
Hiroshima Math. J.

37 (2007), 277–314

Some aspects of the classical potential theory on trees

Victor Anandam and Ibtesam Bajunaid

(Received August 2, 2004)

(Revised October 10, 2006)

Abstract. Potential theory on a Cartier tree T is developed on the lines of the

classical and the axiomatic theories on harmonic spaces. The harmonic classifications

of such trees are considered; the notion of a subordinate structure on T is introduced

to consider more generally the potential theory on T associated with the Schrödinger

equation DuðxÞ ¼ QðxÞuðxÞ, QðxÞb 0 on T ; polysuperharmonic functions and poly-

potentials on T are defined and a Riesz-Martin representation for positive polysuper-

harmonic functions is obtained.

1. Introduction

In this note, we study some classical potential-theoretic concepts like

balayage, domination principle etc. in the context of a tree T and introduce the

notions of polysuperharmonic functions and polypotentials on T and obtain

some of their properties. The tree T is taken in the sense of Cartier’s [4], a

graph with infinite vertices, connected, locally finite and no circuits, provided

with a transition probability structure. Bajunaid et al. [1] show that the har-

monic functions on the vertices of T can be linearly extended to the edges, so

that the extended functions verify the axioms 1, 2, 3 of Brelot. Consequently,

some of the properties of harmonic functions and potentials on T can be im-

mediately deduced from the axiomatic potential theory.

However, on many occasions, direct proofs of theorems about harmonic

functions on T are simpler and give more informations in comparison to those

deduced from the axiomatic theory. Secondly, some theorems in the axiomatic

theory require more assumptions than the axioms 1, 2, 3 only. One such is the

converse to the Riesz representation theorem in a harmonic space W which

states that given a positive Radon measure m on an open set o in W, there

exists a superharmonic function s on o with associated measure m in a local

Riesz representation. To prove this, we need the axiom of analyticity (de La

Pradelle [6]) which is not generally valid on T . However, this converse to the

Riesz representation is true on T (Theorem 2.4). Thirdly, for polyharmonic
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functions of order m > 1, we do not have results like the Dirichlet solution

or the Harnack property. Consequently, the properties of polysuperharmonic

functions and polypotentials on a tree T cannot be deduced, by treating T as

another example of a Brelot harmonic space. Finally, in the theorems proved

here, we do not always place the restriction that there should be positive

potentials on T .

Section 2 studies the potential theory on a Cartier tree T with a transition

probability structure P. One part of the paper [4] by Cartier deals with this,

by starting with the definition of the Green function Gðx; yÞ as the kernel as-

sociated with the set of all the paths in T and developing the theory of super-

harmonic functions and potentials on T in the spirit of probability theory. In

contrast, the development in this section follows closely the methods of the

classical and the axiomatic potential theory, which is useful in the classification

theory (Section 3) of determining whether there exist on T , positive potentials,

positive non-constant harmonic functions, bounded non-constant harmonic

functions etc..

Section 4 studies the potential theory associated with another structure P 0

on T , that is subordinate to the initial probability structure P. An example of

the P 0-potential theory on T is the potential theory on T associated with the

Schrödinger equation DuðxÞ ¼ QðxÞuðxÞ for some Qb 0 on T .

Section 5 studies the potenial theory on T associated with the operator Dm,

m integerb 2. After defining polypotentials on T , we obtain a necessary and

su‰cient condition for the existence of positive polypotentials on T ; we discuss

the balayage and the domination principle for polypotentials; and finally, in

Section 6 a general representation of positive m-superharmonic functions on T

is given, on the lines of the Riesz-Martin representation for positive super-

harmonic functions.

2. Preliminaries

Let T be a tree in the sense of Cartier’s [4]: T is an infinite graph,

connected, locally finite and without circuits. If ½x; y� is an edge on T , x and

y are called neighbours, denoted by x@ y. A vertex x in T is called ter-

minal if and only if it has a single neighbour in T . We say that a transition

probability structure P is given on T if for any two vertices x and y, there is

associated a number pðx; yÞb 0 such that for any x in T , pðxÞ ¼
P
x@yi

pðx; yiÞ ¼

1; pðx; yÞ > 0 if x@ y; pðx; yÞ ¼ 0 if x and y are not neighbours; and pðx; yÞ
need not be equal to pðy; xÞ.

With respect to a transition probability structure P, given any function

f ðxÞ on T , define Df ðxÞ ¼
P
x@y

pðx; yÞ f ðyÞ � f ðxÞ for any non-terminal vertex
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x in T . Given a subset S of T , a vertex x is called an interior point of S

(denoted by x A S�), if every neighbour of x in T belongs to S.

We stipulate that a terminal vertex x is not in S� for any subset S. u is

said to be P-harmonic (resp. P-superharmonic) at a vertex x0, if x0 is not

terminal and if u is defined at x0 and on all its neighbours and verifies the

condition Duðx0Þ ¼ 0 (resp. Duðx0Þa 0).

A function hðxÞ defined on a subset S of T is called P-harmonic (resp.

P-superharmonic) on S, if h is real-valued on S and DhðxÞ ¼ 0 (resp. h > �y
on S and DhðxÞa 0) at every interior point x of S. (As usual, u1y is not

considered as P-superharmonic, and v is called P-subharmonic if �v is P-

superharmonic.)

If x and y are two vertices, then the length of the geodesic (see [4, p. 212])

joining x and y is called the distance between x and y, denoted by dðx; yÞ.
We shall fix a non-terminal vertex e in T and denote jxj ¼ dðe; xÞ, the distance

of x measured from e. That is, if fe; x1; x2; . . . ; xn ¼ xg is the geodesic path

connecting e and x, then jxj ¼ dðe; xÞ ¼ n.

In this section, we shall fix a transition probability structure P.

Consequently, there will be no confusion if we drop the prefix ‘‘P-’’ from

P-superharmonic, P-harmonic etc..

Lemma 2.1 (See the proof of [1, Proposition 4.2]). Suppose uðxÞ is defined

on na jxja nþm, with an integer mb 1 and harmonic on n < jxj < nþm

(which is an empty set if m ¼ 1). Then uðxÞ extends as a harmonic function for

jxj > n.

Proof. Let jx1j ¼ nþm. Consider the neighbours of x1. There is one

x0 with jx0j ¼ nþm� 1 and the others are finite in number. If x is a vertex

in the latter group, then jxj ¼ nþmþ 1. Denote the set of these latter

neighbours by N, which is empty if x1 is terminal. Note that uðxÞ is defined

at x0 and x1. Let uðx0Þ ¼ a0 and uðx1Þ ¼ a1. Choose the constant a2 such

that if uðxÞ ¼ a2 at each neighbour x in N, then uðxÞ is P-harmonic at x1; that

is, a1 ¼ a0 pðx1; x0Þ þ a2
P
x AN

pðx1; xÞ.

We repeat this procedure for each x1 with jx1j ¼ nþm. We then get

an extension of uðxÞ as a harmonic function on a set that includes

jxj ¼ nþm. Proceeding step-by-step, we extend uðxÞ as a harmonic function

on jxj > n.

Remark 2.1. 1) In the above type of construction of a harmonic extension,

note the following: Let x and z be neighbours of y with jxj < jyj < jzj. If

0a uðxÞ < uðyÞ, then we have uðyÞ < uðzÞ. For, with the notations in the above

lemma,
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a2 � a1 ¼
a1 � a0 pðx1; x0ÞP

N

pðx1; xÞ
� a1

¼
a1 1�

P
N

pðx1; xÞ
� �

� a0 pðx1; x0ÞP
N

pðx1; xÞ

>

a1 1�
P
N

pðx1; xÞ
� �

� a1pðx1; x0ÞP
N

pðx1; xÞ
ðif 0a a0 < a1Þ

¼ 0:

2) As a special case of the above Lemma, we state: Let s be a

superharmonic function defined on Bn ¼ fx : jxja ng with finite harmonic

support on AHBn; that is, DsðxÞa 0 if jxj < n and DsðxÞ ¼ 0 at each vertex

x in BnnA. Then there exists a superharmonic function u on T such that

uðxÞ ¼ sðxÞ for all x, jxja n and uðxÞ has the same harmonic support A. In

particular, if hðxÞ is harmonic on Bn, nb 1, then we can find a harmonic

function HðxÞ on T such that HðxÞ ¼ hðxÞ if jxja n.

Definition 2.1. 1) A simple set o in T is a set consisting of points x such

that x is an interior point of o or has an interior point of o as a neighbour. (A

terminal point in T is not considered as an interior point.)

2) o is said to be a connected simple set, if o is simple and o� is connected.

Example 2.1. i) With e as a fixed non-terminal vertex in T, if jxj ¼
dðx; eÞ, then jxja n is a connected simple set and jxjb n is a simple set.

ii) The whole tree T is a connected simple set.

iii) If x0 @ e, then define the section determined by e and x0 as

½e; x0� ¼ fx: the geodesic path joining e and x passes through x0g;

e and x0 are also included in ½e; x0�. Note that if e is not terminal, then T is

divided into a finite number ð>1Þ of disjoint sections with e as the joining vertex;

also each section ½e; x0� is a connected simple set.

Networks and trees

An infinite network (see M. Yamasaki [8] and [9]) consists of a countable

set X of nodes and a countable set Y of directed arcs, each arc joining a pair

of nodes. If two nodes x1 and x2 are joined by an arc, we shall say that x1
and x2 are neighbours and denote this situation by writing x1 @ x2. With the
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terminology as in the case of a Cartier tree, fX ;Yg is locally finite and con-

nected. Corresponding to the transition probability structure given on a tree,

one is given a strictly positive real function r on Y . An infinite network N is

determined by the set X of nodes, the set Y of directed arcs and the strictly

positive function r.

Given a pair of distinct nodes x1 and x2 in X , using the function r, in [8,

p. 34] a real number tðx1; x2Þ ¼ tðx2; x1Þb 0 is associated such that tðx1; x2Þ ¼ 0

if and only if x1 and x2 are not neighbours. Set tðxÞ ¼
P
xi@x

tðx; xiÞ. Con-

sequently, tðxÞ > 0 for any node x. Then, given a real-valued function uðxÞ on
X , the Laplacian of u is defined as DNuðxÞ ¼ �tðxÞuðxÞ þ

P
xi@x

tðx; xiÞuðxiÞ; u

is said to be harmonic (resp. superharmonic) on a set A if DNuðxÞ ¼ 0 (resp.

DNuðxÞa 0) for all x A A.

For any pair of vertices x and y in T , define pðx; yÞ ¼ tðx;yÞ
tðxÞ . Then

pðx; yÞb 0 and pðx; yÞ ¼ 0 if and only if x and y are not neighbours;P
x@y

pðx; yÞ ¼ 1 for every fixed x A X ; and pðx; yÞ may not be equal to

pðy; xÞ. For this probability structure, let us define the Laplacian by

DTuðxÞ ¼
P
xi@x

pðx; xiÞuðxiÞ � uðxÞ.

If an infinite network N is thus considered with this probability structure,

then the harmonic structures defined on N by DN and DT are the same. For,

DNuðxÞ ¼ �tðxÞuðxÞ þ
X
xi@x

tðx; xiÞuðxiÞ

¼ tðxÞ �uðxÞ þ
X
xi@x

pðx; xiÞuðxiÞ
" #

¼ tðxÞDTuðxÞ:

Since tðxÞ > 0 for any x, for the definition of harmonic (resp. superharmonic)

functions on N, one can use DN or DT .

Thus, Yamasaki’s study of harmonic functions on an infinite network N

([8] and [9]) is useful while investigating the properties of harmonic and super-

harmonic functions on a Cartier tree T .

Lemma 2.2 (See [8, Lemma 2.3]). Let fung be a sequence of superharmonic

functions (resp. harmonic functions) defined on a connected simple set o in a tree

T. Suppose uðxÞ ¼ lim unðxÞ exists on o. If uðxÞ is finite at some point in o�,

then uðxÞ is finite on o and superharmonic (resp. harmonic) on o. Moreover,

ð�DÞuðxÞ ¼ limð�DÞunðxÞ on o�:
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Proof. First note that if sðxÞ is superharmonic on o, then sðxÞ should be

finite at each point. For suppose sðx0Þ ¼ y for some x0 A o. If x0 B o�,

then there is some x1 A o� such that x0 @ x1. Then, because sðxÞ is super-

harmonic at x1 and sðx0Þ ¼ y, sðx1Þ should be y. Thus, if s ¼ y at some

point x0 in o, then we can take without loss of generality x0 A o�. Then, since

o� is connected, s1y on o�. This is a contradiction.

Now to prove the lemma, since un is superharmonic on o, for x A o�,

unðxÞb
P
x@xi

pðx; xiÞunðxiÞ. Take the limit as n ! y. Then uðxÞbP
x@xi

pðx; xiÞuðxiÞ. Since uðxÞ satisfies the sub-mean-value property on o� and

is finite at some point, uðxÞ is superharmonic on o.

Finally, since for any x A o�, ð�DÞunðxÞ ¼ unðxÞ �
P
x@yi

pðx; yiÞunðyiÞ, by

allowing n ! y we obtain

ð�DÞuðxÞ ¼ uðxÞ �
X
x@yi

pðx; yiÞuðyiÞ ¼ lim
n!y

ð�DÞunðxÞ:

Consequence: Let fung be a sequence of positive superharmonic func-

tions on a connected simple set o. Suppose
Py
n¼1

unðyÞ < y for some y A o�.

