Uniqueness of double layer potentials for a domain with fractal boundary

Hisako Watanabe

(Received December 9, 1998)
(Revised April 15, 1999)

Abstract

The double layer potentials for a bounded domain with fractal boundary depends on an extension operator on a space of functions on the boundary. We give a sufficient condition to define them uniquely and apply it to prove the injectivity of an operator with respect to the Dirichlet problem.

1. Introduction

Let D be a bounded smooth domain in $\mathbf{R}^{d}(d \geq 3)$. The double layer potential Φg of $g \in L^{p}(\partial D)$ is defined by

$$
\begin{equation*}
\Phi g(x)=-\int_{\partial D}\left\langle\nabla_{y} N(x-y), n_{y}\right\rangle g(y) d \sigma(y), \tag{1.1}
\end{equation*}
$$

where $N(x-y)$ is the Newton kernel, n_{y} is the unit outer normal to ∂D and σ is the surface measure on ∂D. The function Φg is harmonic in $\mathbf{R}^{d} \backslash \partial D$ and has a nontangential limit at σ-almost every boundary point.

If D is a domain with fractal boundary, then n_{y} and σ can not be considered and hence (1.1) is not defined. But we introduced double layer potentials in [W1] and [W3], in case $d \geq 2$ and ∂D is a β-set for β satisfying $d-1 \leq \beta<d$. According to A. Jonsson and H. Wallin we say that a closed set F is a β-set if there exist a positive Radon measure μ on F and positive real numbers b_{1}, b_{2} such that

$$
\begin{equation*}
b_{1} r^{\beta} \leq \mu(B(z, r) \cap F) \leq b_{2} r^{\beta} \tag{1.2}
\end{equation*}
$$

for all $z \in F$ and all $r \leq r_{0}$, where $B(z, r)$ stands for the open ball with center z and radius r in \mathbf{R}^{d}. Such a measure μ is called a β-measure.

We shall give some examples.

[^0]1. If D is a bounded Lipschitz domain in \mathbf{R}^{d}, then ∂D is a $(d-1)$-set and the surface measure is a $(d-1)$-measure.
2. If ∂D consists of a finite number of self-similar sets, which satisfies the open set condition, and whose similarity dimensions are β, then ∂D is a β-set and the β-dimensional Hausdorff measure restricted to ∂D is a β-measure (cf. $[\mathbf{H}])$. A typical example is the Von Koch snowflake in \mathbf{R}^{2}.

Let us fix a positive real number R such that $\bar{D} \subset B(0, R / 2)$ and $R \geq 1$, and a β-measure μ on ∂D.

Since every function $f \in L^{p}(\mu)$ has an extension $\mathscr{E}(f)$ such that $\mathscr{E}(f)$ is a C^{∞}-function in $\mathbf{R}^{d} \backslash \partial D$, we define, for $f \in \Lambda_{\alpha}^{p}(\partial D)$, the double layer potential by

$$
\begin{equation*}
\Phi f(x)=\int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla_{y} \mathscr{E}(f)(y), \nabla_{y} N(x-y)\right\rangle d y \tag{1.3}
\end{equation*}
$$

for $x \in D$ and

$$
\begin{equation*}
\Phi f(x)=-\int_{D}\left\langle\nabla_{y} \mathscr{E}(f)(y), \nabla_{y} N(x-y)\right\rangle d y \tag{1.4}
\end{equation*}
$$

for $x \in \mathbf{R}^{d} \backslash \bar{D}$, where

$$
N(x-y)= \begin{cases}\frac{1}{\omega_{d}(d-2)|x-y|^{d-2}} & \text { if } d \geq 3 \\ -\frac{5 R}{2 \pi} \log \frac{|x-y|}{5 R} & \text { if } d=2\end{cases}
$$

and ω_{d} stands for the surface area of the unit ball in \mathbf{R}^{d}. Here $\Lambda_{\alpha}^{p}(F)$ for a closed subset F of \mathbf{R}^{d} is a Banach space defined by

$$
\Lambda_{\alpha}^{p}(F)=\left\{f \in L^{p}(\mu): \iint \frac{|f(x)-f(y)|^{p}}{|x-y|^{\beta+p \alpha}} d \mu(x) d \mu(y)<\infty\right\}
$$

with norm

$$
\|f\|_{p, \alpha}=\left(\int|f|^{p} d \mu\right)^{1 / p}+\left(\iint \frac{|f(x)-f(y)|^{p}}{|x-y|^{\beta+p \alpha}} d \mu(x) d \mu(y)\right)^{1 / p}
$$

We saw in [W3] that Φf is harmonic in $\mathbf{R}^{d} \backslash \partial D$ and has a similar boundary behavior to that for an usual double layer potential.

Our definition of the double layer potentials depends on the choice of an extension operator. Under what conditions is the definition independent of an extension operator? In this paper we will give an answer to this problem.

Moreover we apply it to prove that an operator on the conjugate of $\Lambda_{\alpha}^{p}(\partial D)$ is injective. The operator plays an important role to solve the Dirichlet problem with boundary data in $\Lambda_{\alpha}^{p}(\partial D)$ by the layer potential method.

More precisely, denote by $\mathscr{V}(G)$ the Whitney decomposition of an open set G and by $V_{k}(G)$ the union of k-cubes in $\mathscr{V}(G)$. We shall mention the Whitney decomposition in $\S 2$. Pick an integer n_{0} satisfying $2^{-n_{0}}>100 R \sqrt{d}$ and denote by $Q\left(n_{0}\right)$ the open cube with center 0 and common side-length $2^{-n_{0}}$. Further put

$$
\begin{equation*}
A_{n}:=\bigcup_{k \leq n} V_{k}(D) \quad \text { and } \quad B_{n}=\bigcup_{k \leq n} V_{k}\left(Q\left(n_{0}\right) \backslash \bar{D}\right) \tag{1.5}
\end{equation*}
$$

for each natural number n.
Let $\tau>\beta-(d-1) \geq 0$ and $p>1$. We denote by $\mathscr{U}_{\tau}^{p}(\bar{D})$ the family of all Borel measurable functions f defined on \bar{D} having the following properties:
(i) f is of C^{1}-class in D,
(ii) There exists $n_{1} \in \mathbf{N}$ such that

$$
\begin{equation*}
\int_{\partial A_{n}} d \sigma_{n}(y) \int_{\left\{|y-w| \leq b 2^{-n}\right\} \cap D}|f(y)-f(w)|^{p} d \mu(w) \leq c_{f}\left(2^{-n}\right)^{d-1+p \tau} \tag{1.6}
\end{equation*}
$$

for every $n \geq n_{1}$, where $b=6 \sqrt{d}, c_{f}$ is a constant independent of n, and σ_{n} stands for the surface measure on ∂A_{n},
(iii)

$$
\begin{equation*}
\int_{D}|\nabla f(y)| d y<\infty \tag{1.7}
\end{equation*}
$$

We also denote by $\mathscr{U}_{\tau}^{p}\left(\mathbf{R}^{d} \backslash D\right)$ the family of all measurable functions f on $\mathbf{R}^{d} \backslash D$ such that f has the properties (i)-(iii) $\left(\partial A_{n}\right.$ and D are replaced with $\partial B_{n} \cap$ $B(0,2 R)$ and $\mathbf{R}^{d} \backslash \bar{D}$, respectively) and
(iv) $f(x)$ tends to 0 as $|x| \rightarrow \infty$.

Further we denote by $\mathscr{U}_{\tau}^{p}\left(\mathbf{R}^{d}\right)$ the family of all functions f defined on \mathbf{R}^{d} such that $f \mid \bar{D} \in \mathscr{U}_{\tau}^{p}(\bar{D})$ and $f \mid\left(\mathbf{R}^{d} \backslash D\right) \in \mathscr{U}_{\tau}^{p}\left(\mathbf{R}^{d} \backslash D\right)$.

In §3 we will prove the following therem.
Theorem 1. Assume that D is a bounded domain in $\mathbf{R}^{d}(d \geq 2)$ such that ∂D is a β-set. Further let $1 \geq \tau>\beta-(d-1) \geq 0$ and $p>1$. We then have, for $f_{1}, f_{2} \in \mathscr{U}_{\tau}^{p}(\bar{D})$ such that $f_{1}=f_{2}$ u-a.e. on ∂D,

$$
\begin{equation*}
\int_{D}\left\langle\nabla f_{1}(y), \nabla N(x-y)\right\rangle d y=\int_{D}\left\langle\nabla f_{2}(y), \nabla N(x-y)\right\rangle d y \tag{1.8}
\end{equation*}
$$

for each $x \in \mathbf{R}^{d} \backslash \bar{D}$.
We now denote by $\Lambda_{\alpha}^{p}(\partial D)^{\prime}$ the space of all bounded linear functionals on $\Lambda_{\alpha}^{p}(\partial D)$ and write

$$
\ll f, \psi \gg:=\psi(f) \quad \text { for } f \in \Lambda_{\alpha}^{p}(\partial D) \quad \text { and } \quad \psi \in \Lambda_{\alpha}^{p}(\partial D)^{\prime} .
$$

