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Abstract. Let R be a complete discrete valuation ring of equal characteristic

p > 0. In this paper we investigate finite and flat morphisms f : Y ! X between

formal R-schemes which have the structure of an étale Z=pnZ-torsor above the generic

fiber of X , for n ¼ 1; 2, with some extra geometric conditions on X and Y . In the case

n ¼ 1, we prove that f has the structure of a torsor under a finite and flat R-group

scheme of rank p and we describe the group schemes that arise as the group of the

torsor. In the case n ¼ 2, we describe explicitly how the Artin-Schreier-Witt equations

describing f on the generic fiber, locally, degenerate. Moreover, in some cases where

f has the structure of a torsor under a finite and flat R-group scheme of rank p2, we

describe the group schemes of rank p2 which arise in this way.

Introduction

Let p > 0 be a prime integer. Let R be a complete discrete valuation ring

of equal characteristic p, with fraction field K , and residue field k. Let X be a

formal R-scheme of finite type, which is normal, connected, and flat over R.

Assume that the fibers of X (over Spec R) are geometrically integral. Let

f : Y ! X be a finite, and flat, cover of degree pn, with Y normal. Assume

that f has the structure of an étale torsor; with group Z=pnZ, above the

generic fiber XK :¼ X �R K , of X . Further, suppose that the special fiber

Yk :¼ Y �R k, of Y , is reduced. In this paper we are interested in describing

the map f , and its special fiber fk : Yk ! Xk. One of our main results is the

following:

Theorem 2.2.1. Assume that degð f Þ ¼ p (i.e. n ¼ 1). Then the cover

f : Y ! X has the structure of a torsor, under a finite and flat R-group scheme

of rank p.

Moreover, we give an explicit description of the group schemes which appear as

the group of the torsor in 2.2.1 (cf. 2.1). More precisely, we provide integral

(local) equations for the torsor f : Y ! X , which also provide, by reduction,
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(local) equations for its special fiber fk : Yk ! Xk. Next, we investigate covers

of degree p2. Our main result is theorem 3.3.3. We are able in 3.3.3 to find

‘‘integral’’ equations for f , which provide (by reduction) equations for its

special fiber fk : Yk ! Xk. In other terms, we describe how the Artin-Schreier-

Witt equations of degree p2 degenerate.

The proof of 3.3.3 is rather involved, and uses the technical lemma 3.3.2.

It is based on a (non-trivial) iteration of the process used in the proof of

theorem 2.2.1. This method can, in principle, be generalized to provide in-

tegral equations for pn-cyclic covers f : Y ! X as above (for n > 2). How-

ever, this leads to quite complicated equations, which are not so easy to write

down.

In the case of covers of degree p2 we exhibit certain cases as above, where

f has the structure of a torsor, under a finite and flat R-group scheme of rank

p2 (cf. 3.3.3, and 3.3.4). In these cases we explicit the group schemes which

appear as groups of the torsor. These group schemes are basically obtained by

‘‘twisting’’ the Artin-Schreier-Witt theory (cf. 3.2, for more details). We are

also able to associate some degeneration data to the cover f , which determine

explicitly the cover fk (cf. 3.3.5).

In [S-2] we apply the results of this paper to the study of the semi-stable

reduction of cyclic Galois covers, of degree p, and p2, in equal characteristic p.
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0. Notation

In this paper we will adopt the following notations: p > 0 is a fixed

prime integer.

For a positive integer n > 0, Wn denotes the fppf-sheaf which is repre-

sented by the group scheme Wn;Fp
, of Witt vectors of length n, over Fp.

If X is a scheme, and G is a group scheme, HiðX ;GÞ will denote the

cohomology groups, for the fppf-topology, of X with values in the sheaf which

is represented by G. Recall, that if G is a smooth commutative group scheme,

then the HiðX ;GÞ coincide with the cohomology groups for the étale topology.
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Also, HiðX ;WnÞ coincides with the cohomology group for the Zariski to-

pology, and the étale topology.

For computations, in the sheaf W2, we will use the following notation

WðX ;YÞ ¼ X p þ Y p � ðX þ Y Þp

p
A Z½X ;Y �:

We will frequently use the following (well-known) congruence

WðX ;YÞ1
Xp�1

k¼1

ð�1Þk

k
X kY p�k mod p:

1. Artin-Schreier-Witt theory of pn-cyclic covers in characteristic p

In this section, we review the Artin-Schreier-Witt theory (first developed in

[W]) which provides, in characteristic p, explicit equations for Z=pnZ-torsors.

We refer the reader to a modern treatment of the theory in [D-G].

Throughout this section X denotes a scheme of characteristic p. Also, any

addition or subtraction of Witt vectors will mean the addition and subtraction

in Witt theory.

1.1. We denote by F the Frobenius endomorphism of Wn, which is locally

defined by

F:ðx1; x2; . . . ; xnÞ ¼ ðxp
1 ; x

p
2 ; . . . ; x

p
n Þ;

and by Id the identity automorphism of Wn.

We have an exact sequence of group schemes over Fp:

0 ���! ðZ=pnZÞ ���!in Wn ���!F�Id
Wn ���! 0;ð1Þ

which is exact for the étale topology on X . Here, ðZ=pnZÞ denotes the con-

stant group scheme defined by the cyclic group ðZ=pnZÞ, and in is the natural

monomorphism which sends 1 A Z=pnZ to 1 A Wn (cf [D-G], chapitre 5, 5.4).

From the long cohomology exact sequence associated to (1), one deduces the

following exact sequence:

GðX ;WnÞ ���!F�Id
GðX ;WnÞ ���! H 1ðX ;Z=pnZÞð2Þ

���! H 1ðX ;WnÞ ���!F�Id
H 1ðX ;WnÞ:

Assume that X ¼ Spec A is a‰ne, in which case

H 1ðX ;WnÞ ¼ 0:
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Hence, we have an isomorphism

H 1ðSpec A;Z=pnZÞFWnðAÞ=ImðF� IdÞ:

The above isomorphism has the following interpretation. To an étale Z=pnZ-

torsor

f : Y ! X ¼ Spec A;

corresponds a Witt vector

ða1; a2; . . . ; anÞ A WnðAÞ;

of length n, which is uniquely determined, modulo addition of elements of the

form

F:ðb1; b2; . . . ; bnÞ � ðb1; b2; . . . ; bnÞ:

Further, the equations

F:ðx1; x2; . . . ; xnÞ � ðx1; x2; . . . ; xnÞ ¼ ða1; a2; . . . ; anÞ;

where the xi are indeterminate, are equations for the torsor f . More precisely,

there is a canonical factorization of f as

Y ¼ Yn �!fn Yn�1 �!fn�1 � � � �!f2 Y1 �!f1 Y0 ¼ X ;

where each

Yi ¼ Spec Bi;

is a‰ne, and

fi : Yi :¼ Spec Bi ! Yi�1 :¼ Spec Bi�1;

is the étale Z=pZ-torsor corresponding to the algebra extension Bi�1 ! Bi,

where

Bi :¼ Bi�1½xi�:

In the general case, where H 1ðX ;WnÞ0 0, the above equations provide local

equations for an étale Z=pnZ-torsor, in characteristic p.

1.2. Examples. We follow the notations in 1.1.

1.2.1. Z=pZ-Torsors. Let

f : Y ! X

be an étale Z=pZ-torsor. Then f is locally given by an equation
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xp � x ¼ a;

where a is a regular function on X , which is uniquely determined up to

addition of elements of the form bp � b.

1.2.2. Z=p2Z-Torsors. Let

f : Y ! X ;

be an étale Z=p2Z-torsor. We have a canonical factorization of f as

Y2 :¼ Y !f2 Y1 !
f1

X ;

where f2, and f1, are étale Z=pZ-torsors. The torsor f is locally given, if

p0 2, by equations of the form

F:ðx1; x2Þ � ðx1; x2Þ :¼ ðxp
1 � x1; x

p
2 � x2 þWðxp

1 ;�x1ÞÞ ¼ ða1; a2Þ;

which can be rewritten as

F:ðx1; x2Þ � ðx1; x2Þ ¼ x
p
1 � x1; x

p
2 � x2 �

Xp�1

k¼1

1

k
x
pkþp�k
1

 !
¼ ða1; a2Þ;

resp.

