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Tilings of a Riemann surface and cubic Pisot numbers
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ABSTRACT. Using the reducible algebraic polynomial x° —x*—1= (x> —x+1)-
(x3 — x — 1), we study two types of tiling substitutions 7* and ¢*: t* generates a tiling
of a plane based on five prototiles of polygons, and ¢* generates a tiling of a Riemann
surface, which consists of two copies of the plane, based on ten prototiles of paral-
lelograms. Finally we claim that t*-tiling of 2 equals a re-tiling of ¢*-tiling of %
through the canonical projection of the Riemann surface to the plane.

0. Introduction

Starting from the following substitution a:

1—12
23
0:4 34, (0.1)
45
51
we studied the tiling substitution t* called the dual tiling substitution of ¢ in the

paper [5], [6], and found a quasi-periodic tiling of a plane £ with five polygonal
prototiles in Figure 1, whose tiles are called t*-tiles (see Figure 2 and Figure

A<

Fig. 1. Five polygonal prototiles of the tiling generated by 7*.

In this paper, we introduce a new tiling substitution ¢*, called the wedge
tiling substitution, that is, so-called the extension of the dual substitution of o
in [11].
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In the section 2, we claim that the wedge tiling substitution ¢* produces
not only quasi-periodic tilings of the plane £ but also a tiling of a Riemann
surface # of degree 2, with ten prototiles of parallelograms in Figure 5 (see
Figure 3 and Figure 6). The Riemann surface # is generated by two copies
of 2, which is biholomorphic to the Riemann surface of /z in the complex
plane. The tiles of such a new tiling are called o*-tiles.
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Fig. 3. The tiling generated by ¢* of Z.

In the section 3, we review the dual tiling substitution t*. The rela-
tionship of two tilings generated by ¢* and 7* is discussed in the section 4.
We claim that the tiling substitution 7* also generates a tiling of the Riemann
surface £, that two tilings of # through ¢* and t* are the refinements of some
common tiling of # and that the tiling of # through t* equals that of 2
through t* by the canonical projection of #Z to 2.

There are many articles on how to construct quasi-periodic tilings by
polygons and prototiles with the fractal boundary from substitutions or
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numeration systems and their applications (see [4], [6], [10], [12], [3], [8],
etc.).

The reason why we study in detail the special substitution ¢ like (0.1)
appeared in Pisot f-expansions (see [1], [2], [5]) is that the characteristic
polynomial of the incidence matrix of ¢ is reducible over Q:

oxt—l=? x4+ D —x-1) (0.2)

and that the maximal solution of the polynomial is a Pisot unit of degree 3.
On such a class, it is unclear and still open how we can produce the polygonal
tiling associated with the substitution . And this question is interesting from
the viewpoint of tiling theory, fractal analysis and numeration system. Finally
we remark that all the assertions in this paper can be extended to the class of

¥ —Kx* = (K+1)x—1=0, K>0,KeZ
(see [5])-

1. Wedge tiling substitution ¢*

For the substitution ¢ in (0.1), its incidence matrix L, is

1 0 0 0 1
1 0 0 0
L,={0 1 0 0 O
001 00
00010

and its characteristic polynomial is given by (0.2). L, is primitive and unim-
odular (see 7] for definition and notation). Eigenvalues 4;, (i=1,2,...,5) of
L, are promised as follows:
J3 is the maximal solution of x*—x—1=0, which is the Perron-
Frobenius eigenvalue of L, and satisfies A3 > 1;
A1 and 1, are the conjugates of A3, which satisfy 4; = 1, and
0< |;u1| =14 < 1;
J4 and As are the solutions of x2 — x + 1 = 0, which satisfy /4 = /s and
[l = | = 1.
Thus /3 is a Pisot number, and ¢ is unimodular primitive substitution of Pisot
type, but not irreducible (see [7]).

