Нікозніма Матн. J. 30 (2000), 301–315

Boundedness of multilinear oscillatory singular integrals on Hardy type spaces

Guoen HU, Qiang WU and Dachun YANG (Received December 1, 1998) (Revised June 25, 1999)

ABSTRACT. In this paper, the authors discuss a class of multilinear singular integrals and obtain their boundedness from the weighted Hardy space $H^1_{\omega}(\mathbf{R}^n)$ to the weighted Lebesgue space $L^1_{\omega}(\mathbf{R}^n)$ for $\omega \in A_1(\mathbf{R}^n)$ (the class of Muckenhoupt's weights) and from the weighted Herz-type Hardy space $H\dot{K}_p(\omega_1, \omega_2; \mathbf{R}^n)$ (or $HK_p(\omega_1, \omega_2; \mathbf{R}^n)$) to the weighted Herz space $\dot{K}_p(\omega_1, \omega_2; \mathbf{R}^n)$ (or $K_p(\omega_1, \omega_2; \mathbf{R}^n)$) for any $p \in (1, \infty)$ and $\omega_1, \omega_2 \in$ $A_1(\mathbf{R}^n)$.

1. Introduction

In recent years, there has been significant progress in the study of oscillatory singular integrals with polynomial phase functions. Let P(x, y) be a real-valued polynomial defined on $\mathbb{R}^n \times \mathbb{R}^n$ and K be a standard Calderón-Zygmund kernel, that is, K is C^1 on \mathbb{R}^n away from the origin and has mean value zero on the unit sphere centered at the origin. Define the oscillatory singular integral operator T by

(1.1)
$$Tf(x) = \text{p.v.} \int_{\mathbf{R}^n} e^{iP(x,y)} K(x-y) f(y) dy.$$

A well-known result of Ricci-Stein [13] states that T is bounded on $L^{p}(\mathbb{R}^{n})$ for 1 with the (operator) bound depending only on <math>n, p and deg P (the total degree of P), and being independent of the coefficients of the polynomial P. Chanillo and Christ [2] proved that T is also bounded from $L^{1}(\mathbb{R}^{n})$ to weak $L^{1}(\mathbb{R}^{n})$ with bound independent of the coefficients of P. Pan [12] considered the behaviour of T on $H_{E}^{1}(\mathbb{R}^{n})$ (a variant of the Hardy space $H^{1}(\mathbb{R}^{n})$). There are many other works about the operator T; we refer to the references [7], [9] and [11].

The purpose of this paper is to study a class of multilinear operators which

This research was supported in part by the NNSF and the SEDF of China.

²⁰⁰⁰ Mathematics Subject Classification. Primary 42B20; Secondary 42B30, 47A30, 47B38.

Key words. Multilinear oscillatory singular integral, Hardy space, Herz space, Herz-type Hardy space, Atom, Weight.

are closely related to the operator T defined by (1.1). Let $m \in \mathbb{N}$ and $m \ge 2$. Let Ω be homogeneous of degree zero, belong to the space $\operatorname{Lip}_1(S^{n-1})$ and satisfy the moment conditions

(1.2)
$$\int_{S^{n-1}} \Omega(\theta) \theta^{\alpha} d\theta = 0 \quad \text{for } \alpha \in (\mathbf{N} \cup \{0\})^n \text{ and } |\alpha| = m.$$

Let A have derivatives of order m in $BMO(\mathbb{R}^n)$ and let $R_m(A; x, y)$ denote the m-th order Taylor series remainder of A at x about y, that is,

$$R_m(A;x,y) = A(x) - \sum_{|\alpha| \le m-1} \frac{1}{\alpha!} D^{\alpha} A(y) (x-y)^{\alpha}.$$

The operator we will consider here is of the form:

(1.3)
$$T^{A}f(x) = \int_{\mathbf{R}^{n}} e^{iP(x,y)} \frac{\Omega(x-y)}{|x-y|^{n+m}} Q_{m+1}(A;x,y)f(y)dy,$$

where $Q_{m+1}(A; x, y) = R_m(A; x, y) - \sum_{|\alpha|=m} \frac{1}{\alpha!} D^{\alpha} A(x) (x-y)^{\alpha}$. Recall that if b is a $BMO(\mathbb{R}^n)$ function and T is a linear operator, then the commutator [b, T]

is defined by

$$[b, T]f(x) = b(x)Tf(x) - T(bf)(x)$$

for suitable functions f. It is obvious that the difference between the operator T^A and the operator \tilde{T}^A defined by

(1.4)
$$\tilde{T}^{A}f(x) = \int_{\mathbf{R}^{n}} e^{iP(x,y)} \frac{\Omega(x-y)}{|x-y|^{n+m}} R_{m+1}(A;x,y)f(y)dy$$

is a sum of the commutators of $BMO(\mathbb{R}^n)$ functions $\{D^{\alpha}A\}_{|\alpha|=m}$ and the operators $\{T_{\alpha}\}_{|\alpha|=m}$ of type (1.1) with the kernel K replacing by $K_{\alpha}(x) = \Omega(x)x^{\alpha}/|x|^{n+m}$ which is a Calderón-Zygmund kernel. In fact, we have

$$\tilde{T}^A f(x) - T^A f(x) = \sum_{|\alpha|=m} [D^{\alpha} A, T_{\alpha}] f(x).$$

The boundedness of \tilde{T}^A on $L^p_{\omega}(\mathbf{R}^n)$ for $1 and <math>\omega \in A_p(\mathbf{R}^n)$ (the class of Muckenhoupt's weights), has been disposed in [3]. Here, we will study the behaviour of T^A on the weighted Hardy space $H^1_{\omega}(\mathbf{R}^n)$ and the weighted Herztype Hardy space $H\dot{K}_p(\omega_1, \omega_2; \mathbf{R}^n)$. Before stating our results, let us recall some necessary definitions.

DEFINITION 1. Given a non-negative weight $\omega(x)$ on \mathbb{R}^n , the weighted Hardy space $H^1_{\omega}(\mathbb{R}^n)$ is the space of those $f \in \mathscr{S}'(\mathbb{R}^n)$ for which G(f), the grand maximal function of f (see [14]), belongs to $L^1_{\omega}(\mathbf{R}^n)$, and define

$$\|f\|_{H^1_{\omega}(\mathbf{R}^n)} = \|G(f)\|_{L^1_{\omega}(\mathbf{R}^n)},$$

where $\mathscr{S}'(\mathbf{R}^n)$ is the space of Schwartz distributions on \mathbf{R}^n .