Then

uðxÞ ¼
Xy
n¼1

unðxÞ

is finite for each x A o and uðxÞ is superharmonic on o.

Theorem 2.1 (See [9, Theorem 2.3]). Let o be a connected simple set in a

tree T. Let a; b A o�. Then there exist positive constants a and b, depending

on a and b only, such that for any superharmonic function sb 0 on o, asðbÞa
sðaÞa bsðbÞ.

Proof. Let sb 0 be a superharmonic function on o. Suppose sðxÞ ¼ 0

for some x A o�. Then s1 0 on o. So, let us assume s > 0 on o�. Since o�

is connected by assumption, there exists a path in o� that connects a and b.

Hence (see [4, Proposition 1.1]), the geodesic path connecting a and b lies in o.

Let fa ¼ x0; x1; . . . ; xn ¼ bg be the geodesic path connecting a and b.

Since s is superharmonic, sðxiÞb
P
xi@x

pðxi; xÞsðxÞ. Since xiþ1 is a neighbour of

xi ð0a ia n� 1Þ, X
xi@x

pðxi; xÞsðxÞb pðxi; xiþ1Þsðxiþ1Þ:

Hence sðxiÞb pðxi; xiþ1Þsðxiþ1Þ. Writing such inequalities for all i, 0a ia

n� 1 and multiplying them we obtain pðx0; x1Þpðx1; x2Þ . . . pðxn�1; bÞsðbÞa sðaÞ.
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Similarly we can prove that pðb; xn�1Þ . . . pðx1; x0ÞsðaÞa sðbÞ. Since the

geodesic path fx0; . . . ; xng joining a and b is fixed, we conclude that there

are two constants a > 0 and b > 0 depending only on a and b such that

asðbÞa sðaÞa bsðbÞ.

Theorem 2.2. Let s and t be real-valued functions on a set o in a tree

T. Let s be superharmonic and t be subharmonic on o such that sb t. Then

there exists a harmonic function h on o such that sb hb t.

Proof. Take the family = of all subharmonic functions u on o majorized

by s on o�. Let hðxÞ ¼ sup
u A=

uðxÞ. Let y A o�. Then there exists a sequence

unðyÞ increasing to hðyÞ.
For x A o, let qðxÞ ¼ sup unðxÞ. Then �y < qðxÞa hðxÞa sðxÞ < y and

qðxÞ ¼ lim vnðxÞ where vn ¼ sup
1aian

ui is subharmonic. Hence qðxÞ is a sub-

harmonic function on o (Lemma 2.2), qðxÞa hðxÞ, and qðyÞ ¼ hðyÞ. Con-

sequently,

hðyÞ ¼ qðyÞa
X
y@yi

pðy; yiÞqðyiÞa
X
y@yi

pðy; yiÞhðyiÞ:

Hence, hðxÞ is subharmonic at x ¼ y. Since y is arbitrary in o�, hðxÞ is

subharmonic on o. We claim that hðxÞ is harmonic on o.

Take any y A o�. By hypothesis, hðyÞa
P
y@yi

pðy; yiÞhðyiÞ ¼ vðyÞ, say.

Consider,

v1ðxÞ ¼
hðxÞ on onfyg
vðyÞ at x ¼ y:

�
Then v1ðxÞ is subharmonic on o and harmonic at x ¼ y. To see this we have

only to check the inequalities at x ¼ y, and at the neighbouring points of y

in o�. At x ¼ y, v1ðyÞ ¼ vðyÞ ¼
P
y@yi

pðy; yiÞhðyiÞ ¼
P
y@yi

pðy; yiÞv1ðyiÞ so that

v1ðxÞ is harmonic at x ¼ y. At x ¼ z@ y, z A o�,

v1ðzÞ ¼ hðzÞa
X
z@xi

pðz; xiÞhðxiÞ ðsince h is subharmonic on oÞ

¼
X

z@xi ;xi0y

pðz; xiÞhðxiÞ þ pðz; yÞhðyÞ

a
X

z@xi ;xi0y

pðz; xiÞhðxiÞ þ pðz; yÞvðyÞ ðsince vðyÞb hðyÞÞ

¼
X
z@xi

pðz; xiÞv1ðxiÞ:

Hence v1 is subharmonic at z.
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Also, v1ðxÞa sðxÞ on o. To see this, we have only to check at x ¼ y; for,

on onfyg, v1ðxÞ ¼ hðxÞa sðxÞ. Now at x ¼ y,

v1ðyÞ ¼ vðyÞ ¼
X
y@yi

pðy; yiÞhðyiÞ

a
X
y@yi

pðy; yiÞsðyiÞ ðsince ha sÞ

a sðyÞ ðsince s is superharmonicÞ:

Thus, v1 is subharmonic on o and v1 a s. Hence v1 A = and consequently

v1 a h on o. But by the construction of v1, v1 b h on o. Hence v1 1 h on o.

This means that hðxÞ is harmonic at x ¼ y. Since y is arbitrary in o�, we

conclude that hðxÞ is harmonic on o and ha s.

Remark 2.2. The harmonic function h constructed as above such that

sb hb t on o is referred to as the greatest harmonic minorant (g.h.m.) of s

on o.

Definition 2.2. A real-valued superharmonic function sb 0 defined on a

set o in a tree T is said to be a potential on o, if the greatest harmonic minorant

of s on o is 0.

Riesz decomposition: Suppose sb 0 is a real-valued superharmonic

function on a set o in a tree T . Then s can be written as a unique sum s ¼
pþ h of a potential p on o and a nonnegative harmonic function h on o, by

choosing h as the greatest harmonic minorant of s on o.

The Dirichlet problem

Let o be a finite connected simple set. Let f be a real-valued function on

qo ¼ ono�. Choose constants a and b such that aa f a b on qo. Define

tðxÞ ¼ f ðxÞ if x A qo

a if x A o�;

�
and

sðxÞ ¼ f ðxÞ if x A qo

b if x A o�:

�
Then on o, sðxÞ is superharmonic, tðxÞ is subharmonic, and sðxÞb tðxÞ.

Let hðxÞ be the g.h.m. of sðxÞ on o. Since sðxÞ ¼ tðxÞ ¼ f ðxÞ on qo,

hðxÞ ¼ f ðxÞ on qo. Thus, h is the Dirichlet solution on o with boundary

value f ; remark that h is uniquely determined.
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To prove the uniqueness of h, it is enough to show that H1 0 if H is

harmonic on o and vanishes on qo: Suppose H > 0 at some point. Since o

is finite, H attains its maximum M at some point in o�. Since o� is con-

nected, H1M on o�. Let y A qo. Since o is simple, y has a neighbour

x A o�. If M > 0 then

M ¼ HðxÞ ¼
X

xi@x;xi0y

pðx; xiÞHðxiÞ þ pðx; yÞHðyÞ < M;

since HðxiÞaM and HðyÞ ¼ 0; this is a contradiction. Hence Ha 0 on o.

Similarly, we show that Hb 0 on o. Hence H1 0.

(Remark that the above method to prove the uniqueness part can be

used to obtain the following property for superharmonic functions: Let o be

a connected simple set in T . Suppose s is a superharmonic function on o,

attaining its minimum value at a vertex in o�. Then s is a constant on o.)

In this context, we prove the following minimum principle also for super-

harmonic functions:

Minimum principle: Let s be a superharmonic function defined on a

finite connected set o. Then infqo s ¼ info s.

For, suppose info s ¼ b. Assume that for some x0 A o�, sðx0Þ ¼ b. Take

a vertex y A qo. Since o is connected, there is a path fx0; x1; . . . ; xn ¼ yg
connecting x0 and y. Let i be the smallest index such that xi A qo. Since

sðx0Þb
P
x0@z

pðx0; zÞsðzÞ and sðx0Þ ¼ b is the minimum value, we should have

sðzÞ ¼ b for every z@ x0. Since x1 @ x0, we have sðx1Þ ¼ b. The same ar-

gument repeated, leads to the conclusion sðxiÞ ¼ b. Consequently, infqo sa b

which implies that infqo s ¼ info s.

We remark that the above method of finding the Dirichlet solution is

based on potential theoretic techniques on a tree T . For an alternate method,

using the hitting distribution of the stochastic process generated by the transi-

tion probability structure of T , see Berenstein et al. [2, p. 461]. We remark

also that the above method proves the existence (not necessarily the uniqueness)

of the Dirichlet solution in the following general situation: Let o be an ar-

bitrary (finite or not) set in a tree T . Let f be a bounded function on qo.

Then there exists a bounded function h on o such that h ¼ f on qo and h is

harmonic on o�.

We shall use the term P-tree T if there is a potential > 0 on T and the

term S-tree if there is no positive potential on T .

Theorem 2.3. Let e be a non-terminal vertex in a P-tree T. Then there

exists a unique potential GeðxÞ on T with point harmonic support at e (that is

GeðxÞ is harmonic outside e) and ð�DÞGeðxÞ ¼ deðxÞ, the Dirac measure at e.
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Proof. Let pðxÞ be a positive potential on T such that pðeÞ ¼ 1. Let =
be the family of all superharmonic functions uðxÞ > 0 on T such that uðeÞb 1.

Let sðxÞ ¼ infu A= uðxÞ. Then an argument as in the proof of Theorem 2.2

shows that sðxÞ is positive, superharmonic on T , harmonic on Tnfeg and

sðeÞ ¼ 1; moreover since p A =, s is a potential on T . Since ð�DÞsðeÞ > 0, if

we define GeðxÞ ¼ sðxÞ
ð�DÞsðeÞ on T , then GeðxÞ has all the properties stated in the

theorem.

For the uniqueness, suppose QðxÞ is another such potential on T . Then

ð�DÞ½GeðxÞ �QðxÞ� ¼ 0 for all x, so that for a harmonic function vðxÞ on T ,

GeðxÞ ¼ QðxÞ þ vðxÞ. We conclude v1 0 on T , by using the uniqueness of

decomposition of a positive superharmonic function as the sum of a potential

and a non-negative harmonic function.

Pseudo-potentials

Let T be an S-tree. Fix a non-terminal vertex e and a function Hb 0

on T such that H is harmonic on Tnfeg, DHðeÞ ¼ 1 and HðeÞ ¼ 0. Since H

is subharmonic on the S-tree, if H is bounded, then it should be a constant.

This is not the case here. Hence H is unbounded on T . Then (using [1,

Theorem 4.3]) for any non-terminal y A T , there exists a unique superharmonic

function qyðxÞ on T such that ð�DÞqyðxÞ ¼ dyðxÞ for all x in T , qyðyÞ ¼ 0 and

qyðxÞ � ayHðxÞ is bounded on T for a uniquely determined ay < 0.

To see the uniqueness of the function qyðxÞ and the constant ay, suppose

sðxÞ is another such superharmonic function on T with the properties:

ð�DÞsðxÞ ¼ dyðxÞ, sðyÞ ¼ 0 and sðxÞ � bHðxÞ is bounded on T . Then hðxÞ ¼
qyðxÞ � sðxÞ is harmonic on T and jhðxÞ � ðay � bÞHðxÞj is bounded on T .

Since H is positive and unbounded, this would imply that h is bounded at least

on one side; and consequently h is a constant since T is an S-tree. Since

hð0Þ ¼ 0, h1 0. Then jðay � bÞHðxÞj is bounded on T , but HðxÞ is un-

bounded. Hence ay ¼ b. We shall call qyðxÞ the (unique) pseudo-potential

on T with point harmonic support fyg. Suppose A is a set of non-terminal

vertices such that qðxÞ ¼
P
xi AA

aiqxiðxÞ, for ai b 0, is a superharmonic function

on T . Then we refer to qðxÞ as a pseudo-potential with harmonic support A.

Theorem 2.4. Let f ðxÞb 0 be a real-valued funtion on T. Then there

exists a superharmonic function sðxÞ on T such that ð�DÞsðxÞ ¼ f ðxÞ on T�.

(T� is the set of all non-terminal vertices of T :)

Proof. In the proof of this theorem we shall write

QyðxÞ ¼
GyðxÞ if T is a P-tree

qyðxÞ if T is an S-tree:

�
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Correspondingly, the term Q-potential refers to a (Green) potential if T is a

P-tree and to a pseudo-potential if T is an S-tree.

1) Suppose f ðxÞ ¼ 0 outside a finite set A of non-terminal vertices. Let

sðxÞ ¼
P
a AA

f ðaÞQaðxÞ. Then sðxÞ is a Q-potential on T such that ð�DÞsðaÞ ¼

f ðaÞ for each a A A, and ð�DÞsðxÞ ¼ 0 if x B A. Thus, ð�DÞsðxÞ ¼ f ðxÞ for all
x A T�.

2) Suppose f ðxÞb 0 is an arbitrary function on T . Fix a non-terminal

vertex e and measure distances from e. (See the Preliminaries for the term

‘‘distances measured from e’’). Recall that for a real-valued function gðxÞ on

T , DgðxÞ is defined only for the non-terminal vertices x of T .

