
HIROSHIMA MATH. J.
30 (2000), 55-77

Uniqueness of double layer potentials for a domain with

fractal boundary

Hisako WATANABE
(Received December 9, 1998)

(Revised April 15, 1999)

ABSTRACT. The double layer potentials for a bounded domain with fractal boundary

depends on an extension operator on a space of functions on the boundary. We give a

sufficient condition to define them uniquely and apply it to prove the injectivity of an

operator with respect to the Dirichlet problem.

1. Introduction

Let D be a bounded smooth domain in R^ (d > 3). The double layer
potential Φg of geLp(dD) is defined by

(1.1) Φg(x) = ~\ (VyN(x-y),nyyg(y)dσ(y),
JdD

where N(x - y) is the Newton kernel, ny is the unit outer normal to dD and σ
is the surface measure on dD. The function Φg is harmonic in Rd\dD and has
a nontangential limit at σ-almost every boundary point.

If D is a domain with fractal boundary, then ny and σ can not be
considered and hence (1.1) is not defined. But we introduced double layer
potentials in [Wl] and [W3], in case d > 2 and dD is a /?-set for β satisfying
d — 1 < β < d. According to A. Jonsson and H. Wallin we say that a closed
set F is a /?-set if there exist a positive Radon measure μ on F and positive real
numbers b\, b2 such that

(1.2) bιrβ < μ(B(z, r) Π F) < b2r
β

for all z e F and all r < ΓQ, where B(z, r) stands for the open ball with center z
and radius r in R^. Such a measure μ is called a /ί-measure.

We shall give some examples.
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1. If D is a bounded Lipschitz domain in R^, then dD is a (d — l)-set and

the surface measure is a (d — 1)-measure.

2. If dD consists of a finite number of self-similar sets, which satisfies the
open set condition, and whose similarity dimensions are β, then dD is a /?-set

and the /J-dimensional Hausdorff measure restricted to dD is a β-measure (cf.
[H]). A typical example is the Von Koch snowflake in R2.

Let us fix a positive real number R such that D c B(Q,R/2} and R > 1,
and a ^-measure μ on dD.

Since every function / eLp(μ) has an extension $(f) such that £(f) is a

C°°-function in Rd\dD9 we define, for f ε Λ*(dD), the double layer potential
by

(1.3) Φf(χ) = f <Vyf(f)(y),VyN(x-y)ydy
JRd\D

for x e D and

(1.4) φ/(jc) = -[ <F^
JD

for Λ: e R^\5, where

^2 if ^ > 3

5R x-y\ . _

2π 5R

and ωj stands for the surface area of the unit ball in R^. Here Λ%(F) for a
closed subset F of R^ is a Banach space defined by

Λ>(F) = f € L"(μ) : " dμ(x)dμ(y) < oo

with norm

We saw in [W3] that Φf is harmonic in Rd\dD and has a similar boundary

behavior to that for an usual double layer potential.
Our definition of the double layer potentials depends on the choice of

an extension operator. Under what conditions is the definition independent of
an extension operator? In this paper we will give an answer to this problem.
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Moreover we apply it to prove that an operator on the conjugate of Λ^(dD) is
injective. The operator plays an important role to solve the Dirichlet problem
with boundary data in Λ%(dD) by the layer potential method.

More precisely, denote by i^(G) the Whitney decomposition of an open
set G and by Vk(G) the union of fc-cubes in 'f(G). We shall mention the

Whitney decomposition in §2. Pick an integer ΠQ satisfying 2~"° > lOCXRv^

and denote by β(«o) the open cube with center 0 and common side-length 2~"°.
Further put

(1.5) An:=(jk<nVk(D) and Bn = (jk^nVk(Q(n0)\D)

for each natural number n.

Let τ > β - (d - 1) > 0 and p > 1. We denote by <%*(D) the family of all
Borel measurable functions / defined on D having the following properties:

(i) / is of C1 -class in D,
(ii) There exists n\ e N such that

(1.6) [ dσn(y}\
JdAn J{\y-w\<b2-»}ndD

for every n>n\, where b = 6Vd, Cf is a constant independent of «, and σn

stands for the surface measure on dAn,

(1-7) [ \Vf(y)\dy
JD

«x>.