DEFINITION 2. Let $1 and <math>\omega_1$, ω_2 be two non-negative weights on \mathbb{R}^n .

(i) The homogeneous weighted Herz space $\dot{K}_p(\omega_1, \omega_2; \mathbb{R}^n)$ is the space of those functions $f \in L^p_{loc}(\mathbb{R}^n \setminus \{0\})$ such that

$$\|f\|_{\dot{K}_{p}(\omega_{1},\omega_{2};\mathbf{R}^{n})} \equiv \sum_{k=-\infty}^{\infty} \omega_{1}(B_{k})^{1-(1/p)} \|f\chi_{k}\|_{L^{p}_{\omega_{2}}(\mathbf{R}^{n})} < \infty$$

with $B_k = B(0, 2^k)$, $C_k = B_k \setminus B_{k-1}$, and $\chi_k = \chi_{C_k}$.

(ii) The non-homogeneous weighted Herz space $K_p(\omega_1, \omega_2; \mathbf{R}^n)$ is the space of those functions $f \in L^p_{loc}(\mathbf{R}^n)$ such that

$$\begin{split} \|f\|_{K_{p}(\omega_{1},\omega_{2};\mathbf{R}^{n})} &\equiv \omega_{1}(B_{0})^{1-(1/p)} \|f\chi_{B_{0}}\|_{L^{p}_{\omega_{2}}(\mathbf{R}^{n})} \\ &+ \sum_{k=1}^{\infty} \omega_{1}(B_{k})^{1-(1/p)} \|f\chi_{k}\|_{L^{p}_{\omega_{2}}(\mathbf{R}^{n})} < \infty. \end{split}$$

(iii) The homogeneous weighted Herz-type Hardy space $H\dot{K}_p(\omega_1, \omega_2; \mathbf{R}^n)$ is defined by

$$H\check{K}_p(\omega_1,\omega_2;\mathbf{R}^n) \equiv \{f \in \mathscr{S}'(\mathbf{R}^n) : G(f) \in \check{K}_p(\omega_1,\omega_2;\mathbf{R}^n)\}$$

with

$$\|f\|_{H\dot{K}_p(\omega_1,\omega_2;\mathbf{R}^n)} \equiv \|G(f)\|_{\dot{K}_p(\omega_1,\omega_2;\mathbf{R}^n)}$$

(iv) The non-homogeneous weighted Herz-type Hardy space $HK_p(\omega_1, \omega_2; \mathbf{R}^n)$ is defined by

$$HK_p(\omega_1,\omega_2;\mathbf{R}^n) \equiv \{f \in \mathscr{S}'(\mathbf{R}^n) : G(f) \in K_p(\omega_1,\omega_2;\mathbf{R}^n)\}$$

with

$$\|f\|_{HK_p(\omega_1,\omega_2;\mathbf{R}^n)} \equiv \|G(f)\|_{K_p(\omega_1,\omega_2;\mathbf{R}^n)}$$

THEOREM 1. Let $\omega \in A_1(\mathbb{R}^n)$, T^A be defined as in (1.3) and P(x, y) be a real-valued polynomial on $\mathbb{R}^n \times \mathbb{R}^n$ with $\nabla_y P(0, y) = 0$. Then T^A is bounded from $H^1_{\omega}(\mathbb{R}^n)$ to $L^1_{\omega}(\mathbb{R}^n)$, that is,

$$||T^{A}f||_{L^{1}_{\omega}(\mathbf{R}^{n})} \leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO(\mathbf{R}^{n})} ||f||_{H^{1}_{\omega}(\mathbf{R}^{n})},$$

where C depends only on n, m, deg P and $A_1(\omega)$, the $A_1(\mathbf{R}^n)$ -constant of ω .

THEOREM 2. Let ω_1 , $\omega_2 \in A_1(\mathbf{R}^n)$, T^A and P(x, y) be the same as in Theorem 1. If $1 , then <math>T^A$ is bounded from $H\dot{K}_p(\omega_1, \omega_2; \mathbf{R}^n)$ to $\dot{K}_p(\omega_1, \omega_2; \mathbf{R}^n)$ and from $HK_p(\omega_1, \omega_2; \mathbf{R}^n)$ to $K_p(\omega_1, \omega_2; \mathbf{R}^n)$, that is,

$$\|T^{A}f\|_{\dot{K}_{p}(\omega_{1},\omega_{2};\mathbf{R}^{n})} \leq C \sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO(\mathbf{R}^{n})} \|f\|_{H\dot{K}_{p}(\omega_{1},\omega_{2};\mathbf{R}^{n})}$$

and

$$\|T^{A}f\|_{K_{p}(\omega_{1},\omega_{2};\mathbf{R}^{n})} \leq C \sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO(\mathbf{R}^{n})} \|f\|_{HK_{p}(\omega_{1},\omega_{2};\mathbf{R}^{n})},$$

where C's depend only on n, m, p, deg P and the $A_1(\mathbf{R}^n)$ -constants of ω_1 and ω_2 .

Obviously,

$$\dot{K}_1(\omega_1,\omega_2;\mathbf{R}^n)=K_1(\omega_1,\omega_2;\mathbf{R}^n)=L^1_{\omega_2}(\mathbf{R}^n)$$

and

$$H\dot{K}_1(\omega_1,\omega_2;\mathbf{R}^n) = HK_1(\omega_1,\omega_2;\mathbf{R}^n) = H^1_{\omega_2}(\mathbf{R}^n)$$

while when $1 and <math>\omega_1(x) \equiv \omega_2(x) \equiv 1$,

$$K_p(\omega_1,\omega_2;\mathbf{R}^n) \subsetneq \dot{K}_p(\omega_1,\omega_2;\mathbf{R}^n) \subsetneq L^1_{\omega_2}(\mathbf{R}^n)$$

and

$$HK_p(\omega_1, \omega_2; \mathbf{R}^n) \subsetneq HK_p(\omega_1, \omega_2; \mathbf{R}^n) \subsetneq H_{\omega_2}^1(\mathbf{R}^n).$$

Thus Theorem 2 can be regarded as a local version at the origin of Theorem 1.

