (77 + x) Π 5(0, fc),

G(n,m) x R" -̂  Jί(Rn) : (Π,x) -* (2δΓ("~m}μL.B(Π + x,δ),

) if (77,x)eΓ

.f (Π^φΣ*

The map L^ is clearly Borel, and since Ss is Borel, S is Borel. It therefore
follows from [Ke, 37.3] that the map

G(n,m) x R" x R % JΓ(R") x Jt(R") x R : (Π,x,q) -> (Lk(Π,x),S(Π,x),q)

is σ(j*(G(n,m) x R" x R))-σ(j/(jT(RAZ) x ^(Rw) x R)) -measurable, and The-
orem 3.4 and Theorem 3.5 therefore show that the maps h = IΣXR sup^ 77 o Tk

and d = l^xRSup^o Tk are σ(s/(G(n,m) x Rn x R)) -measurable. Π
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REMARK. For r>0, Jί^0'ί = <Sf / where <β* denotes the ί-dimensional centered
Hausdorff measure (cf. (2.1.1)). Hence, for t > 0, Theorem 5.1 shows that
if Fe^(R"), then the map G(n,m) x R" -> R : (77,*) -> «"(FΠ (77 + x)) is
measurable with respect to the σ-algebra generated by the family of analytic
subsets of G(n,m) x Rn. It is natural to ask if this result is the best possible.
We believe that this is the case and make the following conjecture.

Conjecture 5.2. Let F E ̂ (Rn). The map G(n,m) x R" -> R : (77,x) ->
'βl(Fΐ\ (77+ x)) is, in general, not Borel measurable.

Dellacherie [De] proved that if T and X are compact metric spaces, B is an
malytic subset of T x X and s > 0, then the map T —> R : t —> Jίfs(Bt), where
Bt = {x E X I ( t , x ) e B}, is measurable with respect to the σ-algebra generated
3y the family of analytic subsets T. Theorem 5.1 can thus be viewed as a
latural multifractal extension of classical measurability results for sections of sets.

Vote Added in Proof. Question 3.8 has recently been answered affirmatively
:>y A. Schechter [On the centred Hausdorff measure, Bull, of the Lond. Math.
Soc., to appear]. In fact, A. Schechter proved that if μ is a Radon measure on
&d satisfying the doubling condition, then the multifractal Hausdorίf measure
W^1 is Borel regular for all q, t e R. Moreover, he also constructed a Radon
neasure v in the plane not satisfying the doubling condition for which J ̂ 1/2'0 is
lot Borel regular.
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