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ABSTRACT. In this paper, the authors discuss a class of multilinear singular integrals

and obtain their boundedness from the weighted Hardy space H^(Rn) to the weighted

Lebesgue space Z^(RW) for ωeA\(Rn) (the class of Muckenhoupt's weights) and

from the weighted Herz-type Hardy space Hkp(ω\,ω2\Rn) (or HKp(ω\,ω2;R
n)) to the

weighted Herz space Kp(co\,co2;Rn) (or Kp(ωι,ω2m,Rn)) for any p e (1, oo) and ω\, ω2 e

1. Introduction

In recent years, there has been significant progress in the study of oscil-

latory singular integrals with polynomial phase functions. Let P(x, y) be a

real-valued polynomial defined on Rn x Rn and K be a standard Calderόn-

Zygmund kernel, that is, K is C1 onR" away from the origin and has mean

value zero on the unit sphere centered at the origin. Define the oscillatory

singular integral operator T by

(1.1) Γ/(x) = p.v. f eiP^K{x-y)f{y)dy.
JR"

A well-known result of Ricci-Stein [13] states that T is bounded on Lp(Rn) for

1 < p < oo with the (operator) bound depending only on n, p and deg P (the

total degree of P), and being independent of the coefficients of the polynomial

P. Chanillo and Christ [2] proved that Γis also bounded from Lι(Rn) to weak

Lι(Rn) with bound independent of the coefficients of P. Pan [12] considered

the behaviour of T on /^(R") (a variant of the Hardy space Hx(Rn)). There

are many other works about the operator T; we refer to the references [7], [9]

and [11].

The purpose of this paper is to study a class of multilinear operators which
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are closely related to the operator T defined by (1.1). Let m e N and m>2.
Let Ω be homogeneous of degree zero, belong to the space Lipι(Sn~ι) and
satisfy the moment conditions

(1.2) [ Ω(θ)θadθ = 0 for αe(NU{0})" and |α = m.

Let A have derivatives of order m in BMO(Rn) and let Rm(A;x, y) denote the
ra-th order Taylor series remainder of A at x about y, that is,

Rm(A;x,y) = A(x)- £ ^D'A(y)(x- y)Ά.

The operator we will consider here is of the form:

(1.3) TAf(x) = \R/P{x'y) ^ ' / λ Qm+i(A;x,y)f{y)dy,

where Qm+\ (A] x, y) = Rm{A; x, y) - Σ|α|=m -j D"A(x)(x - yf. Recall that if b

is a BMO(Rn) function and T is a linear operator, then the commutator [b, T)
is defined by

[b,T]f(x) = b(x)Tf(x) - T(bf)(x)

for suitable functions /. It is obvious that the difference between the operator
TA and the operator ΐΛ defined by

(1.4) fAf(x)=\ eiP^ Ω{X ~j}m Rm+X {A; x, y)f(y)dy
JR" \χ-y\

is a sum of the commutators of BMO{Rn) functions {DCίA}^=m and the
operators {Ta}^=m of type (1.1) with the kernel K replacing by K^x) —
Ω(x)xa/\x\n+m which is a Calderόn-Zygmund kernel. In fact, we have

fAf(x) - TAf(x) = Σ [DΛA, Ta]f(x).
|α|=w

The boundedness of fA on L^RP) for 1 < p < oo and ω e Ap(Rn) (the class
of Muckenhoupt's weights), has been disposed in [3]. Here, we will study the
behaviour of TA on the weighted Hardy space H^(Rn) and the weighted Herz-
type Hardy space HKp{ω\,ω2;Rn). Before stating our results, let us recall
some necessary definitions.

DEFINITION 1. Given a non-negative weight ω(x) on-R", the weighted
Hardy space H^(Rn) is the space of those / e £f'(Rn) for which G(f), the grand
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maximal function of /(see [14]), belongs to L^(RW), and define

where Sf'ζtt?) is the space of Schwartz distributions on R".

DEFINITION 2. Let 1 < p < oo and ωi, ω2 be two non-negative weights

on Rn.