We finally remark that Theorem 1 with P(x, y) = P(x - y) and $\omega(x) \equiv 1$ has been obtained by Hu and Yang in [8]. Theorem 2 is new even when $\omega_1(x) \equiv \omega_2(x) \equiv 1$.

Acknowledgement

The authors want to express their deep thanks to the referee for his/her many valuable remarks.

2. Proof of Theorem 1

We begin with some known facts. The following Lemma 1 is the lemma of ([4], p. 448).

LEMMA 1. Let b(x) be a function on \mathbb{R}^n with m-th order derivatives in $L^q_{loc}(\mathbb{R}^n)$ for some q > n. Then

$$|R_m(b;x,y)| \le C_{m,n}|x-y|^m \sum_{|\alpha|=m} \left(\frac{1}{|\tilde{Q}(x,y)|} \int_{\tilde{Q}(x,y)} |D^{\alpha}b(z)|^q dz\right)^{1/q},$$

where $\tilde{Q}(x, y)$ is the cube centered at x and having diameter $5\sqrt{n}|x-y|$.

LEMMA 2. Let T^A be defined as in (1.3). Then for $1 and <math>\omega \in A_p(\mathbf{R}^n)$, T^A is bounded on $L^p_{\omega}(\mathbf{R}^n)$, that is, for all $f \in L^p_{\omega}(\mathbf{R}^n)$,

$$\|T^{A}f\|_{L^{p}_{\omega}(\mathbf{R}^{n})} \leq C(m, n, p, \deg P, A_{p}(\omega)) \sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO(\mathbf{R}^{n})} \|f\|_{L^{p}_{\omega}(\mathbf{R}^{n})},$$

where and in what follows, $A_p(\omega)$ denotes the $A_p(\mathbf{R}^n)$ -constant of ω .

PROOF. Consider the operator \tilde{T}^A defined in (1.4). The main result in [3] shows that if $\omega \in A_p(\mathbb{R}^n)$, then

$$\|\tilde{T}^A f\|_{L^p_{\omega}(\mathbf{R}^n)} \le C(m, n, p, \deg P, A_p(\omega)) \sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO(\mathbf{R}^n)} \|f\|_{L^p_{\omega}(\mathbf{R}^n)}.$$

Note that for each fixed α with $|\alpha| = m$, $\Omega(x)x^{\alpha}/|x|^{n+m}$ is a standard Calderón-Zygmund kernel. Thus, from this and the well-known $L^p_{\omega}(\mathbb{R}^n)$ -boundedness of the commutators (see [6]), it follows that for $\omega \in A_p(\mathbb{R}^n)$,

$$\begin{split} \left\| \int_{\mathbf{R}^n} e^{iP(x,y)} \frac{\Omega(x-y)(x-y)^{\alpha}}{|x-y|^{n+m}} (D^{\alpha}A(x) - D^{\alpha}A(y))f(y)dy \right\|_{L^p_{\omega}(\mathbf{R}^n)} \\ &\leq C(m,n,p, \deg P, A_p(\omega)) \sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO(\mathbf{R}^n)} \|f\|_{L^p_{\omega}(\mathbf{R}^n)}. \end{split}$$

Combining these two inequalities, we obtain the desired estimate. This finishes the proof of Lemma 2.

To show Theorem 1, we will need the atomic decomposition of $H^1_{\omega}(\mathbf{R}^n)$.

DEFINITION 3. Let $\omega \in A_1(\mathbb{R}^n)$. A function a(x) on \mathbb{R}^n is called a $(1, \omega)$ atom if

(i) supp $a \subset B(x_0, r) \equiv \{x \in \mathbf{R}^n : |x - x_0| < r\}$ for some $x_0 \in \mathbf{R}^n$ and r > 0;

- (ii) $||a||_{L^{\infty}(\mathbf{R}^n)} \leq \omega(B(x_0, r))^{-1};$
- (iii) $\int_{\mathbf{R}^n} a(x) dx = 0.$

The following atomic decomposition of the Hardy space $H^1_{\omega}(\mathbf{R}^n)$ is obtained by Bui in ([1], Theorem 5.1).

LEMMA 3. Let $\omega \in A_1(\mathbb{R}^n)$. A distribution f on \mathbb{R}^n belongs to $H^1_{\omega}(\mathbb{R}^n)$ if and only if f can be written as a series $f = \sum_j \lambda_j a_j$ convergent in the sense of distributions, where each a_j is a $(1, \omega)$ -atom and the coefficients λ_j satisfy $\sum_{j} |\lambda_{j}| < \infty$. Moreover, in this case,

$$\|f\|_{H^1_{\omega}(\mathbf{R}^n)} \sim \inf\left\{\sum_j |\lambda_j|\right\},$$

where the infimum is taken over all the decompositions of f.

The following lemma has been essentially proved by Pan in ([12], pp. 59– 60). In fact, Pan proved the case where $\psi = \chi_{\{1/4 \le |x| \le 4\}}$. However, by minor modification of his proof, we can easily see that the conclusion is still true when $\psi \in C_0^{\infty}(\mathbf{R}^n)$. We omit the details.

LEMMA 4. Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ satisfy that $\operatorname{supp} \varphi \subset \{x \in \mathbb{R}^n : |x| \le 2\}$ and $\varphi(x) = 1$ for $|x| \le 1$ and $\psi \in C_0^{\infty}(\mathbb{R}^n)$ satisfy that $\operatorname{supp} \psi \subset \{x \in \mathbb{R}^n : 1/4 \le |x| \le 4\}$ and $\psi(x) = 1$ for $1/2 \le |x| \le 2$. Define

$$T_k f(x) = \psi(2^{-k}x) \int_{\mathbf{R}^n} e^{iP(x,y)} \varphi(y) f(y) dy.$$

If the polynomial P(x, y) has the form

$$P(x, y) = \sum_{|\mu| \ge 1, |\nu|=l} a_{\mu\nu} x^{\mu} y^{\nu} + Q(x, y),$$

where Q(x, y) is a polynomial with degree in y smaller than l, then for each sufficiently large positive integer N,

$$\|T_k f\|_{L^2(\mathbf{R}^n)} \le C_N 2^{nk/2} |a_{\mu_0 \nu_0}|^{-1/(2Nl)} 2^{-k|\mu_0|/(2Nl)} \|f\|_{L^2(\mathbf{R}^n)},$$

where $|a_{\mu_0 \nu_0}|^{1/|\mu_0|} = \max_{|\mu| \ge 1, |\nu| = l} |a_{\mu\nu}|^{1/|\mu|}.$

