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Asstract. The double layer potentials for a bounded domain with fractal boundary
depends on an extension operator on a space of functions on the boundary. We give a
sufficient condition to define them uniquely and apply it to prove the injectivity of an
operator with respect to the Dirichlet problem.

1. Introduction

Let D be a bounded smooth domain in R? (d >3). The double layer
potential @g of g e LP(0D) is defined by

(L1) () = —LD VN (x - y),n,59(»)do(y),

where N(x — y) is the Newton kernel, n, is the unit outer normal to 6D and o
is the surface measure on dD. The function ®g is harmonic in RY\dD and has
a nontangential limit at g-almost every boundary point.

If D is a domain with fractal boundary, then n, and ¢ can not be
considered and hence (1.1) is not defined. But we introduced double layer
potentials in [W1] and [W3], in case d >2 and 0D is a f-set for § satisfying
d—1<pf<d. According to A. Jonsson and H. Wallin we say that a closed
set F is a S-set if there exist a positive Radon measure u on F and positive real
numbers by, b, such that

(1.2) bir? < u(B(z,r) N F) < byrP

for all ze F and all r < ry, where B(z,r) stands for the open ball with center z
and radius r in R?. Such a measure y is called a f-measure.
We shall give some examples.
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1. If D is a bounded Lipschitz domain in RY, then oD is a (d — 1)-set and
the surface measure is a (d — 1)-measure.

2. If D consists of a finite number of self-similar sets, which satisfies the
open set condition, and whose similarity dimensions are f, then dD is a f-set
and the f-dimensional Hausdorff measure restricted to 0D is a f-measure (cf.
[H)). A typical example is the Von Koch snowflake in RZ.

Let us fix a positive real number R such that D = B(0,R/2) and R > 1,
and a f-measure u on 0D.

Since every function f € L?(u) has an extension &(f) such that &(f) is a
C*-function in RY\0D, we define, for f € A?(dD), the double layer potential
by

(13) o0 = [, FENOLTNG 9y
for xe D and
(1.4) of (x) = —jD V,8(1)(9), VN (x — y)>dy

for x e R\D, where

a 2)1| 2 ifd=3
wy(d —2)|x —
Ner=y) =00 1 y,
x—y —
—Elog SR ifd=2

and wy stands for the surface area of the unit ball in R?. Here A?(F) for a
closed subset F of R? is a Banach space defined by

AL(F) = {f e || Ml(;)_—_ylf,;i—iyfdﬂ(ﬂdu(y) < oo}

with norm
11, = ( [1174 )W [T gy 0 "
o= O MENTIT ux)du(y) | -

We saw in [W3] that &f is harmonic in RY\dD and has a similar boundary
behavior to that for an usual double layer potential.

Our definition of the double layer potentials depends on the choice of
an extension operator. Under what conditions is the definition independent of
an extension operator? In this paper we will give an answer to this problem.
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Moreover we apply it to prove that an operator on the conjugate of A2(0D) is
injective. The operator plays an important role to solve the Dirichlet problem
with boundary data in AZ(0D) by the layer potential method.

More precisely, denote by #°(G) the Whitney decomposition of an open
set G and by Vi(G) the union of k-cubes in ¥'(G). We shall mention the
Whitney decomposition in §2. Pick an integer ng satisfying 2~ > 100Rvd
and denote by Q(ng) the open cube with center 0 and common side-length 277,
Further put

(1.5) An:= Ui, Ve(D)  and = Uy <, Vi(Q(n0)\D)

for each natural number n.
Lett>f—(d—1)>0and p>1. We denote by %?(D) the family of all
Borel measurable functions f defined on D having the following properties:
(i) fis of C'-class in D,
(i) There exists n; € N such that

(16) J dUn(J/)J |f()’) - f(w)|]’d'u(w) < Cf(2_n)d_l+1"
04n {ly-w| <b2-"} N 3D

for every n > ny, where b = 6d, ¢r is a constant independent of n, and o,
stands for the surface measure on 0A4,,

(iii)
(1.7) j W/ (3)ldy < co.
D

We also denote by %7 (R?\D) the family of all measurable functions f on
R?\D such that f has the properties (i)—(iii) (04, and D are replaced with 0B, N
B(0,2R) and R?\D, respectively) and

(iv) f(x) tends to 0 as |x| — oo.

Further we denote by #”(R?) the family of all functions f defined on R?
such that f|D e #*(D) and f|(Rd\D) e w”(RY\D).

In §3 we will prove the following therem.

