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ABSTRACT. In 1970, Keller and Segel proposed a parabolic system describing the

chemotactic feature of cellular slime molds and recently, several mathematical works

have been devoted to it. In the present paper, we study its blowup mechamism and

prove the following. First, chemotactic collapse occurs at each isolated blowup

point. Next, any blowup point is isolated, provided that the Lyapunov function is

bounded from below. Finally, only the origin can be a blowup point of radially

symmetric solutions.

1. Introduction

A system of parabolic partial differential equations of mathematical bi-

ology is attracting interest. It was proposed by Nanjundiah [22] in 1973, as a

simplified model of the Keller and Segel system [16] describing a chemotactic

feature, the aggregation of some organisms (cellular slime molds) sensitive to

gradient of a chemical substance. Precisely, with u(x, t) and v(x, i) standing

for the density of the organism and the concentration of the chemical substance

at the position xeΩ and the time te(0,T), respectively, it is given as

J ί = V (Vu - χuVv) in Ω x (0, T)
ct

( κ s ) τ^Δv-yv + au in Ω x (0, T)

^ = -^ = 0 on dΩ x (0, T)
ϊn on
((•, 0) = wo, v( , 0) = vo on Ω,

where

(Al) T, α, y and / are positive constants

(A2) Ω is a bounded domain in R2 with smooth boundary dΩ

(A3) n denotes the unit outer normal vector
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(A4) wo and vo are smooth, nonnegative, and nontrivial initial values on Ω.

The first equation describes the conservation of mass. Flux of u is given by

^ = -Vu + χuVv

so that the effect of diffusion V Vu and that of chemotaxis V χuVv are

competing for u to vary. The second equation is linear, and v is produced

proportionarily to w, diffuses, and is destroyed by a certain rate.

The phenomenon of the blowup in a finite time of the solution is im-

portant from both mathematical and biological points of view. There are

conjectures by Nanjundiah [22], Childress [5], and Childress and Percus [6];

c* = c* = c — 8π/(αχ) is the threshold number in the following sense: if

||wo||Li(β) < c* then the solution exists globally in time and if ||WO||L1(£) > £*

then u(x,t) can form a delta function singularity in a finite time. The latter

case is referred to as the chemotactic collapse. The arguments were heuristic,

making use of numerical computations for the stationary problem, while recent

studies are supporting their validity rigorously ([12], [14], [19], [20] and [21]).

First, the existence of such numbers c* and c* was proven by Jager and

Luckhaus [14] for a simplified system. Later, Nagai [19] treated another

system, (KS) with τ = 0, referred to as N model in the present paper; as [6]

conjectured, 8π/(αχ) is actually the threshold number in the above sense for

radially symmetric solutions. Then, several works were devoted to the full

system, (KS) with τ > 0. Particularly, Herrero and Velazquez [12] constructed

a radially symmetric solution with u collapsing at the origin in a finite time,

having the concentrated mass equal to 8π/(α/). Its counter part was shown by

Nagai, Senba, and Yoshida [21]; radial solutions exist globally in time with

uniformly bounded, provided that HWOIIL^Ω) < ^ π / ( α / ) I*1 trχis way, conjecture

[5] has been almost settled down in the affirmative for radially symmetric

solutions.

As for the general case, contrarily to the conjecture, [21] gave only

IM| L i ( β) <4π/(α/)

as a criterion for the existence of global solutions. (The same result is

obtained by Biler [3] and Gajewski and Zacharias [7] independently.) But this

number 4π/(otχ) is also realized to be best possible and the reason for the

discrepancy between radial and non-radial cases has been clarified by Nagai,

Senba and Suzuki [20] and Senba and Suzuki [23]. Namely, the former

studied N model and showed, among others, that if 4π/(ocχ) < \\uo\\Li(Ω\ <

8π/(α/) and the solution blows up in a finite time then the concentration

toward dΩ occurs to u. (This phenomenon is proven also for the full system

recently by Senba and Suzuki [25] and Harada, Nagai, Senba, and Suzuki

[10].) On the other hand the latter studied the stationary problem in details;
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the underlying variational structure and its effects to the dynamics. In par-

ticular, it asserts that many non-radial stationary solutions, missed by [6], exist

and take roles in non-stationary problems even in the case that Ω is a disc.

Through those studies we are led to the following conjecture:

Component u forms a delta function singularity at each blowup point xo e Ω

with the concentrated mass equal to Sπ/(ocχ) and 4π/(otχ) according to XQ e Ω

and xo e dΩ, respectively.

Actually Senba and Suzuki [24] studied N model and proved the above

phenomenon with the mass greater than or equal to the expected values. The

present paper studies the full system and proves the following; if the solution

(w, υ) blows-up in a finite time, then u forms a delta function singularity at each

isolated blowup point, and any blowup point is isolated, provided that the

Lyapunov function described below is bounded. Finally, only the origin can

be a blowup point of radially symmetric solutions.

2. Summary

Let us put that

for simplicity. The following facts are known.

1. ([27], [3]) Given smooth nonnegative initial data u$ φ 0 and v§, we have a

unique classical solution (u( , t), v(-, ή) to (KS) defined on the maximal time

interval [0, Γm a x). The solution is smooth and positive on Ω x (0, Γm a x). If

Tmax < +oo, then it holds that

2. ([21], [3], [7]) Putting

W(ή= f \u\ogu - uv + U\Vv\2 + v2]

we have

u\V (logw — υ)\ dx = 0.
dt Ω

In particular, W{t) is a Lyapunov function. It is monotone decreasing, so

that either

inf W{t) > -oo (1)
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or

lim IV (ή = -oo

holds.

We prepare several notations and definitions.