( i ) The homogeneous weighted Herz space Kp(ω\, ω2\ Rn) is the space of those

functions / e Lfoc(Rn\{0}) such that

with ft = 5(0,2*), Q = ft\ft_i, and χk=χCk-

(ii) The non-homogeneous weighted Herz space ΛΓ/7(ωi,ω2;Rw) is the space of

those functions / e Lp

loc(Rn) such that

(iii) The homogeneous weighted Herz-type Hardy space HKp{ω\,cc>2',Rn) is

defined by

e Kp(ωuω2 Rn)}

with

(iv) The non-homogeneous weighted Herz-type Hardy space HKp(ω\,a>2',Rn) is

defined by

HKp(ωuω2 Rn) = {/ e <?\Rn) : G(/) e ^ ( ω ^ R")}

with

THEOREM 1. Let ωeAx(Rn), TA be defined as in (1.3) and P(x, y) be a

real-valued polynomial on Rn x Rn with VyP(0, y) = 0. Then TA is bounded

from Hλ

ω(Rn) to Lι

ω(Rn), that is,

\at\=m

where C depends only on n, m, degP and A\{ω), the Ai(R")-constant of ω.
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THEOREM 2. Let ωx, ω2eAx(Rn), TA and P{x,y) be the same as in

Theorem 1. If 1 < p < oo, then TΛ is bounded from Hkp(ωx,ω2]Rn) to

Kp(ωuω2;R
n) and from HKp(ωuω2;R

n) to Kp(ωx,ω2;R
n), that is,

II ̂  f\\kp(ωχ,ω2\W) ^ C Z_^ ll^α

|α|=w

and

ll^1 fWxpiωuωj R") — ^
|α|=m

where C's depend only on n, m, p, degP and the A\(Rn)-constants of ω\ and ω2.

Obviously,

Kx(ωuω2 Rn) = Kx{ωuω2 Rn) = Lι

ω2(Rn)

and

λ,ω2 Rn) = HKx{ωu ω 2;R") = ^ 2 ( R " ) ;

while when 1 < p < oo and ωx(x) = ω2(x) = 1,

Kp{ωuω2\Rn)skp(ωuω2\Rn)iLι

ω2(Rn)

and

HKp(ωx,ω2;R
n) S Hkp(ωuω2;R

n) S H^(Rn).

Thus Theorem 2 can be regarded as a local version at the origin of Theorem 1.

We finally remark that Theorem 1 with P(x, y) = P(x - y) and ω(x) = 1

has been obtained by Hu and Yang in [8]. Theorem 2 is new even when

ωx{x) =ω2(x) = 1.
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2. Proof of Theorem 1

We begin with some known facts. The following Lemma 1 is the lemma

of ([4], p. 448).

LEMMA 1. Let b(x) be a function on Rn with m-th order derivatives in

Lfoc(Rn) for some q > n. Then
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\D«b(z)\«dz

where Q(x,y) is the cube centered at x and having diameter 5y/n\x — y\.

LEMMA 2. Let TΛ be defined as in (1.3). Then for 1 < p < oo and ω e

Ap(Rn), TA is bounded on L?(R"), that is, for all / e L £ ( R w ) ,

|α|=m

/« what follows, Ap{ω) denotes the Ap(Rn)-constant of ω.

PROOF. Consider the operator fA defined in (1.4). The main result in [3]

shows that if ω e Ap(Rn), then

, Ί < C(/W,Λ,;
\a\=m

Note that for each fixed α with |α| = m, Ω(x)xCί/\x\n+m is a standard Calderόn-

Zygmund kernel. Thus, from this and the well-known L£(R")-boundedness of

the commutators (see [6]), it follows that for ωeAp(Rn),

?¥-(D"A(x)-D"A(y))Ay)dy
\χ-y\

< C(m,n,p,

Combining these two inequalities, we obtain the desired estimate. This finishes

the proof of Lemma 2.

To show Theorem 1, we will need the atomic decomposition of H^(Rn).

DEFINITION 3. Let ωeA\(Rn). A function a(x) on R" is called a (l,ω)-

atom if

( i ) supp a a B(xo, r) = {x e Rn : \x — XQ\ < r} for some xo e Rn and r > 0;

(ϋ) II«IIL-(R") <co(B(xo,r))~l]

(iii) JRn a(x)dx = 0.