F:ðx1; x2Þ � ðx1; x2Þ ¼ ðx2
1 � x1; x

2
2 � x2 þ x3

1 � x2
1Þ ¼ ða1; a2Þ;

if p ¼ 2; for some regular functions a1 and a2 on X .

Moreover, the Witt vector

ða1; a2Þ;

is uniquely determined, up to addition (in the Witt theory) of vectors of the

form

ðbp
1 ; b

p
2 Þ � ðb1; b2Þ;

which if p0 2 equals

ðbp
1 � b1; b

p
2 � b2 þWðbp

1 ;�b1ÞÞ;

resp. equals

ðb21 � b1; b
2
2 � b2 þ b31 � b21Þ;

if p ¼ 2. Thus, locally, the torsor f1 is defined by the equation

x
p
1 � x1 ¼ a1;

and the torsor f2 by the equation
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x
p
2 � x2 ¼ a2 �Wðxp

1 ;�x1Þ ¼ a2 þ
Xp�1

k¼1

1

k
x
pkþp�k
1 ;

if p0 2, resp.

x2
2 � x2 ¼ a2 � x3

1 þ x2
1 ;

if p ¼ 2. Moreover, if we replace the vector

ða1; a2Þ;

by the vector

ða1; a2Þ þ ðbp
1 ; b

p
2 Þ � ðb1; b2Þ;

the above equations are replaced by

x
p
1 � x1 ¼ a1 þ b

p
1 � b1

and

x
p
2 � x2 ¼ a2 þ b

p
2 � b2 þ

Xp�1

k¼1

1

k
x
pkþp�k
1 �

Xp�1

k¼1

1

k
b
pkþp�k
1

�
Xp�1

k¼1

ð�1Þk�1

k
ða1Þkðbp

1 � b1Þp�k

if p0 2, resp.

x2
2 � x2 ¼ x2

1 � x3
1 þ a2 þ b22 � b2 þ b31 � b21 � a1ðb21 � b1Þ;

if p ¼ 2.

2. Degeneration of p-cyclic covers in equal characteristic p > 0

In this section we use the following notations: R is a complete discrete

valuation ring of equal characteristic p > 0, with perfect residue field k, and

fraction field K :¼ Fr R. We denote by p a uniformising parameter of R.

2.1. The group schemes Mn (cf. also [M], 3.2). Let nb 0 be an integer,

and let Ga;R ¼ Spec R½T � be the additive group scheme over R. The map

fn : Ga;R ! Ga;R;

given by

T 7! T p � pðp�1ÞnT ;
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is an isogeny of group schemes. The kernel of fn is denoted by Mn;R, or

simply Mn, if no confusion occurs. Thus,

Mn :¼ Spec R½T �=ðT p � pðp�1ÞnTÞ;

and Mn is a finite and flat R-group scheme of rank p. Further, the following

sequence is exact:

0 ! Mn ! Ga;R !fn Ga;R ! 0:(3)

If n ¼ 0, the sequence ð3Þ is the Artin-Schreier sequence, and M0 is the étale

constant group scheme ðZ=pZÞR. If n > 0, the sequence (3) has a generic fiber

which is isomorphic to the étale Artin-Schreier sequence, and a special fiber

isomorphic to the radicial exact sequence

0 ! ap ! Ga;k !
F
Ga;k ! 0:(4)

Thus, if n > 0, the group scheme Mn has a generic fiber which is étale, iso-

morphic to ðZ=pZÞK , and its special fiber is isomorphic to the infinitesimal

group scheme ap;k.

Let X be an R-scheme. The sequence ð3Þ induces a long cohomology

exact sequence

GðX ;OX Þ !
fn

GðX ;OX Þ ! H 1ðX ;MnÞ ! H 1ðX ;OX Þ !
fn

H 1ðX ;OX Þ:(5)

The cohomology group

H 1ðX ;MnÞ

classifies the isomorphism classes of fppf-torsors with group Mn, above X .

The exact sequence (5) allows the following description of Mn-torsors. Lo-

cally, a torsor

f : Y ! X

under the group scheme Mn, is given by an equation

T p � pðp�1ÞnT ¼ a;

where T is an indeterminate, and a is a regular function on X which is

uniquely determined, up to addition of elements of the form bp � pðp�1Þnb (for

some regular function b). In particular, if H 1ðX ;OX Þ ¼ 0 (e.g. if X is a‰ne),

then an Mn-torsor above X is globally defined by an equation as above.

2.2. Degeneration of étale Z=pZ-torsors. In what follows let X be a

formal R-scheme of finite type which is normal, connected, and flat over R.

Let XK :¼ X �R K (resp. Xk :¼ X �R k) be the generic (resp. special ) fiber of

X . By ‘‘generic fiber’’ of X we mean the associated K-rigid space (cf. [B-L]).
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We assume that the special fiber Xk is integral. Let h be the generic point of

the special fiber Xk, and let Oh be the local ring of X at h, which is a discrete

valuation ring with fraction field KðX Þ :¼ the function field of X . Let

fK : YK ! XK ;

be a non-trivial étale Z=pZ-torsor, with YK geometrically connected. Let

KðXÞ ! L;

be the corresponding extension of function fields. The main result of this

section is the following.

2.2.1. Theorem. Assume that the ramification index above Oh, in the

extension KðXÞ ! L, equals 1. Then the torsor fK : YK ! XK extends to a

torsor f : Y ! X under a finite and flat R-group scheme of rank p, with Y

normal.

Let d be the degree of the di¤erent above h, in the extension KðX Þ ! L.

Then the following cases occur:

a) d ¼ 0. In which case f is an étale torsor under the group scheme M0,

and fk : Yk ! Xk is an étale Z=pZ-torsor.

b) d > 0. In which case d ¼ nðp� 1Þ, for a certain integer nb 1, and f

is a torsor under the group scheme Mn. Further, in this case fk : Yk ! Xk is a

non-trivial radicial torsor under the k-group scheme ap.

Note that starting from a torsor fK : YK ! XK , as in 2.2.1, the condition

that the ramification index above Oh equals 1 is always satisfied, after possibly

a finite extension of R (cf. e.g. [E]).

Proof. We denote by v the discrete valuation of KðXÞ corresponding to

the valuation ring Oh, which is normalized by vðpÞ ¼ 1. Note that p is a

uniformiser of Oh. We first start with the special case where H 1ðXK ;OXK
Þ ¼ 0.

The torsor fK is then given by an Artin-Schreier equation of the form

T p � T ¼ aK , where aK is a regular function on XK . We have aK ¼ pma,

where m A Z is an integer, and a is a regular function on X , with vðaÞ ¼ 0.

First, note that necessarily ma 0. For if m > 0, then aK ¼ bp � b, where

b ¼ apm þ ðapmÞp þ ðapmÞp
2

þ � � � þ ðapmÞp
i

þ � � � (the sum converges, since XK

is complete for the p-adic topology). But this contradicts the fact that fK is a

non-trivial torsor.

If m ¼ 0, the equation T p � T ¼ a defines an étale Z=pZ-torsor f : Y ! X

above X , which coincides with fK on the generic fiber, and we are in the case

a). In this case the étale torsor fk : Yk ! Xk is given by the Artin-Schreier

equation T p � T ¼ a, where a is the image of a modulo p.
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Next, we treat the case where m < 0. In this case m is necessarily di-

visible by p. For otherwise, the extension KðXÞ ! L is totally ramified above

Oh. Write �m ¼ np. Assume first that the image a of a modulo p, via the

canonical map GðX ;OX Þ ! GðX ;OX Þ=pGðX ;OX Þ, is not a p-power. Consider

the cover f : Y ! X given by the equation ~TT p � pnðp�1Þ ~TT ¼ a. Then f is an

fppf-torsor under the group scheme Mn, which coincides with fK on the generic

fiber (consider the change of variables T :¼ ~TT=pn). Its special fiber fk : Yk !
Xk, is the ap-torsor given by the equation tp ¼ a.

