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ABSTRACT. In this paper we shall discuss a white noise differential equation that comes

from some biological phenomena. Having applied the so-called S-transform to the

white noise functionals the given equation turns into an equation for a {/-functional.

There the advantage of the white noise calculus is heavily used. Thus the solution is

obtained in an explicit form in terms of white noise, and we see that the solution is a

generalized functional which is in the space of Cochran-Kuo-Sengupta. Some char-

acteristic properties of the solution are shown, for instance, positivity of the solution.

Further, its mean lies in between 0 and 1. The expression of the solution shows the

most significant property that there is an asymmetry in time for the phenomenon in

question.

1. Introduction

A biological organism is composed of one cell or many cells. The surface

of a cell is covered with a plasma membrane and the membrane is the border

between the inside and the outside of a cell. Disproportion of sodium,

potassium, calcium and chlorine ions exist between the inside and the outside

of a cell and this fact brings about the difference in electric potential. Ion

channels are macromolecules that open and close in a random fashion on

membrane and play the role of gatekeepers which control the flux of their ions

coming in and out of the cell.

F. Oosawa et al. [10] has introduced a differential equation which is

proposed to describe the probabilistic behavior of ion channels in a fluctuating

electric field. They claim that the open—close fluctuation in an assembly of

channels has an asymmetry with respect to time reversal. In their theory, the

probability which is the ratio of the number of channels in open state to the

total number of channels is denoted by p(ή and it is given by the solution to

the equation.

^-k+oeχp{-βE(ή}p(ή+k.ocxp{+βE(ή}(\ -p(ή), (1.1)

where k+0 > 0, k-0 > 0, β = (\/2)δμ/kT (δμ\ the free energy difference between
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an opened state and a closed state, k: the Boltzman constant, T: the absolute
temperature, <2s(ί)> = 0, and E(t) is Gaussian).

We are interested in their approach and understand the equation (1.1)
to be expressed in terms of fluctuation. Namely, we regard the E(t) in the
above equation as an operator describing the fluctuation expressed by creating
operators of the field.

Thus, the purpose of this paper is to give a mathematical interpretation
to the solution of (1.1) from the viewpoint of white noise analysis and to show
asymmetry of the phenomenon for ion channels with respect to time reversal,
by using the explicit expression of p{t).

We get a solution of the equation in the space [£] | which is recently
obtained by Cochran-Kuo-Sengupta [1]. Our method gives an investigation of
the equation introduced by F. Oosawa et al. and also gives an example which is
actually useful to study the theory of the space [2s]|.

The paper is organized as follows. In §2 we summarize basic concepts of
white noise calculus, including the space of white noise distributions in the sense
of Cochran-Kuo-Sengupta [1] as well as the creation operator and the anni-
hilation operator acting on the space. The space is provided rich enough so
as the solution can live within the space constructed. In §3 we obtain the
solution of the equation (1.1) which can be transformed to the equation of the
JJ-functional. The solution is, in fact, a generalized white noise functional
which is in the space of Cochran-Kuo-Sengupta. In §4 we prove the positivity
of the solution, which is requested as a probability. This fact should be
clarified since the solution itself is a generalized white noise function and it
is impossible to show positivity in the ordinary sense. The positivity of a
generalized white noise functional is rephrased as the positive definiteness of
its S-transform, and actually this property is proved. In the last section which
is the main section we prove an asymmetry of the equation with respect to time
reversal.

2. Preliminaries

We now prepare some background of white noise calculus to discuss the
equation (1.1). Basic notation is introduced following Hida [2], [4], Cochran-
Kuo-Sengupta [1] and Kuo [6].

Let L2(R) be the Hubert space consisting of real-valued square integrable
functions on R with norm | |0. We start with the real GePfand triple:

E = &>(R) c L2(R) c E* = ^ ' (R),

where ^(R) is the Schwartz space consisting of rapidly decreasing C00-
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functions on R and Sf'ζR) is its dual space, i.e., the space of tempered
distributions. ,2

Let A = 1 + t2—pr be densely defined self-adjoint operator on L2(R)
atL

such that there exists an orthonormal basis {ey ; j — 0,1,2,...} cz E for
L2(R) satisfying Aej = (2j + 2)ej.