For the (complex) eigenvectors u; corresponding to 4; (i =1,2,...,5), real
vectors vy, vs,...,05 are given by
v u + uy v u) —uy v u v Us + uy v Us — Uy
1= 2 i= = 3i=u3, 4= 5=
2 2i ’ 2 2i
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Then, we can take v3; >0, have det V' > 0 for the 5 x 5 matrix V := [}, 0,
3,04, 05] by renumbering if necessary, and have the following relation:

Ret;, —-ImAi; O 0 0

Im /l] Re /l] 0 0 0

L V=V]| 0 0 A3 0 0
0 0 0 Re /14 —Im /14
0 0 0 Im /14 Re /14

Let 2 := Spang(v;,v;) be the oriented subspace spanned by (ordered)
vectors vy, vy, which is the L, -invariant contractive plane. Then we have the
following direct decomposition:

R’ = 2 ® Spang (v3) ® Spang (v4, vs),

and can define the projection map n:R> — 2 with respect to this direct
decomposition.

Using the projection 7, we can find that the canonical basis {e;|i=
1,2,...,5} of R’ satisfies the following equations on # (Figure 4):

me3 + mey = mey,
Te4 + mes = me)| + mey,
Tes = mer + mes

(see [5] for detail).

e,

T,

TCs
e,

e,

Fig. 4. ne;, i=1,2,....5.
Let us consider the oriented parallelograms on £ generated by me; and
me; (i #j,i,j=1,2,...,5), and denote them by iA j, that is,
inji={sme;+tne;|0 <s,t <1}

Then we may select an orientation of 2 such that all the parallelograms of the
following set:



Tilings of a Riemann surface 185

Ag = {2A1L1A34A1,1A53A2,2A4,5/A2,4A3,3A5,5A4}

induce the positive orientation of # (see Figure 4 and Figure 5).

Fig. 5. Ten prototiles of parallelograms of the tiling generated by o*.

For x € Z°, (x,iA j) denotes the oriented parallelogram generated by 7e;
and me; located at mx, that is,
(2,iAj) = {nx + sme; + tme; |0 < 5,1 < 1},

Let Z,. be a Z-free module generated by {(x,iAj)|xeZ’inje A, }.

DerFINITION 1. A homomorphism ¢* : #;« — %, is defined by

(6,2 1) = (L 'x, 1 A5)
(x, 1A3) — (L 'x,5A2)
(x,4A1)— (L ;x3/\5)
(x,1A5) — (L 'x,574)

o (x,3A2) = (L7'x,2 A1) + (L;'x 4+ e; —es5,5A2) (1.3)

) (x,2A4) = (L%, 1A3) 4+ (L 'x + e —e5,3A5) )

(6,5A2) = (L 'x, 4 A1) + (L;'x +e1 —e5,574)

(x,4A3)— (L 'x,3A2)
(x,3A5) = (L;'x,274)
(x,5A4) — (L 'x,4A3)

for generators of %, and is extended on %,- homomorphically (see Figure 6).

o* is called a wedge tiling substitution on J;, .
DerFiNiTION 2. If an element p of ;- is represented, by using the
generators A; of ;. as follows

y:ﬂlﬁ-"""ik (Int/llﬂlnti]:(/ﬁlfl?éj)a

y is called a patch of %+ on #. We define |y| as the union of 4;’s, that is,
Iy == U,k1 . We set I (y):={A,..., A}, which is the geometric repre-
sentation of the patch y. A patch y is called connected if |y| is connected and
the intersection of 4; and 4; (i # j) is empty or some common edge. Let y,
7, be two patches. We write y; <y, if 7(y,) = 7 (y,), in addition we write
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(0,27n1) (0,11 5)
1 1
nex e
ey ey
I - s i Z.; T ) e 1 T
es e
= -1
(0,5A4) (0,47 3)
€ e
ey e
1 er es ! o E res b1
e — s
-1 -1 - -1
(0,3A2) (0,2A1) (0,471)
+(61—65,5/\2) +(61—85,5/\4)

(0,3A5) (0,3/\5) (0,27 4)

1 1 1
nex nex /7
ey ‘ ey ’ : nes
T nes 1T o Tes 1 - -1 e Tes i
nes ) = ey
o o -1

(0,11A3) (0,1A3) (0,5A2)
+(81'~65,3/\5)

Fig. 6. (0,iA j) and ¢*(0,in j) for inje Ay

y <7y, if yy 29, and y; #y,. Similar notation will be used for any tiling
substitutions.