In the case where a is a p-power, the following two cases occur.

First: a is a ps-power for every integer s, which implies necessarily that

a A k. In this case, and after some modifications (allowed by the Artin-

Schreier theory) which do not change the torsor fK , we can reduce to an

equation of the above form, where a doesn’t belong to k. To explain this,

assume for simplicity that n ¼ 1. Then a ¼ a 0p þ pab, where b A GðX ;OX Þ,
and a 0 A R. Thus, the equation defining fK is T p � T ¼ a 0p=pp þ pab=pp,

which after some modifications (which are allowed by the Artin-Schreier

theory) can be written as T p � T ¼ a 0=pþ pab=pp. But this equation ramifies

above p, which is not the case by assumption. Thus the first case doesn’t

occur and we are lead to the second case.

There exists a positive integer r such that a is a pr-power but not a prþ1-

power. We assume for simplicity that r ¼ 1 (the general case r > 1 is treated

in a similar way, and is left to the reader). Let a ¼ bp, so that a ¼ bp þ p~bb,

where b and ~bb are functions on X , and b reduces to b modulo p. Our

equation is then of the form T p � T ¼ ðb=pnÞp þ ~bb=pð pn�1Þ. After adding

ðb=pnÞ � ðb=pnÞp to the right hand side, which doesn’t change the torsor fK , we

get the equation T p � T ¼ ðb=pnÞ þ ~bb=pðpn�1Þ, which can also be written in

the form T p � T ¼ ðb=pnÞ þ b 0=pn 0
, where b 0 is a function with vðb 0Þ ¼ 0,

and n 0 a pn� 1. If n > n 0, then n is necessarily divisible by p, by the above

argument. Write n ¼ ps. The equation ~TT p � psðp�1Þ ~TT ¼ bþ pn�n 0
b 0 defines

a torsor f : Y ! X under the group scheme Ms, which coincides with fK on

the generic fiber. Its special fiber fk : Yk ! Xk is the ap-torsor given by the

equation ~ttp ¼ b. In the case where n 0 b n, n 0 is necessarily divisible by p.

Write n 0 ¼ s 0p. In this case if b 0 (resp. b 0 þ b in case n 0 ¼ n) is not a p-power

(where b, and b 0, denote the reduction of b, resp. b 0, modulo p), then the

equation ~TT p � ps 0ð p�1Þ ~TT ¼ pn 0�nbþ b 0 defines a torsor f : Y ! X , under the

group scheme Ms 0 , which coincides with fK on the generic fiber. Its special

fiber fk : Yk ! Xk is the ap-torsor given by the equation ~ttp ¼ b 0 (resp. ~ttp ¼
b 0 þ b, in the case n ¼ n 0). Otherwise, if b 0 (or b 0 þ b in case n ¼ n 0) is a p-

power, then we repeat the same procedure as above. Since n and n 0 decrease

at each step this process must stop at some finite stage, and we end up with an

equation of the form ~TT p � p rðp�1Þ ~TT ¼ ~bb, where ~bb is a function whose reduction
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modulo p is not a p-power, for some positive integer r. Hence the required

result. Observe that in the above case m < 0, the ap-torsor fk : Yk ! Xk that

we obtain above is non-trivial, since the ramification index above Oh, in the

extension KðXÞ ! L, equals 1.

The argument in the general case, where H 1ðXK ;OXK
Þ0 0, is similar to

the one used in [S], proof of 2.4. More precisely, in general there exists an

open covering ðUiÞi of X , and regular functions ~aai A GðUi;K ;OX Þ (where Ui;K :¼
Ui �R K , and the ~aai are defined up to addition of functions of the form

b
p
i � bi), such that the torsor fK is defined above Ui;K by the equation T

p
i � Ti

¼ ~aai. Now the above discussion shows that after some modifications (of the

type used above) the torsor fK can be defined above each open Ui;K by an

equation ~TTi � pniðp�1Þ ~TT ¼ ai, for some (uniquely determined) integer ni b 0,

such that if ni > 0 the image ai of ai, modulo p, is not a p-power. Moreover,

the degree of the di¤erent di above the generic point h of Ui;k :¼ Ui �R k equals

niðp� 1Þ. From this we deduce that all ni are equal. Write n :¼ ni. Then

the Mn-torsor f : Y ! X , which is locally given by the equation ~TTi � pnðp�1Þ ~TTi

¼ ai, above the open Ui, coincides on the generic fiber with the torsor fK .

2.2.2. It follows from 2.2.1 that an étale Z=pZ-torsor above the generic

fiber XK of X induces canonically a degeneration data, which consists of a

torsor above the special fiber Xk of X , under a finite and flat k-group scheme

which is either étale or of type ap. Reciprocally, we have the following result

of lifting of such a degeneration data.

2.2.3. Proposition. Assume that X is a‰ne. Let fk : Yk ! Xk be a

torsor under a finite and flat k-group scheme, which is étale (resp. of type ap).

Then fk can be lifted to a torsor f : Y ! X, under a finite and flat R-group

scheme of rank p, which is étale (resp. isomorphic to Mn, for an integer n > 0).

Proof. Since X is a‰ne, the torsor fk is given by an equation xp � x ¼ a,

where a is a regular function on Xk (resp. an equation xp ¼ a, where a is a

regular function on Xk). Let a be a regular function on X which reduces to a

modulo p. The equation X p � X ¼ a (resp. X p � pnðp�1ÞX ¼ a, where n > 0

is an integer) defines a cover f : Y ! X above X , which has the structure of

a torsor under the étale group scheme ðZ=pZÞR (resp. under the group scheme

Mn), and which clearly induces the torsor fk above the special fiber Xk.

2.2.4. Remark. If X is not a‰ne, one can find examples of an ap-torsor

above the special fiber Xk of X , which cannot be lifted to a torsor above X ,

under a finite and flat R-group scheme of rank p, which is étale above the

generic fiber of X . This is indeed the case if X is a proper and smooth R-

curve, whose generic fiber is ordinary, and whose special fiber has a jacobian
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which is isogenuous to a product of supersingular elliptic curves. However, for

a proper and smooth R-curve X , the same arguments used in [S-1], 4.7, show

that it is always possible to lift an ap-torsor above the special fiber Xk of X ,

after possibly replacing X by another R-curve X 0 which lifts Xk.

3. Degeneration of p2-cyclic covers in equal characteristic p > 0

Throughout this section we use the same notations as in section 2.

3.1. The group schemes Wm1;m2
. Let m1 and m2 be non-negative inte-

gers, such that m2 � pm1 b 0. We define the twisted R-Witt group scheme

Wm1;m2
;

of length two, as follows. Scheme theoretically

Wm1;m2
FG2

a;R;

and the group law is defined by

ðx1; x2Þ þ ðy1; y2Þ :¼ ðx1 þ y1; x2 þ y2 þ pm2�pm1Wðx1; y1ÞÞ:

Note, that if p ¼ 2, then the subtraction in Wm1;m2
is given by

ðx1; x2Þ � ðy1; y2Þ ¼ ðx1 � y1; x2 � y2 þ pm2�2m1ðx1y1 � y21ÞÞ:

The generic fiber ðWm1;m2
ÞK , of Wm1;m2

, is isomorphic to the Witt group scheme

W2;K :¼ W2 �Fp
K , via the map

ðWm1;m2
ÞK ! W2;K

ðx1; x2Þ 7! ðx1=pm1 ; x2=p
m2Þ:

Its special fiber ðWm1;m2
Þk is isomorphic either to the Witt group scheme

W2;k :¼ W2 �Fp
k, if m2 � pm1 ¼ 0, or to the group scheme G2

a;k, otherwise.