By the Hahn-Banach extension theorem, there exist, for each $\psi \in \Lambda_{\alpha}^{p}(\partial D)^{\prime}$, $g_{1} \in L^{q}(\mu)$ and $g_{2} \in L^{q}(\mu \times \mu)$ such that

$$
\ll f, \psi \gg=\int f g_{1} d \mu+\iint \frac{f(x)-f(z)}{|x-z|^{\beta / p+\alpha}} g_{2}(x, z) d \mu(x) d \mu(z)
$$

for every $f \in \Lambda_{\alpha}^{p}(\partial D)$, where $q=p /(p-1)$. We write $\psi=\left(g_{1}, g_{2}\right)$.
We then define an operator K on $\Lambda_{\alpha}^{p}(\partial D)$ by

$$
\begin{align*}
K f(z):= & \frac{1}{2} \int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla \mathscr{E}(f)(y), \nabla_{y} N(z-y)\right\rangle d y \tag{1.9}\\
& -\frac{1}{2} \int_{D}\left\langle\nabla \mathscr{E}(f)(y), \nabla_{y} N(z-y)\right\rangle d y
\end{align*}
$$

if it is well-defined and $K f(z)=0$ otherwise.
We saw in [W3] that

$$
\begin{align*}
K f(z)+\frac{f(z)}{2} & =\lim _{x \rightarrow z, x \in \Gamma_{\tau}(z)} \int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla \mathscr{E}(f)(y), \nabla_{y} N(x-y)\right\rangle d y \tag{1.10}\\
& =\int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla \mathscr{E}(f)(y), \nabla_{y} N(z-y)\right\rangle d y
\end{align*}
$$

for μ-a.e. $z \in \partial D$ and

$$
\begin{align*}
K f(z)-\frac{f(z)}{2} & =-\lim _{x \rightarrow z, x \in \Gamma_{\tau}^{e}(z)} \int_{D}\left\langle\nabla \mathscr{E}(f)(y), \nabla_{y} N(x-y)\right\rangle d y \tag{1.11}\\
& =-\int_{D}\left\langle\nabla \mathscr{E}(f)(y), \nabla_{y} N(z-y)\right\rangle d y
\end{align*}
$$

for μ-a.e. $z \in \partial D$, where

$$
\Gamma_{\tau}(z)=\{y \in D ;|y-z|<(1+\tau) \delta(y)\}
$$

and

$$
\Gamma_{\tau}^{e}(z)=\left\{y \in\left(\mathbf{R}^{d} \backslash \bar{D}\right) \cap B(0, R) ;|y-z|<(1+\tau) \delta(y)\right\} .
$$

Here $\delta(y)$ stands for the distance of y from ∂D.
We also saw in [W2] that, if f is a Lipschitz function on ∂D, so is $K f$. Using Theorem 1, we will prove the following theorem in §5.

Theorem 3. Assume that D is a bounded domain in $\mathbf{R}^{d}(d \geq 3)$ such that $\mathbf{R}^{d} \backslash D$ is connected and ∂D is a β-set. Further assume that $B(z, r) \cap \Gamma_{\tau}(z) \neq \varnothing$
and $B(z, r) \cap \Gamma_{\tau}^{e}(z) \neq \varnothing$ for all $z \in \partial D$ and $0<r \leq r_{0}$. If $1<p \leq 2,1-$ $(d-\beta) / p>\alpha>\beta-(d-1) \geq 0, \psi \in \Lambda_{\alpha}^{p}(\partial D)^{\prime}$ and $\ll K f+f / 2, \psi \gg=0$ for every Lipschitz function f on ∂D, then $\psi=0$.

2. Construction of an extension operator

Hereafter we assume that D is a bounded domain in \mathbf{R}^{d} such that the boundary is a β-set satisfying $d-1 \leq \beta<d$ and $\bar{D} \subset B(0, R / 2)(R \geq 1)$. Fix a positive Radon measure μ on ∂D satisfying (1.2) for $F=\partial D$. We may assume that $r_{0} \geq 3 R$.

To extend $f \in L^{p}(\mu)$, we use a Whitney decomposition.
More precisely, let G be an open set in \mathbf{R}^{d}. A cube Q is called a k-cube if it is of the form

$$
\left[l_{1} 2^{-k},\left(l_{1}+1\right) 2^{-k}\right] \times \cdots \times\left[l_{d} 2^{-k},\left(l_{d}+1\right) 2^{-k}\right]
$$

where k, l_{1}, \ldots, l_{d} are integers. We denote by $\mathscr{W}_{k}(G)$ the family of all k cubes in G and set $\mathscr{W}(G)=\bigcup_{k=-\infty}^{\infty} \mathscr{W}_{k}(G)$. It is well-known that a Whitney decomposition of G can be chosen as follows (cf. [HN, p. 572]).

Theorem A. Let G be a nonempty bounded open set in \mathbf{R}^{d}. Then there exists a family $\mathscr{V}(G)=\left\{Q_{j}\right\}$ of cubes in $\mathscr{W}(G)$ having the following properties:
(i) $\bigcup_{j} Q_{j}=G$,
(ii) int $Q_{j} \cap$ int $Q_{k}=\varnothing(j \neq k)$,
(iii) $\operatorname{diam} Q_{j} \leq \operatorname{dist}\left(Q_{j}, \mathbf{R}^{d} \backslash G\right) \leq 4 \operatorname{diam} Q_{j}$,
(iv) If $k \geq 1$ and $Q \in \mathscr{V}(G) \cap \mathscr{W}_{k}(G)$, then each k-cube touching Q is contained in G.
Here int $A, \operatorname{diam} A$ and $\operatorname{dist}(A, B)$ stand for the interior of A, the diameter of A and the distance between A and B, respectively.

Let A_{n}, B_{n} be the sets defined by (1.5). We see by Theorem A that the boundaries of A_{n} and B_{n} consist of some surfaces of n-cubes in D and $Q\left(n_{0}\right) \backslash \bar{D}$, respectively.

Fix a positive real number η satisfying $\eta<1 / 4$ and choose a C^{∞}-function ϕ on \mathbf{R}^{d} such that

$$
\begin{equation*}
\phi=1 \text { on } Q_{0}, \quad \operatorname{supp} \phi \subset(1+\eta) Q_{0}, \quad 0 \leq \phi \leq 1, \tag{2.1}
\end{equation*}
$$

where Q_{0} is the closed cube of unit length centered at the origin and $(1+\eta) Q_{0}$ stands for the set $\left\{(1+\eta) x: x \in Q_{0}\right\}$.

Let $\left\{Q_{j}\right\}$ be the family
$\left\{Q ; Q \in \mathscr{V}(D) \cup \mathscr{V}\left(Q\left(n_{0}\right) \backslash \bar{D}\right), Q\right.$ is a k-cube for k satisfying $\left.2^{-k} \leq 4 R\right\}$.

Further let $q^{(j)}, l_{j}$ be the center of Q_{j} and the common length of its sides, respectively. For each j pick a point $a^{(j)} \in \partial D$ satisfying $\operatorname{dist}\left(\partial D, Q_{j}\right)=$ $\operatorname{dist}\left(a^{(j)}, Q_{j}\right)$ and fix it. Set

$$
t(x)=\sum_{j} \phi\left(\frac{x-q^{(j)}}{l_{j}}\right) \quad \text { and } \quad \phi_{j}^{*}(x)=\frac{\phi\left(\left(x-q^{(j)}\right) / l_{j}\right)}{t(x)} .
$$

Let $p \geq 1$ and $f \in L^{p}(\mu)$. We define

$$
\mathscr{E}_{0}(f)(x)=\sum_{j} \frac{1}{\mu\left(B\left(a^{(j)}, \eta l_{j}\right)\right)}\left(\int_{B\left(a^{(j)}, \eta l_{j}\right)} f(z) d \mu(z)\right) \phi_{j}^{*}(x)
$$

if $x \in B(0,3 R) \backslash \partial D$ and $\mathscr{E}_{0}(f)(x)=f(x)$ if $x \in \partial D$. Noting that $x \in B(0,3 R)$ is contained in some k-cube satisfying $2^{-k} \leq 4 R, \mathscr{E}_{0}(f)$ is a C^{∞}-function in $B(0,3 R) \backslash \partial D$. Choose a C^{∞}-function ϕ_{0} satisfying

$$
\phi_{0}=1 \text { on } \overline{B(0, R)}, \quad \operatorname{supp} \phi_{0} \subset B(0,2 R), \quad 0 \leq \phi_{0} \leq 1
$$

and define

$$
\mathscr{E}(f)(x)= \begin{cases}\mathscr{E}_{0}(f)(x) \phi_{0}(x) & \text { if } x \in B(0,3 R) \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathscr{E}(f)$ is a C^{∞}-function in $\mathbf{R}^{d} \backslash \partial D$ and supp $\mathscr{E}(f) \subset B(0,2 R)$.
Though the definition of $\mathscr{E}(f)$ is slightly different from that in [W3], they coincide eventually since $\mathscr{E}_{0}(f)$ defined above takes the same values in $B(0,2 R)$ as that in [W3].

We gave the following estimate for $|\nabla \mathscr{E}(f)|$ of $f \in \Lambda_{\alpha}^{p}(\partial D)$ in [W3, Lemma 2.2].

Lemma B. Let $1 \geq \alpha>0, p>1,0<r<3 R, \lambda \in \mathbf{R}$ and $f \in \Lambda_{\alpha}^{p}(\partial D)$. If $(\alpha-1) p+d-\beta+p \lambda>0$, then

$$
\int_{\delta(y) \leq r}|\nabla \mathscr{E}(f)(y)|^{p} \delta(y)^{\lambda p} d y \leq c\|f\|_{p, \alpha}^{p} r^{(\alpha-1) p+d-\beta+p \lambda} .
$$

To prove the above lemma, we need the following fundamental estimate for a bounded domain whose boundary is a β-set (cf. [W1, Lemma 2.3]).

