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ABSTRACT. For a system of reaction-diffusion equations of activator-inhibitor type, we

show that solutions undergo at least three stages of dynamical behaviour when the

activator diffuses slowly and reacts fast, and the inhibitor diffuses fast. In the first

stage, the inhibitor quickly decays to its spatial average (spatial homogenization of the

inhibitor). In the second stage, the activator develops internal layers (formation of

internal layers). In the third stage, the layers move according to a certain motion law

(motion of interfaces) which is described by a system of ordinary differential equations

on finite time intervals. Asymptotic behaviour of the solutions of the interface equation

is also analyzed. To describe the behaviour of the solutions of the reaction-diffusion

equations after the last interface equation becomes powerless, another type of interface

equation is proposed.

1. Introduction

The reaction-diffusion system

ut = d\Au + f(u, ι>), vt = d2Av + rg(u, v)

has been employed to model propagation phenomena of chemical waves in

excitable media [6], and to describe pattern formation in an activator-inhibitor

model [10]. In this system, d\ > 0, d2 > 0 are diffusion rates of u and v, and

r > 0 measures the ratio of the reaction rates of u and v. Depending upon the

relative magnitude among d\, d2 and r, it has been found by many authors that

the system above, despite its simplicity, is capable of producing various spatio-

temporal patterns such as propagating fronts and localized spatial structures

[14]. These studies indicate that various patterns observed in reacting and

diffusing systems are produced by the interaction between local reaction kinetics

and global diffusion effects. It is therefore important to mathematically study
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the characteristics of the reaction-diffusion system according to the magnitudes

of (rfijfife) and r.

When u diffuses very slowly and v both diffuses and reacts slowly, namely,

if

d\ — ε , d2 = ε, r = ε,

with ε > 0 being small, then, rescaling the time by εt —> ί, the system is

transformed to

(P) : ut = εΔu + - / ( a , υ), vt = Aυ + g(u, v).

For sufficiently small ε > 0, ίnterfacial phenomena in this system with ap-

propriate nonlinearity (/,#) are well understood by the results in [3]. Roughly

speaking, the results in [3] are summarized as follows: Solutions of the system

with suitable initial conditions quickly develop internal layers and the location

of the layers {interfaces) propagates according to a certain motion law.

In this paper, we will deal with the situation where u diffuses very slowly

and v reacts slowly, namely,

d\ = ε2, di~ D, r — ε.

We always understand throughout this paper that the parameter ε > 0 is

sufficiently small and D = 0(1) as ε —» 0. By rescaling the time as above, the

system is recast as follows.

ut — εήuΛ-- f(u,v), vt = — Aυ + g(u, v) for t > 0,x e Ω czRN

(1.1)

_ u(χ, 0) = φ{x), v(x, 0) = ψ(x) for x e Ω.

ί = o = ?, for
on on

In this system, Ω is a bounded domain with smooth boundary, and n stands

for the unit outward normal vector field on dΩ. It is interesting to note that

the system (1.1) was derived from the system (P) above by rescaling (x, t)

appropriately in [9, 13], in order to capture stable mesoscopic structures.

The aim of this paper is to show that results similar to those in [3] are also

valid for (1.1) as described below. One difference in our results from those in

[3] is the spatial homogenization of the inhibitor (υ) at the initial stage.

We describe heuristically the behavior of solutions of (1.1) by using a

typical example of the reaction term (f,g), the Bonfoeffer-van der Pol kinetics:

/ ( M , V) — u — u3 — v, g(u, v) — u - v.
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Note that /(w, υ) = 0 has three solutions

u = h-(v), h\v), h+(v) for v e (-2/3^3,2/3^3)

where h~(v) < h°(υ) < h+(υ). When ε > 0 is sufficiently small, the largeness

of the diffusion rate of v together with the homonegeous Neumann boundary

conditions suggests that v(x, t) rapidly decays to its spatial average v(ή =

\Ω\~ι jΩv(x,ήdx. On the other hand, due to the bistable nature of the

ordinaly differential equation ut = ε~λf{u,v) with u = h±{v) being stable

equilibria for \v\ < 2/3Λ/3, as long as the diffusion effects εAu is negligible,

M(X, t) will quickly develop transition layers, i.e., u(x,t) tends either to h+(v(ή)

or to h~(ϋ(ή) according to the sign of M(X,0) — h°(v(x,0)). Subsequently the

transition layers get sharper and sharper, and eventually location of the layers

is so thin that it is considered as a hypersurface, called an interface. Once the

transition layers become sharp enough, the diffusion effect εAu is no longer

negligible and the interface starts to propagate to keep the two competing

forces, the local reaction kinetics and the global diffusion effect, in balance.

The propagation law of the interface is derived by using asymptotic expansion

methods in [11]. To the lowest order, it is given as in (2.5) below.

In this paper we make mathematically rigorous the intuitive statement

above. For this purpose, we now state the conditions that the nonlinearity

(/,#) has to satisfy:

(Al): The vector field (f,g) is C 0 0 on R2.

(A2): The system of ordinary differential equations

ut=f(u,v), vt = g(u,v)

has an invariant rectangle

^ := {(μ,v)\a- <u<a+,b- <v < b+}.

Here $ is said to be an invariant rectangle if the vector field (/, g) points

to the interior of $ on the boundary dM.

(A3): The nullcline of/, {(w,v)\f(u,v) = 0}, has exactly three branches

of solutions (numbers b and b with b- < b<b < b+ below are suitable

constants):

C_ = {(u,υ)\u = h°(v),b> v > 6},

and
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(A4): The following inequalities hold true:

fu(h~(v), v) < 0 for v > b,

fu{h+(v),υ) < 0 for υ<b,

fv(μ, v) < ~δ0 < 0, gu{u, v) > 0 for (u, v) e 0t,

g{h-{υ*)y)<Q<g{h+(υ*)y),

gv(h±(v*),v*)<0,

where v* is a zero of the function J(v) defined by

J(v):= f(s,v)ds
Jh-(v)

for v e [b, b).