Let

fnðxÞ ¼
f ðxÞ if jxj ¼ nþ 2

0 if jxj0 nþ 2:

�
Then by 1) above, there exists a Q-potential snðxÞ on T such that ð�DÞsnðxÞ ¼
fnðxÞ. Since snðxÞ is harmonic on jxj < nþ 2, by Remark 2.1, there exists a

harmonic function vnðxÞ on T such that snðxÞ ¼ vnðxÞ on jxja n.

Let

qðxÞ ¼
Xy
n¼1

½snðxÞ � vnðxÞ�:

Now given any finite set KH fx : jxj < mg, tn ¼ sn � vn is a superharmonic

function on T and tn ¼ 0 on K if n is large. That is, in
Py
n¼1

½snðxÞ � vnðxÞ� all

the terms except a finite number of them are 0 when x A K . Consequently by

Lemma 2.2, qðxÞ is a superharmonic function on fx : jxj < mgIK . Hence

qðxÞ is a superharmonic function on T such that

ð�DÞqðxÞ ¼
Xy
n¼1

ð�DÞsnðxÞ ¼
f ðxÞ if jxjb 3

0 if jxj < 3:

�

Let vðxÞ ¼ f ðeÞQeðxÞ þ
P
jyj¼1

f ðyÞQyðxÞ þ
P
jyj¼2

f ðyÞQyðxÞ. Then vðxÞ is a Q-

potential on T such that

ð�DÞvðxÞ ¼ f ðxÞ if jxja 2

0 if jxj > 2:

�
Hence, if sðxÞ ¼ vðxÞ þ qðxÞ, sðxÞ is a superharmonic function on T such that

ð�DÞsðxÞ ¼ f ðxÞ for all x A T�.
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Corollary 2.1. Let F be any subset of T. Let f ðxÞb 0 be defined on

F. Then there exists a superharmonic function s on T such that ð�DÞsðxÞ ¼
f ðxÞ for each x A F �.

Proof. Extend f as a positive function on T , by defining f ðyÞ ¼ 0 if

y B F . Then, apply the above Theorem 2.4.

Corollary 2.2. Let v be a potential on a P-tree T. Then, for x A T,

vðxÞ ¼
X
y AT�

ð�DÞvðyÞGyðxÞ:

Proof. Fix a non-terminal vertex e in T , and measure distances from e.

Construct two superharmonic functions s1 and s2 on T such that ð�DÞs1ðxÞ ¼
f1ðxÞ and ð�DÞs2ðxÞ ¼ f2ðxÞ where

f1ðxÞ ¼
ð�DÞvðxÞ if jxja n

0 if jxj > n;

�
and

f2ðxÞ ¼
0 if jxja n

ð�DÞvðxÞ if jxj > n:

�
Then vðxÞ ¼ s1ðxÞ þ s2ðxÞ þ hðxÞ on T where hðxÞ is harmonic on T . Since

vb 0, s2 b�s1 � h; that is, s2 has a subharmonic minorant on T . Hence by

Theorem 2.2, s2 ¼ q2 þ h2 where q2 is a potential and h2 is a (not necessarily

positive) harmonic function on T .

For similar reasons, s1 ¼ q1 þ h1 where q1 is a potential and h1 is

harmonic. Then, by using the uniqueness of decomposition property, from

v ¼ q1 þ q2 þ ðh1 þ h2 þ hÞ, we conclude that v ¼ q1 þ q2 on T . Hence q1 a v.

Since q1ðxÞ ¼
P

jyjan

ð�DÞvðyÞGyðxÞ, by allowing n ! y we obtain QðxÞ ¼P
y AT�

ð�DÞvðyÞGyðxÞa vðxÞ. Since QðxÞ is a non-negative superharmonic func-

tion, majorized by the potential vðxÞ, QðxÞ is a potential. Further, ð�DÞQðxÞ
¼ ð�DÞvðxÞ so that QðxÞ ¼ vðxÞ þ uðxÞ where uðxÞ is a harmonic function on

T . Again the uniqueness of decomposition implies that u1 0. Thus, vðxÞ ¼P
y AT�

ð�DÞvðyÞGyðxÞ for every x A T .

Remark 2.3. The above representation of a positive potential on T is taken

as the definition of a potential in Cartier [4, Sections 2.2 and 2.3]. There, by

starting with the notion of the kernel associated to a collection of paths, the

Green function Gðx; yÞ is defined. Then, for any function f b 0 on T, Gf ðxÞ ¼
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P
y

Gðx; yÞ f ðyÞ is either always y or always finite on T satisfying DGf ¼ �f ; in

the latter case, Gf ðxÞ is termed as the potential of f .

Lemma 2.3. Let sðxÞ be a positive superharmonic function and qðxÞ be a

potential on a P-tree T such that ð�DÞsb ð�DÞq on T�. Then sb q on T.

Proof. By hypothesis, s ¼ qþ s1 where s1 is superharmonic on T . Since

sb 0, qb�s1 on T . Since q is a potential and �s1 is subharmonic, �s1 a 0.

Hence sb q on T .

Theorem 2.5 (Domination Principle). Let sb 0 be a superharmonic func-

tion and qb 0 be a potential on T. Let E be the harmonic support of q. If

sb q on E, then we have sb q on T.

Proof. Let u ¼ infðs; qÞ. Then u is a potential on T satisfying ua q on

T and u ¼ q on E. Hence, if x A E VT�, then

ð�DÞuðxÞ ¼ uðxÞ �
X
x@yi

pðx; yiÞuðyiÞ

b qðxÞ �
X
x@yi

pðx; yiÞqðyiÞ ðsince uðxÞ ¼ qðxÞ and ua q on TÞ

¼ ð�DÞqðxÞ:

Now, if x A Ec VT�, then ð�DÞqðxÞ ¼ 0, but ð�DÞuðxÞb 0 always. Thus, for

all x A T�, ð�DÞuðxÞb ð�DÞqðxÞ. This implies (Lemma 2.3) that uðxÞb qðxÞ
on T . Hence infðs; qÞ ¼ u ¼ q on T , so that qa s on T .

Remark 2.4. In [7, Theorem 5.3], this Domination Principle is proved on

T, under some restrictions on the transition probability structure P, namely:

There exists a constant d such that 0 < d < 1
2 and for all s; t A T with s@ t, we

should have da pðs; tÞa 1
2 � d.

Notation: With the standard notations of balayage, let us write

cRe
1Re
1ðxÞ ¼ inffsðxÞ : sb 0 is superharmonic on T and sðeÞb 1g:

Theorem 2.6. Let T be a P-tree. For a non-terminal vertex e, GeðxÞ ¼
GeðeÞcRe

1Re
1ðxÞ on T. In particular, GeðxÞaGeðeÞ for all x in T.

Proof. Let sðxÞb 0 be a superharmonic function on T with sðeÞb 1.

Let uðxÞ ¼ GeðxÞ
GeðeÞ . Let vðxÞ ¼ infðsðxÞ; uðxÞÞ. Then vðxÞ is a superharmonic

function on T such that vðeÞ ¼ 1.

Now,
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ð�DÞvðeÞ ¼ vðeÞ �
X
e@xi

pðe; xiÞvðxiÞ

b uðeÞ �
X
e@xi

pðe; xiÞuðxiÞ ðsince ub v and uðeÞ ¼ vðeÞ ¼ 1Þ

¼ ð�DÞuðeÞ:

Since ð�DÞvðxÞb 0 for all x in T� and ð�DÞuðxÞ ¼ 0 if x0 e, we have

ð�DÞvðxÞb ð�DÞuðxÞ for all x in T�. Hence by Lemma 2.3, vðxÞb uðxÞ on

T , so that uðxÞ ¼ vðxÞ ¼ infðsðxÞ; uðxÞÞ; that is uðxÞa sðxÞ on T . Taking the

infimum over all such funtions s, we conclude that uðxÞa cRe
1Re
1ðxÞ on T . In

particular, uðxÞa 1. Thus uðxÞ is a positive superharmonic function on T and

uðeÞ ¼ 1 so that uðxÞb cRe
1Re
1ðxÞ on T . Hence we have uðxÞ ¼ cRe

1Re
1ðxÞ for all x

in T .

Proposition 2.1. Let u be a subharmonic function defined outside a finite

set in a P-tree (resp. S-tree) T. Then there exist a subharmonic function v and

two potentials (resp. pseudo-potentils) p1 and p2 with finite harmonic support on

T such that u ¼ vþ p1 � p2 near infinity and p1 � p2 is bounded on T if it is a

P-tree. Moreover, in case u is harmonic near infinity, v is harmonic on T; and

in this case the harmonic function v is uniquely determined if T is a P-tree, but v

is uniquely defined only up to an additive constant if T is an S-tree.

Proof. For y A T� let QyðxÞ denote the potential (resp pseudo-potential)

with harmonic support at y if T is a P-tree (resp. an S-tree). We have

ð�DÞQyðyÞ ¼ 1 in all cases. Fix a non-terminal vertex e and let jxj ¼ dðe; xÞ
be the distance of x from e. For large n, let Bnu denote the Dirichlet solution

on jxj < n with boundary values uðxÞ on jxj ¼ n.

Define

sðxÞ ¼ uðxÞ if jxj > n

Bnu if jxja n:

�
Then DsðxÞb 0 if jxj > n and DsðxÞ ¼ 0 if jxj < n. Let vðxÞ ¼ sðxÞþP
jyj¼n

DsðyÞQyðxÞ. Clearly DvðxÞb 0 if jxj0 n and if jxj ¼ n, x ¼ y, DvðyÞ ¼ 0.

Thus DvðxÞb 0 for every x A T�. Hence v is subharmonic on T and when

jxj > n, uðxÞ ¼ vðxÞ þ p1ðxÞ � p2ðxÞ where p1ðxÞ ¼
P
jyj¼n

½DsðyÞ��QyðxÞ and p2ðxÞ

¼
P
jyj¼n

½DsðyÞ�þQyðxÞ so that p1 and p2 are potentials (resp. pseudo-potentials)

with finite harmonic support if T is a P-tree (resp. an S-tree). By Theorem

2.6, p1 � p2 is bounded if T is a P-tree.

Finally, suppose u is harmonic near infinity. Then DvðxÞ ¼ DsðxÞ ¼ 0

if jxj0 n also, so that Dv ¼ 0 on T�. Hence v is harmonic on T . Now,
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suppose u ¼ v 0 þ p 0
1 � p 0

2 is another such representation outside a finite set.

Then,

(i) if T is a P-tree, then the subharmonic function jv� v 0j on T is

majorized by the potential p1 þ p2 þ p 0
1 þ p 0

2 outside a finite set A. Choose a

potential L > 0 on T . Since A is finite, we can find a constant l > 0 such that

jv� v 0ja lL on A. This implies that jv� v 0ja lLþ ðp1 þ p2 þ p 0
1 þ p 0

2Þ on

T . Since the subharmonic function jv� v 0j is majorized by a potential on T ,

jv� v 0ja 0 and hence v� v 0 1 0; and

(ii) if T is an S-tree, since the p’s are pseudo-potentials with finite

harmonic support, for some a, v� v 0 � aH is bounded near infinity. Since

v� v 0 is harmonic on T , a ¼ 0. This implies that v� v 0 is a constant c.

Corollary 2.3 (Laurent decomposition). Let e be a fixed non-terminal

vertex and jxj ¼ dðe; xÞ. Suppose uðxÞ is defined on na jxja nþm, with an

integer mb 1 and harmonic on n < jxj < nþm. Then there exists a har-

monic function tðxÞ on jxja nþm and a harmonic function sðxÞ on jxjb n such

that uðxÞ ¼ sðxÞ � tðxÞ on na jxja nþm. Moreover, sðxÞ can be chosen as

follows:

(i) if T is a P-tree, then there exists a potential pðxÞ on T such that

jsðxÞja pðxÞ outside a finite set. Hence the decomposition is unique.

(ii) if T is an S-tree, then there exists a unique a such that sðxÞ � aHðxÞ
is bounded outside a finite set. Hence the decomposition is unique up to an

additive constant.

Proof. First use Lemma 2.1 to extend u as a harmonic function on all of

jxj > n. Then by the above Proposition 2.1, there exists a harmonic function v

on T such that u ¼ vþ p1 � p2 (when jxj > n), where p1 and p2 are potentials

on T with finite harmonic support if T is a P-tree and p1 and p2 are pseudo-

potentials with finite harmonic support if T is an S-tree; the harmonic supports

of p1 and p2 are in jxj ¼ n.

Define sðxÞ ¼ uðxÞ � vðxÞ on jxjb n and tðxÞ ¼ �vðxÞ on jxja nþm.

Then the properties stated in the corollary can be verified.

3. Harmonic measure of the point at infinity of a section

The sections in a tree which we are going to define now, are useful to

classify the trees with or without positive potentials. They correspond to the

‘‘ends’’ of Cartier’s (see ‘‘bouts’’ in [4, p. 212]) and hence to the boundary

points in the compactification given in [4, p. 219].

Definition 3.1. Let e be a vertex in T. Let e1 be a neighbour of e, such

that there exists an infinite geodesic chain R ¼ fe; e1; x1; x2; . . .g consisting of

distinct elements. Let s ¼ sR½e; e1� be the union of R and all the neighbours of
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the vertices in Rnfeg. Then, we say that sR½e; e1� is a section determined by e

and e1 containing R.

