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Abstract. We define new proper homotopy invariants, the proper Lusternik-

Schnirelmann p1-categories p~pp1-cat and p~ppy1 -cat. Then, we prove that, if p~pp1-cat (resp.

p~ppy1 -cat) of a locally path-connected, Hausdor¤, locally compact, and paracompact

space is equal to or less than n, then there is a proper map to a locally finite polyhedron

of dimension nþ 1 that induces an isomorphism of fundamental pro-groups p~pp1 (resp.

p~ppy1 ).

1. Introduction

The L-S category was defined in 1934 in [12] by L. Lusternik and L.

Schnirelmann in the course of their studies on calculus of variations, because it

gives a lower bound of the number of critical points of a smooth real function

on a closed manifold. The L-S category cat X of a space X is the least

number of open subsets contractible in X needed to cover X minus one. It is

a homotopy invariant, and was early studied by Borsuk [2] and Fox [7]. Also,

there is an algebraic counterpart of the L-S category catp1 defined by using

fundamental groups, due to Fox [7]. The L-S p1-category catp1 X of X is the

least number of open subsets p1-contractible in X needed to cover X minus

one, where a subset of X is p1-contractible in X if every loop in the subset

is contractible to a point in X . It has been studied for example in [6], [8]

and [10].

Homotopy invariants, as cat and catp1 , do not su‰ce to study open mani-

folds, and proper homotopy invariants are needed to investigate the behaviour

of these spaces at infinity. Ayala, Domı́nguez, Márquez, and Quintero [1]

have defined a proper version of the L-S category. They have introduced two

proper invariants, p-cat and p-caty, using subsets that are properly contractible

to the image of the half-line Rþ.

In this paper we introduce two new proper homotopy invariants, p~pp1-cat

and p~ppy1 -cat, corresponding to catp1 . Concretely, p~pp1-cat coincides with catp1
for compact spaces. In § 2 we define two pro-groups, the fundamental pro-
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group p~pp1 and the fundamental pro-group at infinity p~ppy1 . In § 3 we define

proper L-S p1-categories corresponding to these two pro-groups, and prove in

§ 4 the proper version (Theorem 4.1) of a result due to Eilenberg-Ganea and

Gómez-González ([6], [8], and [10]): if a locally path-connected, Hausdor¤,

locally compact, and paracompact space has proper L-S p1-category p~pp1-cat

(resp. at infinity p~ppy1 -cat)a n, then there is a proper map into a locally finite

polyhedron (i.e. the underlying space of a locally finite simplicial complex) of

dimension nþ 1 that induces an isomorphism of fundamental pro-groups (resp.

at infinity). Although one might expect to have a locally finite polyhedron

of dimension n as in the non-proper case, we will give an example of 4-

dimensional manifold whose proper p1-categories are 3 but there is no 3-

dimensional locally finite polyhedron verifying the expected property (Example

4.3).

2. Proper maps and pro-groups

Recall that a map between Hausdor¤ locally compact topological spaces

is proper if it is continuous and the inverse image of every compact set is a

compact set. We will denote by P the category of the Hausdor¤ locally

compact topological spaces and proper maps. Basic facts on proper maps can

be found in [3].

We will define the fundamental pro-groups of a space using inverse systems

of fundamental groups of subspaces. The base of our fundamental groups

will not be a point but any set. Now we will give the precise definitions and

facts. Known or straightforward facts will be given as lemmas, remarks, or

propositions without proof.

Definition 2.1. Let X be a topological space and M its subset. We

define the fundamental group of X with base points in M by the family of

groups ~pp1ðX ;MÞ ¼ fp1ðX ; pÞ j p A Mg. Note that we think ~pp1ðX ;qÞ ¼q for

the empty set q.

Definition 2.2. We define G by the category with objects of the form

ðI ; fGi j i A IgÞ, where I is a set and Gi is a group for each i A I ; and mor-

phisms

f : ðI ; fGi j i A IgÞ ! ðJ; fH j j j A JgÞ

that are pairs f ¼ ðj; f f i j i A IgÞ, where j is a map from I to J and

f i : Gi ! H jðiÞ is a homomorphism of groups for each i. We will call j the

index map and f i the component maps of f , respectively. Composition is

defined component-wise,
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ðj; f f i j i A IgÞ � ðc; fg j j j A JgÞ ¼ ðj � c; f f cð jÞ � g j j j A JgÞ

In the sequel we will denote the families of groups simply as fGi j i A Ig.