THEOREM 1. Assume that D is a bounded domain in R® (d = 2) such that
0D is a f-set. Further let 1| >t >f—(d—1)>0and p>1. We then have,
for fi, f, € U (D) such that f, = f, p-a.e. on 0D,

(1.8) jD VF(3),VN(x — y)>dy = jD V), VN(x = p)dy

for each x e RY\D.

We now denote by A2(0D)’ the space of all bounded linear functionals on
AE(0D) and write
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<fy» :=y(f) for feA?(0D) and e A2(3D)".

By the Hahn-Banach extension theorem, there exist, for each y e AZ(dD)’,
g1 € L9(u) and g, € L9(u x u) such that

f(x) = f(2)

</ = [ fondu [[ 72 i 0205 D)

for every f € AL(0D), where ¢ = p/(p —1). We write ¢ = (g1, 92).
We then define an operator K on AZ(0D) by

(19 KFE) =53] TN )y

1

-5| @ENLLYNG -
D

if it is well-defined and K f(z) = 0 otherwise.
We saw in [W3] that

o) kf@+L2= um [ @EO0TNG =)
R\D

x—z,x€I(z)

= |, @ENO)TNG -
R\D

for u-a.e. ze dD and

@) k@) -2 gim L VES) (). V,N(x — y)>dy

2 x—z,xel{(z)

= | WEN)TN = )>dy
for p-a.e. z € 0D, where

I':(z) ={yeD;|y—z|<(1+7)d(y)}
and
ré(z) = {y e R\D)NB(O,R); |y — z| < (1+7)3(»)}.

Here d(y) stands for the distance of y from dD.
We also saw in [W2] that, if fis a Lipschitz function on 0D, so is Kf.
Using Theorem 1, we will prove the following theorem in §5.

THEOREM 3. Assume that D is a bounded domain in R® (d > 3) such that
R\D is connected and 0D is a f-set. Further assume that B(z,r) N T'.(z) # &
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and B(z,r)NI¢(z)# & for all zedD and 0<r<ry. If 1<p<2 1-
d-B)/p>a>B—(d—-1)=0, yeAL(D) and <Kf+ f/2,y» =0 for
every Lipschitz function f on 0D, then = 0.

2. Construction of an extension operator

Hereafter we assume that D is a bounded domain in R? such that the
boundary is a f-set satisfying d —1 < < d and D = B(0,R/2) (R>1). Fix
a positive Radon measure u on 0D satisfying (1.2) for F =0D. We may
assume that ry > 3R.

To extend f e LP(u), we use a Whitney decomposition.

More precisely, let G be an open set in R?. A cube Q is called a k-cube if
it is of the form

[H27%, (I 4 1)27%] x - x (127, (I + 1)274],

where k, Ij,...,I; are integers. We denote by #%(G) the family of all k-
cubes in G and set #'(G) = Ufz_wM(G). It is well-known that a Whitney
decomposition of G can be chosen as follows (cf. [HN, p. 572)).

THEOREM A. Let G be a nonempty bounded open set in R%. Then there
exists a family ¥ (G) = {Q;} of cubes in W (G) having the following properties:

() UQ=6

(i) intQNintQ = @ (j # k),

(iii) diam Q; < dist(Q;,RY\G) < 4diam Q,,

(iv) If k=1 and Qe v (G)NHi(G), then each k-cube touching Q is
contained in G.
Here int A, diam A and dist(A4, B) stand for the interior of A, the diameter of A
and the distance between A and B, respectively.

Let A4,, B, be the sets defined by (1.5). We see by Theorem A that the
boundaries of 4, and B, consist of some surfaces of n-cubes in D and Q(ng)\D,
respectively.

Fix a positive real number # satisfying # < 1/4 and choose a C®-function
¢ on R? such that

(2.1) ¢=1o0n Qy, suppgc(1+n)Qy, 0<¢<I,

where Qy is the closed cube of unit length centered at the origin and (1 +#)Qp
stands for the set {(1+#)x:xe Qo}.
Let {Q;} be the family

{0;0e ¥ (D)U¥ (Q(no)\D), Q is a k-cube for k satisfying 2% < 4R}.
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Further let ¢\), ; be the center of Q; and the common length of its
sides, respectively. For each j pick a point al) € 8D satisfying dist(dD, Q;) =
dist(a"), Q;) and fix it. Set

x—qV¥ — g/
t(X)=Z¢< ljj) and ¢j*(x)=W’

Let p>1 and feL?(u). We define

1 x
&o(f)(x) = ;m (JB(M%) f(Z)d/‘(Z)> ¢; (x)

if x e B(0,3R)\dD and &y(f)(x) = f(x) if xe dD. Noting that x € B(0,3R)
is contained in some k-cube satisfying 2% < 4R, &y(f) is a C®-function in
B(0,3R)\0D. Choose a C*-function ¢, satisfying

¢y =1 on B(0,R), supp ¢, < B(0,2R), 0<¢,<1
and define
éo(f)(x) — { g()(f)(x)gso(x) if xe B(O: 3R)
otherwise.