Lemma 3.1. Let sR½e; e1� be a section determined by e and e1 containing

R ¼ fe; e1; x1; x2; . . .g. Then there exists a function h on sR½e; e1� such that

hðeÞ ¼ 0, hðe1Þ ¼ 1 and hðxÞ ¼ cn if dðe1; xÞ ¼ n where cn is a sequence of

positive numbers such that 1 < cn < cnþ1 for all nb 1. Moreover, hðxÞ is har-

monic on sR½e; e1�, that is harmonic at every interior point of sR½e; e1�.

Proof. Let x A sR½e; e1�, x0 e be such that dðe1; xÞ ¼ 1. Take hðxÞ ¼ c1
so that h is harmonic at e1. That is, if t is the probability of transition from e1
to e, then we have 0þ ð1� tÞc1 ¼ 1 so that c1 ¼ 1

1�t
> 1.

Suppose c1; . . . ; cn are chosen such that hðxÞ ¼ ck if dðe1; xÞ ¼ k for all k,

1a ka n and hðxÞ is harmonic at all interior points x of sR½e; e1� for which

dðe1; xÞa n� 1. Let us fix cnþ1 so that hðxÞ ¼ cnþ1 if dðe1; xÞ ¼ nþ 1 and

hðxÞ is harmonic at all interior points x of sR½e; e1� for which dðe1; xÞ ¼ n. For

this, we should have the following: Let dðe1; xÞ ¼ nþ 1. Let tn be the

probability of transition from xn to xn�1 (take x0 ¼ e1 and c0 ¼ 1). Then

tncn�1 þ ð1� tnÞcnþ1 ¼ cn so that cnþ1 ¼ cn�tncn�1

1�tn
> cn since cn�1 < cn. This

completes the proof of the lemma.

Definition 3.2. The section sR½e; e1� determined by the geodesic chain R

is called a P-section if the harmonic function hðxÞ in Lemma 3.1 is bounded;

otherwise it is called an S-section.

Example 3.1. i) Let T be a homogeneous tree of degree qþ 1 ðqb 2Þ;
that is, every vertex in T has exactly qþ 1 neighbours with the transition prob-

ability from one vertex to another being 1
qþ1 (Cartier [4, p. 262]). In this case,

any section is a P-section.

For, let e1 be a neighbour of e. Let sR½e; e1� be a section determined by an

infinite geodesic chain fe; e1; x1; x2; . . .g. Then the construction of the harmonic

function as in Lemma 3.1 shows that hðeÞ ¼ 0, hðe1Þ ¼ 1, and hðxnÞ ¼
Pn
k¼0

q�k.

Since qb 2, h is bounded and hence sR½e; e1� is a P-section.

ii) Let T be a star tree with centre e (Cartier [4, p. 251]). Let e1 be a

neighbour of e. Then the section sR½e; e1� is an infinite geodesic ray which we

shall denote by R ¼ fe; e1; x1; x2; . . . :g. Suppose the transition probability from

xn to xnþ1 is pn and from xnþ1 to xn is qnþ1 for nb 0 (taking x0 ¼ e1). Let q0
be the transition probability from e1 to e. Hence pn þ qn ¼ 1 for nb 0.

Then the function h for sR½e; e1� constructed as in Lemma 3.1 is given

by: hðeÞ ¼ 0, and hðe1Þ ¼ 1 and if nb 1, hðxnÞ ¼ 1þ
Pn
k¼1

q0q1...qk�1

p0 p1...pk�1
. Hence

sR½e; e1� is a P-section if and only if
Py
k¼1

q0q1...qk�1

p0 p1...pk�1
is convergent.
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iii) Let T be a star tree with centre e and N branches, Nb 2, 1a taN,

denoted by Ct ¼ ½s0; t; s1; t; . . .�, s0; t ¼ e for all t; and pn; t is the transition prob-

ability from sn; t to snþ1; t for nb 0. Like in (2), on each branch Ct, construct

a harmonic function Ht b 0 such that HtðeÞ ¼ 0 and Htðs1; tÞ ¼ 1. Note that Ht

is unique and if u is defined on Ct and harmonic at each sn; t for nb 1, then

uðsn; tÞ ¼ ½uðs1; tÞ � uðeÞ�Htðsn; tÞ þ uðeÞ.
Consequently, any harmonic function h on T is uniquely determined by its

N values at fs1; tg. For, since h is harmonic at e, hðeÞ ¼
P

p0; thðs1; tÞ. Then at

any vertex sn; t we should have hðsn; tÞ ¼ ½hðs1; tÞ � hðeÞ�Htðsn; tÞ þ hðeÞ.
Now assume that on such a star tree T, there exists a harmonic function

v > 0 such that vðeÞ > vðs1; tÞ. Then Ct is a P-section. For, from the above

representation of a harmonic function on T, we should have Htðsn; tÞ <
vðeÞ½vðeÞ � vðs1; tÞ��1

. Since Ht is bounded, Ct is a P-section.

Let e be a vertex in T . Let e1 be a neighbour of e such that sR½e; e1� is a
section determined by R ¼ fe; e1; x1; . . .g. Let Hn be the Dirichlet solution in

on ¼ fdðe; xÞa ngV sR½e; e1� with boundary values 0 at e and 1 at all points x

in sR½e; e1� such that dðe; xÞ ¼ n, so that fHng is a decreasing sequence. Let

HRðxÞ ¼ inf
n

HnðxÞ for each x A sR½e; e1�. Clearly 0aHRðxÞa 1.

Definition 3.3. The harmonic measure of the point at infinity of the sec-

tion sR½e; e1� is said to be 0 if and only if HR 1 0.

Proposition 3.1. A section sR½e; e1� determined by the geodesic chain R, is

an S-section if and only if the harmonic measure of the point at infinity of this

section is 0.

Proof. Let sR½e; e1� be an S-section. Then by the construction given in

Lemma 3.1, there exists a harmonic function h increasing to infinity. Let

x0 A sR½e; e1� be arbitrary. For any N, we can find n such that hðxÞbN

if dðe; xÞb n. Hence (with the above notations) HnðxÞa hðxÞ
N

on on ¼
fdðe; xÞa ngV sR½e; e1�, so that HRðxÞ ¼ inf

n
HnðxÞa hðxÞ

N
on on. Choose n

large so that x0 A on. Hence HRðx0Þa hðx0Þ
N

. Since N is arbitrary, HRðx0Þ ¼
0. Hence HR 1 0, that is, the harmonic measure of the point at infinity of the

section sR½e; e1� is 0.

Conversely, suppose HR 1 0. Then sR½e; e1� should be an S-section.

For, otherwise, it is a P-section in which case the function h constructed in

Lemma 3.1 should be bounded by a constant M. Let uðxÞ ¼ hðxÞ
M

. Then

uðxÞa 1 and uðeÞ ¼ 0. Hence if Hn is harmonic on on ¼ fdðe; xÞa ngV
sR½e; e1� with boundary value 1 on dðe; xÞ ¼ n and 0 at e, then HnðxÞb uðxÞ on
on. Consequently, HRðxÞ ¼ inf

n
HnðxÞb uðxÞ. This contradicts the assump-

tion HR 1 0. Hence sR½e; e1� is not a P-section.
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In Bajunaid et al. [1, Theorem 5.2], it is proved that if a particular

function H �ðoÞ defined on the boundary of a tree T has some special property,

then T is a P-tree. In a similar vein, we have the following su‰cient condition

for T to be a P-tree.

Theorem 3.1. Let T be a tree. Suppose e is a vertex such that for a

neighbour e1 of e, sR½e; e1� defines a P-section. Then T is a P-tree.

Proof. Since sR½e; e1� is a P-section, there exists a bounded harmonic

function hb 0 on sR½e; e1�, hðeÞ ¼ 0, and hðe1Þ ¼ 1. Hence h extended by 0

on TnsR½e; e1� is a bounded non-constant subharmonic function on T . This

implies that there exists a positive potential on T .

Corollary 3.1. If T is an S-tree, then every section sR½e; e1� defined by

every vertex e in T is an S-section.

Corollary 3.2. Let h be a harmonic function on a star S-tree T. Then

on each branch, h is constant or tends to þy or �y.

Proof. Since T is an S-tree, each branch is an S-section. Hence

Ht ! y (see Example 3.1 (3)) for each t. Now h can be represented as

hðsn; tÞ ¼ ½hðs1; tÞ � hðeÞ�Htðsn; tÞ þ hðeÞ:

Consequently on the branch Ct, (i) h is a constant if hðs1; tÞ ¼ hðeÞ, (ii) h ! y if

hðs1; tÞ > hðeÞ and (iii) h ! �y if hðs1; tÞ < hðeÞ.

We shall now introduce a method of dividing a tree T into a finite number

of subsets, starting with a non-terminal vertex. Let e be a non-terminal ver-

tex and x0 @ e. Write ½e; x0� ¼ fx A T : the geodesic joining e and x passes

through x0g; we assume that e and x0 are also in ½e; x0�. Note that T ¼
6
xi@e

½e; xi� and some of these subsets ½e; xi� can contain only a finite number

of vertices. (We have a situation here where the sets ½e; xi� correspond to the

connected components of the complement of a nonempty compact set in a

harmonic space. This finite division of T can be used to obtain some su‰cient

conditions for the existence of non-constant positive harmonic functions and

bounded non-constant harmonic functions on trees with positive potentials.)

Given a subset ½e; x0�, let H 0
0½e; x0� denote the family of functions hb 0

on ½e; x0� such that hðeÞ ¼ 0, hðx0Þ ¼ 1 and hðxÞ is harmonic in the interior of

½e; x0�. Note that a construction as in Lemma 2.1 shows that H 0
0½e; x0�0 f.

Definition 3.4. Let ½e; x0� be a set containing an infinite number of

vertices. Then, ½e; x0� is called a P-set if and only if there exists a bounded

function h in H 0
0½e; x0�; otherwise ½e; x0� is called an S-set.
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Theorem 3.2. A tree T is a P-tree if and only if some non-terminal vertex

e determines a P-set ½e; x0�.

Proof. Suppose ½e; x0� is a P-set for a non-terminal vertex e. That is,

there exists a bounded function hb 0 on ½e; x0� such that hðeÞ ¼ 0, hðx0Þ ¼ 1

and hðxÞ is harmonic in the interior of ½e; x0�. Extend h as a function H on T ,

by taking HðxÞ ¼ 0 if x B ½e; x0�. Then HðxÞ is a bounded (non-harmonic)

subharmonic function on T , which (by Theorem 2.2) implies that there is a

positive potential on T . For, if 0aHðxÞaM on T , then there exists a

harmonic function uðxÞ on T such that �Ma uðxÞa�HðxÞ. By the con-

struction in Theorem 2.2, uðxÞ is the greatest harmonic minorant of �HðxÞ on

T . Hence, pðxÞ ¼ �HðxÞ � uðxÞ is a potential on T .

Suppose now that there is a potential p > 0 on T . Choose a non-terminal

vertex e and let uðxÞ ¼ cRe
1Re
1ðxÞ ¼ inffsðxÞ : s positive superharmonic on T ;

sðeÞb 1g. Then uðxÞ is a potential, uðxÞa 1 on T , harmonic on Tnfeg and

uðeÞ ¼ 1. Since u cannot be a constant, there exists a set ½e; x0�, e@ x0, with

infinite vertices such that for some y in the interior of ½e; x0�, uðyÞ < 1. (To

see that ½e; x0� contains an infinite number of vertices: Suppose u ¼ 1 in the

interior of every one of the sets ½e; xi� with infinite vertices. Then u1 1 on

each ½e; xi� with infinite vertices; it means that u ¼ 1 outside a finite set in T .

Since u is superharmonic on T , by the minimum principle, ub 1 on T ; hence

u1 1 on T . This is a contradiction.)

Note uðx0Þ0 1. For if uðx0Þ ¼ 1, since uðxÞa 1, uðeÞ ¼ 1 and u is har-

monic outside e, then we should have u1 1 on the connected set ½e; x0�; a

contradiction, since uðyÞ < 1 for some y in the interior of ½e; x0�. Define

hðxÞ ¼ 1�uðxÞ
1�uðx0Þ for x A ½e; x0�. Then hb 0, hðeÞ ¼ 0, hðx0Þ ¼ 1 and hðxÞ is

bounded harmonic in the interior of ½e; x0�. Hence ½e; x0� is a P-set.

Let now fxig be the finite set of neighbours of a non-terminal vertex e in

a tree T with positive potentials. On each ½e; xi�, construct a harmonic func-

tion ui such that uiðeÞ ¼ 0 and uiðxiÞ ¼ 1. Then the collection fuig of func-

tions defines a function uðxÞb 0 on T such that uðeÞ ¼ 0, uðxiÞ ¼ 1 for each

neighbour xi of e, uðxÞ is harmonic on Tnfeg and uðxÞb 0 is subharmonic on

T . Then, using Proposition 2.1, we can find a harmonic function H on T such

that 0a uðxÞaHðxÞ on T . Hence we can now construct the least harmonic

majorant h > 0 of uðxÞ on T . Conversely, supppose h > 0 is a harmonic

function on T . Then u ¼ h� cRe
hRe
h is a positive subharmonic function on T and

uðeÞ ¼ 0. Recall that for any function tðxÞb 0 on T and any subset A of T ,

we write cRA
tRA
t ðxÞ ¼ inffsðxÞ : sb 0 is superharmonic onT and sb t on Ag.