PROOF OF THEOREM 1. Without loss of generality, we may assume that $\sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO(\mathbb{R}^n)} = 1$. By Lemma 3, it is enough to show that for any $(1, \omega)$ -atom a,

(2.1)
$$\|T^A a\|_{L^1_{\omega}(\mathbf{R}^n)} \leq C(m, n, \deg P, A_1(\omega)).$$

Noting that T^A is translation and dialation invariant, we may assume that supp $a \subset B_0 = B(0, 1)$. Write

$$\int_{\mathbf{R}^n} |T^A a(x)| \omega(x) dx = \int_{|x| \le 2} |T^A a(x)| \omega(x) dx + \int_{|x| > 2} |T^A a(x)| \omega(x) dx \equiv I_1 + I_2.$$

We have by Lemma 2 that

$$I_{1} \leq \|T^{A}a\|_{L^{2}_{\omega}(\mathbf{R}^{n})} \left(\int_{|x| \leq 2} \omega(x) dx \right)^{1/2} \leq C \|a\|_{L^{2}_{\omega}(\mathbf{R}^{n})} \omega(B_{0})^{1/2} \leq C.$$

306

To estimate I_2 , noting that $\nabla_y P(0, y) = 0$, we can write

$$P(x, y) = \sum_{|\mu| \ge 1, |\nu|=l} a_{\mu\nu} x^{\mu} y^{\nu} + Q(x, y),$$

where Q(x, y) has the degree in y less than l and $\nabla_y Q(0, y) = 0$. Let

$$b = |a_{\mu_0\nu_0}|^{-1/|\mu_0|} = \left(\max_{|\mu| \ge 1, |\nu| = l} |a_{\mu\nu}|^{1/|\mu|}\right)^{-1}$$

and $r_0 = \max(2, |a_{\mu_0\nu_0}|^{-1/|\mu_0|})$. Write

$$I_{2} = \int_{2 < |x| \le r_{0}} |T^{A}a(x)|\omega(x)dx + \int_{|x|>r_{0}} |T^{A}a(x)|\omega(x)dx \equiv I_{21} + I_{22}.$$

We first estimate I_{22} . Set

$$A_k(x) = A(x) - \sum_{|\alpha|=m} \frac{1}{\alpha!} m_{\mathcal{B}_{k+n_0}}(D^{\alpha}A) x^{\alpha},$$

where $m_{B_{k+n_0}}(D^{\alpha}A)$ denotes the mean value of $D^{\alpha}A$ on $B_{k+n_0} = B(0, 2^{k+n_0})$, and n_0 is any fixed integer satisfying $2^{n_0} \ge 20\sqrt{n}$. It is easy to see that $Q_{m+1}(A; x, y) = Q_{m+1}(A_k; x, y)$ and for $q \in [1, \infty)$,

(2.2)
$$\left(2^{-kn}\int_{B_{k+n_0}}|D^{\alpha}A_k(x)|^q\,dx\right)^{1/q}\leq C\|D^{\alpha}A\|_{BMO(\mathbf{R}^n)}.$$

In what follows, we suppose $k \ge 2$. For $2^{k-1} < |x| \le 2^k$, we write

$$\begin{split} |T^{A}a(x)| &= \left| \int_{\mathbf{R}^{n}} e^{iP(x,y)} \frac{\Omega(x-y)}{|x-y|^{n+m}} Q_{m+1}(A_{k};x,y)a(y)dy \right| \\ &\leq \int_{\mathbf{R}^{n}} \left| \frac{\Omega(x-y)}{|x-y|^{n+m}} R_{m}(A_{k};x,y) - \frac{\Omega(x)}{|x|^{n+m}} R_{m}(A_{k};x,0) \right| |a(y)|dy \\ &+ \sum_{|\alpha|=m} \frac{1}{\alpha!} |D^{\alpha}A_{k}(x)| \int_{\mathbf{R}^{n}} \left| \frac{\Omega(x-y)(x-y)^{\alpha}}{|x-y|^{n+m}} - \frac{\Omega(x)x^{\alpha}}{|x|^{n+m}} \right| |a(y)|dy \\ &+ \left(\left| \frac{\Omega(x)}{|x|^{n+m}} R_{m}(A_{k};x,0) \right| + \sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{|D^{\alpha}A_{k}(x)|}{|x|^{n}} \right) \left| \int_{\mathbf{R}^{n}} e^{iP(x,y)}a(y)dy \right| \\ &\equiv T^{A,1}a(x) + T^{A,2}a(x) + T^{A,3}a(x). \end{split}$$

With the aid of the formula (see (10) in [4])

$$R_m(A_k; x, y) - R_m(A_k; x, 0) = \sum_{|\alpha| < m} \frac{1}{\alpha!} R_{m-|\alpha|} (D^{\alpha} A_k; 0, y) (x - y)^{\alpha},$$

we can obtain from Lemma 1 and (2.2) that for $2^{k-1} < |x| \le 2^k$ and $y \in B_0$,

(2.3)

$$\left| \frac{\Omega(x-y)}{|x-y|^{n+m}} R_m(A_k; x, y) - \frac{\Omega(x)}{|x|^{n+m}} R_m(A_k; x, 0) \right| \\
\leq \left| \frac{\Omega(x-y)}{|x-y|^{n+m}} - \frac{\Omega(x)}{|x|^{n+m}} \right| |R_m(A_k; x, y)| \\
+ \frac{|\Omega(x)|}{|x|^{n+m}} |R_m(A_k; x, y) - R_m(A_k; x, 0)| \\
\leq C \left(|x-y|^{-n-1} + \sum_{l=0}^{m-1} |x|^{-n-m} |x-y|^l \right) \\
\leq C |x|^{-n-1}.$$