Then &(f) is a C®-function in RY\dD and supp &(f) < B(0,2R).

Though the definition of &(f) is slightly different from that in [W3], they
coincide eventually since &o(f) defined above takes the same values in B(0,2R)
as that in [W3].

We gave the following estimate for [V&(f)| of f € A2(0D) in [W3, Lemma
2.2].

LemMa B. Let 1 >a>0, p>1, 0<r<3R, AcR and feA2(0D). If
(a—D)p+d—B+pi>0, then

J VES)(D)Fo(y)Pdy < cl| |2 roNerd=heet,
a(y)<r

To prove the above lemma, we need the following fundamental estimate
for a bounded domain whose boundary is a f-set (cf. [W1, Lemma 2.3]).

LemMa C. Let A, k be a real number. If d—f> 1 and d—A+k >0,
then

J O(») My — 2|*dy < crtHHk
B(z,r)

for every ze 0D and 0 <r < 3R.
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We shall often use the following lemma, which easily follows from the
definition of a f-set and the fact that for ¢ > 0 the function r — r¢log(r/5R) is
bounded on (0,3R].

LeMMA D. Let 0 <r<3R,keR? and z € dD.
(i) If k+p >0, then

J Ix — z|*du(x) < P,
B(z,r)NéD

(i) If k+p <0, then

J |x — z|¥du(x) < crPtk.
aD\B(z,)

(i) Ife>0 and k+p—e>0, then

0< —J Ix —z|¥ log I—x——_—z—ld/,t(x) < crfrhe,
B(z,r)NoD 5R

Here ¢ is a constant independent of r, z.

3. Uniqueness of double layer potentials

Using the extension operator & in §2, we defined double layer potentials
by (1.3) and (1.4). Similary we can define them by another extension operator
having adequate properties. Under what conditions are double layer potentials
uniquely defined independent of extension operators? In this section we will
give an answer to this problem.

We begin with the following lemma.

LemMaA 3.1. Let k be a natural number and 0 < r < 2R. Suppose zy is a
boundary point of D. Then the number m of k-cubes included in B(zy,r) is at
most c2%FrP, where c is a constant independent of k and r.

PrROOF. We may assume 27 <r and set /=27% Let {Qj};cr be a
family of k-cubes included in B(zg,r). Then there exist points zj,...,z, € 0D
such that (J,_, Qi ;'=1B(zj,bl) and

(Uie; @) NB(z;,bl) # & (j=1,2,...,n),

where b = 6v/d. Using Vitali’s covering lemma, we choose a subfamily {B},
of {B(zj,bl)} such that

Uie] Qi< Utn;x 5B, and BNB; = (t+#s),
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where 5B, stands for the ball having the same center as B, but whose diameter
is five times as large. Considering the d-dimensional Lebesgue measure of

these sets and noting that 0D is a f-set, we obtain
1 = Ui @1 = U, 5B < en'b)? < ex(e)* (U, B)

< e2(b1) P u(B(z0, 13Vdr)) < 3147
This leads to the conclusion.
COROLLARY 3.1. Let neN. Then
0(04,) < c(27)4 1P,
where ¢ is a constant independent of n.

Proor. Note that 04, consists of some surfaces of n-cubes in D.
3.1 yields

0(04,) < c(27M) 12,

LemMma 3.2. Let 0<k < p, zoe€0D and neN. Then

(3.1) j 1y — 20| Kdon(y) < c(27)*1.
0A,
and
(3.2) 0< —J 1y — zo| % log 2= 45 () < (27418,
o 3R

Lemma

O

Here c is a constant independent of zo and n. We have the same estimates as

(3.1) and (3.2) for the surface integral over 0B, N B(0,2R).
ProoF. Set, for each integer /,
E; ={yeddy|y—z| ™ >2'}.
Then |y —zo| < 27/ for ye E;. Put r; =27k, We note that

I
—k
Iy_zol S 221+1(XB(20,r1)(y) _XB(Z(),I‘IH)(y))
1=l

< Z 21+1 XB Zo r, ( ) + 210XB(zg,r,0)(y)

< 2 Z 2 XB(zo,n)(y)
I=ly
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where
ry-1>27" = r, riy, = R > rpp41.