(AS): The value v* e (b,b) is a simple zero of J(v), namely, Jr(υ*) < 0.

REMARK 1.1. Note that (A4) implies

λ*(ι>)<0 for ve(b,b) and — g^ίυ),
dv

We state our main results in precise terms in §2. Then §3 is devoted to
the proof of the main results. We present in §4 a perspective on our results
and future projects.

2. Main results

Our first result says that for ε > 0 sufficiently small, the f-component of
the solution of (1.1) quickly decays to its spatial average.

THEOREM 2.1. Suppose that (Al) and (A2) are satisfied. Let the initial
condition satisfy

{φ{x),φ(x))e® for xeΩ,

and φ,φ e C2(Ω). We denote by (uε(x, ί), vε(x, ή) the solution of (1.1). There
exist an εo > 0 and a constant c* = c*(εo,φ,φ,Ω) > 0 so that the following
estimates are valid for εe (O,εo]

Γ r* Ί Ί Λ/ΐ2\n\

ε2

xeΩ

1 3/(27V+3)

m*x\Vv {x,ή\



Spatial homogenization and internal layers 381

for t > 2ε\\og ε\/Dλ\} where

Mo := sup{|^(W, υ)\ \(u, v) e Λ}, ϋε(t) := ̂ - f vε(x, t)dx

<2«<i Ai is the least positive eigevalue of

Λφ + λφ = O in Ω, -^- = 0 on dΩ.
on

One can easily see that vε(t) satisfies an ordinary differential equation

(2.1) jtϋ
ε(t)=j~^g(uε(x,ή,ve(x,

where \Ω\ stands for the TV dimensional volume of Ω. It is immediately
verified from (2.1) that ϋε(t) satisfies

sup
XEΩ

< Mot

This estimate, combined with the first estimate in the theorem above, implies
that at t = 2ε\logε\/Dλ\, we have

sapυ^t)--
xeΩ "ώ

i.e., vε(x, t) decays to the spatial average of the initial function in a short time.
We now deal with the generation of internal layers in w-component of

the solutions of (1.1). Although the formation of the internal layers is taking
place in the same time scale as the spatial homogenization of vε(x, t), it is not
technically so easy to analyze the two phenomena simultaneously. As a first
step to carry out such an analysis, we need to know in detail the asymptotic
(ί —> oo) form of the solution (u(x,ή,v(x,ή) of

ut =f(u,
dυ

κ(x,0) =

for

φ(x),

t >

= DAv

0, xe

v(x,0)

for

dΩ,

= ψ(x)

t > o,

for

X

X

G

G Ω.

It is not so easy a task to determine the asymptotic form of the solution to this
equation in terms of the initial distribution (φ^ψ).

In the next theorem, we suppress the dynamics of the spatial homoge-
nization in vε by choosing a special kind of initial functions for v.

THEOREM 2.2. Suppose that (Al) through (A4) are satisfied. Let us fix a
small σ > 0 and consider the initial function φ(x) = VQ e [b + σ,b — σ\. Let the
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initial condition satisfy

(φ(x),υo)e0l. for xe Ω

and φeC2(Ω).

There exist constants εo > 0, τ\ > 0 and M\ > 0 such that for ε e (0, εo] the

following estimates hold true.

(2.2) A"(i;o)-Mifi|logfi| <wε(x,τiε|logε|) < h+(v0) + Mxε\logε\

for x e Ω,

(2.3) uε(x, τie|loge|) > h+(v0) - Mxε\\ogε\

for x e {φ(x) > h°(v0) + Miβ|loge|},

(2.4) uε(x, τiε|logε|) < h~(υ0) + Afie|loge|

for x e {φ{x) < h°(υ0) - Miβ|logβ|}.

This theorem says that a sharp interface develops in w-component near the

set

Γo = {xeΩ\φ(x)=h°(vo)}

in a short time t = τiε|logε|. This phenomenon is due to the strong testability

of the ordinary differential equation ut = ε~ιf(u, v). Note that the fast dy-

namics of v due to the large diffusivity D/ε in (1.1) is suppressed by the choice

of the initial funciton for v.

The next stage in the dynamics of solutions to (1.1) is the propagation of

the interfaces. By using the method of matched asymptotic expansions, the

interface equation for (1.1) is derived in [11]. To the lowest order it reads as

follows:

dt KJ v v " \Ω\ κ κ" \Ω\

U(θ) = ϋo, y(y,o) = vo(y) = yero.

In (2.5) above, it is understood that the domain Ω is devided into two parts

Ω~(i) and Ω+{t) by an inferface Γ(ή a Ω. Here for each t > 0, Γ(ή is an

N — 1 dimensional hypersurface parameterized by γ(-, ί) : Γo s u ι-> y( j , ί) e

Γ(/), and v(j;, ί) is the unit normal vector field on Γ(ή at x = γ(y,t) pointing

to the interior of Ω+(t). The symbol |ί2| (resp. |ί2±(ί)|) stads for the

iV-dimensional volume of Ω (resp. Ω± (ή). The functions G± (v) are respectively
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defined by

G±(v) = g(h±(υ),υ) for ve\b,b\.

Finally, c(v) is the wave speed of the parabolic equation ut = uzz +f(u,v),
namely, c(v) is the unique value of c so that the following boundary value
problem has a solution:

( uzz + cuz +f(u, υ) = 0 for z e R,
1 j I «(+«>) = **(!>), κ(0)=A».