The following atomic decomposition of the Hardy space H^(Rn) is

obtained by Bui in ([1], Theorem 5.1).

LEMMA 3. Let ωeA\(Rn). A distribution f on Rn belongs to Hl(Rn)

if and only if f can be written as a series f = Σjλjβj convergent in the sense

of distributions, where each aj is a (1, ω)-atom and the coefficients λj satisfy
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Σ ^ IA/I < °° Moreover, in this case,

where the infimum is taken over all the decompositions of f.

The following lemma has been essentially proved by Pan in ([12], pp. 59-

60). In fact, Pan proved the case where ψ = X{\μ<\x\<4}> However, by minor

modification of his proof, we can easily see that the conclusion is still true when

ψ e C™(Rn). We omit the details.

LEMMA 4. Let #>eQ°(R") satisfy that supp#? c {x e Rn : \x\ < 2} and

φ(x) = 1 for \x\ < 1 and ψ e C™(Rn) satisfy that supp^ <= { i e R w : 1/4<|ΛΓ| <4}

and φ(x) = 1 for 1/2 < |JC| < 2. Define

Tkf(x) = ψ(2~kx) f eiP^φ(y)f(y)dy.

If the polynomial P(x, y) has the form

\μ\>\M=l

where Q(x, y) is a polynomial with degree in y smaller than I, then for each

sufficiently large positive integer N,

\\T, f\\ <C Ίnk/2\π Γ1/(2M)9-A:|//0|/(2M)|| f\\
\\1kj\\L2(R") ^ CN^ I^QVOI l O l I I / I I L ^ R " ) '

where \aμoVo\
ι/M = m a x H > 1 ) M = / \aμv\

ιM.

PROOF OF THEOREM 1. Without loss of generality, we may assume that

Σ | α ι = m \\D*Λ\\BMO(Rnj = 1. By Lemma 3, it is enough to show that for any

(l,ω)-atom α,

(2.1) \\TAa\\LL{RΊ < C(m,n,

Noting that TA is translation and dialation invariant, we may assume that

suppβ c: Bo = B(0,1). Write

\TAa(x)\ω(x)dx = [ \TAa{x)\ω(x)dx + [ \TAa(x)\ω(x)dx = Iλ + h
J|X|<2 J|X|>2

We have by Lemma 2 that

h < ll^fl||L2(R-) ( f ω(x)dx) < C | | α | | L 2 ( R Ί ω ( ^ o ) 1 / 2 < C.
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To estimate I2, noting that VyP(0, y) = 0, we can write
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where Q(x, y) has the degree in y less than / and VyQ(0,y) = 0. Let

b = \au = max \a
\μ\>l,\v\=l

μv\
ι i / M

and r0 = max(2, \aMoVo\~l/M). Write

I2 = \TAa(x)\ω(x)dx +
J2<\x\<r0

We first estimate I22. Set

f \TAa(x)\ω(x)dx = I2l+I22.

|α|=m

where mBk+no(D!'A) denotes the mean value of DaA on Bk+Ilo = B(0,2k+"°),

and «o is any fixed integer satisfying 2"° > 20-yw. It is easy to see that

Qm+ι(A;x,y) = Qm+ι(Ak;x,y) and for a r e ί l . o o ) .

(2.2) \2-kn \ \D"Ak(

V U « 0

dx
)

In what follows, we suppose k>2. For 2k 1 < | x | < 2 / : , we write

Ω(x-
\TAa{x)\ = If e^r) Ω{X -yJm Qm+ι (Ak;x, y)a{y)dy

\jRn l ^ " ^ !

Ω(x-y)

\χ- y\
n+m "

|α|=/M

Ω(x - y)(x - y)a Ω{x)x«

\χ- y\
n+m

a(y)\dy

a(y)\dy

Ξ Γ^ ' β W + 7-^-2a(x) + TA 3a(x).