Using Lemma 3.1, we have

(3.3) LA 1y — 20l don()

11 Il
< ey 22" (2 < (27N 20K
1=l I=ly
Since 1—B/k <0, 372, 20-F/W < 00, So we see that (3.1) holds.
To prove (3.2), choose ¢>0 satisfying k+¢< . Noting that the

function y — |y — zo|° log ILS—RLO' is negative and bounded on B(0,2R), we get

o -z ks
| -zt 2dn ) e | ly- 2 da),
24, 5R 24,
which and (3.1) give (3.2). Similarly we can also obtain the same estimates for
the integral over dB,N B(0,2R). O

LEmMMA 33. Letl>7t>f—(d—1)>0and p> 1. Suppose fis a Borel
measurable function on D and of C'-class in D. If

(3.4) LA f1Pdoy < ¢ (27m)d 1P+

_for a constant c; independent of n and

jD Vf (3)ldy < oo,
then

J VF(»),VN(x—y)>dy =0  for each x e R‘\D.
D

ProoF. LetxeRY\D. From the Green formula and Lemma 3.1 we deduce

|, wroont-y >dy|

=U f(y><VN<x—y),ny>dan(y)| < o)™ 1/0)Ndon(y)

0A, 0A4p
1/p
Sczfs(x)l_d(LA |f<y>|"dan(y>) (2mp-rd-v)Va

< 035(x) 1—d(2—n)f+d—l—ﬁ’

where ¢ = p/(p—1). Since t+d—1—f >0, we have the conclusion. []
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ProorF of THEOREM 1. Let yedd, and set f = f; — f,. Noting that
f(w) =0 u-ae. on 8D and B(y,b2~") N D contains B(a,v/d2™") N oD for some
aedD, we get

2

D <a@™)™® () = £;(w)|du(w)

a JB(y,bZ"')ﬂaD

1/p
< ey i (LWWD 50) - f}(W)I”d#(W)) ,
whence, together with (1.6),
J,, rOIPda(s) s ey,
This shows (3.4). It is easy to see that f satisfies other assumptions of Lemma
3.3. Therefore Lemma 3.3 leads to the conclusion. O

Similarly we have

THEOREM 2. Assume that D, p and t satisfy the same assumptions as in
Theorem 1 and let f;, f, e #*(R\D). If f, = f, p-ae on 0D, then

|, @AROLYNG =ty = [ WADLING = )y
R/\D RAD

for each x e D.

4. Examples of functions in %7 (RY)

In this section we consider some examples of functions in %?(RY).
The following two lemmas are well-known or proved by elementary
calculations.

LemmA E. Let x,y,z€ B(0,2R), x# y, z# y and 0<e<1. Then
IN(x = y) = N(z— )|
<cx—z|*(Jx = Y "°N(x = y) +|z = yI°N(z - »))
and
V,N(x = 3) =VyN(z = p)| < clx —z*(|x = y|"™ 4 [z =y 777

Here c is a constant independent of x, y,z.
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Lemma F. Let x;, y,€B(0,2R), x; # y, (j,k=1,2) and 0<¢ <1
(j=1,2). Then

22
EZ( I)Hk N(x; = »i)

j=1 k=1

2 2
< e = x| |y = »ol? ZZ ;= ¥l TN (G = ),

Jj=1 k=1

where ¢ is a constant independent of xj, y.

LemMma 4.1. Let p>1, 1>2a>pf—(d—1)=0 and f e AL(0D). Then
8(f) e wL(RY).

Proor. We first show that &(f) satisfies (1.6). To do so, let Q be a n-
cube with QNdAd, # &. Further let ye QNo4, and wedD such that
|y —w| <b27". Suppose QNQ; # J, where O is the cube with the same
center as Q; and with the common side-length l( +27). Let z e B(aY), nl)).
Then

lz—w| < |y —z|+ |y —w]| <20Vd27".
Noting that &(f) = &o(f) on D and &y(1) =1 on D, we get

Xo (»)
N —fw)<a ; L(am,nlj)

_ » 1/p
o ([0 4)

|z

1/ (2) = f(W)ldu(z)

Lemma 3.1 yields

j dan(y j 18()(3) — £ (w)Pdu(w)
20N a4, {ly—w|<b2-"} N 2D

< c3(2—n)atp+d—1J lf( ) (w)lp

d J du(z),
{lap—w|<b’2-"} N 3D |z — l’””‘" @

where ag is a boundary point corresponding to Q in §2 and &’ is a constant
independent of n. We saw in [W3, Lemma 2.1] that each z € dD is contained
in at most N numbers of the family {B(a?,b'l;) N 0D}, corresponding to the n-
cubes Q; € ¥ (D), where N is a natural number independent of n. Using this,
we get
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J dcrn(y)J 1€(f)(¥) = f(w)[Pdu(w)
34, {ly-w| <b2-"} N 8D

<@ 1P

This shows that &(f) satisfies (1.6) for 7 = a.