We also denote by <%%(Rd\D) the family of all measurable functions/on

Rd\D such that/has the properties (i)-(iii) (SAn and D are replaced with 8Bn Π
B(Q,2R) and Rd\D, respectively) and

(iv) f ( x ) tends to 0 as |jc| —> oo.

Further we denote by ^(Rd) the family of all functions / defined on R^

such that f\De<ίtζ(D) and f\(Rd\D) e <%ζ(Rd\D).
In §3 we will prove the following therem.

THEOREM 1. Assume that D is a bounded domain in Rd (d > 2) such that
dD is a β seΐ. Further let 1 > τ > β - (d - 1) > 0 and p > 1. We then have,

for /i, f2ε<%*(D) such that fλ = /2 μ-a.e. on dD,

(1-8) f <Vfι(y),VN(x-y)ydy=\ <Vf2(y),VN(x -
JD JD

for each x 6 Rd\D.

We now denote by Aζ(dD)' the space of all bounded linear functionals on

A?(dD) and write
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«f,ψ» : = ψ ( f ) forfeΛ?(dD) and

By the Hahn-Banach extension theorem, there exist, for each
g\ e Lq(μ) and g2 e Lq(μ x μ) such that

«/,*» = f9ldμ+
— z

for every / e A*(dD), where q = p/(p - 1). We write ψ = (#1,02).
We then define an operator K on Λ?(dD) by

(1.9) Kf(z) := l- f <V*(f)(y),VyN(z -
^jRdD

if it is well-defined and Kf(z) = 0 otherwise.
We saw in [W3] that

(1.10) Kf(z)+^= lim f <Vf(f)(y),VyN(x-y)ydy
2 x-*z,xeΓτ(z)Jwi\])

for μ-a.e. z e 3D and

(1.11) κf(z)-ί&=- lim f <yS(f)(y),VyN(x-y) >dy
L x^z,xeΓe

τ(z) )D

for //-a.e. z e <λD, where

and

Π(z) = {j e (R«\D) Π 5(0, Λ); \y - z\ < (1

Here <5(j) stands for the distance of y from 3D.
We also saw in [W2] that, if /is a Lipschitz function on dD, so is Kf.

Using Theorem 1, we will prove the following theorem in §5.

THEOREM 3. Assume that D is a bounded domain in R^ (d> 3) such that
Rd\D is connected and dD is a β-set. Further assume that B(z,r) Γ\Γτ(z) φ 0
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and B(z, r) Π Γ*(z) Φ 0 for all z e dD and 0 < r < r0. If 1 < p < 2, 1 -
(d-β)/p>*>β-(d-\)>Q, \l/eA*(dD)' and «Kf + f/2,ψ» = 0 for
every Lipschίtz function f on dD, then ψ = 0.

2. Construction of an extension operator

Hereafter we assume that Z) is a bounded domain in R^ such that the

boundary is a β-set satisfying d - 1 < β < d and D c £(0, jR/2) ( / Z > 1 ) . Fix

a positive Radon measure μ on 5Z> satisfying (1.2) for F = dD. We may

assume that ΓQ > 3R.
To extend / eLp(μ), we use a Whitney decomposition.

More precisely, let G be an open set in Rd. A cube β is called a λ>cube if

it is of the form

-*],

where k, l\,...,ld are integers. We denote by i^k(G) the family of all k-

cubes in G and set ιT(G) = \J^=_^k(G). It is well-known that a Whitney

decomposition of G can be chosen as follows (cf. [HN, p. 572]).

THEOREM A. Let G be a nonempty bounded open set in R^. Then there

exists a family i^(G) — {βy} of cubes in if(G) having the following properties:

(i) \JjQi = G9

(ii) intβy nintβΛ = 0 (j*k),
(iii) diam β; < dist(β;, R^\G) < 4 diam β;,

(iv) If k>\ and Qe τT(G) Π τί^(G), /A^w ^c/z fc-cwfee touching β w

contained in G.