With the aid of the formula (see (10) in [4])

Rm{Ak;x, y) - Rm(Ak;x,0) = ^ - J
\a\<m

; 0,
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we can obtain from Lemma 1 and (2.2) that for 2k~x < \x\ < 2k and y e Bo,

(2.3) Ω(x-
\χ-y\'

< (

y)

Ω(x-

\χ — y\

cί\x-

y)
n+m

y\-

Ω{x)

\x\n+m

m—

1=0

2(x)

\Rm

Λ
)

I

(Ak\x,

-*-m\x

y)\

This in turn implies that

(2.4) TA>λa{x)<C\x\-n-λ\ \a{y)\dy:
JR"

On the other hand, using Ω e Lip^S"" 1 ), 2k~ι < \x\ < 2k and \y\ < 1, it is easy
to see that for |α| = m,

Ω{x-y){x-yY Ω{x)x«
A n+m

\χ\'
<C\x\ -n-\

where C is independent of x and y. From this, we can easily deduce that for
2k~x < \x\ < 2k,

(2.5) ι\DaAk(x)\ω(Boy
ι.

\a\=m

For TA'3, let φ, ψ and Tk be the same as in Lemma 4; then another application
of Lemma 1 and (2.2) leads to that

(2.6) TA^a{x) < C2~k" 11 + ^ \D*Ak(x)\ ) \Tka(x)\.
\ \*\=m )

Let h be the integer such that 2k° < b < 2*0 + 1; then

I22 < Σ f TΛΛa{x)ω{x)dx + ̂  [ TA'2a{x)ω(x)dx

TA^a(x)ω(x)dx

= u
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Recall that ω e A\(R") and so ω(Bk)/ω(B0) < C2k". Therefore, (2.4) gives

(Bo)-1 ί ω(x)dx
J2*-'<W<2*

By the reverse Holder's inequality, it follows that for some ε > 0 small enough,

-ε/{1+ε)(2.7) { [ k)) < C\B
ω(Bk)

where (ωι+ε(Bk)) = \B ω(x)x+εdx and C depends only on n and A\{ω). Thus,
(2.5) gives

o)-1 [ ( \DΆk(x)\)ω(x)dx

y
ω(xγ+εdx

/

>^-—x—^ (by
*=2 ω ( 5 ° )

Interpolation between the inequality

(2-8) \\Tkf\\L2{RΊ < CJV2«^|α/,Vo

and the trivial estimate

\\τkf\\LX{RΊ<cu\\LnRΊ

gives that

Taking 1/(1 -f e) + \/p +l/q=l with ^ > 2, by Holder's inequality, (2.2), (ii)
of Definition 3, (2.6), (2.7) and (2.9), we have
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\Tka(x)\ω(x)dx.

y-kn+kn/q+kn

~kn\

k=ko+l

Obviously, we can assume that ro = b > 2, for otherwise {x :2 < \x\ < ro}

is empty. To estimate /21, we first consider the case that /, the degree in y of

the polynomial P(x, y), is zero. In this case, by using the moment condition

of a, I2 can be estimated just as l\2 -h/2

2

2 Thus (2.1) holds. Then we can

estimate h\ by induction on /. Suppose that (2.1) is true when the degree in y

of the polynomial P(x, y) is less than /. We need to show that (2.1) is still true

when the degree in y of the polynomial P(x, y) equals /. To do so, by the

induction hypothesis on /, Lemma 1, (ii) of Definition 3, Holder's inequality,

(2.2) and (2.7), we have

hi <\ ί
J2<|x|<r0 J

-y)

\*-y\n"

Qm+\{A',x,y)a(y)dyω(x)dx

+ ί lί eM*<y\Ωix yJmQm+ι(A;x,y)a(y)dy
J2<\x\ <ro\JRn \X — y\

ω(x)dx
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Σ IM

x \Qm+λ{Ak;x, y)a{y)\dy\ω{x)dx + C

k=l

ί
k+\ , , f \

^ 1 ^ ) " 1 ^ ωi+*(x)dx)
kΞί \μ\έΐ\v\=t

+C

< c 5^ î vifc1^1 + c<c,
\μ\>l\v\=l

where 2(x, jμ) is a polynomial with its degree in y less than /. This finishes the
proof.

3. Proof of Theorem 2

We begin with the atomic decomposition of the Herz-type Hardy space.