We distinguish the set |y| from the patch y (or 7 (y)). Roughly speaking,
the patch y (or 7 (y)) is the partition of the set |y| (see Figure 7).

For the discussion of the tiling by ¢*, we introduce a segment substitution
a; of the tiling substitution ¢*. For x e Z° and i€ {1,2,3,4,5}, (x,i) is the
oriented segment generated by ze; located at mx, that is,
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e, ‘ e
e, ne
_1[ e, ,3 ne
Y v:=(0,1A5)+ (e3,5A4)

+(es —esq,4A1) (or T(7))

Fig. 7. The comparison between [y| and the patch y (or 7 (y)).

(x,0) :={nx + tne; |0 <t < 1}.

Let 7+ be a Z-free module generated by {(x,i) |xeZ’i=1,23 4,5}
It is to be noted that the geometrical meaning of —(x,7) is the reverse oriented
segment of (x,i).

DeFiNITION 3. If an element 6 of - is represented, by using the
generators x; of Z5. with Int w;NInty; = ¢ (i # j) as follows:

0=+ -+, ;N iy = {one point} for je{1,2,...,k—1},
0 is called a broken segment of Z+ on 2. We set |d] := U;;l w and 7 (6) :=
LTRSS >

DEFINITION 4. Let us define a homomorphism o on %, which is called

the segment substitution, from segments (x,i7) to broken segments oj(x,i),
by

(x,1) = (L;'x,5)

(x,2) = (L;'%,1) = (L;'x + €1 — e5,5)
o 1 { (%3) = (L;'x,2)

(x,4) — (L;lx,3)

(x,5) — (L;lx, 4)

for the generators of 7. and is extended on %,- homomorphically (see Figure
8).

DEFINITION 5. A homomorphism 0 : Z5. — F4. is the boundary map given
by

0(x,inJ) = (x,0) + (x + e, j) — (x + ¢;,1) — (x, ).
for the generators (x,iA j) of Z,.

Then we have the following lemma.
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©.5) (0,4)

Fig. 8. (0,i) and o7(0,i) for ie{1,2,...,5}.

LemMA 1. The following commutative relation holds:

o

773 773

For — Fox

aJ l
o

T s 7,

2. The tilings generated by o*
Let us define a connected patch % € %,. by
U= (0,1A5)+(0,5A2)+ (0,2A1) + (e; —e4,3A5)
+ (e1 —eq,5n4) + (e) —eq,4n3) + (es —eq, 1 A 3)
+ (es —eq,3A2) + (es — eq,2 A4) + (es — eq,4 A 1).

Then we obtain the following relations o* (%) < a**"*D(%) (neN) (see
Figure 9), which induce the following theorem.

TueOREM 1. o*¥(%) (neN) generate a quasi-periodic tiling of P, that
is,
U Z (™" (@) is a tiling of 2.

neN

The idea of the proof can be found in [9] and [5].
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Fig. 9. o (%), n=0,5,10,15.

REMARK 1. We can get several types of tilings generated by the wedge
tiling substitution o*. For example, let us define a connected patch V" € Fy« by

V= (0,1A3)+ (0,3A5)+ (0,5A2) + (0,274) + (0,4 1).

Then we have another quasi-periodic tiling of 2, that is,

U 7" (+)) is a tiling of 2
neN

(see Figure 10).

We introduce 4], := {2A1,1A5,5A4,4A3,3A2} to consider a tiling of a
Riemann surface. Let us define connected patches “/%,ﬁ"} on 2 for injeA,.
and ne N by

W = 60,1 A j),

inj
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Fig. 10. 7+ and o* (7).

o150, 1) or15(0, 1)

. c*13(0,5)

4
WS =6"15(0,2A1)

WEL =015 (0,1 A5)

5 6;'[5(0,4) 5 6?{5(0,4)

4l er150,5)

5115(0,3) .