Here mi A, diam ^4 and dist(^,5) stand for the interior of A, the diameter of A

and the distance between A and B, respectively.

Let An, Bn be the sets defined by (1.5). We see by Theorem A that the

boundaries of An and Bn consist of some surfaces of rc-cubes in D and β(«o)\A

respectively.

Fix a positive real number η satisfying η < 1/4 and choose a C°° -function

φ on R^ such that

(2.1) ^ = l o n β 0 , supp^cz (1 +^)β0, 0 < ^ < 1 ,

where βo is the closed cube of unit length centered at the origin and (1 -f η)Qo

stands for the set {(1 + η)x : x e βo}.

Let {β/} be the family

, β is a fc-cube for k satisfying 2~k <4R}.
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Further let q^\ lj be the center of Qj and the common length of its
sides, respectively. For each j pick a point a^ e dD satisfying dist(δZ), Qj) =
dist(έϊ(Λ,gy) and fix it. Set

«"• -̂
Let ? > 1 and / e L*(μ). We define

if x e 5(0, 3R)\dD and <ίo (/)(*) - /(*) if x e dD. Noting that x e 5(0, 35)
is contained in some fc-cube satisfying 2~k < 45, δ^(f) is a C°° -function in
5(0,35)\d/λ Choose a C°° -function ^0 satisfying

^o = l on 5(0, ̂ ) , supp φQ c 5(0, 25), 0 <

and define

if *
1 0 otherwise.

Then δ(f) is a C°° -function in Rd\dD and supp δ(f) c=5(0,25).
Though the definition of δ(f) is slightly different from that in [W3], they

coincide eventually since δ$(f) defined above takes the same values in 5(0,25)
as that in [W3].

We gave the following estimate for \Vδ(f)\ of f ε A?(dD) in [W3, Lemma
2.2].

LEMMA B. Let 1 > α > 0, p > 1, 0 < r < 35, λ e R and f e Λζ(dD}. If
(u.-\)p + d-β + pλ>Q3 then

f \V*(f)(y)\pδ(y)*dy < c\\f\\p

p^-^+d~^λ .
Jδ(y)<r

To prove the above lemma, we need the following fundamental estimate
for a bounded domain whose boundary is a /?-set (cf. [Wl, Lemma 2.3]).

LEMMA C. Let λ, k be a real number. If d - β > λ and d - λ -f k > 0,
then

f δ(yYλ\y-z\kdy<crd-λ+k

JB(z,r)

for every z e dD and 0 < r < 35.
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We shall often use the following lemma, which easily follows from the
definition of a yS-set and the fact that for ε > 0 the function r ι-> rε\og(r/5R) is
bounded on (0,3Λ].

LEMMA D. Let 0 < r < 3R, keRd and z e dD.
(i) If k + β > 0, then

\x-z\kdμ(x)<crβ+k.

(ii) If k + β < 0, ί/ze«

JdD\B(z,r)

(iii) If ε>0 and k + β-ε>0,

0 < - |x - z\k log

Here c is a constant independent of r, z.

3. Uniqueness of double layer potentials

Using the extension operator $ in §2, we defined double layer potentials
by (1.3) and (1.4). Similary we can define them by another extension operator
having adequate properties. Under what conditions are double layer potentials
uniquely defined independent of extension operators? In this section we will
give an answer to this problem.

We begin with the following lemma.

LEMMA 3.1. Let k be a natural number and 0 < r < 2R. Suppose z0 is a
boundary point of D. Then the number m of k-cubes included in J5(zo,r) is at
most c2kPrP, where c is a constant independent of k and r.

PROOF. We may assume 2~k < r and set / = 2~k. Let {β/}76/ be a
family of fc-cubes included in l?(zo,r). Then there exist points zi, . . . ,zn 6 dD

such that U,6/a c: UJLi *(*/>«) and

where b = 6\fd. Using Vitali's covering lemma, we choose a subfamily {Bt}t

of { B ( z j , b l ) } such that

U, 6/ βί c Uli 5B< and
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where 5Bt stands for the ball having the same center as Bt but whose diameter
is five times as large. Considering the ^/-dimensional Lebesgue measure of
these sets and noting that dD is a /?-set, we obtain

ml" = |U/e/β'l * I

< c2(bl)d-βμ(B(z0,

This leads to the conclusion. Π

COROLLARY 3.1. Let n e N . Then

σn(dAn) < c(2-")d-}-β,

where c is a constant independent of n.