DEFINITION 4. Let ω\, ω2e ^i(R"), 1 < p < 00. A function a(x) on R"

is called a central ( n ( 1 ), /?; ωi, ω2 ] -atom, if it satisfies

\ \ PJ J
( i ) supp <3 c i?(0, Γ ) Ξ { J C 6 R " : |X| < r} for some r > 0;

(ϋ) ll«ll^(R ) ^ [

(iii) J R n «(x)^ = 0
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The following Lemma 5 is a special case of ([10], Theorem 1).

LEMMA 5. Let ω\, ω2, p be the same as in Definition 4. Then fe

HKp(ωuω2; R") (or HKp(ωuω2 Rn)) if and only if f = Σΐ=_aoλkak> where

each ak is a central [nil ), p:ω\,ω2 )-atom (or a central [nil ),

\ V V PJ J V V PJ
p\ω\,ω2\-atom with the radius of the support >\) and Y^=_ao \λk\ < oo.
Moreover,

I co ]

HKp(ωuω2',R
n) ~ 1 Π M 2 ^ \λk\ ί

\k=-oo J

where the infimum is taken over all the above decompositions off

PROOF OF THEOREM 2. We only show the theorem in homogeneous case.

The non-homogeneous case is similar and we omit the details. As in the proof

of Theorem 1, we only prove that for any central \n[\ — ),p',ω\,ω2)-atom
V V PJ J

a with support Bo = 2?(0,1),

(3.1) ll^tfll " n < C

with C independent of a. Write

1

k—-oo

k=2

By ([5], Theorem 2.9 in page 401), there is a δ > 0 depending only on n and the
w)-constant of ω\ such that for k < 1,

where C is independent of k. By this and Lemma 2, we obtain

1

< C V 2knδ{ι-{ι/p)) < C.
k=—oo



Multilinear oscillatory singular integrals 313

Let b, ro and ko be the same as in the proof of Theorem 1. Write

J2— 2L, " Ή ^ * ; uk1 "IIL4(R") "•" z ^ ^ u ^ ; u/^^ "IIL^CR")
2<2k<r0 2k>r0

= Jι\ + Jl2

We first estimate 2̂2- To do this, we write

00 00

k=2 ^ k=2

It follows from (2.4) that for 2k~ι < \x\<2k,

\TA'la(x)\<C\x\-"-ι\ \a
JR"

(y)\dy

Thus,

- c

Similarly to (2.5), we can prove

\TA'2a{x)\ < C2-^+^ωι(Bo)-il-{l/p))ω2(Bo)-l/p £ \D"Ak(x)\;
\oc\=m

and then Holder's inequality together with (2.2) and (2.7) gives

Now we turn our attention to J\2 We first consider the case 1 < p<2.
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Interpolation between (2.8) and the trivial estimate

shows that

(3-2) ||7V/Ί|L,( i r ) < C2"^|α, 0 V 0 |- | / ( p 'W )2^l^l/C'Λ ί ' ) | |/ | | z .P ( R Ί, 1 < p<2,

here and in what follows, p' is such that l/p + l/pf = 1. Combining (3.2) and
the estimate

(3-3)

gives that

(3.4)

L«W) <C\\f\\LP{R
LP{RΊ

( R Ί , p < p0 < oo.

Thus, by taking p0e[p,oo) and qe(\,oo) such that 1/((1 +ε)p) +
\/q= \/p, (2.6), Holder's inequality, (2.2), (2.7) and (3.4), we obtain

k=ko+l

l + Έ \D* \Tka(x)\pω2(x)dx

x+°

J2*-1<L

ω2{x)x+°dx

1/?

1 + Σ \DaAk(x)\ dxφ^ J
P

Ί-kn\n

k=ko+\

\\Tka\
Ln(V)

JIP

If 2 < p < oo, interpolation between (2.9) and (3.3) gives that

(3.5) \\Tkf\\LPHRΊ < C2"^|α / l o V o |- 1/ ( w M)2- λl^l/(^M)| |/ | |£, ( R« ), 2 < p < p0.

Now if we replace (3.4) by (3.5), similarly to the computation above, we can
also obtain a desirable estimate for J\2 in this case.
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Finally, it is easy to see that Jι\ can be estimated similarly to h\ by using

some techniques as above. This finishes the proof of Theorem 2.
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