We prove now that this relation between u A Hþ
0 ðTnfegÞ (that is, ub 0 is

subharmonic on T , uðeÞ ¼ 0 and u is harmonic on Tnfeg) and h A HþðTÞ (that
is, h is non-negative harmonic on T) is isomorphic.
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Theorem 3.3. In a tree T with positive potentials, let e be a non-terminal

vertex. Then the map HþðTÞ ! Hþ
0 ðTnfegÞ is one-one and onto.

Proof. 1) One-one: Suppose h� cRe
hRe
h ¼ H � cRe

HRe
H for two positive har-

monic functions h and H on T . Then hþ cRe
HRe
H ¼ H þ cRe

hRe
h . Since cRe

hRe
h and cRe

HRe
H

are potentials, by the uniqueness of decomposition we have h ¼ H.

2) Onto: Let now u A Hþ
0 ðTnfegÞ. We shall show that u ¼ h� cRe

hRe
h for

the least harmonic majorant h of u (and hence if u is bounded, then h is

bounded).

Let v ¼ h� ub 0. Then v is superharmonic on T such that vðeÞ ¼ hðeÞ so
that vðxÞb cRe

hRe
hðxÞ on T ; that is, hðxÞb uðxÞ þ cRe

hRe
hðxÞ.

Now, define

qðxÞ ¼
hðeÞ if x ¼ e

uðxÞ þ cRe
hRe
hðxÞ if x0 e:

(
Then qðxÞ is harmonic on Tnfeg. At x ¼ e,

qðeÞ ¼ hðeÞ ¼
X
e@xi

pðe; xiÞhðxiÞ ðsince h is harmonicÞ

b
X
e@xi

pðe; xiÞ½uðxiÞ þ cRe
hRe
hðxiÞ� ðsince hb uþ cRe

hRe
h ðproved aboveÞÞ

¼
X
e@xi

pðe; xiÞqðxiÞ ðsince xi 0 eÞ:

Hence qðxÞ is superharmonic at x ¼ e. Thus, qðxÞ > 0 is superharmonic on T

and qðeÞ ¼ hðeÞ. Clearly qðxÞb uðxÞ on T since uðeÞ ¼ 0. Hence hðxÞ being

the least harmonic majorant of uðxÞ, we have qðxÞb hðxÞ. Hence uðxÞþcRe
hRe
hðxÞb hðxÞ on T . Consequently, uðxÞ þ cRe

hRe
hðxÞ ¼ hðxÞ on T . The theorem is

proved.

Corollary 3.3. Let e be a non-terminal vertex in a tree T. Suppose e

determines at least two infinite sets ½e; x1� and ½e; x2�, of which one is a P-set and

the other is an S-set. Then there exists a non-constant positive harmonic

function on T.

Proof. Since there is a P-set in T , T is a P-tree (by Theorem 3.2). By

the definitions of a P-set and an S-set, there exist a bounded harmonic function

h1 b 0 on H 0
0½e; x1� and an unbounded harmonic function h2 b 0 on H 0

0½e; x2�.
Extend h1 as a function h�

1 on T by giving the value 0 on Tn½e; x1�; similarly

h2 is extended as h�
2 on T . Now, h�

1 and h�
2 are non-proportional and are in

Hþ
0 ðTnfegÞ. Then by using the above Theorem 3.3, we can find two non-

proportional positive harmonic functions H1 and H2 on T . This proves the

existence of a non-constant positive harmonic function on T .
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Corollary 3.4. Let e be a non-terminal vertex in a tree T. Suppose e

determines at least two P-sets ½e; x1� and ½e; x2�. Then there exists a non-

constant bounded harmonic function on T.

Proof. With the same notations as in the proof of the above Corollary

3.3, we obtain two non-proportional harmonic functions H1 (corresponding to

h�
1 ) and H2 (corresponding to h�

2 ) on T . Since h�
1 and h�

2 are bounded, by the

construction (see the ‘‘onto’’ proof of Theorem 3.3) H1 and H2 are bounded

on T . Thus, H1 > 0 and H2 > 0 are bounded, non-proportional harmonic

functions on T . Hence at least one of them is non-constant.

4. Subordinate structures

In this section, we introduce the notion of a structure P 0 subordinate to the

transition probability structure P given on a Cartier tree T . The potential

theory corresponding to P 0 can be used to study the properties of the solutions

of DuðxÞ ¼ QðxÞuðxÞ on T , where QðxÞb 0 is a finite-valued function on T .

Let T be a tree in the sense of Cartier’s with a probability structure P

giving the nearest neighbour transition probablity pðx; yÞ for x, y in T . If

the neighbouring points x and y are indicated by x@ y, then recall that

pðx; yÞ > 0 if x@ y, pðx; yÞ ¼ 0 if x and y are not neighbours, 0a pðx; yÞa 1

and
P
x@yi

pðx; yiÞ ¼ 1 for all x in T . We shall refer to a tree T with such a

probability structure P as a Cartier tree ðT ;PÞ.
In such a tree we shall introduce another structure P 0 such that:

(1) For any pair x, y in T , there is an associated number p 0ðx; yÞ such

that 0a p 0ðx; yÞa 1;

(2) p 0ðx; yÞa pðx; yÞ;
(3) p 0ðx; yÞ0 0 if x@ y; and

(4) p 0ðxÞ ¼
P
x@yi

p 0ðx; yiÞ < 1 for at least one non-terminal vertex x in T .

This structure P 0 giving the transition numbers p 0ðx; yÞ will be refered to

as the structure P 0 on T subordinate to P.

In a tree ðT ;PÞ with a subordinate structure P 0, given a function f ðxÞ on

T , and a non-terminal vertex x, define D 0f ðxÞ ¼
P
x@yi

p 0ðx; yiÞ f ðyiÞ � f ðxÞ.

Then a lower-finite (resp. finite) function u2y, defined on a neigh-

bourhood of a non-terminal vertex x0 A T is called a P 0-superharmonic (resp.

P 0-harmonic) function at x0 if and only if D 0uðx0Þa 0 (resp. D 0uðx0Þ ¼ 0).

A lower-finite function v2y on a set o is said to be P 0-superharmonic on

o, if D 0vðx0Þa 0 for each x0 A o�. With these definitions, the constant 1 is

P 0-superharmonic but not P 0-harmonic on T . Hence, there always exists a
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P 0-potential u > 0 on T ; that is, the greatest P 0-harmonic minorant of the P 0-

superharmonic function u is 0.

Consequently, if a Cartier tree ðT ;PÞ has a structure P 0 subordinate to P,

then the potential theory associated with the P 0-structure resembles that of a

Cartier tree with potentials. For example, we can prove the following results

as in Section 2:

1. Let e be a non-terminal vertex in T . Then there exists a unique P 0-

potential G 0
eðxÞ on T such that ð�D 0ÞG 0

eðxÞ ¼ deðxÞ for x in T .

2. G 0
eðxÞaG 0

eðeÞ for all x in T , if e is a non-terminal vertex.

3. If v is a P 0-potential on T , then for x in T , vðxÞ ¼P
y AT�:

ð�D 0ÞvðyÞG 0
yðxÞ.

4. If sðxÞb 0 is a P 0-superharmonic function and qðxÞ is a P 0-potential

on T such that ð�D 0Þsb ð�D 0Þq on E, the P 0-harmonic support of q,

then sb q on T .

5. If sðxÞ is P 0-superharmonic and tðxÞ is P 0-subharmonic on a set o such

that sb t, then there exists the greatest P 0-harmonic minorant (g.P 0-

h.m.) h of s, such that sb hb t.

Let ðT ;PÞ be a Cartier tree with a probability structure P. Let P 0 be a

structure subordinate to P. Then we have two di¤erent sets of superharmonic

functions on T : one is with respect to the P-structure on T and the other is

with respect to the subordinate structure P 0. We shall use the prefix P (like

the term P-superharmonic functions) with respect to the potential theory

associated with the structure P. Similarly the prefix P 0 (like the term P 0-

potential) is used with respect to the potential theory associated with the

subordinate structure P 0. We shall prove that there always exists a positive

non-constant P 0-harmonic function on T and give some su‰cient conditions for

the existence of bounded non-constant P 0-harmonic functions on T .

Proposition 4.1. Let o be a set in a tree ðT ;PÞ, and P 0 be a structure

subordinate to P. Then every P-potential on o is a P 0-potential.

Proof. Let u > 0 be a P-potential on o. Then, for every y A o�,

uðyÞb
X
y@yi

pðy; yiÞuðyiÞb
X
y@yi

p 0ðy; yiÞuðyiÞ:

Hence uðxÞ is P 0-superharmonic at y. Since y is arbitrary in o�, uðxÞ is P 0-

superharmonic and uðxÞ > 0 on o. Let hb 0 be the g.P 0-h.m. of u on o.

Then for y A o�,

hðyÞ ¼
X
y@yi

p 0ðy; yiÞhðyiÞa
X
y@yi

pðy; yiÞhðyiÞ:
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Hence hðxÞ is P-subharmonic at y. Since 0a hðxÞa uðxÞ, hðxÞ is P-

subharmonic and uðxÞ is P-potential, we find h1 0. Hence u is a P 0-potential

on o.

Theorem 4.1. Let ðT ;PÞ be a Cartier tree on which positive P-potentials

exist. Let P 0 be a structure on T subordinate to P. Then for any non-terminal

vertex e, G 0
eðxÞaGeðxÞ for x in T.

Proof. Since any positive P-superharmonic function on T is P 0-

superharmonic, GeðxÞ is a P 0-superharmonic function on T . Now, for x A T�,

ð�D 0ÞGeðxÞ ¼ GeðxÞ �
X
x@yi

p 0ðx; yiÞGeðyiÞ

bGeðxÞ �
X
x@yi

pðx; yiÞGeðyiÞ

¼ ð�DÞGeðxÞ ¼ deðxÞ ¼ ð�D 0ÞG 0
eðxÞ:

Hence, as in Lemma 2.3, G 0
e aGe on T .

Theorem 4.2. There always exists a non-constant positive P 0-harmonic

function on T.

Proof. By the definition of the subordinate structure P 0, there exists

at least one non-terminal vertex e on T such that p 0ðeÞ ¼
P
e@xi

p 0ðe; xiÞ < 1.

Choose a function h such that hðxiÞ ¼ 1 for all xi @ e and hðeÞ ¼ p 0ðeÞ < 1.

Note that h is P 0-harmonic at e. Then by the method used in the proof of

Lemma 2.1, we construct a P 0-harmonic extension function h > 0 on T .

Remark 4.1. Since hðeÞ < hðxiÞ if xi @ e, we should have hðxÞ < hðyÞ if

x@ y and jxj < jyj where the distances are measured from e. However, h may

or may not be bounded on T. We shall now give some su‰cient conditions for

the existence of bounded non-constant positive P 0-harmonic functions on T.

Lemma 4.1. For any x A T,
P

y AT�:
ð1� p 0ðyÞÞG 0

yðxÞa 1, where p 0ðyÞ ¼P
y@yi

p 0ðy; yiÞ.

Proof. s1 1 is a P 0-superharmonic function on T and

ð�D 0ÞsðxÞ ¼ sðxÞ �
X
x@yi

p 0ðx; yiÞsðyiÞ ¼ 1� p 0ðxÞ:

Then by using the expression for the potential part of s as in Corollary 2.2, we

have,
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1 ¼ sðxÞ ¼
X
y AT�:

ð�D 0ÞsðyÞG 0
yðxÞ þ hðxÞ

¼
X
y AT�:

ð1� p 0ðyÞÞG 0
yðxÞ þ hðxÞ;

where h is a non-negative P 0-harmonic function. HenceP
y AT�:

ð1� p 0ðyÞÞG 0
yðxÞa 1 for every x in T .

Theorem 4.3. In a tree ðT ;PÞ with a subordinate structure P 0, the fol-

lowing are equivalent:

1)
P

y AT�:
ð1� p 0ðyÞÞG 0

yðxÞ ¼ 1 for some x in T�.

2)
P

y AT�:
ð1� p 0ðyÞÞG 0

yðxÞ ¼ 1 for all x in T.

3) The constant function 1 is a P 0-potential on T.

4) The only bounded P 0-harmonic function on T is 0.

Proof. Using the above Lemma 4.1, we write 1 ¼ qðxÞ þ hðxÞ where

qðxÞ ¼
X
y AT�:

ð1� p 0ðyÞÞG 0
yðxÞ

is a P 0-potential on T and hðxÞ is a non-negative P 0-harmonic function.

1Þ ) 2Þ: If hðxÞ ¼ 0 for some x in T�, h1 0.

2Þ ) 3Þ: Since h1 0, 1 ¼ qðxÞ is a P 0-potential on T .

3Þ ) 4Þ: Let uðxÞ be a bounded P 0-harmonic function on T . Let

juðxÞjaM. Since M is a P 0-potential and juðxÞj is a P 0-subharmonic function

on T , juðxÞj ¼ 0 for x A T .