Notation

( i ) 5(*o, R) = {x e R2 | \x - xo\ < R}, where x0 e R2 and R > 0
(ii) ^(x o ,r,Λ)=5(xo,Λ)\^o,r)
(iii) Ji{£f) = {Radon measures on 5 }̂, where ^ denotes a compact

Hausdorίf space
(iv) w* - lim = weak star limit in Jί{^)
(v) <$(•) = Dirac's delta function concentrated at x = 0 in R2 and

<M0 = ^(' ~ χo) for xo e R2

(vi) | β | = the Lebegue measure of β c R2

DEFINITION

( i ) In the case of Γmax < +oo, we say that xo e Ω is a blowup point of u if
there exist {tk}Z\ c [0» ̂ max) and {x^}^=1 c β satisfying «(**,**)->
+ oo, />t —̂  ϊmaxj a n d ^ "^ -̂o as k -^ oo. The set of blowup points of u
is denoted by ^ .

(ii) We say that xo e (% is isolated if there exists R > 0 such that

sup K ,0IL»(Λ(w,*)nβ) < + 0 °
0 < /< TΊnax

for any r e (0,R). The set of isolated blowup points of u is denoted by
Si i.

(iii) System (KS) is called radially symmetric if Ω = {x e R2 | \x\ < 1} and

Our results are stated as follows.

THEOREM 1. Given x0 e S&j, we have 0 < R « I, m> m*, and

f e Lι(B{x0)R)ΠΩ) Π C(B(xo,R) nΩ\{x0}),

satisfying / > 0 and

w* - lim u(',ήdx = mδXo(dx)+fdx (2)

_ 8π (xo e β)
m * " t 4π (xo e δfl)
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THEOREM 2. If {I) occurs, then $ = J 7 .

THEOREM 3. If (KS) is radially symmetric and Γm a x < + 00, then 08 = {0}.

In our notation, the delta function δXo (dx) e Jί(Ω) acts as

(η,δxo(dx)} = η{x0)

for XQ e Ω and η e C(Ω). It is easy to see that Lι norm of w( , t) is preserved

(see section 3). Therefore, Theorem 1 implies that the number of isolated

blowup points is finite. More precisely,

2 x ttί^/Πfl) + ^jΠdΩ) < \\uo\\Li{Ω)/4π.

Condition (1) actually holds for the blowup solution constructed by [12].

However, except for this example any criteria for (1) have not been known. In

this connection, it may be worth mentioning about the semilinear heat equation

ut = Au + \u\p~xu in Ω x (0, T) with u\dΩ = 0 (3)

I **)

on a bounded domain Ω a Rn. For the subcritical case 1 < p < -, it is
n — 2

known that blowup occurs if and only if l im^^^ J(u(ή) = — 00, where

stands for the Lyapunov function ([8], [13], e.g.). To our knowledge, it has not

been clarified whether lim^τma}ίJ(u(ή) > —00 and TmSLX < +00 can occur for

the other cases of (3). But those relations between Lyapunov functions and

blowup mechanisms may suggest that (KS) with two space dimension obeys

some features of (3); in the former case the boundedness of the Lyapunov

function implies the finiteness of blowup points.

Our theorems are proven through localized energy estimates, particularly

the localized Lyapunov function. Concluding the section, we describe it in

short.

The localized Lyapunov function is defined by

Wφ(t)= lulogu-uv + -(\Vv\2+ v2)\φdx,

where φ is a nonnegative C°° function. If φ = 1, Wφ(t) is equal to W(t), but

usually φ is a cut-off function satisfying

0 < φ < 1 in R2, γ = 0 o n dΩ ( 4)

Actually it is taken in the following way.
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Given xo e Ω, we have 0 < R' < R with B(xo,2R) <= Ω. Then we take φ

satisfying

(xeR\B(xo,R)). ( 5 )

Given x0 e <3ί2, we first prepare ζ e Q°(R2) satisfying ζ = ζ(\y\), 0 < ζ < 1 in

R2, and

0 ( ^ G \ ( , ) )

Next, we take a smooth conformal mapping X : B(xo,2R) -+ Θ <= R 2 satisfying

xo |-̂ > 0 and

X(B(xo,R) ΠδΩ) a {(xux2)\x2 = 0}

for 0 < Λ' < R « 1. Then we set φ(x) = ζ(X(x)). It holds that

^ ^ X ) = 0 on δΩ^ζoX = ^
on on

because (dX)/{dή) is proportional to (0,-1) on dΩ, and such φ satisfies (4)

and (5).

We have the following.

LEMMA 2.1. It holds that

T ^ ( 0 + [ vfφdx+\ u\V(\ogu-v)\2φdx = ^[ uφdx + Rx(u,υ,φ), (6)

where

R\{u, v, φ) = [(1 — v)Vu — (wlogw - uυ + υt)Vv\ Vφdx+\ (u\ogu)Aφdx.
JΩ JΩ

PROOF. Multiplying (logw — v)φ by the first equation of (KS) and using

Green's formula, we have

w,(logw — v)φdx
JΩ

= \ V - (Vu - uVυ)(log u-v)φdx
JΩ

= -\ u\V(logu-υ)\2φdx-\ (log u - v) (Vu - uVυ) Vφ dx. (7)
JΩ JΩ
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Here, it holds that

ut(logu - υ)φdx = — (ulogu — uv)φ dx—Γ uφdx+\ uvtφdx (8)
JΩ dt]Ω dt)Ω }Ω

and

(log u)Vu - Vφ dx = —I uV (log uVφ)dx -f (u log u) — dx
JΩ JΩ JΘΩ ^n

= - {(u log u) A φ + Vu F#>}<ix. (9)
JΩ

In use of the second equation of (KS), we have

J uυtφdx— (vt — Av + v)vtφdx
Ω JΩ

ί / 2 1 S 2 2 \ ί
Jβ\ t 2 dt J J β

which, together with (7), (8) and (9), leads to

*̂ I i f ?
~τWφ+ vtφdx-\-\ u\V{logu — v)\ φdx
dt ) Ω ) Ω

d Γ f
= -τ\ uφdx+\ (ulogu)Aφdx

dtjΩ j Ω

-h [(1 - v)Vu - (ulogu- uv + vt)Vv) F^dx.
JΩ

The proof is complete. •

We sometimes write φ = φXo,R>,R.