Note that we have an exact sequence

0 ! Ga !
V

Wm1;m2
!R Ga ! 0;

where

V : Ga ! Wm1;m2
;

is the Vershiebung homomorphism defined by

VðxÞ ¼ ð0; xÞ;
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and

R : Wm1;m2
! Ga;

is the projection

Rðx1; x2Þ ¼ x1:

3.2. The group schemes Hm1;m2
. We use the same notations as in

3.1. The following maps Im1;m2
, and F, are group scheme homomorphisms:

Im1;m2
: Wm1;m2

! Wpm1;pm2
;

ðx1; x2Þ ! ðpm1ðp�1Þx1; p
m2ðp�1Þx2Þ;

and

F : Wm1;m2
! Wpm1;pm2

;

ðx1; x2Þ ! ðxp
1 ; x

p
2 Þ:

Consider the following isogeny:

jm1;m2
:¼ F� Im1;m2

: Wm1;m2
! Wpm1;pm2

ðx1; x2Þ 7! ðxp
1 ; x

p
2 Þ � ðpm1ðp�1Þx1; p

m2ðp�1Þx2Þ

which, if p0 2, is given by

ðx1; x2Þ 7! ðxp
1 � pm1ðp�1Þx1; x

p
2 � pm2ðp�1Þx2 þ ppm2�p2m1Wðxp

1 ;�pm1ðp�1Þx1ÞÞ;

which can be rewritten as

ðx1; x2Þ 7! x
p
1 � pm1ðp�1Þx1; x

p
2 � pm2ðp�1Þx2 �

Xp�1

k¼1

pm2p�m1ðpkþp�kÞ

k
x
pþðp�1Þk
1

 !
;

and if p ¼ 2, is given by

ðx1; x2Þ 7! x2
1 � pm1x1; x

2
2 � pm2x2 þ p2m2

x3
1

p3m1
� x2

1

p2m1

� �� �
:

We define the group scheme

Hm1;m2
;

to be the kernel of the above isogeny. Thus, we have an exact sequence:

0 ����! Hm1;m2 ����! Wm1;m2 ����!F�Im1 ;m2
Wpm1;pm2 ����! 0;(6)

and Hm1;m2
is a finite and flat commutative R-group scheme of rank p2.

Further, we have the following commutative diagram:
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0 0 0???y
???y

???y
0 ���! Mm2 ���! Ga ���!fm2

Ga ���! 0???y
???y

???y
0 ���! Hm1;m2 ���! Wm1;m2 ���!jm1 ;m2

Wpm1;pm2 ���! 0???y
???yR

???yR

0 ���! Mm1 ���! Ga ���!fm1
Ga ���! 0???y

???y
???y

0 0 0

The group scheme Hm1;m2
is an extension of the group scheme Mm1

by Mm2
.

Its generic fiber ðHm1;m2
ÞK is isomorphic to the étale constant group scheme

Z=p2Z. Its special fiber ðHm1;m2
Þk is either isomorphic to the product

Z=pZ� ap, if m1 ¼ 0, and m2 > 0; in which case we denote it by Hk. Or, is

isomorphic to the product ap � ap, if m1 > 0; in which case we denote it by

Gk. We have the following exact sequences:

0 �����! Hk �����! G2
a;k �����!ðF�IdÞ�F

G2
a;k �����! 0;ð7Þ

and

0 ��! Gk ��! G2
a;k ��!F�F

G2
a;k ��! 0:ð8Þ

Let X be an R-scheme. The sequence (6) induces a long cohomology

exact sequence

GðX ;Wm1;m2
Þ ���!jm1 ;m2

GðX ;Wpm1;pm2
Þ ���! H 1ðX ;Hm1;m2

Þð9Þ

���! H 1ðX ;Wm1;m2
Þ ���!jm1 ;m2

H 1ðX ;Wpm1;pm2
Þ:

The cohomology group

H 1ðX ;Hm1;m2
Þ;

classifies the isomorphism classes of fppf-torsors, with group Hm1;m2
, above

X . The above exact sequence (9) allows the following description of Hm1;m2
-

torsors. Locally, a torsor

f : Y ! X ;
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under the group scheme Hm1;m2
, is given by the equations

T
p
1 � pm1ðp�1ÞT1 ¼ a1;

and

T
p
2 � pm2ðp�1ÞT2 ¼ a2 � ppm2�p2m1WðT p

1 ;�pm1ðp�1ÞT1Þ;

which can be rewritten as:

T
p
2 � pm2ðp�1ÞT2 ¼ a2 þ

Xp�1

k¼1

pm2p�m1ðpkþp�kÞ

k
T

pþkð p�1Þ
1 ;

if p0 2, resp.

T
p
2 � pm2T2 ¼ a2 þ p2m2

T 2
1

p2m1
� T 3

1

p3m1

� �
;

if p ¼ 2; where T1, T2, are indeterminates, and a1, a2, are regular functions on

X . Its special fiber is either the Hk-torsor given by the equations

t
p
1 � t1 ¼ a1;

and

t
p
2 ¼ a2;

if m1 ¼ 0. Or, the Gk-torsor given by the equations

t
p
1 ¼ a1;

and

t
p
2 ¼ a2;

otherwise. Here, a1 (resp. a2) is the image of a1 (resp. a2) modulo p. In

particular, if H 1ðX ;OX Þ ¼ 0 (e.g. if X is a‰ne), then an Hm1;m2
-torsor above X

is globally defined by an equation as above.

3.3. Degeneration of étale Z=p2Z-torsors. In this section we use the

same notations as in 2.2. Our aim is to describe explicitly the degeneration of

étale Z=p2Z-torsors.

Let

fK : YK ! XK ;

be a non-trivial étale Z=p2Z-torsor. Let

KðXÞ ! L;
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be the (degree p2) cyclic extension of function fields, corresponding to the

torsor fK , which canonically factorizes as

KðXÞ ! L1 ! L2 :¼ L;

where

KðXÞ ! L1;

is a cyclic extension of degree p. We assume that the ramification index above

the generic point h of Xk, in the extension KðXÞ ! L, equals 1. We have a

canonical factorization

YK ¼ Y2;K �!f2;K Y1;K �!f1;K XK ;

of fK , where fi;K is a Z=pZ-torsor, i A f1; 2g. Moreover, by 2.2.1, the torsor

f2;K (resp. f1;K ) extends to a torsor f2 : Y2 ! Y1 (resp. f1 : Y1 ! X ) under a

finite and flat R-group scheme of rank p. The composite f :¼ f1 � f2 is a

finite and flat cover which coincides, on the generic fiber, with fK . We assume

that the special fiber Y2;k, of Y2, is irreducible. In particular, above the generic

point h, there exists a unique generic point h1 in Y1, which lies above h. We

denote by d (resp. d1, and d2) the degree of di¤erent in the extension L above

the point h (resp. the degree of di¤erent in the extension L1, above the point h,

and that of the di¤erent in the extension L2, above the point h1). Note that

d ¼ d1 þ d2.

3.3.1. We start with the following lemma 3.3.2, which will be used in the

proof of 3.3.3. In what follows we assume that

X ¼ Spf A;

is a‰ne, and that

f1 : Y1 :¼ Spf B ! X ;

is a torsor under the group scheme Mn, for some integer n > 0 (cf. 2.1). Thus,

f1 is given by an equation

T p � pnðp�1ÞT ¼ v;

where v A A is such that its image v A A :¼ A=pA is not a p-power. In par-

ticular, the special fiber

f 1 : Y1;k ¼ Spec B ! Xk ¼ Spec A;

of the torsor f1, where B :¼ B=pB (resp. A :¼ A=pA), is the ap-torsor given by

the equation
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tp ¼ v:

Further, B is a free A-algebra with basis

f1; t; t2; . . . ; tp�1g:

We need to characterize elements of A which become p-powers, modulo p, in

B, but are not necessarily p-powers, modulo p, in A.

3.3.2. Lemma. Let u A A. Assume that the image u, of u, is a p-power in

B.