Wiy =07 (0,51 4)
o Wiy = 0*1% (0,4 A 3)

N 6*15(0,2)

W, = a*15(0,3A2)

Fig. 11. Parts of the tiling of the Riemann surface .
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6130(0,4)

| 61390, 5)

30(0 )

6130(0,3)
Fig. 12. Five broken lines L; (i=1,2,...,5

and domains D" in 2 by D,A : then we know that

inj | lAj|

1)
lAj <<1KX?7 UIEPJ)
(n)

inj

and that from Lemma 1, the boundary of D}”. can be obtained by

ALY = [a(w )] = |o1¥(2(0,i 1 )))|

(see Figure 11).
Let us define domains D;.; = 2 for inje A, by

Dinj = hm D"

inj?
and broken lines L; (j=1,2,...,5) by

L; := lim |a;>"(0, j)|.
n—oo

Then the boundary of the domain D;,; can be given by broken lines L; and L,
and five broken lines L; (k=1,2,...,5) divide the plane # into five connected
domains (see Figure 12). Therefore Ui/\je Al D;,; is the double covering of
the plane 2.

Now let us introduce a Riemann surface as follows: for two copies 2; and
2, of the Ls-invariant plane £, by cutting the broken line Ls of 2| and %5,
we can construct a Riemann surface Z := ,71#9’2 We denote the canonical
projection by w: # — 2.

Let us introduce a connected patch #,. of # by

War = (0,2A1) + (0,1 AS5)+ (0,5A4) 4+ (0,4A3)+(0,3A2)

(see Figure 13).

We can also consider o* as the tiling substitution which tiles the Riemann
surface %, and D ") A and D;,; as the domains of #. We see that the bound-
ary of the domaln UM/E A, DfA)] is given by the closed curve |do *5”(%*)
o> (0W5)
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e,

e,

-1
of P, of Py

Fig. 13. The structure of the patch #;. of Z.

e,
e, = « e,
229 TCs
e, § e,
‘ e,

W, = (e5,4) — (e4,5) + (€4,3) OWo+ = (e5,4) — (e4,5) + (€4,3)
—(es,4) + (e3,2) — (e2,3) + (e2, 1) —(es,4) + (83,2) — (e2,3) + (e2,1)

—(61,2)+(61,5)—(85,3) —(81,2)+(81,5)—(65,3)

Fig. 14. The left-hand side of figures is the boundary of #;. of # and the right hand side of
figures is the slight modification of the left-hand side to clarify that the winding number of the
boundary curve around the origin is two.

L mes L mes
0™ 1% (W,) 0™ (W)
Fig. 15. The left-hand side of figures is the boundary of ¢*'*(#;.) of % and the right hand side

of figures is the slight modification of the left-hand side to clarify that the winding number of the
boundary curve around the origin is two.
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Uinje n Dl(’f\)] tends to oo as n— 0 (see Figure 15). Hence, the union
UWEA, D;,; is the Riemann surface Z.
Therefore, we obtain the following theorem.

THEOREM 2. The wedge tiling substitution o* generates a tiling of the
Riemann surface R, that is,

U (" (#;2))  is a tiling of R
neN

(see Figure 11).

REMARK 2. We denote the tiling of A obtained in Theorem 2 by
(R, Ay, 0", Wo+), which is called o*-tiling of R. From the fact that
(W) < a*" V(W) for any neN, we get

(R, Age 0" Wo) = ) T (6™ (W)
neN

3. The tiling substitution 7* in the sense of duality of the substitution o

To study the relation of tilings generated by ¢* and t*, we go back to the
definition of t*, so-called the dual tiling substitution of ¢ in [5].
We define (0,i*) (i=1,2,...,5) as the polygons in Figure 16, and set

Ap=1{(0,i)]i=1,2,...,5}.

Let 7. be a Z-free module generated by {(x,i*)|xe Z’,ie {1,2,...,5}},
where (x,i*) is the oriented polygon obtained from (0,i*) located at zx.

DeriNITION 6. Let us define the dual tiling substitution ©* on %« by

(x,1%) = (L 'x +e; —es5, 1) + (L, 'x,5%)
(x,29) = (L, %,1°)

4 (%,3%) = (L 'x,2%) ;
(x,4%) — (L;'x,3%)
(x,5%) — (L;'x,4")
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Fig. 17. ¥;-.