This in turn implies that

(2.4)
$$T^{A,1}a(x) \le C|x|^{-n-1} \int_{\mathbf{R}^n} |a(y)| dy \le C2^{-k(n+1)} \omega(B_0)^{-1}$$

On the other hand, using $\Omega \in \text{Lip}_1(S^{n-1})$, $2^{k-1} < |x| \le 2^k$ and $|y| \le 1$, it is easy to see that for $|\alpha| = m$,

$$\left|\frac{\Omega(x-y)(x-y)^{\alpha}}{\left|x-y\right|^{n+m}}-\frac{\Omega(x)x^{\alpha}}{\left|x\right|^{n+m}}\right|\leq C|x|^{-n-1},$$

where C is independent of x and y. From this, we can easily deduce that for $2^{k-1} < |x| \le 2^k$,

(2.5)
$$T^{A,2}a(x) \le C2^{-k(n+1)} \sum_{|\alpha|=m} |D^{\alpha}A_k(x)|\omega(B_0)^{-1}.$$

For $T^{A,3}$, let φ , ψ and T_k be the same as in Lemma 4; then another application of Lemma 1 and (2.2) leads to that

(2.6)
$$T^{A,3}a(x) \le C2^{-kn} \left(1 + \sum_{|\alpha|=m} |D^{\alpha}A_k(x)|\right) |T_k a(x)|.$$

Let k_0 be the integer such that $2^{k_0} \le b < 2^{k_0+1}$; then

$$I_{22} \leq \sum_{k=2}^{\infty} \int_{2^{k-1} < |x| \leq 2^{k}} T^{A,1} a(x) \omega(x) dx + \sum_{k=2}^{\infty} \int_{2^{k-1} < |x| \leq 2^{k}} T^{A,2} a(x) \omega(x) dx$$
$$+ \sum_{k=k_{0}+1}^{\infty} \int_{2^{k-1} < |x| \leq 2^{k}} T^{A,3} a(x) \omega(x) dx$$
$$\equiv I_{22}^{1} + I_{22}^{2} + I_{22}^{3}$$

Recall that $\omega \in A_1(\mathbb{R}^n)$ and so $\omega(B_k)/\omega(B_0) \le C2^{kn}$. Therefore, (2.4) gives

$$I_{22}^{1} \leq C \sum_{k=2}^{\infty} 2^{-k(n+1)} \omega(B_{0})^{-1} \int_{2^{k-1} < |x| \leq 2^{k}} \omega(x) dx$$
$$\leq C \sum_{k=2}^{\infty} 2^{-k(n+1)} \frac{\omega(B_{k})}{\omega(B_{0})} \leq C.$$

By the reverse Hölder's inequality, it follows that for some $\varepsilon > 0$ small enough,

(2.7)
$$\frac{(\omega^{1+\varepsilon}(B_k))^{1/(1+\varepsilon)}}{\omega(B_k)} \le C|B_k|^{-\varepsilon/(1+\varepsilon)} \le C2^{-kn(\varepsilon/(1+\varepsilon))}.$$

where $(\omega^{1+\varepsilon}(B_k)) = \int_{B_k} \omega(x)^{1+\varepsilon} dx$ and C depends only on n and $A_1(\omega)$. Thus, (2.5) gives

$$\begin{split} I_{22}^{2} &\leq C \sum_{k=2}^{\infty} 2^{-k(n+1)} \omega(B_{0})^{-1} \int_{2^{k-1} < |x| \le 2^{k}} \left(\sum_{|\alpha|=m} |D^{\alpha}A_{k}(x)| \right) \omega(x) dx \\ &\leq C \sum_{k=2}^{\infty} 2^{-k(n+1)} \omega(B_{0})^{-1} \left(\int_{2^{k-1} < |x| \le 2^{k}} \omega(x)^{1+\epsilon} dx \right)^{1/(1+\epsilon)} \\ &\qquad \times \sum_{|\alpha|=m} \left(\int_{2^{k-1} < |x| \le 2^{k}} |D^{\alpha}A_{k}(x)|^{(1+\epsilon)/\epsilon} dx \right)^{\epsilon/(1+\epsilon)} \\ &\leq C \sum_{k=2}^{\infty} 2^{-k(n+1-n(\epsilon/(1+\epsilon)))} \frac{(\omega^{1+\epsilon}(B_{k}))^{1/(1+\epsilon)}}{\omega(B_{0})} \quad (by \ (2.2)) \\ &\leq C \sum_{k=2}^{\infty} 2^{-k} \le C. \end{split}$$

Interpolation between the inequality

(2.8)
$$||T_k f||_{L^2(\mathbf{R}^n)} \le C_N 2^{nk/2} |a_{\mu_0 \nu_0}|^{-1/(2Nl)} 2^{-k|\mu_0|/(2Nl)} ||f||_{L^2(\mathbf{R}^n)},$$

and the trivial estimate

$$\|T_k f\|_{L^{\infty}(\mathbf{R}^n)} \leq C \|f\|_{L^{\infty}(\mathbf{R}^n)}$$

gives that

(2.9)
$$||T_k f||_{L^p(\mathbf{R}^n)} \le C2^{nk/p} |a_{\mu_0 \nu_0}|^{-1/(pNl)} 2^{-k|\mu_0|/(pNl)} ||f||_{L^p(\mathbf{R}^n)}, \quad 2 \le p \le \infty.$$