Now we describe the way of proof and some technical difficulties.

Theorem 1 is proven by the method of [20], localizing estimates of [21]. The

crucial point for the proof of Theorem 2 is showing finiteness of blowup

points. As is described in [24], it follows if local Lx norms of u have bounded

variations in time, and this actually holds if the Lyapunov function is

bounded. (In N model, it can be shown that the local Lx norms have always

bounded variation in time thanks to remarkable properties of the Green's

function. See [24].) Finally, Theorem 3 is a consequence of those arguments.

3. Preliminaries

Regard —Δ + 1 as a closed operator in LP(Ω) (1 <p < oo), denoted by

Ap, by
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It is sectorial so that —Ap generates an analytic semigroup denoted by {Tp(ή}

(see [15]). The spectrum σ(Ap) is independent of p and satisfies σ(Ap) c

{zeC\Re(z) > 1}. We have the following because Ω a R 2 is bounded and

dΩ is smooth (see [26]):

Tp(t) is an operator of integration with the symmetric kernel G{x,y,i)

independent of p, satisfying

\D^yG{X,y,t)\ < ^ ^ j , e x p ^ ^ y * 5 ' (10)

for |α| < 2, \β\ < 2, and (x,y, i) e Ω x Ω x (0, +00), where C > 0 is a constant

and 0 < δ < 1.

An immediate consequence is

\\Tp(t)\\g>(LP{Ω),LP{Ω)) ^ Cpi

where Cp > 0 is a constant determined by p e (1, 00).

For β e [0,1] the fractional powers ^ of Ap is defined, and the domain

Xjl = D(Afj) is a Banach space under the norm \\u\\χβ = | | ^ W | | L P ( Ω ) We have

the following ([11]):

r f cz Wk'q{Ω) and Xjj a CHΩ), provided that k - - <2β --, q >p and
P P q p

2
0 < μ < 2β , respectively.

P

Making use of those estimates instead of the elliptic estimate for the

second equation, we get the following similarly to N model (see [20]). We

have v(to) e D(AP) for 0 < to < Γ m a x and henceforth suppose that vo e D(AP).

PROPOSITION 3.1. The following relations hold for the solution (u,v) to

(KS), where Cq,ε > 0 is a constant determined by q e (1,2) and ε e (0,1/2):

\\uo\\LHΩ)) (12)

PROOF. Integrating the equations of (KS) over Ω, we have

^ f u(x,ήdt = 0 (13)
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and

^ f v(x, t)dt = - f υ(x, t)dt + f u{x, t)dt.
" ίJΩ JΩ JΩ

Equality (13) implies (11) because u > 0. Then,

I K >

follows from (14) and v > 0.

Poincare-Wirtinger's inequality assures the equivalence

so that (12) is reduced to

\\Vv(-,ή\\LHΩ) < CqA\\A\l2+%\\Lq[ii) + \\uo\\LHo)).

Rewrite the second equation of (KS) as

v(., ή = Tq(ήv0 + I Tq(t - s)u{-, s)ds.
Jo

Inequality (15) will follow from

II Γ
\\V Tq(t - S)u(> , t)ds < Cq\\uo\\Li(Ω)
II Jo Wx'i{Ω)

and

II^W^oHfl/i^β) < Cq^Aq'
 +εVθ\\w\,qψy

In fact, we have

•i:V\ Tq(t-s)u(-,t)ds
JΩ Jo JΩ

< f i{ty-λπ(x,t)dx
JΩ

(14)

(15)

VxG(x, y, t - s)u(y, s)dyds dx

with

and

•-ΓU-
Jθ JΩ

)u{y,s)eδφ-ή/{2g-2)dyds

11= [ ί ( ί -
Jo J Ω
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If q e (1,2) then (6 - 5q)/(4q - 4) > - 1 , so that we have

On the other hand, inequality (10) gives that

[ //(*, t)dx <c\ f' [ (t - s)-^6)/4 exp (- ή ^ ζ \ u(y, s)eδ^l2 dxdsdy
JΩ JΩJOJR2 \ Cv-S))

<cf Γ{q+2)/4e-W2dt\\uo\\υ{Ω) = Cq\\uo\\LHΩy
Jo

Therefore, we get

VI Tq(t-s)u{ ,s)ds <Cq\\m\\q

LX{Ωy

Finally,

and (15) follows. The proof is complete. •

We note that inequality (122) with 1 < q < 2 implies

\\v(-,ή\\p<Cp (16)

for 1 <p < oo.

Lemma 5.10 of Adams [1] reads;

\H\h{Ω) < K2(\\w\\l{Ω) + \\Vw\\l{Ω)) (17)

for w e Wι>ι(Ω), where K > 0 is a constant determined by Ω. Inequality (17)

implies some estimates on u.

Recall the cut-off function φXo^R^R intoduced at the end of section 2.

Then, φ = (φXo,R>:R)6 satisfies

{xeB(xo,R'))

0 (xeR2\B(x0,R))

0 < φ < 1 in R2, - ^ = 0 on oΩ
on

\Vφ\ < Aφ5/β, \Aφ\ < Bφ2/3 in R2,

where A > 0 and B > 0 are constants determined by 0 < R' < R « 1.