Similarly we also obtain the estimate (1.6) in which 04, is replaced with
B, N B(0,2R).

We next see that (1.7) holds for &£(f). Noting that 1 —a— (d —f)/p <
(d—p)/q, we choose 1>0 satisfying 1—a—(d—f8)/p<i<(d-Pp)/q.
Since (x —1)p+d—f+Ap>0 and ig <d — f, Lemmas B, C imply

[, e
RY\OD

1/p 1/q
< <J \ve(f )(y)l"é(y)l”dy> (J 5(y)‘“dy> < oo,
B(0,2R)\D B(0,2R)\6D

which gives (1.7) for &(f) and 7=o. Therefore we see that &(f)e
UP(RY). O

Let ¢> 1, g1 € L9u) and g, € L9(u x ). We define, for y e R,

—|N(x - x)du(x if it is well-defined
&m00={ | ¥x = o aut)
0 otherwise

and

N(x—y)—N(z—y) s
- —ga(x, z)du(x)dp(z) if it is well-defined
S»92(y) = ” lx—zl(ﬂ/")+

0 otherwise,

where p=¢q/(q—1) and 1 >a>f—-(d—1) = 0.

LeMMA 42. Let 1<p<2 qg=p/(p-1) and 1 —(d-p)/p>a>p—.
(d—1)>0. Then, for gieL(u), goeLi(uxp), Sigi, SagreULRY)N
IR if d >3 and Si1g1, Sagr € U(D)NUI(D) if d =2.

Proor. We will prove only that Syg, € ¢(R?) in the case d > 3, which
means S»g; € %f(Rd) for p<q. Let yedd,, wedD and |y —w| < b27".
Further let ¢ be a sufficiently small positive number. With the aid of Lemma
F we write
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[S292(y) — S2g2(w)|

N ~ N(x -
JJ | Z]— |(x (xjx |B/)p+a (xj W))l |g2(x1,x2)|du(x1)dﬂ(xz)
1 — A2

<cily - wl““m 5P lgy (1, x2)|
2

x 3 (g = P 4 g — W) dp(n ) dp(xa)
j=1

2

= i +1p).

J=1

Then, by Lemma D,

1/p

In <aly- w|“(” 1 = 2 ]y — )’|_ﬂ+epdﬂ(xl)dﬂ(xz)>
2—d-2 l/q

x (“ 19201, 2) Ty — {94 Hﬁ/p-ze)dﬂ(xl)dﬂ(xz))

l/q
< caly = wi*( [l = 517022 o))
The assumptions 1 — (d —f)/p>a and p<2 imply 1—(d—f)/2>a and

hence q(2 —d — 20+ f/p) > —f. So we can pick & > 0 satisfying g(2 —d —
200+ f/p — 2¢) > —B. Then, together with Lemma 3.2 and Lemma D,

Jd,u(w)J Ifidon(y)
{ly—z|<b2-"} N oA,
<a2™™ ” lg2(x1, %2)| *dp(x1)du(x2)

x j I — yiq”—d'z“ﬂ/"—”)don(y)j du(w)
0Ay, {ly-w|<b2-"}NoD

<es(2M g,
where

lg2ll, = (” lgz(xl,x2)|qdﬂ(x1)dﬂ(x2)>1/q.

Similarly we can estimate ;.
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We next estimate [j,. Since

1/q
Iy < cely - wl? (Jj 192031, %2)] |1 — w|"<2‘d‘2“+’*/"—2”du<x1)du(xz)) ,

we get, by Lemma 3.1 and Lemma D,

jdu(w)j ISdon(y)
{ly-w|<b2-"} N34,
< (27 m)® ” 921, x2)| W (1))
x JIM — =2 81p=20 g j dow(y)
{ly-w|<b2-"}N 04,

- d—1
<@ gally-

Similarly we obtain the same estimate for ;.
Therefore we have

[ dutn | 1$20200) ~ S2020)| o)
{|y—w|<b2-"} N A4,
< co(27") " ol .
Similarly we can also get
[ autoe) | 1S262() — S22(w)|“don(y)
{|y-w|<b2-"} N B, N B(0,2R)

< 1027 gal 4.