4Þ ) 1Þ: Write 1 ¼ qðxÞ þ hðxÞ. Since 0a hðxÞa 1, the P 0-harmonic

function h1 0 by the assumption 4). Hence 1 ¼
P

y AT�:
ð1� p 0ðyÞÞG 0

yðxÞ.

Corollary 4.1. Suppose there is no positive P-potential on T. Then the

only bounded P 0-harmonic function on T is 0.

Proof. Suppose h is a bounded P 0-harmonic function on T , say jhjaM.

Then for x A T�

jhðxÞj ¼
X
x@xi

p 0ðx; xiÞhðxiÞ
�����

�����
a

X
x@xi

p 0ðx; xiÞjhðxiÞj

a
X
x@xi

pðx; xiÞjhðxiÞj:
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Hence jhðxÞj is a bounded P-subharmonic function on T . Since by the as-

sumption there is no positive P-potential, jhðxÞj ¼ a, a constant. Suppose

a0 0. Since a is P 0-superharmonic (but not P 0-harmonic) while jhj is P 0-

subharmonic, we have a contradiction. Hence a ¼ 0, that is h1 0.

Corollary 4.2. Suppose there are positive P-potentials on T and if GyðxÞ
denotes the P-potential with ð�DÞGyðxÞ ¼ dyðxÞ, then assume sup

x AT�
GxðxÞ ¼

M < y. Suppose P 0 is a structure on T subordinate to P with
P

x AT�:
ð1� p 0ðxÞÞ

< y. Then there is a bounded positive P 0-harmonic function on T.

Proof. Suppose every bounded non-negative P 0-harmonic function on T

is 0. Then by the above Theorem 4.3,

1 ¼
X
y AT�:

ð1� p 0ðyÞÞG 0
yðxÞ

a
X
y AT�:

ð1� p 0ðyÞÞGyðxÞ ðby Theorem 4:1Þ

a
X
y AT�:

ð1� p 0ðyÞÞGyðyÞ ðGyðxÞaGyðyÞ as in Theorem 2:6Þ

aM
X
y AT�:

ð1� p 0ðyÞÞ

< y:

Hence uðxÞ ¼
P

y AT�:
ð1� p 0ðyÞÞGyðxÞ should be a P-potential. Since uðxÞb 1

and 1 is P-harmonic, this is a contradiction.

Using the P 0-sets and the S 0-sets, we shall now give a su‰cient condition

for the existence of bounded P 0-harmonic functions on T .

Recall the definition of ½e; x0�: Given a non-terminal vertex e and x0 @ e,

½e; x0� ¼ fx: the geodesic joining e and x passes through x0g; e and x0 are

also in ½e; x0�. Suppose hðxÞ is a function such that hðeÞ ¼ 0 and hðx0Þ ¼ 1.

Then (as in Lemma 2.1) hðxÞ can be extended as a P 0-harmonic function on

the whole set ½e; x0�. This P 0-harmonic function on ½e; x0� may or may not be

bounded. We say that an infinite set ½e; x0� is a P 0-set if hðxÞ is bounded and it

is an S 0-set if hðxÞ is unbounded.

Lemma 4.2. Let hðxÞ be P 0-harmonic outside a finite setH fx : jxja
n� 2g. Then there exist a P 0-harmonic function H on T and two P 0-potentials

p1 and p2 on T with harmonic support on jxj ¼ n such that hðxÞ ¼ HðxÞþ
p1ðxÞ � p2ðxÞ when jxj > n and jp1 � p2j is bounded on T.
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Theorem 4.4. There exists a bounded positive P 0-harmonic function on T if

and only if there exists a P 0-set with respect to a non-terminal vertex e.

Proof. Suppose ½e; x0� is a P 0-set. Then there exists a bounded P 0-

harmonic function ub 0 on ½e; x0� such that uðeÞ ¼ 0 and uðx0Þ ¼ 1. Define

v ¼ u on ½e; x0�
0 outside ½e; x0�:

�
Then v A Hþ

0 ðTnfegÞ and v is bounded on T . By the above Lemma 4.2, there

exists a P 0-harmonic function h on T such that jv� hjaM, for a constant

M. Hence the least P 0-harmonic majorant H of v verifies the inequalities

0a vaHa hþM on T . Hence 0aH � va ðhþMÞ � va 2M. Since v is

bounded on T , H is bounded on T . Since Hb vb 0 and Hðx0Þb vðx0Þ ¼ 1,

by the minimum principle H > 0 on T .

Conversely, suppose there exists a bounded P 0-harmonic function h > 0 on

T . For a non-terminal vertex e, let

uðxÞ ¼ cRe
hRe
h
0ðxÞ ¼ inffsðxÞ : s is positive P 0-superharmonic on T ; sðeÞb hðeÞg:

Then uðxÞ is a P 0-potential on T such that uðxÞa hðxÞ on T , uðxÞ is P 0-

harmonic on Tnfeg and uðeÞ ¼ hðeÞ. Since u2 h, there exists a set ½e; x0�,
e@ x0, with infinite vertices such that for some y in the interior of ½e; x0�,
uðyÞ < hðyÞ. To prove this statement:

(i) Write T ¼ 6
e@xi

½e; xi�. Suppose uðxÞ ¼ hðxÞ at every interior point of

½e; xi�. Then, since hðxÞ � uðxÞb 0 is P 0-harmonic on ½e; xi�, we should have

h1 u on ½e; xi� and hence on T . This is a contradiction. Hence for some

interior point y in some ½e; x0�, uðyÞ < hðyÞ.
(ii) We show now that it can be assumed that ½e; x0� contains an infinite

number of vertices. For suppose u ¼ h on every one of the sets ½e; xi� with

infnite vertices. It means that uðxÞ ¼ hðxÞ outside a finite set in T . Since

vðxÞ ¼ uðxÞ � hðxÞ is P 0-superharmonic on T , and equals 0 outside a finite set,

by the minimun principle, vb 0 on T . This leads to the conclusion u1 h on

T , a contradiction.

Note uðx0Þ < hðx0Þ. For otherwise by the minimum principle for the P 0-

harmonic function, u� hb 0 on ½e; x0� and u ¼ h in the interior of ½e; x0�; this
is a contradiction, since uðyÞ < hðyÞ. Define HðxÞ ¼ hðxÞ�uðxÞ

hðx0Þ�uðx0Þ for x A ½e; x0�.
Then Hb 0, HðeÞ ¼ 0, Hðx0Þ ¼ 1 and HðxÞ is bounded harmonic in the

interior of ½e; x0�. Hence ½e; x0� is a P 0-set.

Corollary 4.3. For a subordinate structure P 0 on ðT ;PÞ, suppose 1 is a

P 0-potential on T. Then with respect to any non-terminal vertex e, every infinite

set ½e; x0� is an S 0-set.
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Proof. If ½e; x0� is a P 0-set, then there exists a bounded P 0-harmonic

function H > 0 on T by the above theorem. However 1 cannot be a P 0-

potential on T (Theorem 4.3), which is a contradiction.

An application to DuðxÞ ¼ QðxÞuðxÞ (See Yamasaki [8].)

Let QðxÞb 0 be a function defined on T with a Cartier structure

P. Assume Q2 0 on T�. We say that a function uðxÞ defined on T is Q-

harmonic (resp. Q-superharmonic) if ð1þQðxÞÞuðxÞ ¼
P
x@xi

pðx; xiÞuðxiÞ (resp.

ð1þQðxÞÞuðxÞb
P
x@xi

pðx; xiÞuðxiÞ) for every x A T�.

Now define a subordinate structure P 0 on T as follows: For any pair x, y

in T , define p 0ðx; yÞ ¼ pðx;yÞ
1þQðxÞ . Then p 0ðxÞ ¼

P
x@xi

p 0ðx; xiÞ ¼ 1
1þQðxÞ . Hence

0 < p 0ðxÞa 1 and p 0ðxÞ < 1 for some x in T� since Q2 0 on T�. With

respect to this subordinate structure P 0, vðxÞ is P 0-harmonic if and only

if vðxÞ ¼
P
x@xi

p 0ðx; xiÞvðxiÞ for every x A T�; that is, if and only if

ð1þQðxÞÞvðxÞ ¼
P
x@xi

pðx; xiÞvðxiÞ which means that vðxÞ is Q-harmonic.

Thus, v is P 0-harmonic (resp. P 0-superharmonic) if and only if v is Q-harmonic

(resp. Q-superharmonic). Consequently, the potential theory associated with

the Q-harmonic functions on T becomes a particular case of the potential

theory associated with a subordinate structure P 0 on T .

5. Polypotentials on trees

In this section we study the properties of functions u defined on a

connected simple set o in a Cartier tree T , satisfying the condition Dmub 0

at the interior points of o. For the discussion below, we do not place the

restriction that there are positive potentials on T . Remark that for poly-

harmonic functions u ðDmu ¼ 0Þ defined on a homogeneous tree (and hence a

tree with positive potentials), Cohen et al. [5] give an integral representation

(inspired by the Almansi representation in the classical case), establish one-one

corespondence with polymartingales and study the boundary behaviour of u.

Let o be a connected simple set in T (see Definition 2.1). Let f b 0 be

a real-valued function on o. Then, by Corollary 2.1, there exists a super-

harmonic function s on o such that ð�DÞsðxÞ ¼ f ðxÞ for each x A o�. Hence,

if g is an arbitrary real-valued function on o, we can find two superharmonic

functions s1 and s2 on o such that ð�DÞs1ðxÞ ¼ gþðxÞ and ð�DÞs2ðxÞ ¼ g�ðxÞ
at each x A o�. Thus, for g on o, there exists a d-subharmonic function

s ¼ s1 � s2 on o such that ð�DÞsðxÞ ¼ gðxÞ at each x A o�.

By the same procedure, we can find a d-subharmonic function u on o such

that ð�DÞuðxÞ ¼ sðxÞ on o�, so that ð�DÞ2uðxÞ ¼ gðxÞ on o�. Continuing
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thus, given a real-valued function on a connected simple set o, and an interger

mb 1, we can find a d-subharmonic function v on o such that

ð�DÞmvðxÞ ¼ gðxÞ on o�.

Definition 5.1. Let ðsiÞ1aiam be a set of real-valued functions on a

connected simple set o such that ð�DÞsi ¼ si�1 on o� for 2a iam. Then s ¼
ðsiÞ1aiam is said to be an m-superharmonic (resp. m-harmonic) function on o

if and only if s1 is superharmonic (resp. harmonic) on o. We say that the m-

superharmonic (resp. m-harmonic) function s ¼ ðsiÞ1aiam is generated by s1.

Theorem 5.1. Let h ¼ ðhiÞ1aiam be an m-harmonic function defined on

jxja n (distances measured from a fixed non-terminal vertex e) in a Cartier tree

T. Then there exists an m-harmonic function H ¼ ðHiÞ1aiam on T such that

HiðxÞ ¼ hiðxÞ for jxja n and 1a iam.

Proof. Note that h1ðxÞ is harmonic on jxja n. Hence by Remark 2.1,

we can find a harmonic function H1 on T such that H1ðxÞ ¼ h1ðxÞ if jxja n.

Let ð�DÞu ¼ H1.

Write tðxÞ ¼ uðxÞ � h2ðxÞ if jxja n. Then, if jxj < n, ð�DÞtðxÞ ¼
ð�DÞuðxÞ � ð�DÞh2ðxÞ ¼ H1ðxÞ � h1ðxÞ ¼ 0. Hence tðxÞ is harmonic on

jxja n. Again by Remark 2.1 (2), we can find a harmonic function v on

T such that vðxÞ ¼ tðxÞ for jxja n. Write H2ðxÞ ¼ uðxÞ � vðxÞ for x in T .

Then, for jxja n, H2ðxÞ ¼ h2ðxÞ; and in T�, ð�DÞH2ðxÞ ¼ ð�DÞuðxÞ ¼ H1.

Proceeding thus, we construct an m-harmonic function H ¼ ðHiÞ1aiam on

T such that HiðxÞ ¼ hiðxÞ if jxja n, 1a iam.

Theorem 5.2 (Laurent decomposition for m-harmonic functions). Let e

be a fixed non-terminal vertex in T and dðe; xÞ ¼ jxj. Suppose u ¼ ðuiÞ1aiam

is m-harmonic on na jxjaN, where N is an integer. Then there exists an

m-harmonic function s ¼ ðsiÞ1aiam on jxjb n and an m-harmonic function

t ¼ ðtiÞ1aiam on jxjaN such that uðxÞ ¼ sðxÞ � tðxÞ on na jxjaN.

Proof. Since u1ðxÞ is harmonic on n < jxj < N, by Corollary 2.3, there

exist a harmonic function s1ðxÞ on jxjb n and a harmonic function t1ðxÞ on

jxjaN such that u1ðxÞ ¼ s1ðxÞ � t1ðxÞ on na jxjaN. Choose (see Corollary

2.1) the functions f1 and g1 on T such that ð�DÞ f1ðxÞ ¼ s1ðxÞ for jxj > n

and ð�DÞg1ðxÞ ¼ t1ðxÞ for jxj < N. Then, ð�DÞu2ðxÞ ¼ u1ðxÞ ¼ ð�DÞ f1ðxÞ�
ð�DÞg1ðxÞ on n < jxj < N, so that u2ðxÞ ¼ f1ðxÞ � g1ðxÞ þHðxÞ where HðxÞ is

harmonic on na jxjaN.