Define the norm | \p by \f\p = \A^f\0 for / e L2(R) and p e R. For any
p e R, also define Ep by {/ e L2(R); \f\p < oo} for p > 0 and the completion of
L2(R) with respect to the norm | \p for p < 0. Then the space Ep is a Hubert
space with norm | \p for each p e R, and we get E = f] Ep and E* = (J ^
with the projective limit topology and the inductive limit topology, respectively.

Take C(ξ) = e~(ι/2^\<>, ξeE. Since the functional C(ξ) satisfies condi-
tions (1) continuous, (2) positive definite, (3) C(0) = 1, we can appeal to the
Bochner-Minlos Theorem to guarantee the existence of a probability measure μ
on E* such that the characteristic functional is given by

[ ei<x>ξ>dμ(x) = C(ξ), ξeE.

The measure μ is called the standard Gaussian measure or the white noise
measure defined on E* and (E*,μ) is called a white noise probability space.

The Hubert space (L2) = L2(E*,μ) of complex-valued μ-square-integrable
functionals defined on E* admits the well-known Wiener-Itό decomposition:

«=0

where Hn is the space of multiple Wiener integrals of degree neN and Ho = C.
Let Lc(R)®n denote the «-fold symmetric tensor product of the complexifi-
cation LQ(R) of L2(R). It is known that a multiple Wiener integral of degree
n has a representation in terms of a kernel/ e LQ(R)®", and hence it is denoted
by !„(/) [3]. For φ = ΣZoUfn) e (L 2), the (L2)-norm \\φ\\0 is equal to

Λ=0

where | |0 denotes the L^(R)®"-norm.
Set expo(x) = x and define

expy + 1 (x) = exp[expy(x)], 7 = 0,1,2, —

inductively. Denote by Bj(n) the n-th coefficent of the power series expansion

Λ=0
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For each positive integer j > 1, Bj{n) = Bj(n)/expj(0) (n > 0) are called the j-th

order Bell numbers.

For p > 0 and y e N U {0}, we define a norm || || ^ by

for φ =

n=0

Let [Ep]Sj = {φe(L2);\\φ\\pJj<co}. Then the

projective limit space, denoted by [E]g., of the spaces [Ep]g,, p > 0, is a nuclear

space (for proof see [1]). Let [Ep]^ be the dual space of [Ep]^. The space

[Ep]^ is defined in a usual manner and it is in agreement with the Hubert

space obtained by the completion of (L2) with respect to the norm

«=o

for each p > 0. The dual space of [E]^ is denoted by [E]^, which is one of

the spaces of white noise distributions in the sense of Cochran-Kuo-Sengupta.

We denote by «•,•» the canonical bilinear form on [E]^ x [E]^. Then we

have

«=o

for any Φ = ΣZoUFn) e [E]*Mj and ^ = ΣZoWn) e [^]^, where < , •> is the

canonical bilinear form that links (E®n)* and E®n.

Since exp< ,ί> and exp(/< ,<^» are in [E]^m, the ^-transform S[Φ] and the

Γ-transform Γ[Φ] of Φ e [E]^ are, by definition, of the forms

and

respectively. By the expansion

n=0 H

where :<x, cj>": is the wick ordering of <x,<J>" (See [6] for example.), we can

calculate the norm | |e l < ;"'^| | g for any p > 0 and _/ > 1 as follows:

BJ l«|2« _ -|f|n P/(li/>)
! | ζ | " ~ exp, (0)
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Thus, for each j > 1, we get that e'< ί> e [E]g_ and therefore we can estimate
\T[Φ}(ξ)\ for Φe[E]*Sj and p > 0 as follows:'

\T[Φ](ξ)\ = |«Φ,e'< ί>»| < IWL^-.lk'^IUj,.

This estimation implies that, for each Φ e [E]^, the map T[Φ] : Ec —• C

is continuous. From S[Φ](ί) = exp(-^<ί,ξ>)Γ[Φ](-/^), the ^-transform

S[Φ](£) is also continuous in ξ.

For any <p e [is]^ , define the Gateaux derivative Dyφ in the direction y e E*

by

where the limit is taken in the topology of [E]^. For y e E* and/ e E®n, we
introduce a notation • by

\,...,un-\) = y(un) 'f(uu...,un)dun.

Then, for φ = JZ^Lo^nifn) e [E]ji-> Dyφ is expressed in the form

n=\

provided that the convergence of the sum is guaranteed. We denote the
adjoint-operator of Dy by D*.