Chemotactic collapse in a parabolic system 473

LEMMA 3.2 The following inequalities hold for any s > I, where C > 0 is a

constant:

[ u2φdx<2K2\ udxλ u-ι\Vu\2ψdx + K2(^-+l)\\u\\2

LHΩ) (18)
JΩ JB{xo,R)nΩ JΩ \ * J

u2φdx<- (u\ogu + e~ι)dx\ u~ι\Vu\2φdx
JΩ 1°ES JB(xo,R)nΩ JΩ

(19)

ί u3φdx<^-i {ulogu + e-ι)dx [ \Vu\2ψdx
JΩ l o δ ^ JB(Xo,R)nΩ JΩ

(20)

PROOF. Putting w = uφ1^2, we have

| ί \Vw\dx\ < 2 | ί \Vu\φx/2dx\ +2 | ί u\Vφx/2\dx\

udx
B(xo,R)Γ\Ω

f u-ι\Vu\
JΩ

Hence (18) follows from (17) and HHLi(β) — I M I L ' W

We turn to (19). Take w = (u - s)+φι/2 with α+ = max{«,0}. We have

= [ (u-s)2φdx

= -u2φdx— -u2φdx— s2φdx
JΩ2 J{U<S}2 JΩ

> ]-\ u2φdx-^s2\Ω\.

On the other hand we have IIHILUΩ) ^ II^IILUO)
 an<^
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(

< 2 Π \Vu\φι/2dx\ +lί\ u\Vφ{/2\dx]
[j{u>s} J Uβ J

<2<M
I J{«>,}

2 A2.

Here,

( Λ
< \Vu\φx/2dx\ < udx- u~ι\Vu\2φdx
[J {u>s} J JB{xo,R)P\{u>s} J{u>s}

because slogs > — e 1 for any .y > 0. This implies (19).

Finally, take w = (u- sγ_/2ψι/2. We have

\W\\LHΩ) = (u-s)lφdx
J{u>s}

Here, it holds that

Because

3 1 / 9 1/9 1 V? 1/1
\Vw\ < -(u- s)J \Vu\φ ' +-A(u - s)V φ '

2 ^ 2 "•"

we have

ί \ 2 - /• \ 2
9J\ (US) ι'2\Vu\^2 dx)+f\ [ (u - sγ/ψV dx
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/ f (u-s)ι/2\Vu\ψι'2dx\ < ( f uχ/2\Vu\φx'2 dx^\
{u>s}

< ί udxλ \Vu\2φdx
JB{xo,R)n{u>s} ){u>s}

I f , Λ _Uj Γ l r 7 .
< (wlogw + e )dx \Vu\

L°E>S JB(xo,R)nΩ JΩ

2φdx

and

){u>s} J I

r * ^ 2/3
11/3\\u\\Ll{B{^R)nΩ)\Ω\ι

< ε ί u3φdx + Ce\Ω\\\u\\lHBlxtιg)nΩ), (21)

J Ω

where Cε > 0 is a constant determined by ε > 0. Therefore,

1 ) ^ - f \Vu\2ψdx

Since ιA1/2 < ιA1/3, it follows from (21) that

IMlί'ίo) ^ ε « 3 Ά ^ +
J Ω

We get

^ TΓΓΊ I (u\ogu + e~x)dx A \Vu\2φdx

+ K2Q\Ω\ (±-

by (17). Taking ε > 0 as
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we obtain (20). •

4. Finiteness of blowup points

This section is devoted to the proof of Therems 2 and 3. First, a

technical estimate is derived for local norms of the solution (u,υ) to (KS).

Henceforth, we always asume Γm a x < +oo and a generic positive constant

(possibly changing from line to line) is denoted by C.

LEMMA 4.1. It holds that

— {u\ogu)φ dx +-\ u~ι\Vu\2ψdx+\ uvφ dx
dt)Ω 2)Ω ) Ω

+ \\ vjφdx + l-^-l {\Vv\2 + v2)ψdx<2 ί u2φdx+C. (22)
2)Ω 2dt)Ω ) Ω

PROOF. We show the following equality first:

•̂f {u\ogu)ψdx+\ u-χ\Vu\2φdx+\ uvφdx + \^\ (\Vv\2 + v2)φ dx
dt)Ω JΩ JΩ 2 dt)Ω

= ί u2φdx-\ vjφdx-I -II -III -IV, (23)
JΩ JΩ

where

/ = υtVv'Vφdx
JΩ

11= [ (l+logu)Vu'Vψdx
JΩ

///=[ v(l+logu)Vu'Vψdx
JΩ

IV = \ (uv\ogu)Aφdx.

JΩ

This can be derived by (6), but here we prove it directly by (KS).

In fact, multiplying (\ogu)φ by the first equation of (KS), we get that

— {u\ogu)φdx= ut(\ogu)φdx+ utφdx
dtjΩ JΩ JΩ

= \ {V'(Vu-uVv)}{l+logu)ψdx
JΩ



Chemotactic collapse in a parabolic system 477

= - Vu-V{{\ + \ogu)φ}dx+\ uVv V{(\ + \ogu)φ}dx
JΩ JΩ

= -V+ VI.
Here,

VI=\ uVv'(u-χφVu+{\+\ogu)Vφ)dx
JΩ

= \ (Vv Vu)φdx+\ u(l+logu)Vv Vφdx
JΩ JΩ

= -\ uV (ψVυ)dx+\ u(l+\ogu)Vv'Vψdx
JΩ JΩ

= - uφAvdx+\ (u\ogu)Vv Vφdx
JΩ JΩ

= — u(υt + υ — u)ψdx + \ (u\ogu)Vv Vφdx
JΩ JΩ

= —I u(vt + υ — u)ψdx — \ v(u\ogu)Aφdx — \ v(l + \ogu)Vu Vφdx
JΩ JΩ JΩ

by the second equation of (KS). On the other hand,

V=\ Vu'{ιΓxφVu+(\+\ogu)Vφ}dx
JΩ

= f u-ι\Vu\2ψdx+ [ (l+logu)Vu'Vψdx.
JΩ JΩ

Therefore, it holds that

— (u\ogu)φdx+\ u~ι\Vu\2φdx+\ uvφdx
dt)Ω ) Ω ) Ω

= (u2 - vtu)φ dx - (\+\ogu)Vu V\lιdx+\ (u\ogu)Vv Vφ dx
JΩ JΩ JΩ

= [ (u2 - vtu)φdx -II - III - IV.
JΩ

On the other hand we have

i - τ [ {\Vv\2 + v2)φdx= ί (VΌt'VΌ + Όtυ)ψdx
ϊdt)Ω JΩ

= vt(—Δv + v)φdx— vtVv'Vφdx
JΩ JΩ

= (-v2 + vtu)φdx-I.
JΩ

Equality (23) has been proven.
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Now we proceed to the proof of (22). First, in use of (18), we get that

\II\ < C [ w1/6 uι/3\l + logw|ιA1/3 u-ι/2\Vu\φι/2dx
JΩ

Recall the elementary inequality: Let 1 < α < 2 and β > 0. Then

^"(l + llogwl/^C^H-l) («>0).