We next estimate the volume integral of the gradient of S»g>. Let ye
B(0,2R)\0D. We write, for a sufficiently small ¢ > 0,

08292
0y;

(y)~

= ” e — 2] PP (x =y |z — ) g (x, 2) ()
=L+ 1.

Then, by Lemma D,



Double layer potentials 69
1/p
< en | 1x 2 P dx)a() )
g (1-d—2-26+5/p)g Va
X “Igz(x, z)|7)x — y| d,u(x)du(z))

1/q
<en (“ 192(6,2)] 9} — yl“_"_“_Z“ﬂ/”)"du(x)dﬂ(Z)) .

Noting that (1 —d —a+ f8/p)q > —d, we choose ¢ > 0 satisfying (1 —d — a—
2¢+pB/p)q > —d. Then

J Ildy
B(0,2R)\0D

<cu j j g2, Z)lqd#(x)dﬂ(Z)J Ix = y|(A-d-e-24blola gy
B(0,2R)

< aisllgallg-

Since the same estimate for I is obtained, we have

(4.1) IVS292(y)|%dy < o0

J B(0,2R)\6D

and hence

|VS2g2(y)|dy < c0.
JB(0,2R)\oD

Further it is easy to see that

R 5020 [VS292(y)|dy < 0.

Since S»g> is a C'-function in Rd\aD, we conclude that S>g, € %] (Rd). O

5. Proof of Theorem 3

In this section we give the proof of Theorem 3. We prepare the following
lemma.

LEMMA 5.1. Let g>1, 0<a<1 and gy € LY(u), g€ LY(u x ). Then
(5.1) im  Sjg;(x) = Sjg;(z) (j=1,2)

x—z,x€l(2)
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and

(5:2) lim S8g,(x) = Sg;(z) (j=1,2)

x—z,xeT(2)
for p-a.e. zedD.
Proor. Let zedD and xe I, (z)UTI¢(z). Put
A={yedD;|y—z| <2/x—z[}

and

B={yedD;|y—z|>2|x—z|}.

If ye A, then
x—2z _ [y—1|
— > .
=200 2 T = 5075

If y e B, then
—Z
b=y zly el - x> 22

From these we get
(53) |x=y|=aly-1| for all xe I';(z)UI{(z) and for all y e dD.
So

Sin(] < 2 [ Nz = 3)lon()ldut).
With the aid of Lemma E we also get

1S292(x)]

2
< cx [l = nl PP Sl = NG = laa(n N1
=1

for a sufficiently small ¢ > 0 satisfying 2 —d — o — 2¢ > —f. Therefore, by
Lemma D, we get

(5.4) j sup  1101(3))du(z) < callga|g
xel(z)UT¢(2)

and

(5.5) j sup  [S202(0))%du(z) < csllgall?.
xel(z)UT¢(z)
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Especially if g; and g, are bounded on 0D and 0D x 0D, respectively, we
get

(56) pldim L Se0=59() (=12

for every ze dD. From (5.4), (5.5) and (5.2) we deduce (5.1) by the usual
method. U

LEMMA 5.2. Let gy € L9(u) and g, € L9(u x pr). Under the same con-
ditions as in Lemma 4.2

(5.7)  lim JD V(8;9/)(»),VyN(x — y))dy = JD <V(3jgj)(y), VyN(z - y)>dy

x—z,xel{(z)

and

im | @SN = || T (S0)0)BNE- )
RI\D R\D

x—z,xeI:(z)
for u-a.e. ze dD and for j=1,2.

Proor. We will show (5.7) only for S»g>. Let zedD, xeI'!(z) and
ye D. Writing, for a sufficiently small & > 0,

2
IVS292(»)| < e “ 1 — x| PP (Z |x; — J’|1_d_H> |g2(x1, X2)|dp(x1)dp(x2)
=1

EI] +125

we have, by Lemma D,

—B+ep —p+ep /e
L <er{ || 1x1 = x| " Plxg =y du(xn)dpu(xa)

1/q
X ( g2 (1, x2)||x; — y|(1_d_“+ﬂ/p_zs)qd,u(x1)d,u(xz))