0,5

Fig. 18. (0,i*) and 77(0,i*), i=1,2,...,5.

for any generators of .., and 7" is extended homomorphically on .. (see
Figure 18).
We define a connected patch #;- by

5

W = Z(O, l*)

i1
(see Figure 17). Then we have the following theorem in [5].
THEOREM 3. The following statements hold:

(1) The dual tiling substitution t* generates a tiling of 2, that is,

U 7" (wz) s a tiling of 2
neN
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A4
/
\V4
ACKY ﬁﬂ"‘ VAN

SZ)

VAYA K/

AVAY SAVAY A%y VAN S A4y,
A SAATAY o V4 SAR
2 NAYAY, VA A D

AR
)

5 (Wys)

Fig. 19. t(#;.), n=0,1,...,5,15.

(see Figure 19). We denote such a tiling by

P, A, W) = | T (" (W70)),
neN
which is called t*-tiling of 2;
(2) Using U, = |t"(W3)|, let us define X and X; as the renormali-
zation

X := lim LU,

n—oo

Xo:=1lm L ) (x,/j%)

nO T (x ) e T (0,i%)

(see Figure 20). Then the sets X and X;, i=1,2,...,5 satisfy the
following set equations:
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5
Fig. 20. X =) X; and X;, i=1,2,...,5.

i=1

5
X = X(c2) (non-overlapping)

i=1

LX) = X5U (e] —es + X7)

L'X, =X

L'X; =X,
L'Xy = X;
L'Xs =X,

where x +Y = {n(x) +y|ye Y}

4. The relationship between two tilings T(#, A,+,0*, #,+) and
3(97 AT* ) T*, W‘L’*)

We have two tiling substitutions ¢* and t* such that ¢* generates the tiling
of the Riemann surface %, that is, T(R, Ay+,0%, #5+), on the other hand, *
generates the tiling T(P, A,-,7*,#;+) of 2. In this section, we study the re-
lationship between two tilings T(R, A+, 0%, Wy) and T(P, Ap+,T*, We).
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DerINITION 7. Let us introduce a homomorphism @ : %,. — Z,., which is
called pre-blockcoding map, as follows: @ is defined as

for any generators of %;., and is extended on %, homomorphically.

The map @ geometrically gives us a rewriting rule from the parallelograms
of #,. to the polygons of %, (see Figure 21). Note that a negative polygon
—(x,i*) geometrically means the negative oriented polygon and it is colored
gray in this paper.

Then we have the following proposition.

ProposITION 1.  The following commutative relation holds:
Pog*=1"00 on Fgr
(see Figure 22 and Figure 23).
Proor. For (0,2A1), we see that
D(a*(0,2A1)) = D(0,1 A5) = (0,27) + (0,47) — (e3,37).
On the other hand, we see that
(@(0,2A1)) =77((0,3%) + (0,5) — (es4,4"))
=(0,2°) +(0,4") — (L "es,3")
=(0,2%) 4 (0,4%) — (e3,37).

Therefore, we have @(c*(0,2A 1)) = t*(P(0,2A1)). Other cases are discussed
analogously. ]

COROLLARY 1. Each neN, we have the following commutative relation:

Qog"=1"o0@ on Fy+
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A

(07 2‘) + (074)') -
(63)3*)

e

1 1

(0,3%) + (e4,1%) (o,iA3) (0,2*);(e375*)
+ (e2,5%)

Fig. 21. The rewriting rule @ for (0,i A j) € A,-.

We shall pay attention to the tiles (x,2 A1), (x,1AS5), (x,5A4), which @
maps to the “patches” including negative tiles.

LEmMMA 2. The following holds for any (0,iA j) € Ag-:
(1) If (x,2A1)<0*(0,inAj) for some n>35, then

(x,2A1)+ (x+e; —es,5A2) <a™(0,i A j).
(2) If (x,1A5)<0"(0,inAj) for some n>35, then

(X, 1AS)+ (x+e3,5/4)+ (x+e5 —eq,4A1) <a™(0,i A j).
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e

(0,2) +(0,4°) -
(5373*)

" (0,5A2) (e1 —e5,1%)

0" (0,3A2)
=(0,2A1) =(0,4A1) +(0,5%)
+(e1 —e5,5A2) +(e1 —es,5A4) +(e1 —es5,3")

2 5 .
(0,3%)
+(e1+ex—es51%)
+ (e2,5%)
3
g & g .
" (0,2 A 4) (0,27) (0,17) + (e2,47)
=(0,1A3) +(e1+e3—e5,17)
+(e1 — e5,3A5) +(e3,5%)

+(e1—es5,47)

Fig. 22. ¢*(0,in j) and @(c*(0,iA j)), iA j€ Ay- in Proposition 1.