We obtain

1/2

<l\ u~ι\Vu\2ψdx + ]-\ u2ψdx+C

by (11). Similarly, we have

\III\ < C f u-ι/2\Vu\φι/2 uι/2\\ + \ogu\φι/3 υdx

JΩ
1/3

<M w-ywlV^ + ̂ f u2ψdx+C

and

< \uvlogu\ψ2/3 dx
JΩ

lx\ \HLHQ)

< ^1 u2φdx+C.

by (16). Finally,

|/| <A [ \υ,Vv\ιl/5/6 dx
JΩ

\Vv\2φ2/3dx.
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Here,

[ \Vv\2φ2/3dx = - [ vV - (φ2/3Vv)dx
JΩ JΩ

= ί ίv(-Av)φ2/3 -^φ~ι/3vVφ Vv\dx

= [ v(-vt + u-v)φ2/3dx-l\ φ-ι/\Vφ Vvdx
JΩ ^ JΩ

< f vφx/6 uφx/2dx+\\ vtφ
ι/2 vφι/6dx

JΩ \JΩ

-

Therefore, it holds that

which implies

|/| < U υ2φdx + \\ u2φdx+C.
2J 4 J

Inequality (22) has been proven. •

We show a key fact for the proof of Theorems.

PROPOSITION 4.2. Suppose Γ m a x < +00 and let x0 e Ω and 0 < R « 1.

Then, if a solution (w, υ) to (KS) satisfies

sup u log u dx < + 00 (24)

0</<Γm a x JB(xo,R)Γ\Ω

it holds that

sup | |κ(., ή\\LO0{BMnΩ) < +00 (25)

for any r e (0,R).
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PROOF. We divide the argument in five steps. Take R' e (0, R) and let

Φ = (<PXO,R>,R)6

Step 1 We show that (24) with Γ m a x < +oo implies

fΓmax f o
v2dxdt<+oo. (26)

Jo JB{xo,R')nΩ

Therefore, taking R > 0 smaller, we can assume that

ί mdX f v2dxdt< +oo. (27)
J o JB(xQ,R)C\Ω

In fact, inequality (19) with

M= sup (ulogu + e~ι)dx < +oo (28)
0<ί<Γ m a x JB(xo,R)ΠΩ

gives that

f Ί 4AΓ 2 M ί i ? o
uzφdx<- u~ι\Vu\ψdx+C + 3s2\Ω\.

JΩ logs ) Ω

Therefore, taking o l as 8ϋ:2M/(logs) < 1/2, we have (26) by (22).

Step 2 Multiplying uφ by the first equation of (KS), we have

- — u2φdx+\ \Vu\2φdx+\ uVu-Vφdx
2dt)Ω JΩ ) Ω

= f uφVυ - Vu dx + f u2Vv • Vφ dx. (29)
JΩ JΩ

From the second equation of (KS) follows that

[ uφVv Vu dx = - φVυ Vu2dx
JΩ 2JΩ

= ~9 u2φAvdx--\ u2Vv-Vφdx

= -\ u3φdx--\ u2(υt + v)ψdx--\ u2Vv Vφdx
2jΩ 2jΩ 2)Ω

< M u3φdx-\\ u2υtφdx-\\ u2Vv-Vψdx.
2
 JΩ

 2
 JΩ

 2
 JΩ

Therefore, in use of

u2VvVφdx=-\ vVu2 -Vφdx- u2vAφdx
JΩ JΩ JΩ
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and

we obtain

ld_t

2ώ]Ω

l

Here, last three terms of the right-hand side are dominated as follows.

First, inequality (16) gives that

uVu'Vφdx=--\ u2Aφdx,
JΩ

 2
 JΩ

[ \Vu\2φdx<\\ u3φdx-\\ u2vtφdx
JΩ 2JΩ 2JΩ

U u2(v+l)Aψdx. (30)
2J

1
u2(v+l)Aψdx < | f (υ + 1) u2ψ2/3 dx2

 J2
 JΩ

< \\ u3

3
 JΩ

ψdx+C.

Similarly,

1 L υVu2 Vφ dx 3A f υ uψι/3'\Vu\ψι/2dx
JΩ

1/2

< ^1 \Vu\zφdx + ̂ \ u3φdx+C.

Finally, Gagliardo-Nirenberg's inequality

||w|| 4

to w = uφ]/2 implies that

f u2vtφdx < ]-{ f v2dx\ ( f u4φ2dx\
JΩ 2 [JB(xo,R)f]Ω J U β J

<C vjdx
[JB(XO,R)ΠΩ J

H#1/2lliW
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-if \V(uφι'2)\2dx+c\ υ2dx-\\uψι'2\\l{Ω)
ΪOJΩ JB{xo,R)nΩ

y/2

)B{xo,R)ΠΩ
υ2dχ\ ll#

J

JB{xo,R)nΩ
v2dx+l\\\uφV2\\l,

Here, we have

f \V(uιl/ι/2)\2dx<l\ \Vu\2ψdx + ̂ -\ u2φ2/3dx
JΩ JΩ

» ί l r τ l 2 , j 1

< 2 \Vu\ ψ dx + -
JΩ

so that

[ u
JΩ

vtιl/dx <l\ \Vu\2ψdx + \\ u
°J 3 J

:( [ v2dx+l) [ u2φdx+C.
\JB{xo,R)nΩ J JΩ

In this way, inequality (30) has been reduced to

\\ \Vu\2φdx
4J

2 f u3\l/dx+C\ f v2dx+\ ] ί u2ψdx+C
JΩ \JB{XO,R)ΠΩ J JΩ

(31)