Lemma C. Let λ, k be a real number. If $d-\beta>\lambda$ and $d-\lambda+k>0$, then

$$
\int_{B(z, r)} \delta(y)^{-\lambda}|y-z|^{k} d y \leq c r^{d-\lambda+k}
$$

for every $z \in \partial D$ and $0<r \leq 3 R$.

We shall often use the following lemma, which easily follows from the definition of a β-set and the fact that for $\varepsilon>0$ the function $r \mapsto r^{\varepsilon} \log (r / 5 R)$ is bounded on $(0,3 R]$.

Lemma D. Let $0<r<3 R, k \in \mathbf{R}^{d}$ and $z \in \partial D$.
(i) If $k+\beta>0$, then

$$
\int_{B(z, r) \cap \partial D}|x-z|^{k} d \mu(x) \leq c r^{\beta+k}
$$

(ii) If $k+\beta<0$, then

$$
\int_{\partial D \backslash B(z, r)}|x-z|^{k} d \mu(x) \leq c r^{\beta+k} .
$$

(iii) If $\varepsilon>0$ and $k+\beta-\varepsilon>0$, then

$$
0 \leq-\int_{B(z, r) \cap \partial D}|x-z|^{k} \log \frac{|x-z|}{5 R} d \mu(x) \leq c r^{\beta+k-\varepsilon} .
$$

Here c is a constant independent of r, z.

3. Uniqueness of double layer potentials

Using the extension operator \mathscr{E} in $\S 2$, we defined double layer potentials by (1.3) and (1.4). Similary we can define them by another extension operator having adequate properties. Under what conditions are double layer potentials uniquely defined independent of extension operators? In this section we will give an answer to this problem.

We begin with the following lemma.
Lemma 3.1. Let k be a natural number and $0<r \leq 2 R$. Suppose z_{0} is a boundary point of D. Then the number m of k-cubes included in $B\left(z_{0}, r\right)$ is at most $c 2^{k \beta} r^{\beta}$, where c is a constant independent of k and r.

Proof. We may assume $2^{-k} \leq r$ and set $l=2^{-k}$. Let $\left\{Q_{j}\right\}_{j \in I}$ be a family of k-cubes included in $B\left(z_{0}, r\right)$. Then there exist points $z_{1}, \ldots, z_{n} \in \partial D$ such that $\bigcup_{i \in I} Q_{i} \subset \bigcup_{j=1}^{n} B\left(z_{j}, b l\right)$ and

$$
\left(\bigcup_{i \in I} Q_{i}\right) \cap B\left(z_{j}, b l\right) \neq \varnothing(j=1,2, \ldots, n)
$$

where $b=6 \sqrt{d}$. Using Vitali's covering lemma, we choose a subfamily $\left\{B_{t}\right\}_{t}$ of $\left\{B\left(z_{j}, b l\right)\right\}$ such that

$$
\bigcup_{i \in I} Q_{i} \subset \bigcup_{t=1}^{n^{\prime}} 5 B_{t} \quad \text { and } \quad B_{t} \cap B_{s}=\varnothing(t \neq s)
$$

where $5 B_{t}$ stands for the ball having the same center as B_{t} but whose diameter is five times as large. Considering the d-dimensional Lebesgue measure of these sets and noting that ∂D is a β-set, we obtain

$$
\begin{aligned}
m l^{d} & =\left|\bigcup_{i \in I} Q_{i}\right| \leq\left|\bigcup_{t} 5 B_{t}\right| \leq c_{1} n^{\prime}(b l)^{d} \leq c_{2}(b l)^{d-\beta} \mu\left(\bigcup_{t=1}^{n^{\prime}} B_{t}\right) \\
& \leq c_{2}(b l)^{d-\beta} \mu\left(B\left(z_{0}, 13 \sqrt{d} r\right)\right) \leq c_{3} l^{d-\beta} r^{\beta} .
\end{aligned}
$$

This leads to the conclusion.
Corollary 3.1. Let $n \in \mathbf{N}$. Then

$$
\sigma_{n}\left(\partial A_{n}\right) \leq c\left(2^{-n}\right)^{d-1-\beta}
$$

where c is a constant independent of n.
Proof. Note that ∂A_{n} consists of some surfaces of n-cubes in D. Lemma 3.1 yields

$$
\sigma_{n}\left(\partial A_{n}\right) \leq c\left(2^{-n}\right)^{d-1} 2^{n \beta}
$$

Lemma 3.2. Let $0<k<\beta, z_{0} \in \partial D$ and $n \in \mathbf{N}$. Then

$$
\begin{equation*}
\int_{\partial A_{n}}\left|y-z_{0}\right|^{-k} d \sigma_{n}(y) \leq c\left(2^{-n}\right)^{d-1-\beta} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq-\int_{\partial A_{n}}\left|y-z_{0}\right|^{-k} \log \frac{\left|y-z_{0}\right|}{5 R} d \sigma_{n}(y) \leq c\left(2^{-n}\right)^{d-1-\beta} \tag{3.2}
\end{equation*}
$$

Here c is a constant independent of z_{0} and n. We have the same estimates as (3.1) and (3.2) for the surface integral over $\partial B_{n} \cap B(0,2 R)$.

Proof. Set, for each integer l,

$$
E_{l}=\left\{y \in \partial A_{n} ;\left|y-z_{0}\right|^{-k}>2^{l}\right\}
$$

Then $\left|y-z_{0}\right|<2^{-l / k}$ for $y \in E_{l}$. Put $r_{l}=2^{-l / k}$. We note that

$$
\begin{aligned}
\left|y-z_{0}\right|^{-k} & \leq \sum_{l=l_{0}}^{l_{1}} 2^{l+1}\left(\chi_{B\left(z_{0}, r_{l}\right)}(y)-\chi_{B\left(z_{0}, r_{l+1}\right)}(y)\right) \\
& \leq \sum_{l=l_{0}}^{l_{1}}\left(2^{l+1}-2^{l}\right) \chi_{B\left(z_{0}, r_{l}\right)}(y)+2^{l_{0}} \chi_{B\left(z_{0}, r_{l}\right)}(y) \\
& \leq 2 \sum_{l=l_{0}}^{l_{1}} 2^{l} \chi_{B\left(z_{0}, r_{l}\right)}(y)
\end{aligned}
$$

where

$$
r_{l_{1}-1}>2^{-n} \geq r_{l_{1}} \quad r_{l_{0}} \geq R>r_{l_{0}+1}
$$

Using Lemma 3.1, we have

$$
\begin{align*}
& \int_{\partial A_{n}}\left|y-z_{0}\right|^{-k} d \sigma_{n}(y) \tag{3.3}\\
& \leq c_{1} \sum_{l=l_{0}}^{l_{1}} 2^{l} 2^{n \beta} r_{l}^{\beta}\left(2^{-n}\right)^{d-1} \leq c_{2}\left(2^{-n}\right)^{d-1-\beta} \sum_{l=l_{0}}^{l_{1}} 2^{(1-\beta / k) l} .
\end{align*}
$$

Since $1-\beta / k<0, \sum_{l=l_{0}}^{\infty} 2^{(1-\beta / k) l}<\infty$. So we see that (3.1) holds.
To prove (3.2), choose $\varepsilon>0$ satisfying $k+\varepsilon<\beta$. Noting that the function $y \mapsto\left|y-z_{0}\right|^{\varepsilon} \log \frac{\left|y-z_{0}\right|}{5 R}$ is negative and bounded on $B(0,2 R)$, we get

$$
-\int_{\partial A_{n}}\left|y-z_{0}\right|^{-k} \log \frac{\left|y-z_{0}\right|}{5 R} d \sigma_{n}(y) \leq c_{3} \int_{\partial A_{n}}\left|y-z_{0}\right|^{-k-\varepsilon} d \sigma_{n}(y)
$$

which and (3.1) give (3.2). Similarly we can also obtain the same estimates for the integral over $\partial B_{n} \cap B(0,2 R)$.

Lemma 3.3. Let $1 \geq \tau>\beta-(d-1) \geq 0$ and $p>1$. Suppose f is a Borel measurable function on \bar{D} and of C^{1}-class in D. If

$$
\begin{equation*}
\int_{\partial A_{n}}|f|^{p} d \sigma_{n} \leq c_{f}\left(2^{-n}\right)^{d-1-\beta+p \tau} \tag{3.4}
\end{equation*}
$$

for a constant c_{f} independent of n and

$$
\int_{D}|\nabla f(y)| d y<\infty
$$

then

$$
\int_{D}\langle\nabla f(y), \nabla N(x-y)\rangle d y=0 \quad \text { for each } x \in \mathbf{R}^{d} \backslash \bar{D}
$$

Proof. Let $x \in \mathbf{R}^{d} \backslash \bar{D}$. From the Green formula and Lemma 3.1 we deduce

$$
\begin{aligned}
& \mid \int_{A_{n}}\langle\nabla f(y), \nabla N(x-y)\rangle d y \mid \\
&=\left|\int_{\partial A_{n}} f(y)\left\langle\nabla N(x-y), n_{y}\right\rangle d \sigma_{n}(y)\right| \leq c_{1} \delta(x)^{1-d} \int_{\partial A_{n}}|f(y)| d \sigma_{n}(y) \\
& \quad \leq c_{2} \delta(x)^{1-d}\left(\int_{\partial A_{n}}|f(y)|^{p} d \sigma_{n}(y)\right)^{1 / p}\left(2^{n \beta} 2^{-n(d-1)}\right)^{1 / q} \\
& \leq c_{3} \delta(x)^{1-d}\left(2^{-n}\right)^{\tau+d-1-\beta}
\end{aligned}
$$

where $q=p /(p-1)$. Since $\tau+d-1-\beta>0$, we have the conclusion.