Then u ¼ f ðvÞ þ pu 0, where u 0 A A, and f ðvÞ belongs to the additive subgroup

Av :¼ Ap lAp:vl � � � �lAp:vp�1

of A. Moreover, let

f ðvÞ :¼ a
p
0 þ a

p
1 vþ � � � þ a

p
p�1v

p�1 A Av;

and let m > 0 be an integer. Consider the element g :¼ f ðvÞp�pm A AK. Then

g ¼ p�pmðap
0 þ a

p
1 ðT p � pnðp�1ÞTÞ þ � � � þ a

p
p�1ðT p � pnðp�1ÞTÞp�1Þ

in BK, and after addition of elements of BK, of the form bp � b, one can

transform g in

~gg ¼ p�mða0 þ a1T þ � � � þ ap�1T
p�1Þ þ p�ðpm�nðp�1ÞÞ �

Xp�1

j¼1

ja
p
j T

pð j�1Þþ1

 !

þ p�ðpm�2nðp�1ÞÞhðTÞ;

where hðTÞ A B. Moreover, the image of

�
Xp�1

j¼1

ja
p
j T

pð j�1Þþ1 ¼ �a
p
1T � 2ap

2T
pþ1 � � � � � ðp� 1Þap

p�1T
pðp�2Þþ1;

in B, is not a p-power.

Proof. We have B ¼ AlA:tl � � � lA:tp�1. Hence, Bp ¼ Ap lAp:v

l � � �lAp:vp�1, and the first assertion of the lemma follows. Let g :¼
ðap

0 þ a
p
1 vþ � � � þ a

p
p�1v

p�1Þp�pm A BK . Since T p � pnðp�1ÞT ¼ v in BK , we can

write g ¼ p�pmðap
0 þ a

p
1 ðT p � pnðp�1ÞTÞ þ � � � þ a

p
p�1ðT p � pnð p�1ÞTÞp�1Þ in BK .

After developing the terms ðT p � pnðp�1ÞTÞ j, for j A f1; p� 1g; according to

the binomial expansion, and putting together the terms with the same power

of p we get that
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g ¼ p�pmðap
0 þ a

p
1T

p þ � � � þ a
p
p�1T

pðp�1ÞÞ

þ p�ðpm�nðp�1ÞÞð�a
p
1T � 2ap

2T
pþ1 � � � � � ðp� 1Þap

p�1T
pðp�2Þþ1Þ

þ p�ðpm�2nðp�1ÞÞhðTÞ;

where hðTÞ A B. Finally, after adding ða0 þ a1T þ � � � þ ap�1T
p�1Þ=pm �

ðap
0 þ a

p
1T

p þ � � � þ a
p
p�1T

pðp�1ÞÞ=ppm to the right hand side of the above

equality, we get the desired expression for ~gg.

The next theorem is the main result of this section. It describes locally (and

explicitly) the degeneration of étale Z=p2Z-torsors. More precisely, we are

able to find ‘‘canonical integral equations’’ which describe the reduction of p2-

cyclic covers, in equal characteristic p.

3.3.3. Theorem. We use the same notations as in 3.3. Assume that X ¼
Spf A is a‰ne. Then the torsor fK can be described by an equation of the form

ðT p
1 ;T

p
2 Þ � ðT1;T2Þ ¼ ðpm1a1; p

m2a2Þ

where a1, a2, are regular functions on X, with vða1Þ ¼ vða2Þ ¼ 0, m1 a 0, m2 A Z

is an integer. Moreover, the following cases occur:

a) m1 ¼ 0, and m2 b 0. In this case f is an étale Z=p2Z-torsor above X,

given by the equations

ðT p
1 ;T

p
2 Þ � ðT1;T2Þ ¼ ða1; pm2a2Þ:

Its special fiber fk : Yk ! Xk, is the étale Z=p2Z-torsor given by the equations

ðtp1 ; t
p
2 Þ � ðt1; t2Þ ¼ ða1; pm2a2Þ;

and d ¼ d1 ¼ d2 ¼ 0 (here, a1 (resp. pm2a2) denotes the image of a1 (resp.

pm2a2) modulo p).

b) m1 ¼ 0, m2 < 0 is divisible by p, and a2 is not a p-power modulo p. In

this case f is a torsor under the R-group scheme H0;m 0
2
; where m 0

2 :¼
�m2

p
(cf.

3.2), and is given by the equations

T
p
1 � T1 ¼ a1;

and

~TT p
2 � pm 0

2
ðp�1Þ ~TT2 ¼ a2 � p�m2WðT p

1 ;�T1Þ ¼ a2 þ p�m2

Xp�1

k¼1

1

k
T

pþðp�1Þk
1 ;

if p0 2, resp.

~TT 2
2 � pm 0

2 ~TT2 ¼ a2 � p�m2ðT 3
1 � T 2

1 Þ

if p ¼ 2. Its special fiber is the torsor under the k-group scheme ðH0;m 0
2
Þk FHk,

given by the equations
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t
p
1 � t1 ¼ a1;

and

~tt p2 ¼ a2;

where a1 (resp. a2) is the image of a1 (resp. of a2) modulo p. In this case

d1 ¼ 0, and d ¼ d2 ¼ m 0
2ðp� 1Þ.

c) m1 < 0 is divisible by p, and the image a1, of a1 modulo p, is not a

p-power. Write m1 ¼ �pm 0
1. In this case f1 is an Mm 0

1
-torsor, given by the

equation

~TT p
1 � pm 0

1
ðp�1Þ ~TT1 ¼ a1:

Its special fiber f1;k : Y1;k ! Xk is the ap-torsor given by the equation

~tt p1 ¼ a1:

We have d1 ¼ m 0
1ðp� 1Þ. As for f2, the following cases occur:

c-1) m 0
1ðpðp� 1Þ þ 1Þ > �m2 (resp. m 0

1ðpðp� 1Þ þ 1Þ ¼ �m2). In this

case m 0
1 is necessarily divisible by p. Write m 0

1 ¼ pm 00
1 . If ~mm1 :¼

m 00
1 ðpðp� 1Þ þ 1Þ, then f2 is a torsor under M~mm1;R given by the equation:

~TT p
2 � p ~mm1ðp�1Þ ~TT2 ¼ p ~mm1pþm2a2 � pm 0

1
ðpðp�1Þþ1ÞWðp�m 0

1
p ~TT p

1 ;�p�m 0
1 ~TT1Þ

¼ p ~mm1pþm2a2 þ
Xp�1

k¼1

pm 0
1
ððp�1Þ2�ðp�1ÞkÞ

k
~TT
pþðp�1Þk
1

if p0 2, resp.

~TT 2
2 � p ~mm1 ~TT2 ¼ p2 ~mm1þm2a2 þ pm 0

1 ~TT 2
1 � ~TT 3

1 :

Its special fiber is the ap-torsor given by the equation

~tt p2 ¼ �~tt
pðp�1Þþ1
1

resp.

~tt p2 ¼ �~tt
pðp�1Þþ1
1 þ a2:

Otherwise, �m2 > m 0
1ðpðp� 1Þ þ 1Þ, in which case m2 is necessarily divisible by

p. Write �m2 ¼ pm 0
2. We have the following description for pm2a2:

pm2a2 ¼ f1ða1Þ=ppm 0
2 þ f2ða1Þ=ppm 0

2
�t1 þ � � � þ frða1Þ=ppm 0

2
�t1�����tr�1

þ g=ppm 0
2
�t1�����tr

where fiða1Þ belongs to the subgroup Aa1 of A (cf. 3.3.2), g A A, and the ti are

positive integers (note that g and the fi can be 0). Moreover, the torsor f2;K is

given by the equation
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T
p
2 � T2 ¼ f1ða1Þ=ppm 0

2 þ f2ða1Þ=ppm 0
2
�t1 þ � � � þ frða1Þ=ppm 0

2
�t1�����tr�1

þ g=ppm 0
2
�t1�����tr þ

Xp�1

k¼1

p�m 0
1
ðpkþp�kÞ

k
~TT
pþðp�1Þk
1 ;

if p0 2, and

T 2
2 � T2 ¼ f1ða1Þ=p2m 0

2 þ f2ða1Þ=p2m 0
2
�t1 þ � � � þ frða1Þ=p2m 0

2
�t1�����tr�1

þ g=p2m 0
2
�t1�����tr þ

~TT 2
1

p2m 0
1

�
~TT 3
1

p3m 0
1

;

if p ¼ 2. And the following distinct cases occur:

c-2) pm 0
2 � ðp� 1Þm 0

1 > supðm 0
1ðpðp� 1Þ þ 1Þ; pm 0

2 � t1 � � � � � trÞ (resp.