We recast (2.5) as an initial value problem for ordinaly differential
equations. Let the initial interface 7"o be of C2 class. In a neighborhood of
V"o, we introduce a coordinate system (r, y) via

ί2 3 x = y + rv(j>) (-r0 < r < r0, y e Γo),

where v(j ) is the unit normal vector field on Γo at j pointing to the interior of
f2+(0). We set γ(y,t) = y + r(y, t)v(y), i.e., Γ(ή is expressed as the graph of
the function r(y,t) over 7~o Since an elementary computation yields

where Vr stands for the gradient operator on a manifold Γ, we have that

v(y,t) = v(j>,0) = v(j). Now the first equation in (2.5) is expressed as

^ M = φ ( ί ) ) ϊ With r(j,0) = 0 for y e Γo.

Therefore b(y,ή :=VΓ(ήr(y,ή satisfies the initial value problem:

j U = O, 6(^,0) = 0,

which forces b(y, t) = 0. Therefore r is independent of y e Γo.
On the other hand, |β~(ί)| is written in terms of r(t) as

Γ '
where y/g(y,s)dSyds = 77^γ1(l + sKj(y))dSyds is the volume element in the7^
neighborhood of 7"o Here Kj(y) (j = 1,.. .N — 1) are the principal curva-
tures of Γo at >>. Therefore, by expanding the volume element as
ΠJL-ϊι(l+sκj(y)) = 1 + Σjt~ιl Hj(y)sJ\ we obtain

|β-(/)| = |ί2-(o)| + r(t)\ro\ + Σ
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where \ΓQ\ stands for the N - 1 dimensional volume of TV Thus the interface

equation (2.5) is equivalent to the system of ordinary differential equations:

(ODE) :

rt = c(υ)

„ _^-ΛΛl°"(O)| + Jr(r) , _ , Jfl+(O)|-jr(r)

' v y | 0 | ' " v y |fl|

( r(0) = 0, ϋ(0) - υ0.

From this reformulation we obtain the following theorem.

THEOREM 2.3. Suppose that (Al) through (A4) are satisfied. Assume that

Γo is of a C2-hypersurface which is the boundary of Ω~(0) czaΩ, and that

vo e[b-\- σ,b — σ\.

Then there exists a T > 0 such that the interface equation (2.5) has a unique

solution (v(ή, γ(y, ή) for t e [0, T\.

As for the relation between the solutions of (2.5) and those of (1.1), we

have the following theorem. We emphasize that the accuracy in the ap-

proximation of (1.1) by (2.5) crucially depends on the decay estimate in

Theorem 2.1 (cf. (2.8) and (2.9) below).

THEOREM 2.4. In addition to the conditions of Theorems 2.2 and 2.3,

assume that there exists a constant / > 0 such that

(2 7) ! Φ{X) h { V o ) ' / d i s t ( * ' Γ o ) 'f X€ Ω + ( 0 )

1 ' ' \ φ(x) - h°(v0) < -/dist(jc,Γ0) if x e β-(0).

Then there exist constants εo > 0 and M2 = Mι(T) such that the following

estimates hold for ε ε (0, εo].

(2.8) \vε(x, t) - i7(f)| < M 2 ε 2 ^ + 1 ) for xeΩ, te [ne|loge|, T\,

(2.9) \uε(x, t) - u(x, t)\ < M 2 ε 2 / ( Λ Γ + 1 )

for xe{Ω\dist{x,Γ{ή) > M2ε
2/{N+l]}, te [τie|loge|, T],

where (v(t),Γ(t)) is the solution of (2.5) and

h+(υ(t)) xeΩ+(t)UΓ(ή

h-(v(ή) xeΩ-(t).

At this point we should remark that Barles, Bronsard and Souganidis [1]

treated the scalar reaction-diffusion equation

ut = εΔu + -{u-μ)(\ - u2) t > 0, xeRN
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of bistable type and obtained results corresponding to Theorems 2.3 and
2.4. Although the results in [1] are formulated in the framework of viscosity
solutions, in terms of our terminology, the interface equation is given by
rt = 2μ (where μ e (0,1) is a constant and the wave speed c = 2μ). Results
along the same line were also obtained by Chen [2]. These are results for
scalar equations and the wave speed is a constant.

For a system of reaction-diffusion equations, Hilhorst, Logak and Nishiura
[8] obtained a result close to ours. They treated the system

(RD)
[ τvt = σ~ιAv -f u — γ~ιv

with suitable boundary conditions. As σ —> oo, it was shown that (RD)
converges to the shadow system:

( ut = εAu + ε~ι(1 - u2)(2u - ζ(ή)

Then, passing to another limit τ —> 0, it was shown that the shadow system (SS)
converges to the following non-local Allen-Cahn equation

(NLAC) : ut = εAu + -(1 - u2) (2u - γ^- [ u(x, ήdx)

for which the interface equation is given by

Here the wave speed is regulated nonlocally by the distribution of the activator
u. In our interface equation (2.5), however, the wave speed is regulated by the
value of inhibitor v, and in turn, the value of the inhibitor υ is controlled
nonlocally by the distribution of the activator u. We note that the interface
equation for the shadow system (SS) with τ = 1 is given precisely by (2.5) with
c(ζ) = ζ, although this was not stated in [8]. One has to be careful, however,
not to conclude that (SS) captures the essential dynamics of (1.1). There are
some aspects in the dynamics of (1.1) that are lost in the process of taking the
limit σ —> 0 to obtain the shadow system. We believe that the interface
equation (2.5) describes, generically speaking, only the transient dynamics of
solutions to (1.1). For example, we have recently shown in [12] that (2.5) is
too crude to give rise to equilibrium solutions of (1.1). Instead, we have
shown that the interface equation (4.1)-(4.2) proposed in §4 does capture the
equilibrium solutions of (1.1) and their stability property.
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As Theorem 2.4 states, the interface equation (2.5) approximates the

equation (1.1) only on finite time interval [0, T]. It is, however, of independent

interest to analyze the asymptotic behavior of solutions of (2.5). This is

summarized in the following.