We can make use of (20) for the first term of the right-hand side. It holds

that

f u3φdx< Ί2

Λ

K M \ \Vu\2ψdx+C+\0\Ω\s\
JΩ logs j Ω

where M > 0 is the constant defined in (28). Making s > 1 large, this term is

absorbed into the left-hand side of (31). We obtain
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-̂f u2ψdx+\ \Vu\2φdx<C[\ vjdx l u2ψdx+l).
dtjQ JΩ \JB(XO,R)Γ)Ω JΩ J

In particular, g(ή = lΩu2\j/dx solves

^<hg+C (0<t<Tmax)

with a continuous function A(ί) > 0 satisfying J0

Γmax h(t)dt < +00. This implies

sup g(t) = sup u2ψdx < +00. (32)

0<?<Γ m a x 0</<Γ m a x J β

&#? 3 We take JR;/ 6 (0,/ί') and set i/̂ j = {φXθjR»,R>)β. Multiplying u2φι

by the first equation of (KS), we have

u^ψidx+ 2I ulVufψidx+l u2Vu-V\jjχdx
]Ω JΩ

= 2\ u2\l/xVυ Vudx+\ u3Vv Vφι dx.
JΩ JΩ

This means that

1 si C

- — w2\jjχdx +
3 dt)Ω

= - wψιVv-Vwdx+ w2Vv'V\l/xdx (33)
3JΩ JΩ

for w = w3/2. From (32) and

wlogw < 3vy4/3 = 3w2

we have

sup (w log w)dx < +00.
JB{xo,R

f)nΩ

Relation (33) is similar to (29). Inequality (20) holds with u replaced by

w, and ||H|Li(£(;ίO)/j/)nβ) ^ C f°H°w s from (32). Finally, if we make use of the

second equation of (KS), we obtain

w\j/xVv'Vwdx < - w*/3Ψιdx--\ w2vtψι dx - - w2Vv-Vφxdx
JΩ 2jΩ 2jΩ 2jΩ

< w3\l/ιdx--\ w2υtφxdx--\ w2Vv-Vψxdx+C
JΩ 2JΩ 2JΩ
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similarly to (30). Under those circumstances we can repeat the arguments in

Step 2 and get

sup u3 dx = sup w2 dx < +oo. (34)
0</<Γm a x JB(xo,R")ΠΩ 0<r<Γ m a x JB{xo,R")(λΩ

If we repeat the arguments once more, we get

sup | H , 0lli4(*(w)no) < + 0 0

for any r e {0,R).

Step 4 Put u\ = uχB(XQ^ή, uι = u — u\, and let v\, υi be the solutions for

{ υt= Δυ-v+f in Ω x (0, Γ m a x ),

= 0 on dΩx (0,Γ m a x ),
n

t;( ,0) = 0 in Ω.

with / = «i, W2, respectively. It holds that

^ ( ^ 5 J
7, ί ~ s)u(y, s)dyds,

J0JΩ\B{x0,r)

so that

sup \\v2{',ή\\W2^{B{X0,rΊnΩ) < +00
0</<Γm a x

for r ' e ( 0 , r ) by (10) and (11).

To handle with v\(x,t), we recall the operator Ap in Section 3. Let

5/6 < β < 1 and p = 3. Then we have

0</<Γm a x

 p 0<t<Tm

< sup f \\AβTp(t-s)ux( ,s)\\LP{Ω)ds
o</<rm a xJo

(ί-jΓ/?||wi( ,j)||^(β)ώ<
JO

< C sup
0</<Γm a x

by (34). Inclusion Xβ a Cι(Ω) holds and hence

SUp | K ,0||Ci(/?(*o,r)nβ) < + 0 0 ( 3 6 )

for any re (0,R).

Step 5 Take

the first equation of (KS) and get

Step 5 Take r' e (0,r) and put v>x = (^ 0 > r / > r )
6 . We multiply uPφ^1 by
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£ — ~ \ (uψi)
p+idx=-\ V{upψp+])-Vudx + [ uV(u"ψp+ι)-Vvdx

at p+ 1J Ω J Ω J Ω

= -/ + //.
Here,

/ = f (puP-ιιj/p+ιVu + upVφp+ι) Vudx
JΩ

Ap

CP

(P+l)2

[ |Fu(' )+1)/2|V{ )+1Λ + —!— f Vψp

JΩ P + IJΩ

ί \Vu
JΩ

p+i • Vup+ι dx

J— f ψP+WVu(p+i)ft . w(/>+')/W'+»/2 dx
P+ 1 JΩP+

4P 2

+ -

? + i)2 p + η)Ω

2

2

~J+
2

JΩ

τf iviuφ^yγdx-p^l u
1
 JΩ

 ι
 JΩ

[
P+1)Ω

2 f
P + iLP+IJΩ

Furthermore, (36) implies

II <c\ \uV[^
JΩ

ί
JΩ

5/6
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It holds that

^ ί up+xdx< -\ \Vu[p+l)/2\2dx+C(p + l ) 2 \ up+ιdx
JΩ JΩ

+ C(P + l ) ^ { £ M l

1 + ( 3 / 2 ^ x } 2 / 3

+ { £ w ; + ^ ^ } Y (37)

where u\ = uφι. Here, C > 0 is independent of p > 1 and we can apply an
iteration scheme of Moser's type (see Alikakos [2]). To this end we make use
of Gagliardo-Nirenberg's inequality in the form of

% y (38)

where K > 0 independent of q e [l,^o] for given qo > 1.