PROOF. Note that dAn consists of some surfaces of w-cubes in D. Lemma
3.1 yields

LEMMA 3.2. Let 0 < k < β, z0 6 dD and n e N. Then

(3.1) f \y-z,\-kdσn(y}<c(l-»}d-l-β.
JdAn

and

(3.2) 0
d An

Here c is a constant independent of ZQ and n. We have the same estimates as
(3.1) and (3.2) for the surface integral over dBnΓιB(Q,2R).

PROOF. Set, for each integer /,

Then \y - z0| < 2~l/k for y e Eh Put r/ = 2~l/k. We note that

/I
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where
~" >r7l r/0

Using Lemma 3.1, we have

(3.3) f \y-zQΓkdσn(y)
JdAn

/=/o /=/o

Since l-β/k< 0, Σ£/o S^/^ < oo. So we see that (3.1) holds.
To prove (3.2), choose ε > 0 satisfying k + ε < β. Noting that the

function y κ-> | y - z0|
ε log

5/v

- f
JdAn

is negative and bounded on 5(0, 2Λ), we get

\y

which and (3.1) give (3.2). Similarly we can also obtain the same estimates for
the integral over 8BnΓ\ 5(0, 2R). D

LEMMA 3.3. Let I >τ > β — (d — 1 )>0 and p > 1. Suppose f is a Borel
measurable function on D and of C1 -class in D. If

(3.4) ί \f\'dσn <
JdAn

for a constant c/ independent of n and

then

f <Vf(y),VN(x - y)ydy = 0 for each x e Rd\D.
JD

PROOF. Let x e Rd\D. From the Green formula and Lemma 3.1 we deduce

f <Vf(y),VN(x-y»dy
J An

— f(y}(yN(x — y),nyydσn(y) ^^^(jc)1"^ \f(y)\dσn(y)

ίc2δ(xγ-d(\ \f(y}\l'dσn(y)
\JdAn /

where q = p/(p - 1). Since τ + d-l-β>0, we have the conclusion.
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PROOF of THEOREM 1. Let yedAn and set f = f\ - f2 Noting that
f ( w ) = 0 μ-a.e. on dD and B(y, b2~n) Π 8D contains B(a, Vd2~n) Π dD for some
a e dD, we get

\f(y)\ < cip-Γ'Σ ί IJJOO -
yΓj J 5(^,62-") nan

2 /, y*
\fj(y) - f j ( W ) \ p d μ ( W ) ,

J B(y,b2~n

whence, together with (1.6),

d An

This shows (3.4). It is easy to see that / satisfies other assumptions of Lemma
3.3. Therefore Lemma 3.3 leads to the conclusion. Π

Similarly we have

THEOREM 2. Assume that D, p and τ satisfy the same assumptions as in
Theorem 1 and let /1? f2e<%*(Rd\D). If fλ = /2 μ-a.e. on dD, then

f <Vfl(y),VN(x-y)y<fy= f <Vf2(y),VN(x-
JRd\D JRd\D

for each x e D.

4. Examples of functions in <%*

In this section we consider some examples of functions in <%%
The following two lemmas are well-known or proved by elementary

calculations.

LEMMA E. Let x,y,ze 5(0, 2R), x φ y, z φ y and 0 < ε < 1. Then

\N(x-y)-N(z-y)\

< φ _ Z\*(\χ _ y\-*N(χ _ y) + |Z _ y\~*N(Z _ y))

and

\VyN(X -y)- VyN(z -y)\<c\x- z\\\x - y\ '-"- + \z-y\ l~d-£).

Here c is a constant independent of x, y,z.
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LEMMA F. Let xj, ykeB(Q,2R), Xj ¥= yk (j, k =1,2) and 0 < e, < 1

(7=1,2). Then

ΣΣ
7=1 fc=ι

, - Σ Σ
7=1 fc=l

where c is a constant independent of Xj, yk.