THEOREM 2.5. Suppose that (Al) through (A5) are satisfied.

(i) A pair (VQ,ΓO), where Γo c c Ω is a C2-hypersurf ace, is an equilibrium

solution of (2.5) if and only if v$ = v* (cfi (AS)) and Γo subdivides Ω into

two components Ω± such that Ω = Ω~ U 7"o U Ω+,

(2.10) \Ω-\ = -^p\Ωl |O-|

with [Gf = G+(υ*)-G-(υ*).

(ii) The equilibrium solution (V*,ΓQ) is asymptotically stable relative to (ODE).

The proof of Theorem 2.5 (i) is trivial. The proof of (ii) is as easy as

follows. Linearize (ODE) around (r, v) — (0, v*) to obtain the coefficient

matrix

0 c'(υ*)

A = -[era\Ω\ [G\*

It is easily shown that c'{υ*) = -(^OQu*{z)1dz)~λJt(υ*) > 0 (cf. (AS)), where

u*(z) is the unique solution of (2.6) with v = v*. The inequalities in (A4)

imply

G;(V*)G+(V*)-G:(V*)G-(V*)<O.

Therefore we find that trace A < 0 and det A > 0, which establishes the

statement (ii).

Theorem 2.5, however, is not claiming that equilibrium solutions of (1.1)

can be thus obtained and are stable. If the initial value (vo,Γo) for (2.5) is

such that vo = v* and Γo satisfies (2.10), then Theorem 2.4 loses its power

substantially. Once the solutions of the interface equation (2.5) settle down

(very close) to the equilibrium states as in Theorem 2.5, it is very likely that

another dynamics, which evolves in a slower time scale, takes over. Heuristic

discussions on the slower dynamics are given in §4.

From a viewpoint of dynamical system, our results together with some

speculations may be summarized as follows:

The solution (uε(x, ή,vε(x, ή) of (1.1) can be considered as a semiflow on

a phase space X;
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Theorems 2.1 and 2.2 may be interpreted as saying that there is a positively
invariant subset s/o in X which quickly attracts its neighborhood under the
semiflow J^e. The set J^O consists of pairs of functions (u(x),υ(x)) such that
u(x) has inernal layers and υ(x) is nearly constant. Theorem 2.4 may be
considered as saying that the interface equation (2.5) describes the dynamics of
the semiflow on J/Q on a finite time interval. Then Theorem 2.5 and our
speculations above indicate that there exists yet another positively invariant set
s0\ <z j / 0 which attracts its neighborhood. The dynamics of the semiflow on
s/\ may be described by another interface equation which we hope to be the
one given in Section 4.

3. Proof of theorems

In this section, we prove the theorems stated in Section 2.
The first part in the proof of Theorem 2.1 is a slight modification (which is

absolutely necessary for Theorem 2.1) of that in [5]. The second part in the
proof contains a new idea which overcomes difficulties one faces when one tries
to apply the method in [5] to Theorem 2.1.

The proof of Theorem 2.2 is due to [3]. It is included here for the sake of
completeness and reference.

The proof of Theorem 2.4 is also inspired by the method in [3], although
we introduced a new step to make the idea in [3] fit to our situation, namely,
we approximate the interface equation (2.5) by a genuine interface equation
(GIE) at the beginning of Section 3.3.

3.1. Proof of Theorem 2.1. Since the values of the initial condition are
contained in the invariant rectangle 0t, the solution (wε(x, t),υB(x, ή) of (1.1)
stays in M for t > 0 (see [4]). Therefore we have:

\g(uε(x, 0, vε(x, 0)| < Mo (x e β, / > 0).

Let us set a(ή = (1/2)||W( ,0llL2(β) We obtain the differential inequality

a = [ Vυe Vvεdx = - f (Avε)vεdx
JΩ JΩ

= - - [ \Λυε\2dx-\ (Avε)g{uε,vε)dx
ε JΩ JΩ

[ \ ^
JΩ z JΩ LK

for each k > 0. Choosing k = D/ε, and using the inequality (cf. [5])
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we have

This differential inequality, together with a Poincare inequality (see [5])

λ{\\υ-v\\2

Ll<\\Vυ\\2

Ll,

gives

( 2) ||,,«(.1o-

We now improve these L2-estimates to a uniform one by using the

following two results.

LEMMA 3.1. There exists a constant K$ > 0, which is independent of

ε e (0, £oL s u c n t n a t

(i) \vε{x,ή-vε(x',ή\<Ko\x-x'\ t > 0, x,x' e Ω,

(ii) \Vvε(x,ή -Vvε(x',ή\ < K0\x - x'\y4 t > 0, x ^ ' e ά

In order to state the other result, let us define the cone of height p > 0 by

V(p) :={xeRN\x=(xu.. . , * * ) , * , - > 0 (j = 1,... ,7V), |x| < /?}.

By ^(x,p) we denote the cone #(/*), whose vertex is placed at xe Ω, rotated

around the vertex appropriately so that it is contained in Ω. Since Ω is a

smooth bounded domain, there exists p0 > 0 such that for each xe Ω we have

<g(x,p) ^ Ω for 0 < p < p0.

LEMMA 3.2. Let w(x) be uniformly Holder (or Lipschίtz) continuous with

exponent v e (0,1] and constant K$ > 0, satisfying

N+2y

7P

where p0 is the constant above and ω^ is the surface area of the unit sphere

in RN.