The white noise differential operator dt is defined to be the operator Ds(

acting on [E]^. Then dt is a continuous linear operator from [E]^, to itself,
and its adjoint operator δ* is also a continuous linear operator from [iΓ]| into
itself.

It is noted that δt is an annihilation operator, while the adjoint δ* is a
creation operator.

3. A white noise version of the equation that describes an evolutional
phenomenon in biology

In this section we find a solution of the equation in the space [E]^ which is
recently obtained by Cochran-Kuo-Sengupta [1].

We consider the equation (1.1) with the following setting. Since F.
Oosawa et al. [10] assumed that E(i) is a centered stationary Gaussian process,
we can regard that E{t) is expressed in the form, F{t,u) e L2(R) Π C°°(R) and
E(i)\ = J ^ F(t, u)B(u)du, with the nondeterministic property.
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Let G\u) = F(t, w)lM(w) for each t > 0. Set E(ή = D*G<

(= J^ F(t, u)d*du) and denote the set of all Φ e [E]*Bj such that ΣΪLO^JΦG')"0

exists in [E]^ by Dom(e(xE^). Then we can define an operator Qxp(ccE(t)), α e

R by exp(αi(0) = Σ«°0=o^(^G')"
Replacing p(ή in (1.1) with a white noise functional Φ(t, ) we may discuss

the following equation:

jtΦ(t,x) = -fc+oexp{-/?£(0}Φ(ί,x) +fc-oexp{/?£(/)}(l - Φ(t,x)). (3.1)

The operator j^(ί) is continuous linear from [E]^ into itself.

A generalized white noise functional Φ{t,x) is called to be a solution of
(3.1) if Φ(t,x) satisfies the following conditions:

(1) for each ξ, U(t,ξ) = S[Φ(t, )](ξ) is differentiable in t.
(2) for each ξ and t, U(t,ξ) satisfies

j t C/(ί, ξ) = {-k+0 exp{-βE(t, ζ)} - k.o exp{βE{t, ξ)}) U(t, ξ)

)}, (3.2)

where E(t,ξ) = ^QF(t,u)ξ(u)du9 which is the ^-transform of E(t)\.
The method in this section gives an investigation of the equation intro-

duced by F. Oosawa [10] and also gives an example which is actually useful to
study the theory of the space [E]^.

Note that S[exp{ocE(ή}Φ](ζ) = exp{ocE(t,ξ)}SΦ(ζ) for Φe[E}^.
We can solve (3.2) which is a linear ordinary differential equation of the

first order and get the solution of the form.

C/(f, ξ) = exp|J'(-*+* exp{-βE(s, ξ)} - k_0 exp{βE(s, ζ)})ds\

f exp(βE(s,ζ) + \ [k+oexp{-βE(u,ξ)}

iu)ds >,+ k-0 exp{βE(u, ξ)}}du)dsγ (3.3)

where C\ is the initial value of U(t,ξ) satisfying 0 < C\ < 1.
It can be easily checked that U(t,ξ) satisfies the following two properties:

for each / (>ίo)
i) U(t,zζ + η), z e C is entire function in z for any ξ,η e EQ.

ii) there exist K\ > 0 and K2 > 0 such that

\U(t,ξ)\ < KιQχp[cxp(K2\ξ\2

0)l ξeEc.
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In fact, we can take the constants K2 = 1 and

Kι = {Cι + k-0(t - to)}

l}2exp{£2 sup f F(s,u)2du}).
to<s<tJto /

These properties show that for each t > to, U(t, •) is a {/-functional of the
element in [E]^, i.e., t/(ί, •) e S[[E]^]. (See [1].)

For Φ,Ψ e [E]*β, the Wick product, denoted by ΦoΨ, can be defined by

S[Φo Ψ](ζ) = S[Φ](ξ)S[Ψ](ξ), ζ e Ec,

since the product in right hand side is again {/-functional by the characteris-
tic theorem. Similarly S[Φ](ξ)n defined a white noise distribution which are
denoted by Φon:

With the notation established above we prove the following theorem.

THEOREM 3.1. For each t > to the equation (3.1) has a unique solution in
[E]*g2 given by

Φ(t,x) = exp° j j ' {-k+o&Lp{-βE(s)l} - k-oexp{βE(s)l})ds\

o ( c , +k.o • \ expΰ(βE(s)l + ί [k+oexp{-βE(u)l}

+ k.oexp{βE(u)\}]du)ds\, (3.4)

where txp«[Ψ] = ΣZo^" for Ψ e [E]^.