Proposition 2.3. A continuous map of pairs f : ðX ;MÞ ! ðY ;NÞ induces
a morphism of families of groups ~pp1ð f Þ : ~pp1ðX ;MÞ ! ~pp1ðY ;NÞ given by the

index map f jM : M ! N and the component maps p1ð f Þ : p1ðX ; pÞ !
p1ðY ; f ðpÞÞ for any p of M. Indeed, ~pp1 is a functor from the category of

topological pairs to G.

Definition 2.4. Let G ¼ fGi j i A Ig and H ¼ fH j j j A Jg be two families

of groups. We say that H is a subfamily of G if JH I and H j is a subgroup

of G j for every j of J. If M is a family of subgroups of a group P then cM

will denote the subgroup of P generated by the union of the subgroups of

M. Let f : G ! H be a morphism in G with f ¼ ðj; f f i j i A IgÞ. Also, let

A ¼ fAi j i A I 0g be a subfamily of G and B ¼ fB j j j A J 0g a subfamily of H.

We define:

f ðAÞ ¼ fcf f iðAiÞ j jðiÞ ¼ j; i A I 0g j j A jðI 0Þg;

f �1ðBÞ ¼ fð f iÞ�1ðBjðiÞÞ j i A j�1ðJ 0Þg;

Ker f ¼ f �1ðfY j j A JgÞ ¼ fKer f i j i A Ig; and

Im f ¼ f ðGÞ ¼ fcfIm f i j jðiÞ ¼ jg j j A Im jg;

where Y denotes the trivial group.

Definition 2.5. We say that a non-empty family of groups fGi j i A Ig is

trivial if Gi is the trivial group for every i. Also, we say that a morphism of

families of groups is empty if its domain is the empty family of groups, and we

say that it is null if its component maps are the null morphisms of groups.

Finally, it is trivial if it is null or empty.

Lemma 2.6. A non-empty morphism f ¼ ðj; f f i j i A IgÞ in G is an iso-

morphism i¤ j and f i are bijective for every i.

Definition 2.7. A map of pairs f : ðX ;MÞ ! ðY ;NÞ is a homotopy

equivalence relative to M if there is a map g : ðY ;NÞ ! ðX ;MÞ such that g � f

and f � g are homotopic to the corresponding identity maps relative to M and

N, respectively.

Proposition 2.8. Let X and Y be two topological spaces, and f and g two

homotopic maps from X to Y such that f is injective on a subset M of X.

Then, if ~pp1ð f Þ and ~pp1ðgÞ denote the induced morphisms from ~pp1ðX ;MÞ to

~pp1ðY ; f ðMÞÞ and ~pp1ðY ; gðMÞÞ respectively, there is a morphism of families of
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groups h : ~pp1ðY ; f ðMÞÞ ! ~pp1ðY ; gðMÞÞ such that ~pp1ðgÞ ¼ h � ~pp1ð f Þ and the com-

ponent maps of h are isomorphisms.

Corollary 2.9. The family of groups ~pp1ðX ;MÞ is determined by the

homotopy type of X relative to M.

Now we introduce the inverse systems to define the pro-groups. First we

recall the definition of pro-categories (see [5]).

Definition 2.10. Let C be a category. An inverse system in C is a triple

formed by a directed set L, a family fXl j l A Lg of objects of C, and a family

fplm : Xm ! Xl j la mg of morphisms in C that satisfy the following conditions:

( i ) pll ¼ idXl
for every l of L.

(ii) If la ma n then plm � pmn ¼ pln.

The inverse system will be denoted by ðL; fXlg; fplmgÞ. L is called the index

set and plm the bonding maps.