Then w satisfies the estimate

I ( Ή < C II | | 2 v / ( i V + 2 v )
XEΩ
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where

ί 2N

v VX A o

We now continue the proof of Theorem 2.1.
Thanks to (*1) and (*2), w(x) := vε(x, t) - vε(ή satisfies (with v = 3/4)

N+2v

for t>2ε\\ogε\/Dλ\, since ||w||£2 = 0(ε2) and \\Vw\\2

L2 = 0(ε2) for such
t. Therefore applying Lemma 3.2, we obtain the estimates

max\V(x,t) - V(t)\ < cKΰΛ\\v^ ,t) -

max \Vυ'(x, ή\ < CKo,v\\Vvε(-, ήfLfN+2v) with v = 3/4.
xeΩ

On the other hand, for each q> N, the Sobolev inequality implies

\vε(x,ή-vε(ή\
XGΩ

<c[ί |Dε(x,ί)-^WI?^+f |Fι;ε(x,ί)

< C\max\υε(x,t)-vε(t)\g~2 f |rε(x,ί) - vε(ή\2dx
ixeΩ JΩ

f 1 1 / 9

+ max \Vvε(x, t)^1 \Vvε{x, i)\2dx\
xeΩ JΩ J

Taking ήf = iV + 1 we have

v N-l 1

TV-hi ~ JV+Γ

which completes the proof of Theorem 2.1.

PROOF OF LEMMA 3.1. By rescaling the time as t/ε—>t, we recast the
equation for υ in (1.1) as

= v + εg(u, υ) =: G(f, x, ί),
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where —s/v = DΔv — v. It is well known [7] that —sf generates an analytic

semigroup on LP(Ω) for p > 1; and that there exist constants Q > 0 and

Cα > 0 for α e (0,1) such that

Notice that \vε(x, ή\ is bounded on Ω x [0, oo) and hence that there exists

C > 0 such that

\\G(vr,ή\\LP<C\Ω\^

for any t > 0 and p > 1. Therefore we have

C\Ω\ι'p f C β ( ί - ^ " V ^ ώ
Jo

1 / ? C α Γ ( l - α).

It is also known [7] that

Z)(j/α) ^ C 1 + V(ί5) if 2α - 7V/̂  > 1 + v with v e (0,1).

Therefore by choosing α = 15/16 and p > 87V, we obtain

»'(•, 0 e C 1 + "(Ω) and \v% , ή\cι+,(ό) < Ko for v = -
3

(β) ^ - " ^ 1 U i " — 4

with Ko > 0 being independent of εe(O,εo] This completes the proof of

Lemma 3.1.

PROOF OF LEMMA 3.2. We give the proof for v = 1, since other cases are

treated in almost the same manner. Let x in Ω be such that

a := |w(jc)| = max |w(x)|.
ceΩ

By the Lipschitz continuity of w we have:

|vφc)| >a-K0\x-x\ for xe ΩΠ \ \x - x\ < ^-\.

There are two case to consider: (1) ρ0 < a/Ko; (2) a/Ko < ρ0.

In case (1), since %?(x,ρ) c Ω for p e [0,/?0], integrating the squared of the

last relation, we have the inequality

f (a-Ko\x-x\)2dx
JV(x,p)
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Choosing p > 0 so that

we deduce

This gives

2N
-

In case (2), arguing as above, we have

\\M\h> ί (a - K0\x - x\)2dx
J{\x-x\<a/K0}ΠΩ

- ωN l -λ-a
~ 2N N(N+l)(N

which gives

2(ON J

This completes the proof of Lemma 3.2.

3.2. PROOF OF THEOREM 2.2. We modify the function /(w, ϋ) to/(w, υ) for
ve\b + σ,b-σ] as in [1, (3.6) p. 884] so that

\f(u,v)-f(u,v)\<C0ε\logε\.

Let w(ζ,τ;v) be the solution of

— =/(*,»), *(0) = ίe[α_,β + ] .

We then have the following (cf. [1, Lemma 3.2]):
( i ) For t>0, wξ(ξ,τ;v) > 0.
(ii) There exists an βo > 0 such that for εe (0,ε0], τ > (2/fc)|logε|, the fol-

lowing estimates hold:

(3.1) w(ξ,τ;υ) > h+{v) - 2β|logc|, ζ e \h\υ) + 2e|loge|,fl+]

(3.2) w(ί, τ; i;) < A"(ι;) + 2β|logfi|, ζ e [a-,h°(v) - 2ε|logε|]

(3.3) h-(υ) - 2ε\logε\ < w(ζ,τ;v) < h+(υ) + 2e|loge|, ξ e [fl_,£i+],
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where k > 0 is a constant for which the following estimates are valid:

/(«,!?) > kmin{u - h°{v),h+{v) - u} for u e [h° (v), h+(v)}

f(u, v) < km?ix{u - h\v),h~{v) - u] for u e [/Γ», h°{υ)}

f(u, v) <k(h+(v)- u) for u e [h+ (v), a+]

f(u, υ) > k{h~ (Ό) - u) for u e [α_, h+ (v)].

(iii) There exists C\ > 0 which depends only on e0 and k such that if ε e (O,£o]
and 0 < τ < (2/Λ)|loge|, then \wξξ\ < C\wξ/ε.

Now let us define w 1 ^, r) by

u± (x, r) = w(^(x) + Mt, t/ε] vo + Mε|logε|).

By choosing M > 0 large, we will show that u~(x,ή and u+(x,ή are re-
spectively a sub-solution and a super-solution of (1.1) on [0, (2/fc)|logε|] and
satisfy

w~O,0) < w£(x,0) < w+O,0).