Taking $1/(1+\varepsilon) + 1/p + 1/q = 1$ with $p \ge 2$, by Hölder's inequality, (2.2), (ii) of Definition 3, (2.6), (2.7) and (2.9), we have

$$\begin{split} I_{22}^{3} &\leq C \sum_{k=k_{0}+1}^{\infty} 2^{-kn} \int_{2^{k-1} < |x| \le 2^{k}} \left(1 + \sum_{|\alpha|=m} |D^{\alpha}A_{k}(x)| \right) |T_{k}a(x)|\omega(x)dx \\ &\leq C \sum_{k=k_{0}+1}^{\infty} 2^{-kn} \left(\int_{2^{k-1} < |x| \le 2^{k}} \omega(x)^{1+\epsilon} dx \right)^{1/(1+\epsilon)} ||T_{k}a||_{L^{p}(\mathbf{R}^{n})} \\ &\times \left[\int_{2^{k-1} < |x| \le 2^{k}} \left(1 + \sum_{|\alpha|=m} |D^{\alpha}A_{k}(x)| \right)^{q} dx \right]^{1/q} \\ &\leq C \sum_{k=k_{0}+1}^{\infty} 2^{-kn+kn/q+kn/p} |a_{\mu_{0}\nu_{0}}|^{-1/(pNl)} 2^{-k|\mu_{0}|/(pNl)} \frac{(\omega^{1+\epsilon}(B_{k}))^{1/(1+\epsilon)}}{\omega(B_{0})} \\ &\leq C \sum_{k=k_{0}+1}^{\infty} 2^{-kn} |a_{\mu_{0}\nu_{0}}|^{-1/(pNl)} 2^{-k|\mu_{0}|/(pNl)} \frac{\omega(B_{k})}{\omega(B_{0})} \\ &\leq C \sum_{k=k_{0}+1}^{\infty} |a_{\mu_{0}\nu_{0}}|^{-1/(pNl)} 2^{-k|\mu_{0}|/(pNl)} \\ &\leq C |a_{\mu_{0}\nu_{0}}|^{-1/(pNl)} b^{-|\mu_{0}|/(pNl)} \le C. \end{split}$$

Obviously, we can assume that $r_0 = b > 2$, for otherwise $\{x : 2 < |x| \le r_0\}$ is empty. To estimate I_{21} , we first consider the case that l, the degree in y of the polynomial P(x, y), is zero. In this case, by using the moment condition of a, I_2 can be estimated just as $I_{22}^1 + I_{22}^2$. Thus (2.1) holds. Then we can estimate I_{21} by induction on l. Suppose that (2.1) is true when the degree in y of the polynomial P(x, y) is less than l. We need to show that (2.1) is still true when the degree in y of the polynomial P(x, y) equals l. To do so, by the induction hypothesis on l, Lemma 1, (ii) of Definition 3, Hölder's inequality, (2.2) and (2.7), we have

$$I_{21} \leq \int_{2 < |x| \leq r_0} \left| \int_{\mathbf{R}^n} e^{iQ(x,y)} \left[e^{i\sum_{|\mu| \geq 1, |\nu|=l} a_{\mu\nu} x^{\mu} y^{\nu}} - 1 \right] \frac{\Omega(x-y)}{|x-y|^{n+m}} \right|$$

 $\times Q_{m+1}(A;x,y)a(y)dy |\omega(x)dx$
 $+ \int_{2 < |x| \leq r_0} \left| \int_{\mathbf{R}^n} e^{iQ(x,y)} \frac{\Omega(x-y)}{|x-y|^{n+m}} Q_{m+1}(A;x,y)a(y)dy |\omega(x)dx \right|$

$$\begin{split} &\leq C\sum_{k=2}^{k_0+1} \int_{2^{k-1} < |x| \leq 2^k} \left\{ \int_{\mathbf{R}^n} \left(\sum_{|\mu| \geq 1, |\nu|=l} |a_{\mu\nu}| |x|^{|\mu|} \right) |x - y|^{-n-m} \\ &\times |Q_{m+1}(A_k; x, y)a(y)| dy \right\} \omega(x) dx + C \\ &\leq C\sum_{k=2}^{k_0+1} \sum_{|\mu| \geq 1, |\nu|=l} |a_{\mu\nu}| 2^{k(|\mu|-n)} \omega(B_0)^{-1} \\ &\times \int_{2^{k-1} < |x| \leq 2^k} \left(1 + \sum_{|\alpha|=m} |D^{\alpha}A_k(x)| \right) \omega(x) dx + C \\ &\leq C\sum_{k=2}^{k_0+1} \sum_{|\mu| \geq 1, |\nu|=l} |a_{\mu\nu}| 2^{k|\mu|} \omega(B_0)^{-1} \left(\frac{1}{|B_k|} \int_{B_k} \omega^{1+\varepsilon}(x) dx \right)^{1/(1+\varepsilon)} \\ &\times \left\{ \frac{1}{2^{kn}} \int_{2^{k-1} < |x| \leq 2^k} \left(1 + \sum_{|\alpha|=m} |D^{\alpha}A_k(x)| \right)^{(1+\varepsilon)/\varepsilon} dx \right\}^{\varepsilon/(1+\varepsilon)} + C \\ &\leq C\sum_{k=2}^{k_0+1} \sum_{|\mu| \geq 1, |\nu|=l} |a_{\mu\nu}| 2^{k|\mu|} 2^{-kn} \frac{\omega(B_k)}{\omega(B_0)} + C \\ &\leq C\sum_{|\mu| \geq 1, |\nu|=l} |a_{\mu\nu}| \sum_{k=2}^{k_0+1} 2^{k|\mu|} + C \\ &\leq C\sum_{|\mu| \geq 1, |\nu|=l} |a_{\mu\nu}| |b^{|\mu|} + C \leq C, \end{split}$$

where Q(x, y) is a polynomial with its degree in y less than l. This finishes the proof.

3. Proof of Theorem 2

We begin with the atomic decomposition of the Herz-type Hardy space.

DEFINITION 4. Let $\omega_1, \omega_2 \in A_1(\mathbb{R}^n), 1 . A function <math>a(x)$ on \mathbb{R}^n is called a *central* $\left(n\left(1-\frac{1}{p}\right), p; \omega_1, \omega_2\right)$ -atom, if it satisfies (i) supp $a \subset B(0,r) \equiv \{x \in \mathbb{R}^n : |x| < r\}$ for some r > 0; (ii) $||a||_{L^p_{\omega_2}(\mathbb{R}^n)} \le [\omega_1(B(0,r))]^{-(1-(1/p))};$

(iii)
$$\int_{\mathbf{R}^n} a(x) dx = 0.$$

The following Lemma 5 is a special case of ([10], Theorem 1).