LEMMA 4.1. Let p>l, 1 > α > /? - (d - 1) > 0 and f e Λ£

PROOF. We first show that <?(/) satisfies (1.6). To do so, let Q be a n-
cube with βΠ3Λ^0. Further let yeQΓ\dAn and w e 3D such that
|^-w| <b2"n. Suppose βΠβ* ^0, where β* is the cube with the same

center as Qj and with the common side-length / y (l +2η). Let zeB(a^\ηlj).

Then

|z - w| < I y - z\ + I y - w\ < 2θVd2~n.

Noting that <?(/) = <?0(/) on D and <f0(l) = 1 on Z>, we get

- /Ml < en E^r [
^ // h(a(J\ηlj}

I/W -

Lemma 3.1 yields

\ dσn(y)\
JdQΓίdAn J {\y-w\<b2-"}ndD

Z — W

where a$ is a boundary point corresponding to Q in §2 and b1 is a constant

independent of «. We saw in [W3, Lemma 2.1] that each z e dD is contained
in at most TV numbers of the family {B(cft\b'li) Π3D}, corresponding to the n-
cubes Qi E i^(D\ where N is a natural number independent of n. Using this,

we get
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ί dσn(y)\
JdAn J f | y -{\y-w\<b2-n}ndD

This shows that δ(f) satisfies (1.6) for τ = α.
Similarly we also obtain the estimate (1.6) in which dAn is replaced with

We next see that (1.7) holds for g(f\ Noting that 1 - α - (d-β)/p <
(d - β)/q, we choose λ > 0 satisfying 1 - α - (d - β)/p < λ < (d - β)/q.
Since (α - 1);? + d - β + λp > 0 and λq < d - β, Lemmas B, C imply

JRd\dD
\V*(fi(y)\dy

\JB(Q,2R)\dD

which gives (1.7) for

Let q > 1, 0ι

δ(yΓλqdy\ <oo,

6

D

/ \JB(Q,2R)\dD

and τ = α. Therefore we see that

and 02 e Lq(μx μ). We define, for j; e R^,

i if it is well-defined

otherwise

g2(x,z)dμ(x)dμ(z) if it is well-defined

otherwise,

where p = q/(q — 1) and 1 > α > β — (d — 1) > 0.

LEMMA 4.2. Let 1 < p < 2, 0 = p/(p - 1) αra/ 1 - (d - β)/p > α > β - _
(d — 1) > 0. Then, for g\ e Lq(μ), g2 e Lq(μ x //), SΊ0ι,

if d >3 and S\g\, S2g2

and

^202(^) -

PROOF. We will prove only that S2g2 e ^(RJ) in the case d > 3, which
means S2g2E^ζ(Rd) for p < q. Let y E dAn, wεdD and |j - w\ < b2~n.
Further let ε be a sufficiently small positive number. With the aid of Lemma
F we write
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\S2g2(y) - S2g2(w)

* f f i Σ ^ (
^ — -

J J
\g2(xι,x2)\dμ(xι)dμ(x2)

7=1

Then, by Lemma D,

/ f f
/n < C2|J - H"(J J

/ f f

(JJ |

< C3\y - w|α

The assumptions 1 - (d - β)/p > α and /? < 2 imply 1 - (d - β)/2 > α and
hence q(2 - d — 2α + /?//?) > —jff. So we can pick ε > 0 satisfying q(2 — d —
2a + β/p-2ε) > —β. Then, together with Lemma 3.2 and Lemma D,

\dμ(w) \
J J{\y-{\y-z\<b2-"}Γ\dAn

JdAn {\y-w\<b2-"}ndD
dμ(W)

where

Similarly we can estimate I^\.