Let us first estimate

(3.4) \εAu-\ = \ε{wξAφ + wξξ\Vφ\2}\

< (Ci + 1) sup{ε|zf |̂ + | F ^ | 2 } ^ =: C2wξ.

On the other hand, we have

u- -X-f(μ-y) = -Mwξ+-[f(u-,υ0 + Mε\logε\) -f{u~^)}
ε ε

= -Mwξ + - [/(«", vo H- Aίε|logε|) -f{u~,v0 + Afε|logε|)]

+ C0|logε| +1/^(11-, H)[ϋo + Mε|logε| - ι>β],

where JJ is a value between vε(x, t) and ϋo+ Λfε|logε|. By using an easy
estimate

vε(x, t) < vo

we have

vε < v0 4- (2/fc)Af0ε|logε|, 0 < / <
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Therefore

υo + Mε\logε\ - vε(x, t)>[M- (2M0/fc)]ε|logfi|, 0 < t

This, together with fv < — δo, implies

(3.5) u- -λ-f{μ-y) < -Mwξ + C0|logε| -S0[M- (2M

We thus conclude from (3.4) and (3.5) that for 0 < t < (2/k)ε\logε\,

u -εAu- - -f(u-,vε) < -{M-C2)wξ -δo[M- (2M0/k) - (C0/«ϊo)]|logβ| < 0

by choosing M > max{C2, (2M0/k) + (C0/δ0)}.

Arguing similarly, we also obtain

uf -εΔu+ --f(u+,vε) > 0 .

Applying now the parabolic comparison theorem, we conclude

(3.6) ir(x, t) < uε(x, t) < u+(x, ή, 0 < t < (2/fc)e|logε|, xe Ω.

We will now establish the estimates (2.2)-(2.4) with τ\ = 2/k. We denote

by k\ > 0 the Lipschitz constant of h°(υ),h~(v) and h+{v) for v e [b + σ, b — σ\.

By using the second inequality in (3.3) and (3.6),

uε(x, τiβ|logε|) < w(φ(x) + τifi|loge|,τi|logε|; v0 - Afe|loge|)

< h+(v0 - Me|loge|) + 2ε|log£| < h+(v0) + (Mk{ + 2)e|loge|.

Similarly, (3.6) and the first inequality in (3.3) gives

uε(x,τιε\\ogε\) > h~(vo) - (Mki +2)e|logε|.

Therefore we have established (2.2) with any M\ > Mk\ + 2.

On the other hand, if φ(x) + τiMε|logε| < h°(v0 — Mε|logε|) — 2ε|logε|,

namely, if φ(x) <h°(v0) - (Mk\ +2τiAf)e|logε|, the estimates (3.2) and (3.6)

allow us to get:

uε(x, τiε|logε|) < w(φ(x) H-τiΛfε|logε|,τi|logε|;ι;o - Λfε|logε|)

< h~{v0 - Λίε|logε|) + 2ε|logε| < h~(υ0) + {Mk\ 4- 2)ε|logε|.

Similarly, (3.1) and (3.6) imply that

uε(x,τxε\\ogε\) > h-(v0) + {Mkx +2)ε|logε|.

provided φ(x) > h°(vo) + (Mk\ 4- 2τiΛf)ε|logε|. Therefore we have established
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(2.3) and (2.4) with M\ = Mk\ +2 + τ\M, completing the proof of Theorem
2.2.

3.3. Proof of Theorem 2.4. Let (uε(x, ή,vε(x, ή) be the solution of (1.1)
with the initial condition as in Theorem 2.2. We let Uε and Vε be defined by

Uε(x, t) = uε(x, t + τie|loge|), Vε(x, t) = vε(x, t + τie|loge|)

and let Vε{t) stand for the spatial average of Vε(x, i). Consider now the
initial value problem of moving hypersurfaces (which we call a genuine in-
terface equation):

(GIE) | v£ = c(P(/)), f(y,0) = yeΓo = {xeΩ\φ(x) = ho(υo)}.

This problem has a unique solution γε(y, t) on a time interval [0, T] for some
T > 0. Let us define Γε(ή = {γε(y, t)\ye Γo} for t e [0, T\. Γε(t) divides Ω

into two subdomains ί2 ε ±(ί). We define the signed distance function dε(x,t)
by:

' r0 if x e ΩεΛ{t) and dist(x, Γε(ή) > r0

dist(x, Γε(ή) if x e ΩεΛ{t) and dist(x, Γε(ή) < ro/2

_dist^ Γε(ty i f χ e Ωε,-(ή a n d dist(jc, Γε{ή) < ro/2

-r 0 if x e Ωε'~(t) and dist(x, Γε(ή) > r0,
which is extended smoothly for x e {ro/2 < dist(x, Γε(ή) < r0}.

Let us denote by C/(z; v) the unique solution of (2.6) for v e [b + σ,b — σ\.
Notice that Uz(z;v) > 0 for zeR and that there exist constants B>0 and
β > 0 such that

\ ^ Be~βz for z > 0(3 7) I
1 ' j \\U(z'v)\ + \U(z'v)\ + \U(z;O)h-(v)\£BePz f o r z < 0 .

With these preliminaries at our disposal, we now define two functions U±(x, ή,

which play a crucial role in our proof below, by:

d{x,ή±Le en >_ γ ε ^ _

where L > 0 and m > 0 are constants to be determined later. The proof of
Theorem 2.4 will amount to establishing the following steps:

Step-1: :

C/+ -εAU+ - -f{U+, Vε) > 0, U- -εAU- - -f(U~, Vε) < 0

forxeβ, te [0, Γ],

and δt/i/δn = 0 for x e 5ί2, t e [0, Γ].
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Step-2: :

U~(x, 0) < Uε(x, 0) < U+(x, 0), xeΩ.