First, apply (38) for w = u\p+])/2 and q = ll±l e ί ^ Y We have

Because < -, the right-hand side is dominated by
3/? + 3 3

2/3

- \

Second, apply (38) for w = u\p+m and q = 12f + °̂ e S , y ) We have
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2

+ <+ 1)^+1J + c(p + i

Finally, apply (38) for w = u\p+])/2 and q = 2. We have

C(p+Ϊ)2l up+ιdx
JΩ

Inequality (37) has been reduced to

However, again (38) for q — 2 implies

and hence

We obtain

and hence

U u^dx<C{p+\γ{\ u\"+1)/2dx+l}2

sup (f u

Cmax{(/> + l ) 6 sup { f u[p+i)/2dx+
{ o<r<rm a x U Ω
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Therefore,

φk = sup u\ dx + 1
0<ί<TmΆXJΩ

satisfies

Φk+λ < t ( O )

«kV 2 ( Ω ) + 1)2*+'} (39)

for k= 1,2,....

Let d = ||"O||Z,»(Ω) + l Then, (39) is reduced to

for £ = 2 , 3 , . . . . We have

sup u\ dx\ <ΦιJ+]
0<r<Γ m a x L J β J

and letting k —> +00,

follows. In use of (35), we obtain

if 4 V/4 1
s u p | | w i ( , / ) | | L o o ( Ω ) < C m a x n s u p | | w i ( , O I I L * ( Ω ) + M , d )

o</<r m a x I \ o < / < r m a x J J

sup I M ,OIIL-(β) = S U P llw( .O^AilliL-(Ω) < + 0 0 .
0</<Γ m a x

Since r ' e ( 0 , r ) and re(0,R) are arbitrary, we have (25).

The proof is complete. •

Theorems 2 and 3 are immediate consequences of the following.

PROPOSITION 4.3. Let (u,v) be a solution to (KSj and Γ m a x < +00. Then,

any xo e $ and 0 < R « 1 admit

lim sup u(x, ήdx > —-^. (40)
t]Tmax JB(xo,R)nΩ i t ) A

PROOF. Take re(0,R) and Ψ = (ΦXO^R)6 If (40) does not hold, then

(18) implies
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[ u2φdx<2K2 f udx f u-ι\Vu\2φdx+C\\u\\2

LHΩ)
JΩ JB(xo,R)ΠΩ JΩJB(xo,R)ΠΩ

< II u~ι\Vu\2φdx + C
o JΩ

for 0 < Γ m a x - t « \ . Then (22) gives

limsup (u\ogu)φdx < +oo,

t^T J Ω

and hence

limsup \\u(-, ή\\LooiB(xo r,)nΩ) < +oo

follows from Lemma 4.2, where r' e (0, r). We get xo φ & and the proof is

complete. •

PROOF of THEOREM 3. In this case it holds that

u = u(\x\,t). (41)

If xo e ^\{0}, we have Sf = {x\ \x\ = \xo\] a Λ%

Given a positive integer m, we take 0 < R « 1 and x\,..., xm e Sf sat-

isfying B(xi,R)Γ\B(xj,R) = 0 for / ^y. Relation (40) admits a sequence

*fc ΐ r̂nax satisfying

w(x, ^)t/x >
AδA

for 7 = 1 and hence for j = 2, . . . , m by (41). Therefore,

jΞ\

follows, which contradicts (11) if m > \&K2\\uo\\LuΩy The proof is complete.

D

PROOF of THEOREM 2. If the solution satisfies (1), then

P^maxJ' 1 max Γ

(^2 + w|F(logw - υ)\2)dxdt < +oo
o Jβ

follows.
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Take xo e &, 0 < R « 1 and let φ = φX0iR/2,R> We have

— uφdx = utφdx =
dt)Ω ) Ω IJi

= (Vu-uVυ) -Vφdx

<C\
J A{x0:R/2,R)

u\V(\ogu-v)\dx

(42)

and hence

f d ί
-

Jo dt)

dt < +oo.

This assures the existence of \im^Tmax j Ω uφdx. In use of (40) we have

liminf | u > lim uφdx
> > ΐ ^ m a X JΩ

> lim sup udx
t]Tmax JB(xo,R/2)nΩ

1

" 16K2'

Since xo e & and 0 < R « 1 is arbitrary, this implies that

0^ < 16A'2||wo|lL1(β) ^ + 0 0

by (11), and in particular, any blow-up point is isolated.

5. Isolated blowup points

D

In this section we study the behavior of u around the isolated blowup

points more precisely and prove Theorem 1.

We first note the following.

LEMMA 5.1. Let (w, v) be α solution to (KS) and XQ e &j. Then there exist

0 < R « 1 and θ e (0,1/2) such that

\\u\\c2+2Θ^+Θ{{A(x0,r,R)nΩ)x[0,Tmax)) + \\V\\ C 2 + 2 ^ ι+°{(A{x0,r,R)nΩ)x[0, Γ m a x )) < + 0 0

for any re (0,R).

PROOF. Because x0 e ^/ , there exists î o > 0 such that

+00
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for any r0 e (0,RQ). Then the parabolic estimate for the second equation of

(KS) (see [26]) gives that

sup \\Vυ(',ή\\Laa{A{ R)nΩ) < +00
o</<rmax

for R and r in r0 < r < R < RQ and the standard theory for the first equation

(see Theorem 10.1 of Chapter IV of [17]) applies; R! and r' in r < r' < Rf < R

admit θe (0,1/2) such that

Now Theorem 10.1 in Section IV of [17] is available for the second and the

first equation in turn, and, given R" and r" in r' < r" < R" < R' we have

θ' e (0,1/2) such that

Hull R' a' <C - h θ θ

and

| |w | | C 2 + 2^M + ^ ( ( ^ ( j C θ 5 r // ) j R / / ) n β ) x [ o ? : Γ m a χ ) ) < +OO.

Since r" is arbitrary, proof is complete. •

An immediate consequence is the following.