Proof of Theorem 1. Let $y \in \partial A_{n}$ and set $f=f_{1}-f_{2}$. Noting that $f(w)=0 \mu$-a.e. on ∂D and $B\left(y, b 2^{-n}\right) \cap \partial D$ contains $B\left(a, \sqrt{d} 2^{-n}\right) \cap \partial D$ for some $a \in \partial D$, we get

$$
\begin{aligned}
|f(y)| & \leq c_{1}\left(2^{-n}\right)^{-\beta} \sum_{j=1}^{2} \int_{B\left(y, b 2^{-n}\right) \cap \partial D}\left|f_{j}(y)-f_{j}(w)\right| d \mu(w) \\
& \leq c_{2}\left(2^{-n}\right)^{-\beta / p} \sum_{j=1}^{2}\left(\int_{B\left(y, b 2^{-n}\right) \cap \partial D}\left|f_{j}(y)-f_{j}(w)\right|^{p} d \mu(w)\right)^{1 / p}
\end{aligned}
$$

whence, together with (1.6),

$$
\int_{\partial A_{n}}|f(y)|^{p} d \sigma_{n}(y) \leq c_{3}\left(2^{n}\right)^{p \tau+d-1-\beta}
$$

This shows (3.4). It is easy to see that f satisfies other assumptions of Lemma 3.3. Therefore Lemma 3.3 leads to the conclusion.

Similarly we have
Theorem 2. Assume that D, p and τ satisfy the same assumptions as in Theorem 1 and let $f_{1}, f_{2} \in \mathscr{U}_{\tau}^{p}\left(\mathbf{R}^{d} \backslash D\right)$. If $f_{1}=f_{2} \mu$-a.e. on ∂D, then

$$
\int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla f_{1}(y), \nabla N(x-y)\right\rangle d y=\int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla f_{2}(y), \nabla N(x-y)\right\rangle d y
$$

for each $x \in D$.

4. Examples of functions in $\mathscr{U}_{\tau}^{p}\left(\mathbf{R}^{d}\right)$

In this section we consider some examples of functions in $\mathscr{U}_{\tau}^{p}\left(\mathbf{R}^{d}\right)$.
The following two lemmas are well-known or proved by elementary calculations.

Lemma E. Let $x, y, z \in B(0,2 R), x \neq y, z \neq y$ and $0 \leq \varepsilon \leq 1$. Then

$$
\begin{aligned}
& |N(x-y)-N(z-y)| \\
& \quad \leq c|x-z|^{\varepsilon}\left(|x-y|^{-\varepsilon} N(x-y)+|z-y|^{-\varepsilon} N(z-y)\right)
\end{aligned}
$$

and

$$
\left|\nabla_{y} N(x-y)-\nabla_{y} N(z-y)\right| \leq c|x-z|^{\varepsilon}\left(|x-y|^{1-d-\varepsilon}+|z-y|^{1-d-\varepsilon}\right)
$$

Here c is a constant independent of x, y, z.

Lemma F. Let $x_{j}, \quad y_{k} \in B(0,2 R), \quad x_{j} \neq y_{k}(j, k=1,2)$ and $0 \leq \varepsilon_{j} \leq 1$ $(j=1,2)$. Then

$$
\begin{aligned}
& \left|\sum_{j=1}^{2} \sum_{k=1}^{2}(-1)^{j+k} N\left(x_{j}-y_{k}\right)\right| \\
& \quad \leq c\left|x_{1}-x_{2}\right|^{\varepsilon_{1}}\left|y_{1}-y_{2}\right|^{\varepsilon_{2}} \sum_{j=1}^{2} \sum_{k=1}^{2}\left|x_{j}-y_{k}\right|^{-\varepsilon_{1}-\varepsilon_{2}} N\left(x_{j}-y_{k}\right),
\end{aligned}
$$

where c is a constant independent of x_{j}, y_{k}.
Lemma 4.1. Let $p>1,1 \geq \alpha>\beta-(d-1) \geq 0$ and $f \in \Lambda_{\alpha}^{p}(\partial D)$. Then $\mathscr{E}(f) \in \mathscr{U}_{\alpha}^{p}\left(\mathbf{R}^{d}\right)$.

Proof. We first show that $\mathscr{E}(f)$ satisfies (1.6). To do so, let Q be a n cube with $Q \cap \partial A_{n} \neq \varnothing$. Further let $y \in Q \cap \partial A_{n}$ and $w \in \partial D$ such that $|y-w| \leq b 2^{-n}$. Suppose $Q \cap Q_{j}^{*} \neq \varnothing$, where Q_{j}^{*} is the cube with the same center as Q_{j} and with the common side-length $l_{j}(1+2 \eta)$. Let $z \in B\left(a^{(j)}, \eta l_{j}\right)$. Then

$$
|z-w| \leq|y-z|+|y-w| \leq 20 \sqrt{d} 2^{-n} .
$$

Noting that $\mathscr{E}(f)=\mathscr{E}_{0}(f)$ on D and $\mathscr{E}_{0}(1)=1$ on D, we get

$$
\begin{aligned}
|\mathscr{E}(f)(y)-f(w)| & \leq c_{1} \sum_{j} \frac{\chi_{Q_{j}^{*}}(y)}{l_{j}^{\beta}} \int_{B\left(a^{(j)},, l_{j}\right)}|f(z)-f(w)| d \mu(z) \\
& \leq c_{2}\left(2^{-n}\right)^{\alpha}\left(\int \frac{|f(z)-f(w)|^{p}}{|z-w|^{\beta+p \alpha}} d \mu(z)\right)^{1 / p} .
\end{aligned}
$$

Lemma 3.1 yields

$$
\begin{aligned}
& \int_{\partial Q \cap \partial A_{n}} d \sigma_{n}(y) \int_{\left\{|y-w| \leq b 2^{-n}\right\} \cap \partial D}|\mathscr{E}(f)(y)-f(w)|^{p} d \mu(w) \\
& \quad \leq c_{3}\left(2^{-n}\right)^{\alpha p+d-1} \int_{\left\{\left|a_{0}-w\right|<b^{\prime} 2^{-n}\right\} \cap \partial D} d \mu(w) \int \frac{|f(z)-f(w)|^{p}}{|z-w|^{\beta+p \alpha}} d \mu(z),
\end{aligned}
$$

where a_{0} is a boundary point corresponding to Q in $\S 2$ and b^{\prime} is a constant independent of n. We saw in [W3, Lemma 2.1] that each $z \in \partial D$ is contained in at most N numbers of the family $\left\{B\left(a^{(i)}, b^{\prime} l_{i}\right) \cap \partial D\right\}_{i}$ corresponding to the n cubes $Q_{i} \in \mathscr{V}(D)$, where N is a natural number independent of n. Using this, we get

$$
\begin{aligned}
& \int_{\partial A_{n}} d \sigma_{n}(y) \int_{\left\{|y-w| \leq b 2^{-n}\right\} \cap \partial D}|\mathscr{E}(f)(y)-f(w)|^{p} d \mu(w) \\
& \quad \leq c_{4}\left(2^{-n}\right)^{\alpha p+d-1}\|f\|_{p, \alpha}^{p} .
\end{aligned}
$$

This shows that $\mathscr{E}(f)$ satisfies (1.6) for $\tau=\alpha$.
Similarly we also obtain the estimate (1.6) in which ∂A_{n} is replaced with $\partial B_{n} \cap B(0,2 R)$.

We next see that (1.7) holds for $\mathscr{E}(f)$. Noting that $1-\alpha-(d-\beta) / p<$ $(d-\beta) / q$, we choose $\lambda>0$ satisfying $1-\alpha-(d-\beta) / p<\lambda<(d-\beta) / q$. Since $(\alpha-1) p+d-\beta+\lambda p>0$ and $\lambda q<d-\beta$, Lemmas B, C imply

$$
\begin{aligned}
& \int_{\mathbf{R}^{d} \backslash \partial D}|\nabla \mathscr{E}(f)(y)| d y \\
& \quad \leq\left(\int_{B(0,2 R) \backslash \partial D}|\nabla \mathscr{E}(f)(y)|^{p} \delta(y)^{\lambda p} d y\right)^{1 / p}\left(\int_{B(0,2 R) \backslash \partial D} \delta(y)^{-\lambda q} d y\right)^{1 / q}<\infty
\end{aligned}
$$

which gives (1.7) for $\mathscr{E}(f)$ and $\tau=\alpha$. Therefore we see that $\mathscr{E}(f) \in$ $\mathscr{U}_{\alpha}^{p}\left(\mathbf{R}^{d}\right)$.