Step-3: : There exists L\ > 0 such that

|l7e(jc,/) -Λ + (P(O)I < ^ i β 2 / ( 7 V + 1 ) if dε(x,ή > Lxε
2^N+^ te[0,T\,

\Uε(x,ή-fι-(V{ή)\ <Liε 2 / ( i V + 1 ) if dε{x,ή < -Lλε
2/{NJrλ) te [0,Γ].

Step-4: : There exists L2 > 0 such that

^ ) f o r ί G r o n vεΓfor ^ [ 0 , 7 1 , ^ e Γo >

where (v(t),γ(y,ή) is the unique solution of (2.5).

Once Step-3 and Step-4 are established, Theorem 2.4 is immediately

obtained as follows. By using Theorem 2.1 and the second inequality in (3.8),

\ve(χ,ή - i;(0l < \ve(χ,t) - vε(ή\ + \vε(ή - v(ή\

If we choose M2 > 2L2 then for x e Ω such that dist(x,Γ(ί)) > M 2 ε 2 / ( 7 V + 1 ) , we

have either

dε(x, t - τic|loge|) > dist(x,r(0) - L 2ε 2 / ( Λ Γ + 1 ) > L 2 ε 2 / ( i V + 1 ) ,

or

dε(x,t-τxε\\ogε\) < -dist(x,Γ(ή) + L2ε
2/{N+ι) < -L2ε

2l{N+x\

and hence, by Step-3, it follows

\u°(x, t) - h±{υ{t))\ < \u\x, t) - A±{v

Therefore, by choosing M 2 as

we have established Theorem 2.4.

We now prove Step-1 through Step-4.
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Step-1: In the sequel, the functions (/, Uz, Uzz and Uv are all evaluated at

According to the definition of £/+, we easily find

u; -SAU+-
 ι-/(u+, vε) = i, +-εi2uz - -h,

where

Ij = UvV
ε - UzΔdε --n Uzz[\Vdε\2 - 1],

12 = dε + c(Vε-

13 =f(u+,vε)-

Since \Vdε\ = 1 for \dε\ < ro/2 and Uzz has the decay property as in (3.7), one

easily find that |Iχ | < C\ for te[0,T] with some constant C\ > 0 which is

independent of ε. To estimate h, let ki > 0 denote the Lipschitz constant of

c(v) for i; G [b + σ, b — σ\. It then follows that

I 2 = dε + c(F ε )

Note that rff

ε + c( F ε ) = 0 when dε = 0. This is because, by definition, we have

dε(γε(y,ή,ή = 0

which, upon differentiation with respect to t, gives:

Therefore, by the smoothness of dε and the mean value theorem, there exists a

constant £3 > 0, which is independent of ε, such that \df + c(Vε)\ < ki\dε\. By

using these observations, we now continue to estimate I2:

I 2 > df + c(Vε

> -k3\dε\ +

> -h\dε + Lem'ε2/{N+i)\ + {m-k2-

By choosing m large, m>k2 + k^, we get I2 > -kτ,\dε + Lem'ε2/(-N+^\ which,
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together with (3.7), gives rise to

-hUz> -k3

ε
> —

, _β _

for some constant C2 > 0 which is independent of ε.
I3 is estimated as follows.

I3 = fv(U+Λ)[Vε - Vε

where fl is a value between Vε and Vε - Lε2^N+ι\ From Theorem 2.1, there
exists a constant Lo > 0 such that

I Vε(x, t) - Vε(t)\ < L0ε
2/( iV+1), x e Ω for t > 0.

Therefore, by choosing L > LQ and using fv < So (see (A4)), we have

U+ -εΔU+ - -f(U+, Vε) > - d - C2+δ0(L - Lo)ε{ι-N)/{N+i) > 0.

Similarly, we can show

U- - εΔU~ - -f(U~, Ve) < 0.

That dU±/dn = 0 follows from the definition of U±.

Step-2: In order to show that £/+(x,0) > ί/ε(x,0), we note that there
exists a k4 > 0 such that h± (v - a) - h± (v) > k4a for a > 0 and b + σ < v - a,
v < b - σ (cf. Remark 1.1). From the second condition in (2.7), it follows that
if dε(x,0) < -(Mi//)ε|loge| then

φ(x)-h°(v0) < -/dist(jc,Γ0) = ldε(x,0) < -Miε|logε|.

Therefore, by Theorem 2.2, Uε(x,0) < h-(υ0) -h Afiβ|loge|. On the other
hand,

>h-{Vε(0) -Lε 2 / ( i V + 1)) >h~(vo) + k^Lε2^^ - \Vε(0) - vo\]

Therefore for εo > 0 small and L > Lo, it holds that

t/+(x, 0) > A-(υo) + L0ε
2 / ( Λ ί + 1 ) > A"(oo) + Miβ|loge| > ί7e(x,0)

for εe (O,εo]
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If dε{x,0) > -(Λfi//)fi|loge|, then it follows that

£/+(*, 0) > u(-^\

By choosing εo small, we have

J\-N)/(N+1)

(3.9) L

Therefore (3.7) gives

U+{x,0) > h+(Vε(0) - Lε2/{N+ι)) - Be2 > h+(v0) + k4(L - L0)ε2/{N+ι)

> Uε(x,0).

We have thus established Uε(x,0) < U+(x,0) for xe Ω.
Similar arguments yield Uε(x,0) > U~(x,0) for xe Ω.

Step-3: By applying the parabolic comparison theorem, Step-1 and Step-2
imply that

t r ( J C , t) < Uε(x, t) < U+{x, t) f o r ( J C , ή e Ω x [ 0 , T ] .