LEMMA 5.2. Let xo e 0&ι and φ = φXo Rί R for 0 < Rf < R « 1. Then we

have

sup Wφ{t)<+co (44)

and

limsup \Vv\2φdx = +oo. (45)

PROOF. Recall (6) and put

F(t) = Wφ(t) - ί Rχ{u,v,φ)ds- f uφdx.
Jo JΩ

Relations (11) and (43) imply

uφdx < ||Mo||^i(β) and sup \R\(u,υ,φ)\ < +oo,
Ω 0<t< Γm a x

respectively. By Lemma 2.1, F is monotone decreasing in [0, Γm a x) and (44)

follows. Then we have
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J {u\ogu)φdx< C + uυφdx,
Ω JΩ

and

lim sup uvφ dx = + oo
ί]T J Ω

follows from Proposition 4.2. In use of Young's inequality we have

a\ uvφdx< (u\ogu)φdx + - eavφdx
JΩ JΩ £JΩ

< Wφ+ f uvφdx + -[ eaυφdx
JΩ

 e
 JΩ

< C + uvφdx + -\ eavφdx,
JΩ ejΩ

and hence

( α - l ) f uυφdx<-\ eavφdx+C.
JΩ ejΩ

If a > 1, we have

lim sup eavφdx = +oo,
ttτm JΩ

which implies (45) by the following Lemma. •

LEMMA 5.3. Let a > 0, x0 e &Iy and φ = φx^R^R for 0 < R' < R « 1.

Then, the inequality

[ eavφdx<Cexp(ξ-l \Vv\2φdx] (46)
JΩ \%πjΩ )

holds on [0, TmSLX). If xo e Ω, then

J eavφdx < Cexpί ——I l^fl φdx). (47)

o V 107Γ Jo /

PROOF. We recall the following inequalities due to Moser [18] and Chang

and Yang [4]: There exists a constant K determined by Ω such that

for w e X, where
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4π if X = Hι(Ω)

8π if X = H$(Ω).

Because xo e &/, we have

sup \\v(-,ή\\Loΰ{A{x^R/R)ΠΩ) < +00.

Therefore, we get

ί eavφdx< f eavdx+\ eavφdx
JΩ JB(xo,R')nΩ JA{xo,R',R)Γ)Ω

< Cexpί—-\\Vv\\2

r2(R(^ PMnô  + C I + C

by (43). This shows (46). A similar calculation gives (47) if JCO e Ω. The

proof is complete. •

The following lemma is a modification of [21].

LEMMA 5.4. We have

uvφdx< (ulogu)φdx + M^logί evφdx) - Mφ\ogMφ, (48)
JΩ JΩ \JΩ )

where Mφ = J β uφ dx.

PROOF. Since — logs is convex, Jensen's inequality applies as

Γ evφdx) =-\og(\ ί-JL
Mφ]Ω ) \)Q u Mφ

ΓΓ \u\og( — )φ\dx.

This means (48). Π

This implies the following.

LEMMA 5.5. Suppose Tmax < +oo and take x$ e 0&i, and 0 < R' < R « 1.

Then the relation
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lim
T^max JQ

lim uφdx > m*

follows, where m* is the constant in Theorem 1 and φ = φx^R, R.

PROOF. In use of (43), we have

—
dt)Ω

uφdx < C

similarly to (42), so that lim/Trmax||w^||Li(Ω) exists. Suppose

lim Mφ{t) = lim \\uφ\\LX{Q) < m*. (49)
t\ * max t\ * max

In the case that XQEΩ we have (47). Inequality (48) implies

- (\Vv\2 + v2)φdx= Wφ-\ (ulogu- uv)φdx
2JΩ JΩ

< Wφ + Mφ\og[ eυφdx) - Mφ\ogMφ

\JΩ J

by (44). It follows that

Therefore, (49) with ra* = 8π gives

lim sup |Fι;|2ί/x < lim sup \Vv\2φdx < +oo.
n^max JB(xo,R/2)ΠΩ t]Tmax JΩ

This contradicts (45) with R replaced by R/2.

The case xo e dΩ can be treated similarly and the proof is complete. •

We are able to give the following.

PROOF of THEOREM 1. Let XQE&I and φ = φX0ίR/2,R From above

lemma, the value

x > ra*m(xo,R)= lim u(x,t)φR(x)dx
'TT'max JQ

exists for any xo e $ι and 0 < R « 1. Moreover,

m(x0, R) - m(x0, R/2) = lim u(x, t)(φR(x) - φR/2(x))dx > 0
t\Tmax JQ
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and there exists

rn(xo) = lim m(xo,R/2k) >ra*.
k—>oo

Inequality (43) implies

sup \ut\ < +00
A(xo,r,R)Γ\Ωx[O,Tmax)

for 0 < r < R. Therefore,

J τmax

ut{x,t)dt
0

= lim u(x, t) > 0 (50)

exists for x e B(xo,R) Πί2\{xo} In use of (43) again, convergence (50) holds
in the sense C(A(xo,r,R)Γ\Ω), where r e (0,R). Also/ e Lι(Ω) follows from
(11).

For simplicity we set E = B(xo,R) Γ\Ω. Given ξeC(E), we have

uξdx-m(xo)ξ(xo)-\ fξdx
JE JE

= ξ(xo) ( WR/2K dx - m(x0) ) + (ξ- ξ(xo))uφR/2k dx
\J E / JE

- ζf<pR/2kdx+\ ξ{u-f)(\-φR/1k)dx
J E J E

for k = 1,2,3,.... It follows that

IJ uξdx-m(xo)ζ(xo)-\ fζd

^ llί\\L»(E) U(PR/2k d x ~
IJ E

+ llίllzΛ^)! f<PR/2kdx+ \\u

lim sup wί dx - ra(xo)£(*o) -
?TΓmax | J £ j

and hence

llLoo(£)
J
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Making k —> +00, we get

lim uζdx = m(xo)ξ(xo) + fξdx
I max J J? J E

by f eLι(E). This means (2) and proof is complete. •
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