pm 0
2 � ðp� 1Þm 0

1 ¼ m 0
1ðpðp� 1Þ þ 1Þ > pm 0

2 � t1 � � � � � tr). In this case

pm 0
2 �m 0

1ðp� 1Þ is divisible by p, and d2 ¼ m 00
2ðp� 1Þ; where m 00

2 :¼ ðpm 0
2 �

m 0
1ðp� 1ÞÞ=p. Let f1ða1Þ :¼ c

p
0 þ c

p
1a1 þ � � � þ c

p
p�1a

p�1
1 . Then f2 is a torsor

under Mm 00
2
, and its special fiber is the ap-torsor given by the equation

~tt p2 ¼ �c
p
1
~tt1 � 2cp2 ~tt

pþ1
1 � � � � � ðp� 1Þcpp�1

~tt
pðp�2Þþ1
1

resp.

~tt p2 ¼ �c
p
1
~tt1 � 2c

p
2
~tt pþ1
1 � � � � � ðp� 1Þcpp�1

~tt
pðp�2Þþ1
1 � ~tt

pðp�1Þþ1
1 ;

where ci is the image of ci modulo p.

c-3) pm 0
2 � t1 � � � � � tr > supðpm 0

2 � ðp� 1Þm 0
1;m

0
1ðpðp� 1Þ þ 1ÞÞ (resp.

pm 0
2 � ðp� 1Þm 0

1 ¼ pm 0
2 � t1 � � � � � tr > m 0

1ðpðp� 1Þ þ 1Þ), and the image of

g modulo p is not a p-power in OðY1;kÞ. In this case pm 0
2 � t1 � � � � � tr is

divisible by p, d2 ¼ m 00
2ðp� 1Þ; where m 00

2 :¼ ðpm 0
2 � t1 � � � � � trÞ=p, and f2 is an

Mm 00
2
-torsor. Its special fiber is the ap-torsor given by the equation

~tt p2 ¼ g

resp.

~tt p2 ¼ �c
p
1
~tt1 � 2cp2 ~tt

pþ1
1 � � � � � ðp� 1Þcpp�1

~tt
pðp�2Þþ1
1 þ g:

c-4) m 0
1ðpðp� 1Þ þ 1Þ > supðpm 0

2 � t1 � � � � � tr; pm
0
2 � ðp� 1Þm 0

1Þ (resp.

pm 0
2 � t1 � � � � � tr ¼ m 0

1ðpðp� 1Þ þ 1Þ > pm 0
2 � ðp� 1Þm 0

1). In this case m 0
1 is

divisible by p, and if ~mm1 :¼ m 00
1 ðpðp� 1Þ þ 1Þ; where m 00

1 :¼ m 0
1

p
, then f2 is a

torsor under M~mm1;R. Its special fiber is the ap-torsor given by the equation

~tt p2 ¼ �~tt
pðp�1Þþ1
1

resp.

~tt p2 ¼ �~tt
pðp�1Þþ1
1 þ g:
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c-5) pm 0
2 � t1 � � � � � tr ¼ m 0

1ðpðp� 1Þ þ 1Þ ¼ pm 0
2 � ðp� 1Þm 0

1. In this

case m 0
1 is divisible by p, and if ~mm1 :¼ m 00

1 ðpðp� 1Þ þ 1Þ; where m 00
1 :¼ m 0

1

p
, then

f2 is a torsor under M~mm1;R. Its special fiber is the ap-torsor given by the

equation

~tt p2 ¼ �c
p
1
~tt1 � 2cp2 ~tt

pþ1
1 � � � � � ðp� 1Þcpp�1

~tt
pðp�2Þþ1
1 � ~tt

pðp�1Þþ1
1 þ g:

Further, in all the above cases, if f1 (resp. f2) is a torsor under the group

scheme M~mm1
(resp. M~mm2

), then necessarily ~mm2 b ~mm1ðpðp� 1Þ þ 1Þ=p. More-

over, in all the cases c-2, c-3, c-4, and c-5 above the functions c1, c2; . . . ; cp�1

(resp. g) are uniquely determined (resp. is uniquely determined up to addition of

elements of the form hp, where h is a regular function on Xk). In the case c-1

the function a2 is uniquely determined up to addition of bp, where b is a regular

function on Xk.

Proof. The torsor fK is given, by the Artin-Schreier-Witt theory, by an

equation of the form

ðT p
1 ;T

p
2 Þ � ðT1;T2Þ ¼ ð~aa1; ~aa2Þ;

where ~aa1, and ~aa2, are regular functions on XK . We can write ~aa1 ¼ pm1a1 (resp.

~aa2 ¼ pm2a2), where a1, and a2, are regular functions on X , with vða1Þ ¼ vða2Þ ¼
0. Also, it follows from 2.2.1 that m1 a 0. If m1 ¼ 0, and m2 b 0, then we

are in case a), and our assertion there is then clear.

Assume that m1 ¼ 0, and m2 < 0. Then it follows from 2.2.1 that m2 is

necessarily divisible by p, and after possibly some modifications (as in the proof

of 2.2.1) we may assume that a2 is not a p-power modulo p (here one uses the

fact that a regular function u on X , which is not a p-power modulo p in Xk,

cannot become a p-power in Y1;k, since f1;k is an étale torsor, hence is not

radicial). Write m2 ¼ �pm 0
2. Then f is defined by the equations

T
p
1 � T1 ¼ a1

and

~TT p
2 � pm 0

2
ðp�1Þ ~TT2 ¼ a2 � p�m2WðT p

1 ;�T1Þ

if p0 2, resp.

~TT 2
2 � pm 0

2 ~TT2 ¼ a2 � p�m2ðT 3
1 � T 2

1 Þ

if p ¼ 2, where ~TT2 :¼ pm 0
2T2. The rest of the assertion in case b) follows then

easily. Assume now that m1 < 0. Then the assertion concerning f1 follows

from 2.2.1. Assume first that m2 b 0. The assertion concerning f2 follows

then easily after adapting the equation defining the torsor f2;K to the change of
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variables T1 ¼
~TT1

p
m 0
1

, and we are in the case c-1). In this case m 0
1 is divisible by

p, and the cover f is given by the equations:

~TT p
1 � pm 0

1
ðp�1Þ ~TT1 ¼ a1

and

~TT p
2 � p ~mm1ðp�1Þ ~TT2 ¼ p ~mm1pþm2a2 � p ~mm1pWðp�m 0

1
p ~TT p

1 ;�p�m 0
1 ~TT1Þ

¼ p ~mm1pþm2a2 þ
Xp�1

k¼1

pð ~mm1�m 0
1
Þp�m 0

1
ðp�1Þk

k
~TT
pþðp�1Þk
1

if p0 2, resp.

~TT 2
2 � p3m 00

1 ~TT2 ¼ p2 ~mm1þm2a2 þ pm 0
1 ~TT 2

1 � ~TT 3
1

if p ¼ 2; where m 00
1 :¼ m 0

1=p, and ~mm1 :¼ m 00
1 ðpðp� 1Þ þ 1Þ. From this we

deduce that the special fiber of the cover f is given by the equations

~tt p1 ¼ a1;

and

~tt p2 ¼ �~tt
pðp�1Þþ1
1 ;

where ~tt2 (resp. ~tt1) is the image of ~TT2 (resp. image of ~TT1) modulo p.

Finally, we assume that m2 < 0. Then the torsor f2;K is given by the

equation

T
p
2 � T2 ¼ pm2a2 �Wðp�m 0

1
p ~TT p

1 ;�p�m 0
1 ~TT1Þ

¼ pm2a2 þ
Xp�1

k¼1

p�m 0
1
ðpþðp�1ÞkÞ

k
~TT
pþðp�1Þk
1 ;

if p0 2, resp.