Let $q>1, g_{1} \in L^{q}(\mu)$ and $g_{2} \in L^{q}(\mu \times \mu)$. We define, for $y \in \mathbf{R}^{d}$,

$$
S_{1} g_{1}(y)= \begin{cases}-\int N(x-y) g_{1}(x) d \mu(x) & \text { if it is well-defined } \\ 0 & \text { otherwise }\end{cases}
$$

and
$S_{2} g_{2}(y)= \begin{cases}-\iint \frac{N(x-y)-N(z-y)}{|x-z|^{(\beta / p)+\alpha}} g_{2}(x, z) d \mu(x) d \mu(z) & \text { if it is well-defined } \\ 0 & \text { otherwise, }\end{cases}$
where $p=q /(q-1)$ and $1>\alpha>\beta-(d-1) \geq 0$.
Lemma 4.2. Let $1<p \leq 2, q=p /(p-1)$ and $1-(d-\beta) / p>\alpha>\beta$-. $(d-1) \geq 0$. Then, for $g_{1} \in L^{q}(\mu), \quad g_{2} \in L^{q}(\mu \times \mu), \quad S_{1} g_{1}, \quad S_{2} g_{2} \in \mathscr{U}_{\alpha}^{p}\left(\mathbf{R}^{d}\right) \cap$ $\mathscr{U}_{\alpha}^{q}\left(\mathbf{R}^{d}\right)$ if $d \geq 3$ and $S_{1} g_{1}, S_{2} g_{2} \in \mathscr{U}_{\alpha}^{p}(\bar{D}) \cap \mathscr{U}_{\alpha}^{q}(\bar{D})$ if $d=2$.

Proof. We will prove only that $S_{2} g_{2} \in \mathscr{U}_{\alpha}^{q}\left(\mathbf{R}^{d}\right)$ in the case $d \geq 3$, which means $S_{2} g_{2} \in \mathscr{U}_{\alpha}^{p}\left(\mathbf{R}^{d}\right)$ for $p \leq q$. Let $y \in \partial A_{n}, w \in \partial D$ and $|y-w| \leq b 2^{-n}$. Further let ε be a sufficiently small positive number. With the aid of Lemma F we write

$$
\begin{aligned}
& \left|S_{2} g_{2}(y)-S_{2} g_{2}(w)\right| \\
& \quad \leq \iint \frac{\left|\sum_{j=1}^{2}(-1)^{j}\left(N\left(x_{j}-y\right)-N\left(x_{j}-w\right)\right)\right|}{\left|x_{1}-x_{2}\right|^{\beta / p+\alpha}}\left|g_{2}\left(x_{1}, x_{2}\right)\right| d \mu\left(x_{1}\right) d \mu\left(x_{2}\right) \\
& \quad \leq c_{1}|y-w|^{\alpha} \iint\left|x_{1}-x_{2}\right|^{-\beta / p+\varepsilon}\left|g_{2}\left(x_{1}, x_{2}\right)\right| \\
& \quad \\
& \quad \times \sum_{j=1}^{2}\left(\left|x_{j}-y\right|^{2-d-2 \alpha-\varepsilon}+\left|x_{j}-w\right|^{2-d-2 \alpha-\varepsilon}\right) d \mu\left(x_{1}\right) d \mu\left(x_{2}\right) \\
& \quad \equiv \sum_{j=1}^{2}\left(I_{j 1}+I_{j 2}\right)
\end{aligned}
$$

Then, by Lemma D,

$$
\begin{aligned}
I_{11} \leq & c_{2}|y-w|^{\alpha}\left(\iint\left|x_{1}-x_{2}\right|^{-\beta+\varepsilon p}\left|x_{1}-y\right|^{-\beta+\varepsilon p} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)\right)^{1 / p} \\
& \times\left(\iint\left|g_{2}\left(x_{1}, x_{2}\right)\right|^{q}\left|x_{1}-y\right|^{q(2-d-2 \alpha+\beta / p-2 \varepsilon)} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)\right)^{1 / q} \\
\leq & c_{3}|y-w|^{\alpha}\left(\iint\left|g_{2}\left(x_{1}, x_{2}\right)\right|^{q}\left|x_{1}-y\right|^{q(2-d-2 \alpha+\beta / p-2 \varepsilon)} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)\right)^{1 / q}
\end{aligned}
$$

The assumptions $1-(d-\beta) / p>\alpha$ and $p \leq 2$ imply $1-(d-\beta) / 2>\alpha$ and hence $q(2-d-2 \alpha+\beta / p)>-\beta$. So we can pick $\varepsilon>0$ satisfying $q(2-d-$ $2 \alpha+\beta / p-2 \varepsilon)>-\beta$. Then, together with Lemma 3.2 and Lemma D ,

$$
\begin{aligned}
& \int d \mu(w) \int_{\left\{|y-z| \leq b 2^{-n}\right\} \cap \partial A_{n}} I_{11}^{q} d \sigma_{n}(y) \\
& \leq c_{4}\left(2^{-n}\right)^{q \alpha} \iint\left|g_{2}\left(x_{1}, x_{2}\right)\right|^{q} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right) \\
& \quad \times \int_{\partial A_{n}}\left|x_{1}-y\right|^{q(2-d-2 \alpha+\beta / p-2 \varepsilon)} d \sigma_{n}(y) \int_{\left\{|y-w| \leq b 2^{-n}\right\} \cap \partial D} d \mu(w) \\
& \leq c_{5}\left(2^{-n}\right)^{q \alpha+d-1}\left\|g_{2}\right\|_{q}^{q},
\end{aligned}
$$

where

$$
\left\|g_{2}\right\|_{q}=\left(\iint\left|g_{2}\left(x_{1}, x_{2}\right)\right|^{q} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)\right)^{1 / q}
$$

Similarly we can estimate I_{21}.

We next estimate I_{12}. Since

$$
I_{12} \leq c_{6}|y-w|^{\alpha}\left(\iint\left|g_{2}\left(x_{1}, x_{2}\right)\right|^{q}\left|x_{1}-w\right|^{q(2-d-2 \alpha+\beta / p-2 \varepsilon)} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)\right)^{1 / q}
$$

we get, by Lemma 3.1 and Lemma D,

$$
\begin{aligned}
& \int d \mu(w) \int_{\left\{|y-w| \leq b 2^{-n}\right\} \cap \partial A_{n}} I_{12}^{q} d \sigma_{n}(y) \\
& \quad \leq c_{7}\left(2^{-n}\right)^{q \alpha} \iint\left|g_{2}\left(x_{1}, x_{2}\right)\right|^{q} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right) \\
& \quad \times \int\left|x_{1}-w\right|^{q(2-d-2 \alpha+\beta / p-2 \varepsilon)} d \mu(w) \int_{\left\{|y-w| \leq b 2^{-n}\right\} \cap \partial A_{n}} d \sigma_{n}(y) \\
& \quad \leq c_{8}\left(2^{-n}\right)^{q \alpha+d-1}\left\|g_{2}\right\|_{q}^{q} .
\end{aligned}
$$

Similarly we obtain the same estimate for I_{22}.
Therefore we have

$$
\begin{aligned}
& \int d \mu(w) \int_{\left\{|y-w| \leq b 2^{-n}\right\} \cap \partial A_{n}}\left|S_{2} g_{2}(y)-S_{2} g_{2}(w)\right|^{q} d \sigma_{n}(y) \\
& \quad \leq c_{9}\left(2^{-n}\right)^{q \alpha+d-1}\left\|g_{2}\right\|_{q}^{q} .
\end{aligned}
$$

Similarly we can also get

$$
\begin{aligned}
& \int d \mu(w) \int_{\left\{|y-w| \leq b 2^{-n}\right\} \cap \partial B_{n} \cap B(0,2 R)}\left|S_{2} g_{2}(y)-S_{2} g_{2}(w)\right|^{q} d \sigma_{n}(y) \\
& \quad \leq c_{10}\left(2^{-n}\right)^{q \alpha+d-1}\left\|g_{2}\right\|_{q}^{q} .
\end{aligned}
$$

We next estimate the volume integral of the gradient of $S_{2} g_{2}$. Let $y \in$ $B(0,2 R) \backslash \partial D$. We write, for a sufficiently small $\varepsilon>0$,

$$
\begin{aligned}
& \left|\frac{\partial S_{2} g_{2}}{\partial y_{j}}(y)\right| \\
& \quad \leq c_{11} \iint|x-z|^{-\beta / p+\varepsilon}\left(|x-y|^{1-d-\alpha-\varepsilon}+|z-y|^{1-d-\alpha-\varepsilon}\right)\left|g_{2}(x, z)\right| d \mu(x) \\
& \quad \equiv I_{3}+I_{4} .
\end{aligned}
$$

Then, by Lemma D,

$$
\begin{aligned}
I_{3} \leq & c_{12}\left(\iint|x-z|^{-\beta+p \varepsilon}|x-y|^{-\beta+p \varepsilon} d \mu(x) d \mu(z)\right)^{1 / p} \\
& \times\left(\iint\left|g_{2}(x, z)\right|^{q}|x-y|^{(1-d-\alpha-2 \varepsilon+\beta / p) q} d \mu(x) d \mu(z)\right)^{1 / q} \\
\leq & c_{13}\left(\iint\left|g_{2}(x, z)\right|^{q}|x-y|^{(1-d-\alpha-2 \varepsilon+\beta / p) q} d \mu(x) d \mu(z)\right)^{1 / q} .
\end{aligned}
$$