LEMMA 5. Let ω_1 , ω_2 , p be the same as in Definition 4. Then $f \in H\dot{K}_p(\omega_1, \omega_2; \mathbf{R}^n)$ (or $HK_p(\omega_1, \omega_2; \mathbf{R}^n)$) if and only if $f = \sum_{k=-\infty}^{\infty} \lambda_k a_k$, where each a_k is a central $\left(n\left(1-\frac{1}{p}\right), p; \omega_1, \omega_2\right)$ -atom (or a central $\left(n\left(1-\frac{1}{p}\right), p; \omega_1, \omega_2\right)$ -atom with the radius of the support ≥ 1) and $\sum_{k=-\infty}^{\infty} |\lambda_k| < \infty$. Moreover,

$$\|f\|_{H\dot{K}_{p}(\omega_{1},\omega_{2};\mathbf{R}^{n})} \sim \inf\left\{\sum_{k=-\infty}^{\infty}|\lambda_{k}|\right\}$$
$$\left(or \ \|f\|_{HK_{p}(\omega_{1},\omega_{2};\mathbf{R}^{n})} \sim \inf\left\{\sum_{k=-\infty}^{\infty}|\lambda_{k}|\right\}\right),$$

where the infimum is taken over all the above decompositions of f.

PROOF OF THEOREM 2. We only show the theorem in homogeneous case. The non-homogeneous case is similar and we omit the details. As in the proof of Theorem 1, we only prove that for any central $\left(n\left(1-\frac{1}{p}\right), p; \omega_1, \omega_2\right)$ -atom a with support $B_0 = B(0, 1)$,

(3.1)
$$||T^A a||_{\dot{K}_p(\omega_1,\omega_2;\mathbf{R}^n)} \le C$$

with C independent of a. Write

$$\|T^{A}a\|_{\dot{K}_{p}(\omega_{1},\omega_{2};\mathbf{R}^{n})} = \sum_{k=-\infty}^{1} \omega_{1}(B_{k})^{1-(1/p)} \|\chi_{k}T^{A}a\|_{L^{p}_{\omega_{2}}(\mathbf{R}^{n})}$$
$$+ \sum_{k=2}^{\infty} \omega_{1}(B_{k})^{1-(1/p)} \|\chi_{k}T^{A}a\|_{L^{p}_{\omega_{2}}(\mathbf{R}^{n})}$$
$$\equiv J_{1} + J_{2}.$$

By ([5], Theorem 2.9 in page 401), there is a $\delta > 0$ depending only on *n* and the $A_1(\mathbf{R}^n)$ -constant of ω_1 such that for $k \leq 1$,

$$\omega_1(\boldsymbol{B}_k)/\omega_1(\boldsymbol{B}_0) \leq C 2^{kn\delta},$$

where C is independent of k. By this and Lemma 2, we obtain

$$J_{1} \leq C \sum_{k=-\infty}^{1} \omega_{1}(B_{k})^{1-(1/p)} ||a||_{L^{p}_{\omega_{2}}(\mathbf{R}^{n})} \leq C \sum_{k=-\infty}^{1} \left(\frac{\omega_{1}(B_{k})}{\omega_{1}(B_{0})}\right)^{1-(1/p)}$$
$$\leq C \sum_{k=-\infty}^{1} 2^{kn\delta(1-(1/p))} \leq C.$$

Let b, r_0 and k_0 be the same as in the proof of Theorem 1. Write

$$\begin{aligned} J_2 &= \sum_{2 < 2^k \le r_0} \omega_1(B_k)^{1 - (1/p)} \|\chi_k T^A a\|_{L^p_{\omega_2}(\mathbf{R}^n)} + \sum_{2^k > r_0} \omega_1(B_k)^{1 - (1/p)} \|\chi_k T^A a\|_{L^p_{\omega_2}(\mathbf{R}^n)} \\ &\equiv J_{21} + J_{22}. \end{aligned}$$

We first estimate J_{22} . To do this, we write

$$\begin{aligned} J_{22} &\leq \sum_{k=2}^{\infty} \omega_1(B_k)^{1-(1/p)} \|\chi_k T^{A,1} a\|_{L^p_{\omega_2}(\mathbf{R}^n)} + \sum_{k=2}^{\infty} \omega_1(B_k)^{1-(1/p)} \|\chi_k T^{A,2} a\|_{L^p_{\omega_2}(\mathbf{R}^n)} \\ &+ \sum_{k=k_0+1}^{\infty} \omega_1(B_k)^{1-(1/p)} \|\chi_k T^{A,3} a\|_{L^p_{\omega_2}(\mathbf{R}^n)} \\ &\equiv J_{22}^1 + J_{22}^2 + J_{22}^3. \end{aligned}$$

It follows from (2.4) that for $2^{k-1} < |x| \le 2^k$,

$$|T^{A,1}a(x)| \le C|x|^{-n-1} \int_{\mathbf{R}^n} |a(y)| dy$$

$$\le C2^{-k(n+1)} \omega_1(B_0)^{-(1-(1/p))} \omega_2(B_0)^{-1/p}.$$

Thus,

$$J_{22}^{1} \leq C \sum_{k=2}^{\infty} 2^{-k(n+1)} \left(\frac{\omega_{1}(B_{k})}{\omega_{1}(B_{0})} \right)^{1-(1/p)} \left(\frac{\omega_{2}(B_{k})}{\omega_{2}(B_{0})} \right)^{1/p} \leq C.$$

Similarly to (2.5), we can prove

$$|T^{A,2}a(x)| \le C2^{-k(n+1)}\omega_1(B_0)^{-(1-(1/p))}\omega_2(B_0)^{-1/p}\sum_{|\alpha|=m}|D^{\alpha}A_k(x)|;$$

and then Hölder's inequality together with (2.2) and (2.7) gives

$$\begin{split} J_{22}^{2} &\leq C \sum_{k=2}^{\infty} 2^{-k(n+1)} \left(\frac{\omega_{1}(B_{k})}{\omega_{1}(B_{0})} \right)^{1-(1/p)} \omega_{2}(B_{0})^{-1/p} \left(\int_{2^{k-1} < |x| \leq 2^{k}} \omega_{2}(x)^{1+\varepsilon} dx \right)^{1/((1+\varepsilon)p)} \\ &\times \sum_{|\alpha|=m} \left(\int_{2^{k-1} < |x| \leq 2^{k}} |D^{\alpha} A_{k}(x)|^{(1+\varepsilon)p/\varepsilon} \right)^{\varepsilon/((1+\varepsilon)p)} \\ &\leq C. \end{split}$$

Now we turn our attention to J_{22}^3 . We first consider the case 1 .