REMARK. By (3.2) we can check the above conditions i) and ii) for

jfU(t,ξ). In fact, |< K\ exp{exp{A^2|ί|o}} for each t > to with

Kλ = (Cλk+0 + k-0{\ + Cx + (k+0 + k-0)(t - to)})

2 sup
to<s<t

and Kι = 1. Therefore —Φ(t,x) is a member of [E]^ .

f F{s,u)2duX)
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4. Characteristic properties of Φ{t,x)

In this section, as a characteristic property, we prove the positivity of

the solution Φ(t,x) of (3.1), which is requested as a probability. This fact

should be clarified since the solution itself is a generalized white noise

function so that it is impossible to show positivity in the ordinary sense.

Probability is a number between 0 and 1, while the Φ(t,x) is a generalized

function. We expect that Φ is a generalization of the probability p(t). To

give a plausible interpretation to the Φ(t,x), we show that its mean is in

between 0 and 1.

DEFINITION 4.1. A generalized function Φ in [ £ ] | is called positive if

^(Φ, φ^> > 0 for all nonnegative test function φ in [E]β. (cf. [6])

LEMMA 4.2. Let Φ by a generalized white noise function Φ in [E]^. Then

the following are equivalent:

(a) Φ is positive.

(b) TΦ is positive definite on [E]^.

PROOF. The proof is almost same to Theorem 15.3 in [6].

(a)—»(b): Let ξk e Ey z ^ e C , k = 1,..., n. Then we have

Σ
l,k=\

z,TΦ(ξ, - ξk)z~k = (( Φ, ,'•<•,£/>

ι=ι

Observe that

5>'<
ι=\

ξι>

l,k=\

is a nonnegative test function in [E]^. Hence by the positivity of Φ,

l,k=\

This shows that TΦ is positive definite.

(b)—>(a): Suppose TΦ is positive definite on E. From the argument in

§2, we see that TΦ is continuous on E. Hence by the Minlos Theorem there

exists a finite measure v o n F such that

TΦ(ξ)= [ ei<x>ξ>dv(x),
JE*

or equivalently,
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«*,<?''<•'*>»= [ eKx^dv(x), MξeE. (4.1)

We need to show that v is a Hida measure inducing Φ, i.e., [E]β. <= Lι(v) and

«Φ,<P» = f φ(x)dv(x), Vφ e [£%. . (4.2)

Let K be the subspace of [E]^ spanned by the set {e/<-'^; ξ e E}. It follows

from equation (4.1) that

,p»= f ^ ) Λ ( x ) , V^eF. (4.3)

Note that if φ, ψ e V, then φψ e V. In paticular, if φ e V, then \φ\2 e V and

by equation (4.3) we have

[

Hence φeL2(v). This shows that F c L 2 ( v ) . Since V is dense in [£]#., by

using the same method in [[6]; Theorem 15.3], we can prove that [E]^ a L2(v)

(so [E]β. c Lι(v)) and equation (4.2) holds. This implies the positivity of Φ.

LEMMA 4.3. If U(ξ) and V(ζ) are positive definite functions in S[(E)*],

then U(ξ) - V(ξ) is also a positive definite function in S[(E)*].

PROOF. See [7] or [8] for example.

THEOREM 4.4. For each t (>ίo) the solution Φ(t,x) 0/(3.1) is positive.

PROOF. By Lemma 4.2., it is sufficient to prove that T[Φ(t, )](ξ) is

positive definite.

Then we can calculate T[Φ(t,-)](ξ) as follows:

Σ «k*ιT[Φ(t, ) ] ( 4 -ξ,)=Σ 0LkanC{ξk - ί/)S[Φ(ί, -)](*'(& - ξι))
k,l=\ k,l=l

N

k,l=\

Since a functional C(ξ) is positive definite, by Lemma 4.3., it is sufficient to

prove U{t,iξ) is positive definite for each t> to.
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k,l=]

t ^ vi
~q(s,k)+q(s,<sJ)dX

I

-o f
Ξθ V 3 ! VJ/o

ί - Σ V 1

<,+.>•

dudu'
k=\

oυ
^r—>

0 / J

•Γ ω
J to

V4!

dsdudu'd\d\f.

where Λi = ώj ώ V l , Ju r = ds{ --dsf

V2, ds = ds'( •&£, rfv' - ώ{7/ ώ ^ , and

y = vi + v2 + v3 + v4 + 1, and ^(x,j) = iβf*F(x, u)ξy(u)du.