(3) If (x,5A4)<0"(0,inAj) for some n>35, then

(x,5A4)+ (x+e23,4A3)+ (x+es—e3,3A5) <a™(0,iAj)
or (x,5A4)+ (x+es—e,4n1) <a™(0,in ).

Proor. For (1). If (x,2A1) <o (0,iAj), then by the definition ¢*,
there exists uniquely (z,3 A2) < ¢™~1(0,i A j) such that *(z,3A2) = (x,2A1).
On the other hand, we know that
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®(0,2A1) (0,2%) + (0,4%) — ©(0,1A5) (0,17) +(0,37) —
=(0,3") +(0,5%) (e3,3) =(0,2") +(0,47) (e2,2)
—(e4,47) —(es3,37)

®(0,514) (0,5%) + (0,2%) ®(0,413) (0,47) +(0,17)
=(0,17) +(0,37) =(0,5") +(0,27)
—(e2,2%)

$(0,3N2) $(0,5A2) (e1 —es5,1%)
=(0,1") +(0,4%) +(0,57) +(0,3%) =(0,17) + (e2,47) +(0,57)
+(61 -—65,3*)
-1 ;r_; :——; -1
$(0,4A1) $(0,3A5) (0,3)
=(0,5") + (e4,2%) =(0,4") + (e3,1%) +(e1+e2—es5,17)
+ (e2,5%)
- .
. — -1 -1 =
(0,27 4) (0,27) ®(0,1A3)
=(0,3") + (e4,1%) +(e1 +e3—es 1%) =(0,2") + (es,5")
+(e2,5%) + (es,5")

+(e1 —es,4")

Fig. 23. @(0,iA j) and ©*(P(0,i A j)), injE As+ in Proposition 1.

0" (2,3A2) = (x,2A1)+ (x+e; —es5,5A2)

and
" (z,3A2) <a™(0,inj).

For (2). If (x,1A5)<0d*"(0,inj), then there exists (w,3A2)<
a*"72(0,i A j) uniquely such that 6*>(w,3A2) = (x,1 A5). On the other hand,
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2w, 3A2) = (x,1AS) + (x +e3,5A4) + (x+e5s —eq, 4 1) <™ (0,inj).

Therefore, we obtain (2).
For (3). If (x,5A4) <d"(0,iAj), then there exists
(i) (w,3A2) <" 3(0,iA j) such that

P (w,3A2) = (x,5A4) + (x +e2,4A3) + (x+es—€3,3A5)
or
(i) (z,5A2) < 1(0,iA j) such that
0" (2,5A2) = (x,5A4)+ (x +es —e1,4n1).

Therefore, we obtain (3). O

REMARK 3. Lemma 2 says that if (x,2A1), (x,1A5) or (x,5A4) can
be found in 6*(0,iA j), n =5, then the connected patches including (x,2 A1),
(x,1A5) or (x,5A4) given by the parallel translations of Figure 24 are found in
a™(0,i A j) (see Figure 25). Such connected patches at x = 0 will be named by
YN, Va3, V3, V11 respectively.

(0,2A1) (0,1A5) (0,5 A 4) (0,5 A 4)
+(e1 —es5,5A2) +(e3, 51 4) + (€2,4 A 3) +(es —e1,4A1)
+(es —esq, 4N 1) +(es —e3,3A5)

Fig. 24. The connected patches including (0,24 1), (0,1 A5), and (0,5A4) respectively.

Fig. 25. The distribution of the connected patches including (x,2 A1), (y,1A5), and (z,5A4) in
a*20(0,2 A 1).