1/ί?
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We next estimate I\2. Since

/ f f
In < cβ\y - H"(J] \92(Xl, x2)H*ι - W\^-

we get, by Lemma 3.1 and Lemma D,

\dμ(w) \ I?2dσn(y}
J J{\y-w\<b2-»}Γ\dAa

< cΊ (2-) ?α

{\y-w\Zb2-*} (\dA,

Similarly we obtain the same estimate for

Therefore we have

{\y-w\<b2-n}f}dAn

Similarly we cam also get

{\y-w\<b2-n}Γ\dBnΓ(B(Q,2R)

We next estimate the volume integral of the gradient of S2g2. Let y e

B(Q,2R)\dD. We write, for a sufficiently small ε > 0,

< cn x -

= /3+/4

Then, by Lemma D,

z-
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1/P

h < en Q| \x - z\~β+pε\x - y\-β+pεdμ(x)dμ(z)J

>2(x,z)\9\x - y\(l-d-«-2ε+β/p]qdμ(x)dμ(.

Noting that (1 -d — ct + β/p)q > —d, we choose ε > 0 satisfying (l-d-aι
2ε + β/p)q>-d. Then

B(Q,2R)\dD

< CH \\\g2(X)z)\<dμ(X)dμ(z) \X-
JJ

Since the same estimate for 74 is obtained, we have

(4.1) f \VS2g2(y)\*dy
JB(0,2R}\dD

< 00

and hence

f \VS2g2(y)\dy«x>.
JB(Q,2R}\dDJB(Q,2R)\dD

Further it is easy to see that

\VS2g2(y)\dy«x>.

Since S2g2 is a C1-function in Rd\dD, we conclude that S2g2 G <%q(Rd). D

5. Proof of Theorem 3

In this section we give the proof of Theorem 3. We prepare the following

lemma.

LEMMA 5.1. Let q > 1, 0 < α < 1 and g\ e Lq(μ), g2 e Lq(μ x μ). Then

(5.1) lim t Sjgj(x) = Sjgj(z) (j =1,2)
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and

(5.2) lim Sjgj(X) = Sjgj(z) (j = 1,2)
X—*Z,XeΓξ(Z)

for μ-a.e. z e dD.

PROOF. Let z e dD and x e Γτ(z) U Γξ(z). Put

A = {yedD;\y-z\<2\x-z\}

and

B={yedD;\y-z\>2\x-z\}.

If y E A, then

1 -n-"w- 1 + τ - 2 ( l+τ)

If y € B, then

-j| > \y-z - z - x

From these we get

(5.3) \x-y\>cλ\y-z\ for all x e Γτ(z) U Γe

τ(z) and for all j e dD.

So

I S i f f i W I < C2 IN(Z - y)\gλ(y)\dμ(y).

With the aid of Lemma E we also get

-̂ ^

for a sufficiently small £ > 0 satisfying 2 - d - α - 2 ε > -/?. Therefore, by
Lemma D, we get

(5.4) [ sup \Sιgι(x}\qdμ(z}<C4\\gι\\q

q

J x ε Γ τ ( z ) ( J Γ e

τ ( z )

and

(5.5) f sup \S292(X)\«dμ(z)<c5\\g2\\«.
J x e Γ τ ( z ) U Γ ' , ( z )
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Especially if g\ and g2 are bounded on dD and dD x dD, respectively, we
get

(5.6) lim Sjgj(x) = Sj9j(z} (j = 1,2)
x— >z, xεΓτ (z) U Γe

τ (z)

for every z e dD. From (5.4), (5.5) and (5.2) we deduce (5.1) by the usual

method. Π

LEMMA 5.2. Let g\eLq(μ) and g2eLq(μxμ). Under the same con-
ditions as in Lemma 4.2

(5.7) lim f <V(Sjβj)(y), VyN(x - y)}dy = \ <y(Sj9j)(y),VyN(z - y)ydy
x-^z,x<=Γe

τ(z) JD JD

and

lim f <y(Sjgj)(y),VyN(x - y)ydy = f <V(Sjgj)(y), VyN(z - y)~)dy
x^z,xeΓτ(z) jRd\D JRd\D

for μ-a.e. z e dD and for j = 1,2.