.o 1/q
sa( |gz<x1,xz>|*'|xj—yl“‘d““*”/"“z”"du(xl)du(xz)) ,

whence, together with (5.3),

UD (V,5202(7), V)N (x — y)>dy] <o jD 7, S202(3) 12 — y|'dy

2
<c ZLI,-|Z - y|1_ddy =J+ J».
=1
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Noting that (1-d+pg/g)p+d=(1—-(d—-p)/q9)p>0 and (l-d-oa+
B/p)g+d=(1—-(d—pB)/p—a)g >0, we can choose & > 0 satisfying (1 —d +
Blg—¢e)p+d>0and (1-d—a+p/p—2¢)q+d>0. Since

1/q d 1/p
Ji< e (” Flz—y™ “"dy) (J |z =y~ "‘e’pdy>
D D

1/q
<cs (” Lz - J’|_ﬂ+£qu’) ;
D

we get, by Lemma D,
[ atautz) < [[laxton, el )

—d— _ _
[D Iy — y|(-d-esblo-2agy jD 2 — Y du(z) < crllgall,

whence

(5.8) J( sup
xel(z)

We next consider a bounded continuous function g, on 0D x dD. We
claim that (5.7) for Sg> holds for every z e dD.
To show this, let ye D. Then

VS292()|

JD V,$202(7), VyN(x — y)>dy

q
)dﬂ(Z) < csllgall?.

2
< collg2l. ” |x1 — xzr”/”“( | — y|“d‘H> dp(x1)dpu(xz),
=1

J

where g2, = sup{|g2(x1,x2)|; x1,x2 € dD}.

Choose 4 > 0 satisfying d —f>A>a—(f—d+1). Since (1 —d—oa+
Bla+A)p+B=(1—-d—a+p+i)p >0, we pick ¢ > 0 satisfying (1 —d — o+
B/q+ A—2¢)p>—pB. Then, by Lemma D,

’05292

A
20 (3)60)

2

1/p
< collgalle S (“ 1 — x| PP — y|“‘d‘“+”/"‘28“>"du<xl)du(xz))
=

x (” [ — yl_ﬂmdﬂ(xl)dﬂ(Xz))l/q < enllgall
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Let we I'{(z). Noting that
w—y| = cialz — | for all ye D

and using Lemmas E and C, we get
(59) [, <¥5:020).7, W00 = ) = NG = 5y

-2 1—d—
scBIw—ZIG‘IIgzIIooJDfS(y) Iz — y1--a gy
< cualw — 2 g2,

where we picked ¢ > 0 satisfying 1 — 1 — ¢ > 0. Thus we see that the claim is
true.

Using the claim and (5.8), we can show (5.7) for S»g,. It is easy to show
(5.7) for Sig:. O

LemMa 5.3. Let gy € L(u), g2 € L9(u x p) and {¢,}<,c; be a mollifier on
R? such that supp ¢, = B(0,). Under the same assumtions as in Lemma 4.2 we
get

q

5, 80x Sigj| dy < cllgllg

0
(5.10) J
8(y)<2t10Yi

SJor j=1,2, where c is a constant independent of t and g;.

Proor. We will prove (5.10) only for j =2. Suppose d(y) < 2t and put

Fi :={(v,w) € 0D x dD; |y —v| < 4t,|y — w| < 4t},

F5:={(v,w
Fy :={(v,w) € 0D x dD; |y —v| > 2t,|y — w| > 2t}.

(v,w)

F, :={(v,w) € 0D x 0D; |y —v| > 4t,|y — w| < 2t},
(v,w) € 0D x 0Dy |y — v| < 2t,|y — w| > 4t},
(v,w)

We write, for x € B(y,1),

. N(v—x)—N(W—x) w v
Saga(x) = ”(mw)\n S W)

I, N(v@ f)w_,é/vfffj %) g2 0, w)du(e)dp(w) = 1 () + ().

Noting that (0D x 0D)\F4 = F\ UF,UF;, we write again
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00| = | [ - 0

4

3
sart?S [ ar
k=1"ly—x|<t

IN(v — x) — N(w — x)|
* JF,, lv— w|(ﬁ/p)+oc 1g2(v, w)|dpu(v)du(w)

dx

= Jn(y) + Ji2(y) + J13(p).
Let us first estimate J;;. Lemma E implies

Ju(y)

2—d—a—¢ 2—d-oa—¢
e v—X +w—Xx

<ar IJI | tde | | v wl(/|f/p)—e | l92(v, w)|du(v)dp(w)

y—x|< 1 -

= Jm(y) +J112(y)'

Since q(2—d—oa+pB/p)+d >0, we choose ¢>0 satisfying q(2—-d —a+
(B/p) —2¢) >0. Then