T 2
2 � T2 ¼ pm2a2 þ

~TT 2
1

p2m 0
1

�
~TT 3
1

p3m 0
1

;

if p ¼ 2. The highest power of p in the denominators of the summand

Xp�1

k¼1

p�m 0
1
ðpkþp�kÞ

k
~TT
pþðp�1Þk
1 ;

resp.

~TT 2
1

p2m 0
1

�
~TT 3
1

p3m 0
1

;
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is m 0
1ðpðp� 1Þ þ 1Þ, and in order to understand the reduction of the torsor f2

we have to compare this to m2. Assume first that m 0
1ðpðp� 1Þ þ 1Þ > �m2.

Then it follows from 2.2.1 that m 0
1 must be divisible by p. Write m 0

1 ¼ m 00
1 p,

and let ~mm1 :¼ m 00
1 ðpðp� 1Þ þ 1Þ. Then we are in the case c-1), and f2 is a

torsor under the group scheme M~mm1;R defined by the equation

~TT p
2 � p ~mm1ðp�1Þ ~TT2 ¼ p ~mm1pþm2a2 � p ~mm1pWðp�m 0

1
p ~TT p

1 ;�p�m 0
1 ~TT1Þ

¼ p ~mm1pþm2a2 þ
Xp�1

k¼1

pð ~mm1�m 0
1
Þp�m 0

1
ðp�1Þk

k
~TT
pþðp�1Þk
1

if p0 2, resp.

~TT 2
2 � p3m 00

1 ~TT2 ¼ p2 ~mm1þm2a2 þ pm 0
1 ~TT 2

1 � ~TT 3
1 ;

if p ¼ 2. Its special fiber is the ap-torsor given by the equation

~tt p2 ¼ �~tt
pðp�1Þþ1
1 :

Assume next that m 0
1ðpðp� 1Þ þ 1Þ < �m2 (the case where m 0

1ðpðp� 1Þ þ 1Þ ¼
�m2 is easily treated, and is left to the reader). Then it follows from 2.2.1

that m2 ¼ �pm 0
2 is divisible by p, and two cases occur, depending on whether

or not the image a2, of a2 modulo p is, or is not, a p-power in OðY1;kÞ. If

a2 is not a p-power in OðY1;kÞ, then f2 is a torsor under Mm 0
2
;R given by the

equation

~TT p
2 � pm 0

2
ðp�1Þ ~TT2 ¼ a2 � ppm 0

2Wðp�m 0
1
p ~TT p

1 ;�p�m 0
1 ~TT1Þ

¼ a2 þ
Xp�1

k¼1

pðm
0
2
�m 0

1
Þp�m 0

1
ðp�1Þk

k
~TT
pþðp�1Þk
1 ;

if p0 2, resp.

~TT 2
2 � pm 0

2 ~TT2 ¼ a2 þ p2m 0
2
�2m 0

1 ~TT 2
1 � p2m 0

2
�3m 0

1 ~TT 3
1 ;

if p ¼ 2; where m 0
2 :¼

�m2

p
. Its special fiber is the ap-torsor given by the

equation

~tt p2 ¼ a2;

and we are in the case c-3). Assume that a2 is a p-power in OðY1;kÞ. Then

either a2 is already a p-power in OðXkÞ, in which case we can transform (using

the kind of transformations used in the proof of 2.2.1) the term pm2a2 into

p ~mm2 ~aa2, where 0 > ~mm2 > m2, and ~aa2 A A. Or, a2 is not a p-power in OðX1;kÞ,
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but becomes a p-power in OðY1;kÞ. In the latter case it follows from 3.3.2

that a2 ¼ f1ða1Þ þ p t1g1, where f1ða1Þ :¼ c
p
0 þ c

p
1a1 þ � � � þ c

p
p�1a

p�1
1 belongs to

the subgroup Aa1 of A, t1 > 0, and g1 A A. Moreover, the term pm2a2 ¼
f1ða1Þ=ppm 0

2 þ g1=p
pm 0

2
�t1 can be transformed to ~ff1ðT1Þ=ppm 0

2
�m 0

1
ðp�1Þ þ g1=p

pm 0
2
�t1 ,

where the image ~ff1ðT1Þ :¼ �c
p
1
~tt1 � 2cp2 ~tt

pþ1
1 � � � � � ðp� 1Þcpp�1

~tt
pðp�2Þþ1
1 , of

~ff1ðT1Þ modulo p, is not a p-power (cf. loc. cit.). At this point we can repeat

the same argument as above. Namely if in the first case the image ~aa2, of ~aa2
modulo p, is not a p-power in OðY1;kÞ, then we conclude as above that we are

either in case c-3), if ~mm2 bm 0
1ðpðp� 1Þ þ 1Þ. In this case ~mm2 is divisible by p,

and f2 is a torsor under Mm 00
2
;R; where m 00

2 :¼ ~mm2=p, whose special fiber is the

ap-torsor given by the equation

~tt p2 ¼ ~aa2:

Otherwise, we repeat the same process as above. And in the second case if

pm 0
2 � ðp� 1Þm 0

1 > supðpm 0
2 � t1;m

0
1ðpðp� 1Þ þ 1ÞÞ, then pm 0

2 � ðp� 1Þm 0
1 is

divisible by p, and f2 is a torsor under the group scheme Mm 00
2
;R; where

m 00
2 :¼ ðpm 0

2 � ðp� 1Þm 0
1Þ=p, defined by the equation

~TT p
2 � pm 00

2
ðp�1Þ ~TT2 ¼ ~ff1ðT1Þ þ ppm 00

2
�pm 0

2
þt1g1 � ppm 00

2Wðp�m 0
1
p ~TT p

1 ;�p�m 0
1 ~TT1Þ

¼ ~ff1ðT1Þ þ ppm 00
2
�pm 0

2
þt1g1 þ

Xp�1

k¼1

pðm
00
2
�m 0

1
Þp�m 0

1
ð p�1Þk

k
~TT
pþðp�1Þk
1

if p0 2, resp.

~TT 2
2 � pm 00

2 ~TT2 ¼ ~ff1ðT1Þ þ p2m 00
2
�2m 0

2
þt1g1 þ p2m 00

2

~TT 2
1

p2m 0
1

�
~TT 3
1

p3m 0
1

� �
;

if p ¼ 2. Its special fiber is the ap-torsor given by the equation

~tt p2 ¼ �c
p
1
~tt1 � 2cp2 ~tt

pþ1
1 � � � � � ðp� 1Þcpp�1

~tt
pðp�2Þþ1
1 ;

and we are in the case c-2). If m 0
1ðpðp� 1Þ þ 1Þ > supðpm 0

2 � t1; pm
0
2 �

ðp� 1Þm 0
1Þ, then m 0

1ðpðp� 1Þ þ 1Þ is divisible by p, f2 is a torsor under the

group scheme Mðm 0
1
ð pðp�1Þþ1ÞÞ=p;R. Its special fiber is the ap-torsor given by the

equation

~tt p2 ¼ �~tt
pðp�1Þþ1
1 ;

and we are in the case c-4). If pm 0
2 � t1 > supðm 0

1ðpðp� 1Þ þ 1Þ; pm 0
2 �

ðp� 1Þm 0
1Þ, and the image g1 of g1 in OðY1;kÞ is not a p-power, then pm 0

2 � t1
is divisible by p, pm 0

2 � t1 ¼: pm 00
2 is divisible by p, and f2 is a torsor under the

group scheme Mm 00
2
;R; where m 00

2 :¼ ðpm 0
2 � t1Þ=p, defined by the equation
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~TT p
2 � pm 00

2
ðp�1Þ ~TT2 ¼ p ~mm2 ~ff1ðT1Þ þ g1 � ppm 00

2Wðp�m 0
1
p ~TT p

1 ;�p�m 0
1 ~TT1Þ

¼ p ~mm2 ~ff1ðT1Þ þ g1 þ
Xp�1

k¼1

pðm
00
2
�m 0

1
Þp�m 0

1
ðp�1Þk

k
~TT
pþðp�1Þk
1

if p0 2, resp.