Therefore we have Σ^/=i α^α/Γ[Φ(r, )](ίA: ~ ί/) ^ O Thus the assertion
is proved. Q

THEOREM 4.5. L^/ 0 < Q < 1 and let Φ(t,x) be the solution of (3.1).

Then, it holds that 0 < E[Φ(t, •)] < 1 for each t > t0.

PROOF. Since we have E[Φ(t,-)] = U(t,ξ)\ξ=0 for each t > t0 by the

definition of generalized expectation, from (3.3) the expectation E[Φ(t, •)] is
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given by

E[Φ(t, •)] = exp{-(£+ o + k-0)(t - t0)}

0 + *-„)(* - to)} - 1)]. (4.1)

By the condition it is obvious that E[Φ(t, •)] > 0. The expectation E[Φ(t, •)] is

equal to

-o i k-0

Since 0 < exp{-(&+0 + Λ_0)(ί - ίo)} < 1, 0 < -—~° < 1 and the condition

0 < C\ < 1, we obtain £[Φ(ί, •)] < 1. D + 0 + ~°

5. Asymmetry in time

In this section we discuss the asymmetry with respect to time reversal for

the solution Φ(t,x), as in (3.4), of the equation (3.1) with F(t, u) = e~^~u\

If we justify that E[p(ήp(t + A)] = E[p(t)p(t + A)] for any ί and A, this

implies an asymmetry in time of p(i). Since we now regard p(t) as a gen-

eralized white noise functional Φ(t) = Φ(t,x), we introduce an asymmetry, the

[£]I -asymmetry, in time for Φ(t,x) by

(Φ(0, Φ(ί + A))Oϊjg-i Φ (Φ(t + A), 0 , ^

As we can assume that Φ(t) is stationary, (5.1) is equal to

(Φ'(t), Φ(t + Λ))oΛ_, # (Φ'(ί), Φ(t - Λ))OiA_, (5.2)

The ^-transform C/(r, <f) of Φ(/,x) is given as in (3.3). Set

and set also

Q(t,ξ)= f

Then, P(t,ξ) and β(ί, ί ) have the following expansions:

p(t,ξ) =
w=0 n=0
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where fn(t) and gn(ή are given by

ήί

< i n < n v=l
fci+•••+*:„=«

,„(,) = [' ((-I)"e2^°+k-°*s-">ϊfn(s) +fn*(s))ds, n = 0 , 1 , 2 , .

with

(for 1 <j <n, λj denotes the frequancy of appearance of

j in ki\ i= 1 ,2, . . . ,Λ),

0<k\<-<kn<n v=l

®Lkn(s), n >

and

=
Jto

Since U(t,ξ) = P(t,ξ)(C\+k-0Q(t,ξ))> we have the chaos expansion of

rm(ή®gn(ή\ (5.3)

where \x®^\ is the Wick tensor of x®^ (see [6]) and fm(t) ® gn(i) means the

symmetrization of fm{i) ®gn(f). Therefore from (5.3) the chaos expansion of

— Φ(t,x) is given by
ct
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£ gn{t) +fm(t) ® ̂ (r)}V (5.4)
/=0 \ /

It is sufficient to prove (5.2) to imply an asymmetry in time in Φ(t,x),
where ( , )oiH is the inner product of [Eo]*β • From (5.2), we may prove

ιiφ'wιioΛ-' '*° β y (5 4 ) t h e n o r m HΦ'wiio.V is

0

Using /o(/) = -(k+o + k-o)f0(ή and J^ fo(s)ds = fc _ ^ (1 - / 0(0), we have

Ci/o(O + £-0/o'(0 ® 0o(O + k-of0(ή ® gf

0(t)

because we employed go(ή = (cxp{(k+0 + k-0)(t - to)} - l)/(k+0 + k-0).
Thus, we have the following.

THEOREM 5.1. Let Φ(t,x) be a solution of (3.1) as in (3.4) and let C\ Φ
( k-o \

lim^oo E[Φ(t)} I = — °—— I. Then, for any t eΈL and h > 0, Φ(/, x) has the

[E]*B2-asymmetry in time.
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