PROOF. We will show (5.7) only for S2#2 Let z e dD, xεΓe

τ(z) and
y E D. Writing, for a sufficiently small ε > 0,

\VS2g2001 <cι II \xι-.

we have, by Lemma D,

/ f f V
Ij < C! y J I*! - x2\-β+*\Xj - yΓβ+εpdμ(Xl)dμ(X2)j

/ Γ Γ X 1

(J J l02(x,,X2)|?k; - y\(l-d-*+β/p-2t»dμ(Xl)dμ(X2ή

whence, together with (5.3),

[ <VyS2g2(y),VyN(x-y)ydy
JD

\VyS2g2(y)\\z - y\l~ddy
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Noting that (1 - d + β/q)p + d = (1 - (d -β)/q)p > 0 and ( l - < / - α +
/?//?)# + d = (1 - (d - β)/p - a)q > 0, we can choose e > 0 satisfying (1 -
β/q-ε}p + d>0 and (1 - rf - α + /?/> - 2ε)# + d > 0. Since

If\z -
l/<7 !//>

we get, by Lemma D,

I \x _
JD

[
JD

z _ < cΊ\\g2\\«q,

whence

(5.8) sup
J \xeΓe

τ(z) JD
<VyS2g2(y),VyN(X-y)ydy

We next consider a bounded continuous function #2 on dD x 3D. We
claim that (5.7) for £202 holds for every z e dD.

To show this, let y e D. Then

\VS2g2(y)\

\xι -x2\
ε }dμ(xι)dμ(x2),

where H^IL = sυp{\g2(xι,x2)\;xι,x2e dD}.
Choose λ > 0 satisfying d-β>λ><*-(β-d+l). Since (1 - rf - α +

y5/^ + λ)p + ̂  = (1 - d - α: + y5 + A)/? > 0, we pick ε > 0 satisfying (1 - d - α +
β/q + λ- 2ε)p > -β. Then, by Lemma D,

< cιo\\g2

X y - y\-β+qεdμ(Xl)dμ(x2)J < cn
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Let weΓ*(z). Noting that

|w - y\ > c\2\z — y\ for all y e D

and using Lemmas E and C, we get
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(5.9)

L
where we picked εi > 0 satisfying I — λ — ε\ > 0. Thus we see that the claim is
true.

Using the claim and (5.8), we can show (5.7) for 8292- It is easy to show
(5.7) for Stfi. D

LEMMA 5.3. Let g\ e Lq(μ), g2 e Lq(μ x μ) and {^}o<α<ι be a mollίfier on
such that supp φt c 5(0, t). Under the same assumtίons as in Lemma 4.2 we

get

(5.10)
Jδ(y}<2t

d
dy < c\\gj\\q

q

for j — 1,2, where c is a constant independent of t and QJ.

PROOF. We will prove (5.10) only for j = 2. Suppose δ(y) < 2t and put

FI := {(ϋ, w) e dD x dD', \y - v\ < 4t, \y - w\ < 4/},

F2 := {(t?, w) e dD x dD', \y-v\> 4t, \y-w\< 2ί},

F4 := {(υ, w}edDx dD] \y - v\ > 2t, \y-w\> 2t}.

We write, for xεB(y,t),

N(v -x)- N(w - x)

(dDxdD)\F4 V — W

-II -g2(v,w}dμ(v}dμ(w) = Jι(x
JF4 \V — W[

Noting that (dD x dD)\F4 c FI UF 2 UF 3 , we write again
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= h?0'-*)Ί(*)

< c\t-d-l ΣJ,k=λ J\y-χ

dx

dx

\N(V-x)-N(W-x)\
\g ι(v,w)\dμ(v)dμ(w)

Let us first estimate J\\. Lemma E implies

t-d-\ \.,Λ- .\2-d-*-'+ w_χl2-d-«-ε

\V — W (β/p)-*
\92(v,w)\dμ(v)dμ(w)

Since q(2 - d - α + jS//?) + d > 0, we choose ε > 0 satisfying q(2 - d - α +
(/?//?) - 2e) > 0. Then

O f f \l/P

dx\\ v- w\~β+εp\v - x\-β+εpdμ(v)dμ(w)
\y-x\<t JJFl J

O f f \17^
dx\\ \v- x\q(2-d-«+β/p-^\g2(υ, w)^dμ(v)dμ(w) .