202 Fumihiko ENoMoTO et al.

Let us define connected patches of parallelograms as follows:
V1= (0,2A1) + (e —e5,5A2) =3*(0,2 A1),
V5= (0,1A5)+ (e3,574) + (es —eq,4 A1) =™ (0,1 A 5),

V3= (0,5A4) 4 (e2,4A3) + (es — 3,37 5) = *°(0,574),

vy :=(0,4A3),
15 :=(0,3A2),
16 :=(0,4n1),
77:=(0,3A5),
15 :=(0,214),
V= (0,113),
Y10 = (0,51A2),

Y1 :=(0,5A4) + (es —e1,4n 1),

(see Figure 26).

Fig. 26. The family of patches 7;.
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LemMA 3. For each patch ¥; (j=1,2,...11), the patch o*(7}) can be
decomposed by the parallel translations of {7;|j=1,2,...11} as follows:

V1= Vs

V2= 73

Vi Va+ (es—er+75)+ (e3—er + 1%)
VoY

Vs

ot V= V5

V70— 7%
”VéH“f9+(el—es+"Vi)
Y9 = 710

Y10 e —es+ Y

Vi Yo+ (es —es+77)

where x +7; = {nx+y|ye¥;} for any xeZ>.
Proor. See Figure 27.
By Lemma 2 and Lemma 3, we have the following proposition.

PROPOSITION 2. For each patch ¥; (j=1,2,...11), the connected patch
G (¢7) (ne NU{0}) can be decomposed by the parallel translations of
{vi|j=1,2,... 11}

DrerFINITION 8. Let I := I;(. 4, 4;) (j = 1,2) be two tilings of a Riemann
surface .# with protosets A;. If any tile « € T; can be decomposed by tiles of
3,, that is, there exist finite tiles f;,...,0, € T, such that

ao=|f+-+ Bl IntgNIntf=¢ (i+#)),

then T, is called a refinement of T, which is denoted by I; < L. IFT#3,
and I, < T,, then we write I; < T,. A refinement of patches is also defined

analogously

Now we shall construct two new tilings of the Riemann surface #.
Setting y;:=[7}| (j=1,2,...,11) and I':={yp;,y,...,711}, we denote by
F(I') a Z-free module generated by {x+yj|er5,j: 1,2,...,11}, where
x+y:={nx+ylyey} A homomorphism #: 7 (I') — F(I') can be de-
fined by
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ne,
ne. e,
nes
EY 1, 1 e, i
ne, o
e ne,
ne. e,
4
VQ V3
)
ne;
ne,
A nes B
ne,
ne,
4
Vs Va+(ea—ez+Vs) v
5
+ (e3 — ez + Vs)
iy y )
nes ne, e, ne,
ne. ne, me, ne.
E} e | E} w1 ] e, PR e, 1
fad f’—; e, e, [ e
ne, ey ne; ne,y
F 4 4 4
V5 V1 Vs v7
f f
ne, e, e, ne;
ne, nex £ el
El me, 1 . 4 7o, 1 I 7o, 1 . 4 e, e
ne o ) o
) Z e, i = D
e, e, e, ey
p 4 - g
Vr Vs
\ |
ne; e,
e, ne, ne,
T P foumn £
ne, nes UH ne, ne,
e, e,
Vo Vio Vio er—es+ Vi
)
ne;
ne,
e e 1
ne, o
e, '_)
4
11 Vi+ (es —es + Vr)

Fig. 27.

The geometrical representation of ¢*(7;) (j=1,2,...,11).
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1=

Y203

y3 = s+ (ea —ex +ys) + (e3 —ex + y5)
Y4 )5

Vs =)

n:< %77 ,
Y7178

s = Yo + (€1 —es + ;)

Yo = Y10

Yo er —es+ 1y

Y vat (ea —es+ ;)

n(x+y):=L"(x)+n(y) (xeZ’, j=1,2,...,11), and extended on Z(I)
homomorphically.
A homomorphism @ : F(I') — Z,- is defined by

O(x+7,) i=x+7

for any generators of % (I'). Then we have the following proposition by the
definitions of #, @ and Proposition 2.

ProprosITION 3. The following commutative relation holds for any n e N:
Oon"=0"006 on F(I).