Interpolation between (2.8) and the trivial estimate

$$||T_k f||_{L^1(\mathbf{R}^n)} \le C2^{nk} ||f||_{L^1(\mathbf{R}^n)}$$

shows that

(3.2)
$$||T_k f||_{L^p(\mathbf{R}^n)} \le C 2^{nk/p} |a_{\mu_0 \nu_0}|^{-1/(p'Nl)} 2^{-k|\mu_0|/(p'Nl)} ||f||_{L^p(\mathbf{R}^n)}, \quad 1$$

here and in what follows, p' is such that 1/p + 1/p' = 1. Combining (3.2) and the estimate

(3.3)
$$||T_k f||_{L^{\infty}(\mathbf{R}^n)} \le C ||f||_{L^{p}(\mathbf{R}^n)}$$

gives that

$$\|T_k f\|_{L^{p_0}(\mathbf{R}^n)} \le C 2^{nk/p_0} |a_{\mu_0 \nu_0}|^{-p/(p'p_0 Nl)} 2^{-kp|\mu_0|/(p'p_0 Nl)} \|f\|_{L^p(\mathbf{R}^n)}, \quad p \le p_0 < \infty.$$

Thus, by taking $p_0 \in [p, \infty)$ and $q \in (1, \infty)$ such that $1/((1+\varepsilon)p) + 1/p_0 + 1/q = 1/p$, (2.6), Hölder's inequality, (2.2), (2.7) and (3.4), we obtain

$$\begin{split} J_{22}^{3} &\leq C \sum_{k=k_{0}+1}^{\infty} \omega_{1}(B_{k})^{1-1/p} 2^{-kn} \\ &\times \left\{ \int_{2^{k-1} < |x| \leq 2^{k}} \left(1 + \sum_{|\alpha|=m} |D^{\alpha}A_{k}(x)| \right)^{p} |T_{k}a(x)|^{p} \omega_{2}(x) dx \right\}^{1/p} \\ &\leq C \sum_{k=k_{0}+1}^{\infty} \omega_{1}(B_{k})^{1-1/p} 2^{-kn} \left(\int_{2^{k-1} < |x| \leq 2^{k}} \omega_{2}(x)^{1+\varepsilon} dx \right)^{1/((1+\varepsilon)p)} ||T_{k}a||_{L^{p_{0}}(\mathbb{R}^{n})} \\ &\times \left[\int_{2^{k-1} < |x| \leq 2^{k}} \left(1 + \sum_{|\alpha|=m} |D^{\alpha}A_{k}(x)| \right)^{q} dx \right]^{1/q} \\ &\leq C \sum_{k=k_{0}+1}^{\infty} \left(\frac{\omega_{1}(B_{k})}{\omega_{1}(B_{0})} \right)^{1-1/p} 2^{-kn} |a_{\mu_{0}v_{0}}|^{-p/(p'p_{0}Nl)} 2^{-kp|\mu_{0}|/(p'p_{0}Nl)} \left(\frac{\omega_{2}(B_{k})}{\omega_{2}(B_{0})} \right)^{1/p} \\ &\leq C \sum_{k=k_{0}+1}^{\infty} |a_{\mu_{0}v_{0}}|^{-p/(p'p_{0}Nl)} 2^{-kp|\mu_{0}|/(p'p_{0}Nl)} \\ &\leq |a_{\mu_{0}v_{0}}|^{-p/(p'p_{0}Nl)} b^{-p|\mu_{0}|/(p'p_{0}Nl)} \leq C. \end{split}$$

If 2 , interpolation between (2.9) and (3.3) gives that $(3.5) <math>||T_k f||_{L^{p_0}(\mathbf{R}^n)} \le C2^{nk/p_0} |a_{\mu_0\nu_0}|^{-1/(p_0Nl)} 2^{-k|\mu_0|/(p_0Nl)} ||f||_{L^p(\mathbf{R}^n)}, \quad 2$ $Now if we replace (3.4) by (3.5), similarly to the computation above, we can also obtain a desirable estimate for <math>J_{22}^3$ in this case. Finally, it is easy to see that J_{21} can be estimated similarly to I_{21} by using some techniques as above. This finishes the proof of Theorem 2.

References

- [1] H. Q. Bui, Weighted Hardy spaces, Math. Nachr. 103 (1981), 45-62.
- S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55:1 (1987), 141-155.
- W. Chen and S. Lu, Weighted inequalities for multilinear oscillatory singular integrals, Hokkaido Math. J. 26 (1997), 163-175.
- [4] J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integrals, Illinois J. Math., 30 (1986), 445-464.
- [5] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland, Amsterdam, 1985.
- [6] G. Hu, Weighted norm inequalities for commutators of homogeneous singular integrals, Acta Math. Sinica (new Ser.) 11 (1995), Special Issue, 77–88.
- Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Math. 30 (1992), 311–320.
- [8] G. Hu and D. Yang, Multilinear oscillatory singular integral oprators on Hardy spaces, Chinese J. Contemporary Math. 18 (1997), 403–413.
- [9] S. Lu and D. Yang, Oscillatory singular integrals on the Hardy space associated with Herz spaces, Proc. Amer. Math. Soc. 123 (1995), 1695–1701.
- [10] S. Lu and D. Yang, The weighted Herz-type Hardy spaces and its applications, Sci. in China (Ser. A) 38 (1995), 662–673.
- [11] S. Lu and Y. Zhang, Criterion on L^p-boundedness for a class of oscillatory singular integrals with rough kernels, Rev. Math. Ibeoamericana 8:2 (1992), 201–219.
- [12] Y. Pan, Hardy space and oscillatory singular integrals, Rev. Math. Iberoamericana 7 (1991), 55-64.
- [13] F. Ricci and E. Stein, Hormonic analysis on nilpotent groups and singular integrals (I), oscillatory integral, J. Funct. Anal. 73 (1987), 179-194.
- [14] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

Guoen Hu:

Department of Applied Mathematics Institute of Information Engineering Box 1001-47, Zhengzhou 450002 The People's Republic of China

Qiang Wu and Dachun Yang: Department of Mathematics Beijing Normal University Beijing 100875 The People's Republic of China E-mail: dcyang@bnu.edu.cn (D. Yang)