J111(y) < Czt_dnl (I

ly—x|<t

1/p
dx j j o — W FH)y — x|'ﬂ“f’du(v>du(w>)
F

1/q
(] x| o st 2l o) audut) )
|y—x|<t Fy
Since a similar estimate for J;; is also obtained, Lemmas C and D lead to
J Jn(y)idy < c},q(l—a—(d—ﬂ)/p)“gz”g‘
d(y)<2t

We next estimate Jj;. Noting that (v,w)e F> and |x— y| <t imply
|v—w|>2t and |[v— x| >3¢t>|w—x|. Using Lemma E, we have

L |U _ xlz—d—a-{—s +lw— x|2—d—a+e
rasartt | ax| - wl(l,/p)ﬂ 19200, W)ldi(0)du(w)

< e5rd-1 J

dx L [0 = w72 — x4 g5 (0, ) | dpe(0)dpa(w)

|y—x|<t

1/p
< est?! (Jl | dx “F lo—w| =P |w — xl_ﬂ“”dﬂ(v)d;z(w))
y—x|<t 2

1/q
x (j x| w—xjre- =gy W)l"dﬂ(v)dﬂ(W)> .
[y—x|<t R
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With the aid of Lemmas C and D we conclude
(5.11) [ Ja0)d < cott=apm g
S(y) <2t

We also obtain the estimate (5.11) for Ji3 by exchanging the roles of v and w.
We finally estimate J,. Noting that

0 0
@m0 = (4 (52) )0
we get
5 9 _Q_ q .
L(y)gt 3_%(¢' L) ()| dy < ¢ J(/fl (6y,- J2)> dy < csllgalld

by the same method as in the proof of (4.1), where #(f) is the Hardy-
Littlewood maximal function of f on R?. Thus we have the conclusion for
$292. O

Proor of THEOREM 3. We define, for ¥ = (g1,92),
Sy = 5191 + 292

With the aid of (4.1) we also get IB(O,Z R) |VSy|’dy < oo and hence
Jre |VSy|?dy < oo because of ¢ >2. Let {#,},., be a mollifier on R such that
supp ¢, = B(0,1) and set h, := ¢, x Syy. Then h, is a C'-function on R? and

oh;
0y;

(y) = (¢, *%)(y) for every y with 6(y) > 2t.

i

Since h, is a Lipschitz function on RY, |(RY\D) € «?(R*\D). Using The-
orem 2 and Lemma 5.2 we get

j _<Vh,<y>,vyN(z—y>>dy=j (VE(RID)(y), VyN(z — y)>dy
R/\D RY\D

for every ze oD and ¢t >0. Since Kf+ f/2,y» =0 for every Lipschitz
function f, we have

[, <wnO) w00 = [ smIoD)6).V, ()
R R\D

v,
= <<Kh,+%,nﬁ>> =0.

On the other hand we note that
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(4520 < f%(%)(y)

4 i=1

d
Vh(y)| < Z
im1

for all y with d(y) > 2¢. Since

asy\? 2
JRd %<—67,> dy<c JRd |VSy|“dy < o

and
lim (Vi (), VySY(9)> = [VSw(y)]*
for every y e R4\dD, we have
Jip PSUO Ay =tim [ (), 7,503 = 0.

From this we deduce

Sy = const. on R%\D.
Noting that lim,_, S¥/(y) = 0, we have

Sy =0 in R\D.
Lemma 5.1 yields

SYy(z)= lim  Sy(y)=0 for u-a.e. ze dD.

y—z,yel{(z)

Since Sy € #£(D) by Lemma 4.2, we have, by Theorem 1,

(5.12) jD VSY(y), VN(x — y)>dy = jD (VE(SY|0D), VN (x — y)>dy = 0

for all xe R‘\D. Using Lemma 5.2 and (1.11), we see that (5.12) holds for u-
a.e. x€ 0D. Therefore we have

|| wsuray o,
D
whence Sy = const. in D. Hence, by (1.11),
(xr =50 ) =], werm 500 =0
D

for every Lipschitz function f on dD. Since, by (1.10),
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<<Kf +§’ >> = Jm TEN) (), V,SY(y)dy =0,

<t = (k145w ) - (k7 =L =0

for every Lipschitz function f on 0D. Since the family of the Lipschitz
functions is dense in A4£(0D), we conclude that = 0. O

we get

Similarly we can also prove the following theorem.

THEOREM 4. Assume that D, p and o satisfy the same assumptions as in
Theorem 3. If Y € AP(dD)', «1,y» =0 and <Kf — f/2,y>» =0 for every
Lipschitz function f on 0D, then § = 0.
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