By Proposition 3, we have for each je{l1,2,...,5}

7" () p o' T(O(y)  (neNU{0}).
Taking as a connected patch on Riemann surface #
Wy =n+rn+tr+rnts
we get
(W) <" (Hy)  (neNUA0}).
Therefore we obtain the following theorem:

THEOREM 4. The tiling substitution n generates a tiling T(R,1,n, Wy) of
R, and (R, A+, 0", Wy+) is a refinement of T(R,I,n, W), that is,
(1) TR, L o, Wy) == lim T (n"(#y))is a tiling of A,
n— o0
(2) z(%7r7777%7) 7 1(%7/10'*’0-*3%*)
Iy

Next we shall construct another new tiling of Riemann surface Z.
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e.

s e,
e,
ne
e, 1 1A 1
e, ne,
e, e, e,
4 A
y
2
ne,
4

e ne;
ne. e,
1A .
el e, e, Te.
e,
A

; .
a e, - e,
- - ”
V8 U (vs)
. .
e, Te. e, me.
e, me, ne, ne.
- e 1T - ) 1 - e i - ne
SRR | m n
Y9 ¥ () Y10 ¥ (710)

Y11 ¥ (1)
Fig. 28. 7, and % (y).

DEFINITION 9. A homomorphism ¥ : % (I') — Z,- is defined by
P(x+y;) = ®(x+ 7))
for any generators x+y; of #(I'). ¥ is called a blockcoding map.
For example, for y; = [(0,2A1) + (e; —es,5A2)|, ¥(y,) is given by (0,3*)+

(0,5%) + (e; — es, 1*) after the cancellation of —(e4,4*) + (€] + e; — es,4*) (see
Figure 28).
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REMARK 4. Figure 28 says also that the negative tiles in ®(x,2 A1),
D(x,1 A5) and d(x,5A4) disappeared in ¥(y;) (i=1,2,...,11). Each ¥(y,)
consists of only positive t*-tiles.

ProposITION 4.  The following commutative relation holds for any n e N:
Yop"=t"oW¥ on F(I)
Proor. For y; =((0,2A1) + (e1 —es5,5A2)|, we have
() = 7 (B(0.2A1) + (e — e5,512)
=77((0,37) +(0,57) + (e1 —e5,17))
=(0,2%) 4 (0,4") + (e] — e4,17) + (—eq + €5,5%).

On the other hand, we know

P(* (1) = P((0,1A5) + (—es+es,4 A1) + (e1 — es, 57 4))
=(0,2")4+(0,4") + (e; — es, 1*) + (—es + €5,5%)

We see that y; (i=2,3,...,11) hold analogously. ]

We can also consider 7* as the tiling substitution on the Riemann surface
2. By Proposition 4, we get each je{1,2,...,5}

7" () p cE(P()  (neNU{0}).

Let us take the following connected patch on %:

W i= Z ¥ ()

Then we have
(W) <A (ne NU{0}).
if
Therefore we get the following theorem.

THEOREM 5. The dual tiling substitution t* generates the tiling T(R, A+,
W) of R, and T(R, A+, t*, Wi+ ) is a refinement of T(R, I',n, A(I)), that is,

(1) (R, Ayt Wee) = lim T (z"(#7+)) is a tiling of R,
@) T L AD) < TR A7 Hre)

Moreover we have the following theorem.
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1 1
ne, ne,
e, ey
mes nes
1 1 1 1
ne, ’_‘I_’) e,
ne, e,
5 x5
o*° (0,11 5) @ (077 (0,11 5))
ne,
ne, e
e ‘
1 1 -1 1
e, mes ® e, mes
ne, — e,y

1 1
ne, ne,
ey e,
I > T =
e, kY e,
e, e,
4l B

e

"% (Wor) @ (07° (Ws-)).

Fig. 29. ¢*3(0,i A j), ®(6*3(0,inj)) (injeAl.), and a*(W5.), D(a™(W5:)).
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THEOREM 6. Let w: R — P be the canonical projection. Then we have
w(z('@w/lf*ar*a W‘L"*)) = z(@a/lr*af*am‘%

that is, for any tile (x,j*) of TP, A, T*, W), there exist only two tiles
(%, 7)1, (%,7%)y of TR, Age, ", W3+) such that

w(xaj*)l = w(xaj*)2 = (x7j*)
(see Figure 29).

Proor. The t*-tilings of # and £ are generated by the same tiling rule
7*. Thus by Proposition 4 we get the conclusion. O
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