If we choose

then for dε{x,t) > Lxε
2^N+^ we have:

Uε(x,ή > U~{x,t) > U(LemTε2/(N+ι); Vε(ή

> h+(Vε(ή + Lε2/^+1)) - ^exp

> h+{Vε{ή) - kxLε2^N^ - Bε2 > h+{Vε(ή) -

In the fourth inequality above, we used the fact that βLemT(ε^~N^{N+^/\\ogε\
>2 for εe(0,ε0] from (3.9).

On the other hand, we have

Uε(x,t) < U+(x,ή <h+{Vε(t)) + kxLε2l{N+ι) < h+(Vε{ή) + Lxε
2/{N+ι).

Therefore the first inequality in Step-3 is established. The second inequality in
Step-3 follows from the same line of arguments.

Step-4: From Step-3, we can rewrite the equation for (Vε(t),yε(t)) as:

Vε(ή=—\g(Uε(x,t), Vε(x,t))dx

= G (Ve(ή)—jβj— + G+(V%ή) —j^-

— v =c(V (?))
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Pε(0) = - ^ f υ*{x,τxε\\ogε\))dx =
\i2\ JΩ

Comparing this initial value problem with (2.5), one can find Li > 0 that makes

(3.8) true, by virture of the continuous dependence of solutions on the initial

conditions and on the vector fields. This completes the proof of Step-4.

4. Discussion

We have established in this paper that the solutions of (1.1) exhibit at least

three different types of dynamic behaviors for a class of initial conditions.

Although the spatial homogenization of vε(x, t) and the development of internal

layers in uε(x, t) take place in the same time scale, the particular choice of

initial conditions as in Theorem 2.2 enables us to observe these two phenomena

separately. The motion of interfaces, the third type of dynamic behavior, is

described by the system of ordinary differential equations (2.5). The asymptotic

behavior of the last equations is shown to be rather simple, namely, solutions

converge to an equilibrium of (2.5). As indicated at the end of Section 2, it is

natural to ask the question:

What would happen to the motion of the internal layer solutions of (1.1), after

the solutions of (2.5) have reached equilibrium states?

It is likely that the location of the internal layer evolves according to a slower

dynamics which is described by another interface equation. In fact, such an

interface equation can be read off from the computation in [7]. Rescaling the

time by εt —> t, the equation is given by:

(4.1) ^ ^ v(y, t) = -H(y, t) + c'(v*)b(y, ή - A(ή

with

A® = " T N A Ί ί H{y> t)dsy+ c'^mAi ί
\J {1)1 Jr(t) μ \t)\ir(ή

JΓ(ή I1 Vι)\ JΓ(ή

where H(y, t) is the sum of principal curvatures of Γ(t) at γ(y, ή, dSy the

surface measure on Γ(t), and b(y, t) is the value of the function V(x, t) which

is a unique solution of

dV
(a) DΛV=-G±(v*), xeΩ±(ή — = 0 on δΩ,

(4.2) dU

(b) V(>,t)eCι(Ω), V(x,t)dx = 0.
JΩ
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The initial conditions for (4.1) and (4.2) are:

y(y,θ)=γo(y), v(y,θ) = vo(y)

with Vo safisfying (4.2) for t = 0. The interface equation (4.1)-(4.2) was also
derived in [9] by a reasoning different from ours.

It is not our intention here to present the detail of how to derive (4.1)-
(4.2). Instead, let us comment on the compatiblity of (4.1) and (4.2).

For any given interface Γ ( / ) c c β with Ω = Ω~(ήϋΓ(t)UΩ+(ή, the
problem (4.2) has a unique solution if and only if

(4.3) |β-(0|=^p|fl|, |O+(,)| = Ώ£)|β(0|=^p|fl |, |O(,)| = £|ό|,

namely, the volume of Ω±(t) is independent of t. On the other hand, due to
the nonlocal nature, the solution Γ{t) of (4.1) evolves in such way that the
volume of Ω±(t) is preserved:

at ]Γ(ή όt

Therefore, (4.1) and (4.2) are compatible.
When Γ(t) has several connected components Γj(ή (j = 1,... ,k), the

equation (4.1) should be replaced by k equations

^£ή- • vj(y, t) = -HJ(y, t) + c'(v*)V(y, t) - A(t) (j = 1,... ,k)

where A(t), which is independent of j , is given by

+ c'(v*) f )

In the above, y} \ is I a j parametrization of Γj, vy the unit normal vector on Γj
pointing to Ω+(t), Hj the sum of principal curvatures on Γj, and bj is the
value of V on Γj. In this context, a one dimensional version (N = 1 and
Ω = (0,1)) of (4.1)-(4.2) is given by:

(4.4) ± ±

[ V(x,ήdx = 0, V(t)=V(γj(ή,ή (j = 1,...,
Jo
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In (4.4),

Γ{t) = {JΊ(0. , Vk(t)} with γo(t) = 0 < y,(ί) < < γk(t) < yk+ι(t) = 1,

and Ω±(ή is given by

It is easy to see that (4.4) with suitable initial conditions is well posed and that

the solutions can be explicitly written down by an elementary computation.

Note also that there are only k — 1 independent equations in the first line of

(4.4).

When the domain Ω is the unit disk in R^ (N >2), assuming that the

interfaces Γj(t) are concentric spheres with radius pj(t) and that V(x,t) is

radially symmetric, our interface equation reduces to (4.2) coupled with the

following

(4.5) (-1)^(0 = (-!)'(* D (N ^g^f fΓ
'Pj(t)

We have recently established in [12] that an equilibrium solution of (4.5) gives

rise to an internal layer solution of (1.1). It is our future projects to show the

well posedness of (4.1)-(4.2) and to clarify the relationship between the so-

lutions of this problem and those of (1.1).
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