Noting that $(1-d-\alpha+\beta / p) q>-d$, we choose $\varepsilon>0$ satisfying $(1-d-\alpha-$ $2 \varepsilon+\beta / p) q>-d$. Then

$$
\begin{aligned}
& \int_{B(0,2 R) \backslash \partial D} I_{3}^{q} d y \\
& \quad \leq c_{14} \iint\left|g_{2}(x, z)\right|^{q} d \mu(x) d \mu(z) \int_{B(0,2 R)}|x-y|^{(1-d-\alpha-2 \varepsilon+\beta / p) q} d y \\
& \quad \leq c_{15}\left\|g_{2}\right\|_{q}^{q} .
\end{aligned}
$$

Since the same estimate for I_{4} is obtained, we have

$$
\begin{equation*}
\int_{B(0,2 R) \backslash \partial D}\left|\nabla S_{2} g_{2}(y)\right|^{q} d y<\infty \tag{4.1}
\end{equation*}
$$

and hence

$$
\int_{B(0,2 R) \backslash \partial D}\left|\nabla S_{2} g_{2}(y)\right| d y<\infty
$$

Further it is easy to see that

$$
\int_{\mathbf{R}^{d} \backslash B(0,2 R)}\left|\nabla S_{2} g_{2}(y)\right| d y<\infty .
$$

Since $S_{2} g_{2}$ is a C^{1}-function in $\mathbf{R}^{d} \backslash \partial D$, we conclude that $S_{2} g_{2} \in \mathscr{U}_{\alpha}^{q}\left(\mathbf{R}^{d}\right)$.

5. Proof of Theorem 3

In this section we give the proof of Theorem 3. We prepare the following lemma.

Lemma 5.1. Let $q>1,0<\alpha<1$ and $g_{1} \in L^{q}(\mu), g_{2} \in L^{q}(\mu \times \mu)$. Then

$$
\begin{equation*}
\lim _{x \rightarrow z, x \in \Gamma_{\tau}(z)} S_{j} g_{j}(x)=S_{j} g_{j}(z)(j=1,2) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow z, x \in \Gamma_{\tau}^{e}(z)} S_{j} g_{j}(x)=S_{j} g_{j}(z)(j=1,2) \tag{5.2}
\end{equation*}
$$

for μ-a.e. $z \in \partial D$.
Proof. Let $z \in \partial D$ and $x \in \Gamma_{\tau}(z) \cup \Gamma_{\tau}^{e}(z)$. Put

$$
A=\{y \in \partial D ;|y-z| \leq 2|x-z|\}
$$

and

$$
B=\{y \in \partial D ;|y-z|>2|x-z|\} .
$$

If $y \in A$, then

$$
|x-y| \geq \delta(x) \geq \frac{|x-z|}{1+\tau} \geq \frac{|y-z|}{2(1+\tau)}
$$

If $y \in B$, then

$$
|x-y| \geq|y-z|-|z-x|>\frac{|y-z|}{2}
$$

From these we get
(5.3) $|x-y| \geq c_{1}|y-z| \quad$ for all $x \in \Gamma_{\tau}(z) \cup \Gamma_{\tau}^{e}(z) \quad$ and for all $y \in \partial D$.

So

$$
\left|S_{1} g_{1}(x)\right| \leq c_{2} \int N(z-y)\left|g_{1}(y)\right| d \mu(y)
$$

With the aid of Lemma E we also get
$\left|S_{2} g_{2}(x)\right|$

$$
\leq c_{3} \iint\left|y_{1}-y_{2}\right|^{-\beta / p+\varepsilon} \sum_{j=1}^{2}\left|z-y_{j}\right|^{-\alpha-\varepsilon} N\left(z-y_{j}\right)\left|g_{2}\left(y_{1}, y_{2}\right)\right| d \mu\left(y_{1}\right) d \mu\left(y_{2}\right)
$$

for a sufficiently small $\varepsilon>0$ satisfying $2-d-\alpha-2 \varepsilon>-\beta$. Therefore, by Lemma D, we get

$$
\begin{equation*}
\int_{x \in \Gamma_{\tau}(z) \cup \Gamma_{\tau}^{e}(z)}\left|S_{1} g_{1}(x)\right|^{q} d \mu(z) \leq c_{4}\left\|g_{1}\right\|_{q}^{q} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{x \in \Gamma_{\tau}(z) \cup \Gamma_{\tau}^{e}(z)}\left|S_{2} g_{2}(x)\right|^{q} d \mu(z) \leq c_{5}\left\|g_{2}\right\|_{q}^{q} \tag{5.5}
\end{equation*}
$$

Especially if g_{1} and g_{2} are bounded on ∂D and $\partial D \times \partial D$, respectively, we get

$$
\begin{equation*}
\lim _{x \rightarrow z, x \in \Gamma_{\tau}(z) \cup \Gamma_{\tau}^{e}(z)} S_{j} g_{j}(x)=S_{j} g_{j}(z) \quad(j=1,2) \tag{5.6}
\end{equation*}
$$

for every $z \in \partial D$. From (5.4), (5.5) and (5.2) we deduce (5.1) by the usual method.

Lemma 5.2. Let $g_{1} \in L^{q}(\mu)$ and $g_{2} \in L^{q}(\mu \times \mu)$. Under the same conditions as in Lemma 4.2
(5.7) $\lim _{x \rightarrow z, x \in \Gamma_{\tau}^{e}(z)} \int_{D}\left\langle\nabla\left(S_{j} g_{j}\right)(y), \nabla_{y} N(x-y)\right\rangle d y=\int_{D}\left\langle\nabla\left(\dot{S}_{j} g_{j}\right)(y), \nabla_{y} N(z-y)\right\rangle d y$ and
$\lim _{x \rightarrow z, x \in \Gamma_{\tau}(z)} \int_{R^{d} \backslash \bar{D}}\left\langle\nabla\left(S_{j} g_{j}\right)(y), \nabla_{y} N(x-y)\right\rangle d y=\int_{R^{d} \backslash \bar{D}}\left\langle\nabla\left(S_{j} g_{j}\right)(y), \nabla_{y} N(z-y)\right\rangle d y$ for μ-a.e. $z \in \partial D$ and for $j=1,2$.

Proof. We will show (5.7) only for $S_{2} g_{2}$. Let $z \in \partial D, x \in \Gamma_{\tau}^{e}(z)$ and $y \in D$. Writing, for a sufficiently small $\varepsilon>0$,

$$
\begin{aligned}
\left|\nabla S_{2} g_{2}(y)\right| & \leq c_{1} \iint\left|x_{1}-x_{2}\right|^{-\beta / p+\varepsilon}\left(\sum_{j=1}^{2}\left|x_{j}-y\right|^{1-d-\alpha-\varepsilon}\right)\left|g_{2}\left(x_{1}, x_{2}\right)\right| d \mu\left(x_{1}\right) d \mu\left(x_{2}\right) \\
& \equiv I_{1}+1_{2}
\end{aligned}
$$

we have, by Lemma D,

$$
\begin{aligned}
I_{j} \leq & c_{1}\left(\iint\left|x_{1}-x_{2}\right|^{-\beta+\varepsilon p}\left|x_{j}-y\right|^{-\beta+\varepsilon p} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)\right)^{1 / p} \\
& \times\left(\iint\left|g_{2}\left(x_{1}, x_{2}\right)\right|^{q}\left|x_{j}-y\right|^{(1-d-\alpha+\beta / p-2 \varepsilon) q} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)\right)^{1 / q} \\
\leq & c_{2}\left(\iint\left|g_{2}\left(x_{1}, x_{2}\right)\right|^{q}\left|x_{j}-y\right|^{(1-d-\alpha+\beta / p-2 \varepsilon) q} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)\right)^{1 / q},
\end{aligned}
$$

whence, together with (5.3),

$$
\begin{aligned}
\left|\int_{D}\left\langle\nabla_{y} S_{2} g_{2}(y), \nabla_{y} N(x-y)\right\rangle d y\right| & \leq c_{3} \int_{D}\left|\nabla_{y} S_{2} g_{2}(y)\right||z-y|^{1-d} d y \\
& \leq c_{4} \sum_{j=1}^{2} \int_{D} I_{j}|z-y|^{1-d} d y \equiv J_{1}+J_{2}
\end{aligned}
$$

Noting that $(1-d+\beta / q) p+d=(1-(d-\beta) / q) p>0 \quad$ and $\quad(1-d-\alpha+$ $\beta / p) q+d=(1-(d-\beta) / p-\alpha) q>0$, we can choose $\varepsilon>0$ satisfying $(1-d+$ $\beta / q-\varepsilon) p+d>0$ and $(1-d-\alpha+\beta / p-2 \varepsilon) q+d>0$. Since

$$
\begin{aligned}
J_{j} & \leq c_{4}\left(\iint_{D} I_{j}^{q}|z-y|^{-\beta+\varepsilon q} d y\right)^{1 / q}\left(\int_{D}|z-y|^{(1-d+\beta / q-\varepsilon) p} d y\right)^{1 / p} \\
& \leq c_{5}\left(\iint_{D} I_{j}^{q}|z-y|^{-\beta+\varepsilon q} d y\right)^{1 / q}
\end{aligned}
$$

we get, by Lemma D ,

$$
\begin{aligned}
\int J_{j}^{q} d \mu(z) \leq c_{6} \int & \int\left|g_{2}\left(x_{1}, x_{2}\right)\right|^{q} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right) \\
& \int_{D}\left|x_{j}-y\right|^{(1-d-\alpha+\beta / p-2 \varepsilon) q} d y \int_{D}|z-y|^{-\beta+\varepsilon q} d \mu(z) \leq c_{7}\left\|g_{2}\right\|_{q}^{q}
\end{aligned}
$$

whence

$$
\begin{equation*}
\int\left(\sup _{x \in \Gamma_{\tau}^{e}(z)}\left|\int_{D}\left\langle\nabla_{y} S_{2} g_{2}(y), \nabla_{y} N(x-y)\right\rangle d y\right|^{q}\right) d \mu(z) \leq c_{8}\left\|g_{2}\right\|_{q}^{q} \tag{5.8}
\end{equation*}
$$

We next consider a bounded continuous function g_{2} on $\partial D \times \partial D$. We claim that (5.7) for $S_{2} g_{2}$ holds for every $z \in \partial D$.