\y-x\<t JJF, J

Since a similar estimate for J\u is also obtained, Lemmas C and D lead to

[
Jδ(Jδ(y)<2t

We next estimate J\2. Noting that (t;, w ) e / 2 and \x — y\ < t imply

\v — w\ > 2t and \v — x > 3t > \w — x\. Using Lemma E, we have

\ dx\ l-
J\y-x\<t JF2

2_rf_α + ^

\v — w (β/P)+ε
\92(v,w)\dμ(v)dμ(w)

*+ε\g2(v,w)\dμ(v)dμ(w)

l/P

< c5Γ
d~l f dx \ \v -

i\y-x\<t JF2

dx\\ \v-w\~β-εp\w-x\-β+εpdμ(v)dμ(w)
J J F 2

\\
JJ

J\y-x\<t J J F 2

x dx
\J\y-x\<t J J F 2
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With the aid of Lemmas C and D we conclude

(5.Π) f J\ι(y)qdy < ctflV-*-«-®M\\g2\\q

q.
Jδ(y}<2t

We also obtain the estimate (5.11) for /π by exchanging the roles of v and w.
We finally estimate /2 Noting that

we get

ϊ 9
dy < CΊ

by the same method as in the proof of (4.1), where J ί ( f ) is the Hardy-
Littlewood maximal function of /on R^. Thus we have the conclusion for

£202. D

PROOF of THEOREM 3. We define, for ψ = (#1,02),

Sψ = Sigi + S2g2.

With the aid of (4.1) we also get J5(0 2Λ) \VS\l/\2dy < oo and hence
JR</ \VSψ\2dy < oo because of q > 2. Let {φt}t>0 be a mollifier on R^ such that
supp φt c 5(0, t) and set ht := φt * Sψ. Then ht is a C1 -function on R^ and

- (y) = φt * ( j) for every ^ with 5(,y) > 2t.

Since A/ is a Lipschitz function on R^, ht\(Rd\D) e^(Rd\D). Using The-
orem 2 and Lemma 5.2 we get

f <Vh,(y),VyN(z - y»dy = \ <y£(ht\dD)(y),VyN(z -
jRd\D JRd\Dd\D JRd\D

for every z e dD and t > 0. Since ζ^Kf -f //2, φ^ = 0 for every Lipschitz

function /, we have

On the other hand we note that
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for all y with δ(y) > 2t. Since

f fdSψ\2 , f . _ . ,2 ,
Ji[ —— ] ay < CΊ\ \VSψ\ ay < co

JR^ \^, / V

and

/->o

></for every y e Rd\dD, we have

f \VSψ(y)\2dy = lim f <Vht(y),VySψ(y)ydy = 0.
JRd\D °̂ JRd\D

From this we deduce

Sψ = const, on RJ\5.

Noting that lim^oo Sψ(y) = 0, we have

Sψ = Q in Rd\D.

Lemma 5.1 yields

Sψ(z) = lim S\l/(y) = 0 for μ-a.e. z e 3D.
y^z,yeΓξ(z)

Since Sψe<%%(D) by Lemma 4.2, we have, by Theorem 1,

(5.12) f <VSψ(y),VN(x-y)ydy=\ <y$(Sψ\dD},VN(x - y)ydy = 0
JD JD

for all x e Rd\D. Using Lemma 5.2 and (1.11), we see that (5.12) holds for μ-
a.e. x E dD. Therefore we have

f \VSψ\2dy = Q,
JD

whence Sψ = const, in D. Hence, by (1.11),

Kf -- = - <y<Z(f)(y),VySψ(y)ydy = 0
z II JD

for every Lipschitz function / on dD. Since, by (1.10),
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= \
JRJRd\D

we get

- , - -~, = 0

for every Lipschitz function / on dD. Since the family of the Lipschitz
functions is dense in Λ?(dD), we conclude that ψ = 0. Π

Similarly we can also prove the following theorem.

THEOREM 4. Assume that D, p and α satisfy the same assumptions as in

Theorem 3. If φ e Λ*(dD)'9 « 1, ψ» = 0 and «Kf - f/2,ψ» = 0 for every
Lipschitz function f on dD, then ψ = 0.
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