~TT 2
2 � pm 00

2 ~TT2 ¼ p ~mm2 ~ff1ðT1Þ þ g1 þ p2m 00
2

~TT 2
1

p2m 0
1

�
~TT 3
1

p3m 0
1

� �
;

if p ¼ 2; where ~mm2 :¼ pm 00
2 � pm 0

2 þ ðp� 1Þm 0
1. Its special fiber is the ap-torsor

given by the equation

~tt p2 ¼ g1;

and we are in the case c-3).

Finally, in the general case, we repeat the same argument as above if in

the first case the image ~aa2, of ~aa2 modulo p, is a p-power. Or, if in the second

case pm 0
2 � t1 > supðm 0

1ðpðp� 1Þ þ 1Þ; pm 0
2 � ðp� 1Þm 0

1Þ, and the image g1 of

g1 in OðY1;kÞ is a p-power. As the p-exponent of the denominators in the

equation defining f2;K decreases at each step, we conclude that this process

must stop after finitely many steps, and we end up with an equation as claimed

in the statement c). The rest of the conclusion follows then easily.

3.3.4. Remark. Assume that we are in the case c-3) of 3.3.3, that

t1 ¼ � � � ¼ tr ¼ 0, and f1 ¼ � � � ¼ fr ¼ 0. Then f is a torsor under the R-group

scheme Hm 0
1
;m 0

2
given by the equations

~TT p
1 � pm 0

1
ðp�1Þ ~TT1 ¼ a1

and

~TT p
2 � pm 0

2
ðp�1Þ ~TT2 ¼ g� ppm 0

2Wðp�m 0
1
p ~TT p

1 ;�p�m 0
1 ~TT1Þ

¼ gþ
Xp�1

k¼1

pðm
0
2
�m 0

1
Þp�m 0

1
ðp�1Þk

k
~TT
pþðp�1Þk
1 ;

if p0 2, resp.

~TT 2
2 � pm 0

2 ~TT2 ¼ gþ p2m 0
2

~TT 2
1

p2m 0
1

�
~TT 3
1

p3m 0
1

� �
;

if p ¼ 2. Its special fiber is the ðHm 0
1
;m 0

2
Þk FHk-torsor given by the equations

~tt p1 ¼ a1
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and

~tt p2 ¼ g:

Next, we define the ‘‘degeneration data’’ arising from the reduction of an

étale Z=p2Z-torsor.

3.3.5. Definition. Let fK : YK ! XK be an étale Z=p2Z-torsor, with

X ¼ Spf A a‰ne as in 3.3.3. Then we define the degeneration type of the

torsor fK as follows: fK has a degeneration of type A, or of type fetale; etaleg,
if we are in the case a) of 3.3.3, a degeneration of type B, or of type

fetale; radicialg, if we are in the case b) of 3.3.3 and a degeneration of type C,

or of type fradicial; radicialg, if we are in the case c) of 3.3.3. Further, we

define the degeneration data associated to a degeneration type as follows:

a) A degeneration data of type A consists of an element of

H 1ðXk;Z=p
2ZÞ.

b) A degeneration data of type B consists of an element of H 1ðXk;GkÞ,
where Gk FZ=pZ� ap, is defined in 3.2.

c) A degeneration data of type C consists of an element of H 1ðXk;HkÞl
GðXk;OXk

Þp�1, where Hk F ap � ap is defined in 3.2.

A Z=p2Z-torsor fK : YK ! XK as above gives rise naturally, via 3.3.3, to a

degeneration data as in 3.3.5. More precisely we have the following.

3.3.6. Proposition. Assume that X is a‰ne as in 3.3.3. Let

fK : YK ! XK be an étale Z=p2Z-torsor which has a degeneration of type A

(resp. B, or C). Then fK induces canonically a degeneration data of type A

(resp. of type B, or C).

Proof. This is a direct consequence of 3.3.3. More precisely, let

f : Y ! X be the finite cover that we obtain in the proof of 3.3.3, and which

extends the torsor fK . If fK has a degeneration of type A, then the special

fiber fk of f is an étale Z=p2Z-torsor, and the assertion follows in this case.

Assume that fK has a degeneration of type B. Then the special fiber fk of f is

canonically a Gk-torsor, and the assertion follows in this case too. Finally,

assume that the torsor fK has a degeneration of type C. Then it follows

from 3.3.3 that the special fiber fk of the cover f is defined by the equations:
~tt p1 ¼ a1 and ~tt p2 ¼ �c

p
1
~tt1 � 2cp2 ~tt

pþ1
1 � � � � � ðp� 1Þcpp�1

~tt
pðp�2Þþ1
1 � ~tt

pðp�1Þþ1
1 þ g

(resp. ~tt p1 ¼ a1, and ~tt p2 ¼ �c
p
1
~tt1 � 2c

p
2
~tt pþ1
1 � � � � � ðp� 1Þcpp�1

~tt
pðp�2Þþ1
1 þ g, or

~tt p1 ¼ a1, and ~tt p2 ¼ g) where c1; . . . ; cp�1 (resp. g) are functions on Xk (eventually

equal to 0) which are uniquely determined (resp. determined up to addition of

element of the form hp, where h is a function on Xk). The pair ða1; gÞ defines

then canonically an element of H 1
fppf ðXk;HkÞ, and the tuple ðc1; . . . ; cp�1Þ an
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element of GðXk;OXk
Þp�1. Thus we get canonically, in this case, an element of

H 1ðXk;HkÞlGðXk;OXk
Þp�1 associated to fK .

3.3.7. It follows from 3.3.6 that an étale Z=p2Z-torsor above the generic

fiber XK of X induces canonically a degeneration data of type either A, B, or C.

Reciprocally, we have the following result of lifting of such a degeneration

data.

3.3.8. Proposition. Assume given a degeneration data, say D, of type

either A, B or C, as in 3.3.5. Then there exists a Z=p2Z-torsor fK : YK ! XK

such that the degeneration data associated to fK , via 3.3.6, equals D.

Proof. The proof in the case where the degeneration data is of type A, or

B, is similar to the proof in 2.2.3, and is left to the reader. Assume that the

degeneration data is of type C, and consists of the pair ða1; a2Þ, where a1, and

a2, are functions on Xk which are not p-powers, and the tuple of functions

ðc1; . . . ; cp�1Þ. Let a1, and a2 (resp. c1; . . . ; cp�1) be regular functions on X

which lift a1 and a2 (resp. which lifts c1; . . . ; cp�1). Let n ¼ pn 0 ¼ p2n 00 > 0

be an integer. Consider the Z=p2Z-torsor fK : YK ! XK given by the equa-

tions: ðT p
1 ;T

p
2 Þ � ðT1;T2Þ¼ða1p�n 0p; f ða1Þp�pm þ a2p

�pmþn 0ðp�1ÞÞ, where f ða1Þ¼
c1a1 þ � � � þ cp�1a

p�1
1 , and m ¼ n 0p. Then it follows easily from the proof

of 3.3.3 that the degeneration data associated to fK , via 3.3.6, equals D.

Moreover, in this case we have d1 ¼ n 0ðp� 1Þ, and d2 ¼ n 00ðpðp� 1Þ þ 1Þ �
ðp� 1Þ. We have also the following possibility for such a lifting. Namely,

consider the Z=p2Z-torsor given by the equations: ðT p
1 ;T

p
2 Þ � ðT1;T2Þ ¼

ða1p�n 0p; f ða1Þp�pm þ gp�pmþn 0ðp�1ÞÞ, where m is a positive integer such that

mp� n 0ðp� 1Þ > n 0ðpðp� 1Þ þ 1Þ, and mp� n 0ðp� 1Þ ¼ pm 0. In this latter

case we have d1 ¼ n 0ðp� 1Þ, and d2 ¼ m 0ðp� 1Þ.
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