To show this, let $y \in D$. Then
$\left|\nabla S_{2} g_{2}(y)\right|$

$$
\leq c_{9}\left\|g_{2}\right\|_{\infty} \iint\left|x_{1}-x_{2}\right|^{-\beta / p+\varepsilon}\left(\sum_{j=1}^{2}\left|x_{j}-y\right|^{1-d-\alpha-\varepsilon}\right) d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)
$$

where $\left\|g_{2}\right\|_{\infty}=\sup \left\{\left|g_{2}\left(x_{1}, x_{2}\right)\right| ; x_{1}, x_{2} \in \partial D\right\}$.
Choose $\lambda>0$ satisfying $d-\beta>\lambda>\alpha-(\beta-d+1)$. Since $(1-d-\alpha+$ $\beta / q+\lambda) p+\beta=(1-d-\alpha+\beta+\lambda) p>0$, we pick $\varepsilon>0$ satisfying $(1-d-\alpha+$ $\beta / q+\lambda-2 \varepsilon) p>-\beta$. Then, by Lemma D ,

$$
\begin{aligned}
& \left|\frac{\partial S_{2} g_{2}}{\partial y_{k}}(y)\right| \delta(y)^{\lambda} \\
& \quad \leq c_{10}\left\|g_{2}\right\|_{\infty} \sum_{j=1}^{2}\left(\iint\left|x_{1}-x_{2}\right|^{-\beta+\varepsilon p}\left|x_{j}-y\right|^{(1-d-\alpha+\beta / q-2 \varepsilon+\lambda) p} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)\right)^{1 / p} \\
& \quad \times\left(\iint\left|x_{j}-y\right|^{-\beta+q \varepsilon} d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)\right)^{1 / q} \leq c_{11}\left\|g_{2}\right\|_{\infty}
\end{aligned}
$$

Let $w \in \Gamma_{\tau}^{e}(z)$. Noting that

$$
|w-y| \geq c_{12}|z-y| \quad \text { for all } y \in D
$$

and using Lemmas E and C , we get

$$
\begin{align*}
& \left|\int_{D}\left\langle\nabla_{y} S_{2} g_{2}(y), \nabla_{y}(N(w-y)-N(z-y))\right\rangle d y\right| \tag{5.9}\\
& \quad \leq c_{13}|w-z|^{\varepsilon_{1}}\left\|g_{2}\right\|_{\infty} \int_{D} \delta(y)^{-\lambda}|z-y|^{1-d-\varepsilon_{1}} d y \\
& \quad \leq c_{14}|w-z|^{\varepsilon_{1}}\left\|g_{2}\right\|_{\infty},
\end{align*}
$$

where we picked $\varepsilon_{1}>0$ satisfying $1-\lambda-\varepsilon_{1}>0$. Thus we see that the claim is true.

Using the claim and (5.8), we can show (5.7) for $S_{2} g_{2}$. It is easy to show (5.7) for $S_{1} g_{1}$.

Lemma 5.3. Let $g_{1} \in L^{q}(\mu), g_{2} \in L^{q}(\mu \times \mu)$ and $\left\{\phi_{t}\right\}_{0<t<1}$ be a mollifier on \mathbf{R}^{d} such that supp $\phi_{t} \subset B(0, t)$. Under the same assumtions as in Lemma 4.2 we get

$$
\begin{equation*}
\int_{\delta(y)<2 t}\left|\frac{\partial}{\partial y_{i}} \phi_{t} * S_{j} g_{j}\right|^{q} d y \leq c\left\|g_{j}\right\|_{q}^{q} \tag{5.10}
\end{equation*}
$$

for $j=1,2$, where c is a constant independent of t and g_{j}.
Proof. We will prove (5.10) only for $j=2$. Suppose $\delta(y)<2 t$ and put

$$
\begin{aligned}
& F_{1}:=\{(v, w) \in \partial D \times \partial D ;|y-v| \leq 4 t,|y-w| \leq 4 t\}, \\
& F_{2}:=\{(v, w) \in \partial D \times \partial D ;|y-v|>4 t,|y-w| \leq 2 t\}, \\
& F_{3}:=\{(v, w) \in \partial D \times \partial D ;|y-v| \leq 2 t,|y-w|>4 t\}, \\
& F_{4}:=\{(v, w) \in \partial D \times \partial D ;|y-v|>2 t,|y-w|>2 t\} .
\end{aligned}
$$

We write, for $x \in B(y, t)$,

$$
\begin{aligned}
S_{2} g_{2}(x)= & -\iint_{(\partial D \times \partial D) \backslash F_{4}} \frac{N(v-x)-N(w-x)}{|v-w|^{(\beta / p)+\alpha}} g_{2}(v, w) d \mu(v) d \mu(w) \\
& -\iint_{F_{4}} \frac{N(v-x)-N(w-x)}{|v-w|^{(\beta / p)+\alpha}} g_{2}(v, w) d \mu(v) d \mu(w) \equiv J_{1}(x)+J_{2}(x) .
\end{aligned}
$$

Noting that $(\partial D \times \partial D) \backslash F_{4} \subset F_{1} \cup F_{2} \cup F_{3}$, we write again

$$
\begin{aligned}
\left|\frac{\partial}{\partial y_{i}}\left(\phi_{t} * J_{1}\right)(y)\right|= & \left|\int \frac{\partial \phi_{t}}{\partial y_{i}}(y-x) J_{1}(x)\right| d x \\
\leq & c_{1} t^{-d-1} \sum_{k=1}^{3} \int_{|y-x|<t} d x \\
& \times \int_{F_{k}} \frac{|N(v-x)-N(w-x)|}{|v-w|^{(\beta / p)+\alpha}}\left|g_{2}(v, w)\right| d \mu(v) d \mu(w) \\
\equiv & J_{11}(y)+J_{12}(y)+J_{13}(y) .
\end{aligned}
$$

Let us first estimate J_{11}. Lemma E implies

$$
\begin{aligned}
& J_{11}(y) \\
& \leq c_{2} t^{-d-1} \int_{|y-x|<t} d x \int_{F_{1}} \frac{|v-x|^{2-d-\alpha-\varepsilon}+|w-x|^{2-d-\alpha-\varepsilon}}{|v-w|^{(\beta / p)-\varepsilon}}\left|g_{2}(v, w)\right| d \mu(v) d \mu(w) \\
& \equiv J_{111}(y)+J_{112}(y) .
\end{aligned}
$$

Since $q(2-d-\alpha+\beta / p)+d>0$, we choose $\varepsilon>0$ satisfying $q(2-d-\alpha+$ $(\beta / p)-2 \varepsilon)>0$. Then

$$
\begin{aligned}
J_{111}(y) \leq & c_{2} t^{-d-1}\left(\int_{|y-x|<t} d x \iint_{F_{1}}|v-w|^{-\beta+\varepsilon p}|v-x|^{-\beta+\varepsilon p} d \mu(v) d \mu(w)\right)^{1 / p} \\
& \times\left(\int_{|y-x|<t} d x \iint_{F_{1}}|v-x|^{q(2-d-\alpha+\beta / p-2 \varepsilon)}\left|g_{2}(v, w)\right|^{q} d \mu(v) d \mu(w)\right)^{1 / q}
\end{aligned}
$$

Since a similar estimate for J_{112} is also obtained, Lemmas C and D lead to

$$
\int_{\delta(y)<2 t} J_{11}(y)^{q} d y \leq c_{3} q^{q(1-\alpha-(d-\beta) / p)}\left\|g_{2}\right\|_{q}^{q}
$$

We next estimate J_{12}. Noting that $(v, w) \in F_{2}$ and $|x-y|<t$ imply $|v-w|>2 t$ and $|v-x|>3 t \geq|w-x|$. Using Lemma E , we have

$$
\begin{aligned}
J_{12} \leq & c_{4} t^{-d-1} \int_{|y-x|<t} d x \int_{F_{2}} \frac{|v-x|^{2-d-\alpha+\varepsilon}+|w-x|^{2-d-\alpha+\varepsilon}}{|v-w|^{(\beta / p)+\varepsilon}}\left|g_{2}(v, w)\right| d \mu(v) d \mu(w) \\
\leq & c_{5} t^{-d-1} \int_{|y-x|<t} d x \int_{F_{2}}|v-w|^{-\beta / p-\varepsilon}|w-x|^{2-d-\alpha+\varepsilon}\left|g_{2}(v, w)\right| d \mu(v) d \mu(w) \\
\leq & c_{5} t^{-d-1}\left(\int_{|y-x|<t} d x \iint_{F_{2}}|v-w|^{-\beta-\varepsilon p}|w-x|^{-\beta+\varepsilon p} d \mu(v) d \mu(w)\right)^{1 / p} \\
& \times\left(\int_{|y-x|<t} d x \iint_{F_{2}}|w-x|^{q(2-d-\alpha+\beta / p)}\left|g_{2}(v, w)\right|^{q} d \mu(v) d \mu(w)\right)^{1 / q} .
\end{aligned}
$$