Again by Corollary 2.3, there exist f2ðxÞ harmonic on jxjb n and g2ðxÞ
harmonic on jxjaN such that HðxÞ ¼ f2ðxÞ � g2ðxÞ on na jxjaN. Write

s2ðxÞ ¼ f1ðxÞ þ f2ðxÞ and t2ðxÞ ¼ g1ðxÞ þ g2ðxÞ. Then ð�DÞs2ðxÞ ¼ s1ðxÞ on

jxj > n, ð�DÞt2ðxÞ ¼ t1ðxÞ on jxj < N, and u2ðxÞ ¼ s2ðxÞ � t2ðxÞ on na jxjaN.
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Proceeding thus, we construct s ¼ ðsiÞ1aiam and t ¼ ðtiÞ1aiam as stated

in the theorem so that uðxÞ ¼ sðxÞ � tðxÞ on na jxjaN. This proves the

theorem.

Notation: Let s ¼ ðsiÞ1aiam and t ¼ ðtiÞ1aiam be two sets of real-valued

functions defined on a simple set o. We say that sb t if and only if si b ti for

every i; sb 0 if si b 0 for all i.

Theorem 5.3. Let s be an m-superharmonic function on a set o in T, and

let t be an m-subharmonic function on o such that ta s on o. Then there exists

an m-harmonic function h on o such that ta ha s on o.

Proof. Let s ¼ ðsiÞ1aiam and t ¼ ðtiÞ1aiam. Let = be the family of

subharmonic functions u on o such that t1 a ua s1. Let h1 ¼ sup
=

u. Then

h1 is harmonic on o and it is the greatest harmonic minorant of s1 on o.

Let

f ¼ h1 on o

0 on Tno:

�
Then, there exists a d-subharmonic function g on T such that ð�DÞg ¼ f . Let

H2 ¼ gjo. Then ð�DÞH2 ¼ h1 on o�.

Similarly choose f2 and g2 on o such that on o�, ð�DÞ f2 ¼ s1 � h1 and

ð�DÞg2 ¼ t1 � h1. Then f2 is superharmonic on o and g2 is subharmonic on

o such that

ð�DÞs2 ¼ s1 ¼ ð�DÞ f2 þ ð�DÞH2 on o�

and

ð�DÞt2 ¼ t1 ¼ ð�DÞg2 þ ð�DÞH2 on o�:

Consequently, s2 ¼ f2 þH2 þ ða harmonic functionÞ on o; write s2 ¼ f 0
2 þH2

where f 0
2 is superharmonic on o. Similarly write t2 ¼ g 0

2 þH2 where g 0
2 is

subharmonic on o. Since s2 b t2 by hypothesis, f 0
2 b g 0

2. Let u be the g.h.m.

of f 0
2 so that f 0

2 b ub g 0
2. Let h2 ¼ H2 þ u. Then ð�DÞh2 ¼ h1 on o� and

s2 b h2 b t2. Suppose h 0
2 is a function such that ð�DÞh 0

2 ¼ h1 on o� and s2 b

h 0
2 b t2 on o. Then h 0

2 ¼ h2 þ (a harmonic function v on o) ¼ ðH2 þ uÞ þ v.

Since s2 b h 0
2 b t2 we should have f 0

2 b uþ vb g 0
2. Since u is the g.h.m. of f 0

2 ,

va 0 so that h 0
2 a h2.

Proceeding thus, we construct h ¼ ðhiÞ1aiam which is an m-harmonic

function such that ta ha s on o. This function has the additional

property that if h 0 is any m-harmonic function on o such that ta h 0 a s, then

h 0 a h.
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Definition 5.2. Let s be m-superharmonic and t be m-subharmonic defined

on a set o in T, such that sb t. Then the m-harmonic function h constructed

in the above Theorem 5.3 such that sb hb t is called the greatest m-harmonic

minorant of s on o.

Definition 5.3. An m-superharmonic function sb 0 on a set o in T is said

to be a polypotential of order m (an m-potential, for short) if its greatest m-

harmonic minorant on o is 0. We say that T is an m-potential tree if there

exists a positive m-potential on T.

Theorem 5.4. Let sb 0 be an m-superharmonic function on a set o in T.

Then s ¼ ðsiÞ1aiam is an m-potential if and only if si is a potential for each i.

Proof. Let s be an m-potential. Suppose sj is not a potential for some

j, 1a jam. Let hj be the g.h.m. of sj on o. Then as in Theorem 5.3,

we can construct an m-harmonic minorant h ¼ ðhiÞ1aiam with hi ¼ 0 if i < j.

Since h2 0, s is not an m-potential. This is a contradiction.

Conversely, if each si is a potential in the m-superharmonic function s ¼
ðsiÞ1aiam on o, then s is an m-potential. For, let h ¼ ðhiÞ1aiam be the greatest

m-harmonic minorant of s. Since 0a h1 a s1 and s1 is a potential, h1 1 0.

Since ð�DÞh2 ¼ h1 on o�, h2 should be harmonic on o. Since 0a h2 a s2 and

s2 is a potential, h2 1 0. Proceeding thus, we show that h1 0. Hence s is an

m-potential.

Corollary 5.1. Let s ¼ ðsiÞ1aiam be an m-superharmonic function on a

set o in T. Suppose q is a potential on o such that for each i, jsija q, outside a

finite set in o. Then s is an m-potential.

Proof. Since s1 has a subharmonic minorant ð�qÞ outside a finite set in

o, s1 ¼ p1 þ h1 where p1 is a potential and h1 is harmonic. Since jh1ja p1 þ q

outside a finite set, h1 1 0. That is, s1 is a potential on o.

Since ð�DÞs2 ¼ s1 b 0, s2 is a superharmonic function on o; and since

js2ja q outside a finite set in o, s2 is a potential. Proceeding thus, we find

that in s ¼ ðsiÞ, each si is a potential. Hence s is an m-potential.

Theorem 5.5. Let s be an m-superharmonic function and t an m-

subharmonic function defined on a set, such that sb t. Then s is the unique sum

of an m-potential p and an m-harmonic function h, being the greatest m-harmonic

minorant of s.

Proof. This is a consequence of Theorem 5.3 and Definition 5.3. For,

if h is the greatest m-harmonic minorant of s, then let p ¼ s� h. Then p ¼
ðpiÞb 0 is an m-superharmonic function whose greatest harmonic minorant is

0, and hence an m-potential on T .
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Theorem 5.6. Let Q ¼ ðQiÞ1aiam be an m-potential on a set o. Let p1
be a potential on o such that p1 aQ1. Then there exists a unique m-potential

p ¼ ðpiÞ1aiam generated by p1 such that pi aQi for 1a iam.

Proof. As in Theorem 2.4, choose a superharmonic function s on o such

that ð�DÞs ¼ p1 on o�. By hypothesis, ð�DÞQ2 ¼ Q1 b p1 on o�. Choose

a superharmonic function t on o, such that ð�DÞt ¼ Q1 � p1 on o�. Then

Q2 ¼ sþ tþ ða harmonic function h1Þ. Since Q2 b 0, s has a subharmonic

minorant on o, so that s ¼ ða potential p2Þ þ ða harmonic function h2Þ on o;

similarly, t ¼ ða potential p 0
2Þ þ ða harmonic function h 0

2Þ on o. Thus Q2 ¼
p2 þ p 0

2 þ ðh1 þ h2 þ h 0
2Þ. Equating the potential parts, we have Q2 ¼ p2 þ p02.

Hence p2 aQ2; note that ð�DÞp2 ¼ ð�DÞs ¼ p1 on o�.

Proceeding similarly, we find the potential p3 on o such that p3 aQ3

and ð�DÞp3 ¼ p2 on o�. Continuing thus, we construct the m-potential p ¼
ðpiÞ1aiam on o such that pi aQi.

As for the uniqueness, suppose ðqm; qm�1; . . . ; q2; p1Þ is another m-potential

generated by p1. Since ð�DÞp2 ¼ p1 ¼ ð�DÞq2, p2 ¼ q2 þ ða harmonic func-

tion hÞ on o; and since p2 and q2 are potentials, h1 0. Proceeding similarly,

we find that the m-potential generated by p1 is unique.

A special case: Let p1 be a potential with finite harmonic support in a

set o on which a positive m-potential Q ¼ ðQiÞ1aiam exists. Then p1 gen-

erates an m-potential p ¼ ðpiÞ1aiam on o. For, since p1 has finite harmonic

support, we can choose l > 0 so that p1 a lQ1 on o (Theorem 2.5, Domi-

nation Principle); and lQ ¼ ðlQiÞ is an m-potential on o.

Theorem 5.7 (Balayage). Let p ¼ ðpiÞ1aiam be an m-potential on a set

o. Let E be a subset of o. Then there exists an m-potential R̂RE
p ¼ ðqiÞ1aiam

on o such that

1. R̂RE
p a p on o,

2. R̂RE
p ¼ pþ ðan ðm� 1Þ-harmonic functionÞ on E�,

3. R̂RE
p is m-harmonic on ðonEÞ�.

Proof. Take q1 ¼ R̂RE
p1

on o (which is the infimum of all positive super-

harmonic functions s on o such that sb p1 on E). Then q1 generates an m-

potential q ¼ ðqiÞ1aiam as indicated in the above Theorem 5.6 such that qa p

on o. Since q1 is harmonic on ðonEÞ�, q is m-harmonic on ðonEÞ�. Fur-

ther q1 ¼ p1 on E�, so that ð�DÞq2 ¼ q1 ¼ p1 ¼ ð�DÞp2 and hence q2 ¼ p2 þ a

harmonic function h2 on E�.

Let ð�DÞH3 ¼ h2 on E�, so that ð�DÞq3 ¼ ð�DÞp3 þ ð�DÞH3 on E� and

q3 ¼ p3 þH3 þ (a harmonic function u) on E�. Write h3 ¼ H3 þ u on E�.

Then q3 ¼ p3 þ h3 on E� and ð�DÞh3 ¼ h2. Thus proceeding, we obtain an
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ðm� 1Þ-harmonic function ðhm; hm�1 . . . ; h2Þ on E� which can be identified with

the m-harmonic function h ¼ ðhm; hm�1 . . . ; h2; 0Þ so that q ¼ pþ h on E�.

Remark 5.1. In the above theorem, if E is a finite set and p is any positive

m-superharmonic function on o, then also R̂RE
p is an m-potential with the stated

properties.

Suppose s ¼ ðsiÞ1aiam is an m-superharmonic function on a set o in T .

We say that E is the m-harmonic support of s if the superharmonic function

s1 has E as its harmonic support.

Theorem 5.8 (Domination Principle). Let s ¼ ðsiÞ1aiam be a positive

m-superharmonic function and p ¼ ðpiÞ1aiam be an m-potential on a set o in T

with its m-harmonic support E. Suppose s1 b p1 on E. Then sb p on o.

Proof. As in Theorem 2.5, if s1 b p1 on E, then s1 b p1 on o. Let

ð�DÞu ¼ s1 � p1 ¼ ð�DÞs2 � ð�DÞp2. Then u is superharmonic on o and

s2 ¼ p2 þ uþ (a harmonic function)b 0. Hence u has a subharmonic mi-

norant on o, so that u is the sum of a potential q and a harmonic function on

o. Hence s2 ¼ p2 þ qþ (a harmonic function) on o. Use now the unique-

ness of decomposition of s2 as the sum of a potential and a harmonic function

to conclude that s2 b p2 on o. Proceeding thus, we conclude that si b pi on o

for every i.

Theorem 5.9. Let T be a tree with positive potentials. Then T is an

m-potential tree if and only if given an m-harmonic function h ¼ ðhiÞ1aiam near

infinity, there exists a (unique) m-harmonic function H ¼ ðHiÞ1aiam on T such

that for some potential q > 0 on T, jhi �Hija q near infinity for each i.

Proof. Let T be an m-potential tree. Since h1 is harmonic near infinity,

by Proposition 2.1, there exists a harmonic function H1 on T and a potential

p1 with finite harmonic support on T such that jh1 �H1j < p1 near infinity.

Since p1 has finite harmonic support, it generates an m-potential p ¼ ðpiÞ1aiam

on T . Let ð�DÞH 0
2 ¼ H1 on T�. ð�DÞh2 ¼ h1 outside a finite set by the

assumption. Then, jh1 �H1j < p1 near infinity means that �ð�DÞp2 a
ð�DÞh2 � ð�DÞH 0

2 a ð�DÞp2 outside a finite set A on T . Write s ¼ h2 �H 0
2 þ

p2 and t ¼ h2 �H 0
2 � p2. Then on TnA, s is superharmonic and t is sub-

harmonic such that ta s. Hence there exists a harmonic function h0 on TnA
such that ta h0 a s (Theorem 2.2). Consequently, we can as before find a

harmonic function u on T and a potential v with finite harmonic support such

that jh0 � uja v outside a finite set.