With the aid of Lemmas C and D we conclude

$$
\begin{equation*}
\int_{\delta(y) \leq 2 t} J_{12}(y)^{q} d y \leq c_{6} t^{q(1-\alpha-(d-\beta) / p)}\left\|g_{2}\right\|_{q}^{q} \tag{5.11}
\end{equation*}
$$

We also obtain the estimate (5.11) for J_{13} by exchanging the roles of v and w. We finally estimate J_{2}. Noting that

$$
\frac{\partial}{\partial y_{i}}\left(\phi_{t} * J_{2}\right)(y)=\left(\phi_{t} *\left(\frac{\partial}{\partial y_{i}} J_{2}\right)\right)(y)
$$

we get

$$
\int_{\delta(y) \leq 3 t}\left|\frac{\partial}{\partial y_{i}}\left(\phi_{t} * J_{2}\right)(y)\right|^{q} d y \leq c_{7} \int\left(\mathscr{M}\left(\frac{\partial}{\partial y_{i}} J_{2}\right)\right)^{q} d y \leq c_{8}\left\|g_{2}\right\|_{q}^{q}
$$

by the same method as in the proof of (4.1), where $\mathscr{M}(f)$ is the HardyLittlewood maximal function of f on \mathbf{R}^{d}. Thus we have the conclusion for $S_{2} g_{2}$.

Proof of Theorem 3. We define, for $\psi=\left(g_{1}, g_{2}\right)$,

$$
S \psi=S_{1} g_{1}+S_{2} g_{2}
$$

With the aid of (4.1) we also get $\int_{B(0,2 R)}|\nabla S \psi|^{2} d y<\infty$ and hence $\int_{\mathbf{R}^{d}}|\nabla S \psi|^{2} d y<\infty$ because of $q \geq 2$. Let $\left\{\phi_{t}\right\}_{l>0}$ be a mollifier on \mathbf{R}^{d} such that supp $\phi_{t} \subset B(0, t)$ and set $h_{t}:=\phi_{t} * S \psi$. Then h_{t} is a C^{1}-function on \mathbf{R}^{d} and

$$
\frac{\partial h_{t}}{\partial y_{i}}(y)=\left(\phi_{t} * \frac{\partial S \psi}{\partial y_{i}}\right)(y) \quad \text { for every } y \text { with } \delta(y)>2 t
$$

Since h_{t} is a Lipschitz function on $\mathbf{R}^{d}, h_{t} \mid\left(\mathbf{R}^{d} \backslash D\right) \in \mathscr{U}_{\alpha}^{p}\left(\mathbf{R}^{d} \backslash D\right)$. Using Theorem 2 and Lemma 5.2 we get

$$
\int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla h_{t}(y), \nabla_{y} N(z-y)\right\rangle d y=\int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla \mathscr{E}\left(h_{t} \mid \partial D\right)(y), \nabla_{y} N(z-y)\right\rangle d y
$$

for every $z \in \partial D$ and $t>0$. Since $\langle K f+f / 2, \psi\rangle=0$ for every Lipschitz function f, we have

$$
\begin{aligned}
\int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla h_{t}(y), \nabla_{y} S \psi(y)\right\rangle d y & =\int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla \mathscr{E}\left(h_{t} \mid \partial D\right)(y), \nabla_{y} S \psi(y)\right\rangle d y \\
& =\left\langle\left\langle K h_{t}+\frac{h_{t}}{2}, \psi\right\rangle\right\rangle=0 .
\end{aligned}
$$

On the other hand we note that

$$
\left|\nabla h_{t}(y)\right| \leq \sum_{i=1}^{d}\left|\left(\phi_{t} * \frac{\partial S \psi}{\partial y_{i}}\right)(y)\right| \leq c_{1} \sum_{i=1}^{d} \mathscr{M}\left(\frac{\partial S \psi}{\partial y_{i}}\right)(y)
$$

for all y with $\delta(y)>2 t$. Since

$$
\int_{\mathbf{R}^{d}} \mathscr{M}\left(\frac{\partial S \psi}{\partial y_{i}}\right)^{2} d y \leq c_{2} \int_{\mathbf{R}^{d}}|\nabla S \psi|^{2} d y<\infty
$$

and

$$
\lim _{t \rightarrow 0}\left\langle\nabla h_{t}(y), \nabla_{y} S \psi(y)\right\rangle=|\nabla S \psi(y)|^{2}
$$

for every $y \in \mathbf{R}^{d} \backslash \partial D$, we have

$$
\int_{\mathbf{R}^{d} \backslash \bar{D}}|\nabla S \psi(y)|^{2} d y=\lim _{t \rightarrow 0} \int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla h_{t}(y), \nabla_{y} S \psi(y)\right\rangle d y=0 .
$$

From this we deduce

$$
S \psi=\text { const. on } \mathbf{R}^{d} \backslash \bar{D}
$$

Noting that $\lim _{y \rightarrow \infty} S \psi(y)=0$, we have

$$
S \psi=0 \quad \text { in } \mathbf{R}^{d} \backslash \bar{D}
$$

Lemma 5.1 yields

$$
S \psi(z)=\lim _{y \rightarrow z, y \in \Gamma_{\tau}^{e}(z)} S \psi(y)=0 \quad \text { for } \mu \text {-a.e. } z \in \partial D
$$

Since $S \psi \in \mathscr{U}_{\alpha}^{p}(\bar{D})$ by Lemma 4.2, we have, by Theorem 1,

$$
\begin{equation*}
\int_{D}\langle\nabla S \psi(y), \nabla N(x-y)\rangle d y=\int_{D}\langle\nabla \mathscr{E}(S \psi \mid \partial D), \nabla N(x-y)\rangle d y=0 \tag{5.12}
\end{equation*}
$$

for all $x \in \mathbf{R}^{d} \backslash \bar{D}$. Using Lemma 5.2 and (1.11), we see that (5.12) holds for μ a.e. $x \in \partial D$. Therefore we have

$$
\int_{D}|\nabla S \psi|^{2} d y=0
$$

whence $S \psi=$ const. in D. Hence, by (1.11),

$$
\left\langle\left\langle K f-\frac{f}{2}, \psi\right\rangle\right\rangle=-\int_{D}\left\langle\nabla \mathscr{E}(f)(y), \nabla_{y} S \psi(y)\right\rangle d y=0
$$

for every Lipschitz function f on ∂D. Since, by (1.10),

$$
\left\langle\left\langle K f+\frac{f}{2}, \psi\right\rangle\right\rangle=\int_{\mathbf{R}^{d} \backslash \bar{D}}\left\langle\nabla \mathscr{E}(f)(y), \nabla_{y} S \psi(y)\right\rangle d y=0,
$$

we get

$$
\langle f, \psi\rangle>=\left\langle\left\langle K f+\frac{f}{2}, \psi\right\rangle\right\rangle-\left\langle\left\langle K f-\frac{f}{2}, \psi\right\rangle\right\rangle=0
$$

for every Lipschitz function f on ∂D. Since the family of the Lipschitz functions is dense in $\Lambda_{\alpha}^{p}(\partial D)$, we conclude that $\psi=0$.

Similarly we can also prove the following theorem.
Theorem 4. Assume that D, p and α satisfy the same assumptions as in Theorem 3. If $\psi \in \Lambda_{\alpha}^{p}(\partial D)^{\prime}$, $\langle 1, \psi \gg=0$ and $\langle K f-f / 2, \psi \gg=0$ for every Lipschitz function f on ∂D, then $\psi=0$.

References

[H] J. E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J. 30 (1981), 713-747.
[HN] J. Harrison and A. Norton, Geometric integration on fractal curves in the plane, Indiana Univ. Math. J. 40 (1991), 567-594.
[JW] A. Jonsson and H. Wallin, A Whitney extension theorem in L_{p} and Besov spaces, Ann. Inst. Fourier, Grenoble 28, 1 (1978), 139-192.
[S] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton- New Jersey, 1970.
[W1] H. Watanabe, The double layer potentials for a bounded domain with fractal boundary, Potential Theory-ICPT94, 463-471, Walter de Gruyter, Berlin-New York, 1996.
[W2] H. Watanabe, Layer pontetials for a bounded domain with fractal boundary, Sci. Bull. Josai Univ. 1 (1997), 33-44.
[W3] H. Watanabe, Double layer potentials of functions in a Besov space for a bounded domain with fractal boundary, Proceedings of the Fifth International Colloquim on Complex Analysis, 337-343, Beijing, 1997.

Department of Mathematics
Faculty of Science
Ochanomizu University
Bunkyou-ku, Tokyo, 112-8610 Japan

[^0]: 2000 Mathematics Subject Classification. 31B15
 Key words and phrases. Fractal boundary, Layer potentials, Whitney decomposition, Extension operator.