Set H2 ¼ H 0
2 þ u so that ð�DÞH2 ¼ ð�DÞH 0

2 ¼ H1 and note that

jh2 �H2j ¼ jðh2 �H 0
2 � h0Þ � ðu� h0Þja p2 þ v near infinity:

308 Victor Anandam and Ibtesam Bajunaid



Now, since v is a potential with finite harmonic support, there exists a potential

v1 such that ð�DÞv1 ¼ v on T�. Hence, if q3 ¼ p3 þ v1, then ð�DÞq3 ¼ p2 þ v.

Set q2 ¼ p2 þ v. Thus far, we have proved that there exist H2 such that

ð�DÞH2 ¼ H1 and the potential q3 such that ð�DÞq3 ¼ q2 and jh2 �H2ja q2
outside a finite set in T . Then by induction we prove that for mb ib 3, there

exist Hi such that ð�DÞHi ¼ Hi�1 and a potential qi such that jhi �Hija qi
outside a finite in T . Write q ¼ p1 þ q2 þ � � � þ qm. Then H ¼ ðHiÞ1aiam is

an m-harmonic function on T such that for every 1a iam, jhi �Hija q

outside a finite set.

Conversely, let p1 be a potential with finite harmonic support on T . For

example, if A is a finite subset of T , then take p1ðxÞ ¼
P
y AA

ayGyðxÞ where

ay > 0 are constants. Let p ¼ ðpiÞ1aiam be an m-superharmonic function

generated by p1. Since p1 is harmonic outside a finite set A, p is an m-

harmonic function on TnA. Hence by the assumption, there exist an

m-harmonic function H ¼ ðHiÞ1aiam on T and a potential q on T such that

jpi �Hija q near infinity. Set si ¼ pi �Hi on T . Then by Corollary 5.1,

s ¼ ðsiÞ1aiam is an m-potential on T ; hence T is an m-potential tree.

Theorem 5.10. Let T be a tree with positive potentials. For y A T�, let

GyðxÞ ¼ Gðx; yÞ be the potential such that ð�DÞGyðxÞ ¼ dyðxÞ. Then T is an

m-potential tree if and only if there exist two vertices u and v on T� such thatX
x1;x2;...;xm�1 AT�

Gðu; xm�1ÞGðxm�1; xm�2Þ . . .Gðx2; x1ÞGðx1; vÞ < y:

Proof. Take u ¼ xm�1 ¼ � � � ¼ x3 ¼ x2 in the above sum. Since

Gðu; uÞ < y, we see that
P

x1 AT�
Gðx2; x1ÞGðx1; vÞ < y. Hence q2ðxÞ ¼P

x1 AT�
Gðx; x1ÞGðx1; vÞ is a potential on T , and ð�DÞq2ðxÞ ¼ Gðx; vÞ ¼ GvðxÞ.

Similarly, since
P

x1;x2 AT�
Gðx3; x2ÞGðx2; x1ÞGðx1; vÞ < y, we find thatP

x2 AT�
Gðx3; x2Þq2ðx2Þ is finite. Hence q3ðxÞ ¼

P
x2 AT�

Gðx; x2Þq2ðx2Þ is a poten-

tial on T such that ð�DÞq3ðxÞ ¼ q2ðxÞ. Thus proceeding, we construct qi as a

potential such that

ð�DÞqiðxÞ ¼ qi�1; 2a iam;

where q1ðxÞ ¼ GvðxÞ. This means that q ¼ ðqiÞ1aiam is an m-potential on T .

Conversely, let ðpm; . . . ; p1Þ be an m-potential on T . Since

pmðxÞ ¼
X
y

Gðx; yÞð�DpmÞðyÞ ¼
X
y

Gðx; yÞpm�1ðyÞ
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is a potential by hypothesis,
P

xm�1 AT�
Gðu; xm�1Þpm�1ðxm�1Þ < y for u A T .

This means X
xm�1 AT�

Gðu; xm�1Þ
X
xm�2

Gðxm�1; xm�2Þpm�2ðxm�2Þ
" #

< y:

Hence X
xm�1;xm�2 AT�

Gðu; xm�1ÞGðxm�1; xm�2Þpm�2ðxm�2Þ < y:

Proceeding thus, we arrive at the conclusionX
xm�1;...;x1 AT�

Gðu; xm�1ÞGðxm�1; xm�2Þ . . .Gðx2; x1Þp1ðx1Þ < y:

But for v fixed in T� and x A T , we can find l > 0 such that Gðx; vÞa lp1ðxÞ.
Consequently,

P
xm�1;...;x1 AT�

Gðu; xm�1ÞGðxm�1; xm�2Þ . . .Gðx2; x1ÞGðx1; vÞ < y.

Remark 5.2. 1) From the above proof it follows that if T is an m-potential

tree, then for any pair of vertices u and v in T�,X
xm�1;...;x1 AT�

Gðu; xm�1ÞGðxm�1; xm�2Þ . . .Gðx2; x1ÞGðx1; vÞ < y:

Hence, if we write for y A T�

QyðxÞ ¼
X

xm�1;...;x1 AT�
Gðx; xm�1ÞGðxm�1; xm�2Þ . . .Gðx2; x1ÞGðx1; yÞ

in an m-potential tree T, then QyðxÞ is an m-potential such that ð�DÞm�1
QyðxÞ

¼ GyðxÞ. We term QyðxÞ as the m-harmonic Green function on T with pole

fyg. Since QyðxÞ is an m-potenial generated by GyðxÞ, the m-harmonic Green

function is uniquely determined (Theorem 5.6).

2) If T is an m-potential tree, then for any z A T�, there exists a poten-

tial u on T such that ð�DÞmuðxÞ ¼ dzðxÞ and ð�DÞ iu is a potential on T for

1a iam� 1.

3) Let q ¼ ðqiÞ1aiam�1 be an ðm� 1Þ-potential on T such that

ð�DÞq1 ¼ 1. Then we say that q is a quasi ðm� 1Þ-harmonic potential on T.

It can be seen that such a potential q exists on T if and only if for one (and

hence any) u in T�,X
xm�1;...;x1 AT�

Gðu; xm�1ÞGðxm�1; xm�2Þ . . .Gðx2; x1Þ < y:
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Since Gðx1; vÞaGðv; vÞ, from the above Theorem 5.10 it follows that if there is

a quasi ðm� 1Þ-harmonic potential on T, then T is an m-potential tree.

Proposition 5.1. A homogeneous tree is a bipotential tree.

Proof. Let T be a homogeneous tree of degree ðqþ 1Þ with qb 2 (see

Cartier [4, p. 262]); that is, each vertex has exactly qþ 1 neighbours. Let

dðs; tÞ be the length of the geodesic joining s to t. Then dðs; tÞ ¼ 1 if and only

if s and t are neighbours and dðs; s2Þ1 dðs; s1Þ þ dðs1; s2Þ ðmod 2Þ. Also T is

a P-tree and the Green function is Gðs; tÞ ¼ q

q�1 � 1
qdðs; tÞ .

Let us fix u and v two neighbours in T . Then for x A T ,

Gðu; xÞGðx; vÞ ¼ q2

ðq� 1Þ2
1

qdðu;xÞþdðx; vÞ :

Since dðu; xÞ þ dðx; vÞ1 1 ðmod 2Þ, if we write An ¼ fx : dðu; xÞ þ dðx; vÞ ¼ ng,
then n is odd and T ¼ 6An. Now

jdðu; xÞ � dðx; vÞja 1; dðu; xÞ ¼ dðx; vÞG 1;

so that if x A An, then dðu; xÞ ¼ n�1
2 or dðx; vÞ ¼ n�1

2 . This implies that

card An a 2ðqþ 1Þðn�1Þ=2. HenceX
x AAn

Gðu; xÞGðx; vÞa 2ðqþ 1Þðn�1Þ=2 q2

ðq� 1Þ2
1

qn
¼ l

ðqþ 1Þn=2

qn

where l is the constant 2ðqþ 1Þ�1=2 q2

ðq�1Þ2
. Consequently,X

x AT

Gðu; xÞGðx; vÞa l
X
n

ðqþ 1Þn=2

qn
:

Note that this last series is convergent since qb 2. Consequently, Theorem

5.10 implies that T is a bipotential tree.

6. Riesz-Martin representation for positive m-superharmonic functions on T

In the classical potential theory in Rn, nb 2, let sb 0 be a superharmonic

function defined on a bounded domain W in Rn. Then (see for example Brelot

[3, pp. 150–152]), there exist two uniquely determined positive Radon measures

m on W and n on the Martin boundary D with support in the minimal boundary

D1, such that sðxÞ ¼
Ð
W
Gðx; yÞdmðyÞ þ

Ð
D1
Kðx; yÞdnðyÞ; here Gðx; yÞ is the

Green function of W and Kðx; yÞ is the Martin kernel. This representation is

referred to as the Riesz-Martin representation for the positive superharmonic

function s on W. For such a representation on a tree, see Cartier [4, pp. 235–
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237]. Below, we give a similar representation for positive m-superharmonic

functions defined on a tree T .

Let T be an m-potential tree. Let M be the class of measures mb 0 on T

such that p1ðxÞ ¼
P

y AT�
GyðxÞmðfygÞ is a potential that generates an m-potential

ðpiÞmbib1 on T . Let Li ð1a iamÞ be the class of measures ni b 0 on the

Martin boundary (with the usual normalization) such that the harmonic

function h1 b 0 on T associated with ni (see Cartier [4, Theorem 2.1, p. 232])

generates an i-harmonic function ðhi; hi�1; . . . ; h1Þb 0 where h2; . . . ; hi are all

potentials. Such a function can be identified with the positive m-harmonic

function ðhi; hi�1; . . . ; h1; 0; . . . ; 0Þ. Note that if such a function exists, then the

potentials h2; . . . ; hi are all uniquely determined.

Theorem 6.1 (Riesz-Martin representation for positive m-superharmonic

functions). Any positive m-superharmonic function s ¼ ðsiÞ1aiam in an m-

potential tree T can be uniquely identified with ðmþ 1Þ-measures ðm; nm; . . . ; n1Þ
A M � Lm � � � � � L1.

Proof. As in Theorem 5.5, s can be written uniquely as the sum of

an m-potential P ¼ ðPm; . . . ;P1Þ and a positive m-harmonic function H ¼
ðHm; . . . ;H1Þ. Since ð�DÞPiþ1 ¼ Pi, 1a iam� 1, the potentials P2; . . . ;Pm

are uniquely determined once P1 is known. And P1 is determined if its as-

sociated measure m, ð�DÞP1 ¼ m, is known. Thus the measure m on T deter-

mines uniquely the m-potential P ¼ ðPm; . . . ;P1Þ.
Consider now H ¼ ðHm; . . . ;H1Þb 0. Since ð�DÞH2 ¼ H1 b 0, H2 is a

positive superharmonic function and hence is a potential q2 up to an additive

harmonic function h2, so that H2 ¼ q2 þ h2 and ð�DÞq2 ¼ H1. Since H2 b q2,

we can find a potential q3 on T such that ð�DÞq3 ¼ q2 and q3 aH3. Thus

proceeding, we construct an m-harmonic function ðqm; . . . ; q2;H1Þb 0 with all

the functions q2; . . . ; qm as potentials. Clearly this function is uniquely de-

termined if H1 is known. And H1 is determined if its associated measure

nm on the Martin boundary (with the usual normalization) is known. Thus

the measure nm on the Martin boundary determines uniquely the m-harmonic

function ðqm; . . . ; q2;H1Þ; that is nm A Lm. Then

H ¼ ðHm; . . . ;H2;H1Þ

¼ ðqm; . . . ; q2;H1Þ þ ðum; . . . u3; h2; 0Þ

where Hj ¼ qj þ uj for 3a jam. Since h2 b 0 is harmonic, following the

construction in the above paragraph, we obtain ðq 0
m; . . . ; q

0
3; h2; 0Þ where

q 0
m; . . . ; q

0
3 are potentials, ð�DÞq 0

jþ1 ¼ q 0
j , 3a jam� 1, and ð�DÞq 0

3 ¼ h2 is

harmonic. Again this function is uniquely determined if h2 is known. And
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h2 is determined if its associated measure nm�1 on the Martin boundary is

known. Thus the measure nm�1 on the Matrin boundary determines uniquely

the function ðq 0
m; . . . ; q

0
3; h2; 0Þ; that is nm�1 A Lm�1. Moreover, if we write

ðum; . . . ; u3; h2; 0Þ ¼ ðq 0
m; . . . ; q

0
3; h2; 0Þ þ ðrm; . . . ; r4; h3; 0; 0Þ, we find that each ri

is positive superharmonic such that ð�DÞrjþ1 ¼ rj for 4a jam� 1, ð�DÞr4 ¼
h3 which is a positive harmonic function.

Proceeding thus, we find that we can write

H ¼ ðHm; . . . ;H2;H1Þ

¼ ðqm; . . . ; q2;H1Þ þ ðq 0
m; . . . ; q

0
3; h2; 0Þ

þ ðq 0
m; . . . ; q

0
4; h3; 0; 0Þ þ � � � þ ðhm; 0; . . . ; 0Þ

¼
Xm
i¼1

vi

where each vi is uniquely determined by a measure ni A Li in the Martin

boundary.

Finally, since s ¼ PþH, we conclude that s is uniquely determined by the

measures m A M and ni A Li.
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