Definition 2.11. Let X ¼ ðL; fXlg; fplmgÞ and Y ¼ ðG ; fYgg; fqgdgÞ be

two inverse systems in C. A system map from X to Y is a pair formed by

a map y : G ! L and a family of morphisms in C f fg : XyðgÞ ! Yg j g A Gg
satisfying that for each ga d of G there is a l A L such that yðgÞa l, yðdÞa l,

and fg � pyðgÞl ¼ qgd � fd � pyðdÞl. Let Z ¼ ðA; fZag; frabgÞ be another inverse

system in C. Given two system maps f ¼ ðy; fgÞ from X to Y and g ¼ ðj; gaÞ
from Y to Z, their composition g � f is ðy � j; fga � fjðaÞ j a A AgÞ. The identity

map in X is ðidL; fidXl
gÞ. We say that two system maps f ¼ ðy; fgÞ and

f 0 ¼ ðy 0; f 0g Þ from X to Y are equivalent if for each g A G there is a l A L such

that yðgÞa l, y 0ðgÞa l, and fg � pyðgÞl ¼ f 0g � py 0ðgÞl. The above defined re-

lation between system maps is an equivalence relation. The pro-category of

C, whose objects are inverse systems in C and whose morphisms are equiv-

alence classes of system maps, can be defined in the obvious way and denoted

by pro-C.

Also in [5] the category ðC; pro-CÞ with objects ðA;P; f Þ, where A is an

object of C, P is an object of pro-C, and f is a morphism in pro-C from P to

A (regarded as a constant inverse system) is defined.

Definition 2.12. When M ¼ ðN; fMmg; fpmngÞ is an inverse system of

modules we can consider the product
Qy

n¼1 Mn with the module structure given

by the component-wise sum and product, and the shift homomorphism s :Qy
n¼1 Mn !

Qy
n¼1 Mn, defined by sðx1; x2; . . .Þ ¼ ðx1 � p12ðx2Þ; x2 � p23ðx3Þ; . . .Þ.

The kernel of s is the inverse limit lim � M of M and the cokernel

ð
Qy

n¼1 MnÞ=Im s is the first derived limit lim �
1 M of M.

Definition 2.13. Let X be a topological space. An infinity neighbour-

hood of X is any subspace of X whose complement is compact. A system of
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infinity neighbourhoods of X is any non-empty family U of infinity neigh-

bourhoods of X such that 7U ¼q and for any two neighbourhoods U and

V of U there is a neighbourhood W A U whose closure is contained in U VV .

Note that for any infinity neighbourhood V of X there is a U A U con-

tained in V by the condition of a system of infinity neighbourhoods U. Also,

using the local compactness condition it is straightforward that every space of

P has a system of infinity neighbourhoods.

Definition 2.14. Let X be a space of P, M a subset of X , and U a

system of infinity neighbourhoods of X . We define the fundamental pro-group

at infinity of ðX ;M;UÞ, denoted by p~ppy1 ðX ;M;UÞ, by the inverse system in G

with elements ~pp1ðU ;U VMÞ for U A U bonded by the maps induced by the

inclusions. Also, we define the fundamental pro-group of ðX ;M;UÞ as the pair

ð~pp1ðX ;MÞ; p~ppy1 ðX ;M;UÞÞ of ðG; pro-GÞ, and we denote it by p~pp1ðX ;M;UÞ.

Proposition 2.15. The above constructions are functorial, where the do-

main of p~ppy1 and p~pp1 is the category with objects ðX ;M;UÞ as above and a

morphism from ðX ;M;UÞ to ðY ;N;VÞ is simply a proper map of pairs from

ðX ;MÞ to ðY ;NÞ.

Since di¤erent choices of systems of infinity neighbourhoods induce natu-

rally equivalent functors, when we need not distinguish between isomorphic

objects we will write p~ppy1 ðX ;MÞ and p~pp1ðX ;MÞ. Also, we will denote by

p~ppy1 ð f ;MÞ the morphism induced by a proper map f : ðX ;MÞ ! ðY ;NÞ, or

p~ppy1 ð f Þ when M is clear by the context, and analogously for p~pp1. Now we

will prove an algebraic result needed in the proof of Theorem 4.1.

Definition 2.16. A system map f : X ! Y is called a level-preserving map

if X and Y have the same index set L, f is of the form ðidL; f fl : Xl ! YlgÞ
and satisfies fl � plm ¼ qlm � fm for any indices la m, where plm (resp. qlm) is

the bonding map from Xm to Xl (resp. from Ym to Yl).

Lemma 2.17. Let f : G ! H be a level-preserving map in pro-G, where

G ¼ ðL; fGlg; fplmgÞ and H ¼ ðL; fHlg; fqlmgÞ. Suppose that the index maps

of the morphisms of families of groups fl : Gl ! Hl are injective for any l.

Then, f is an isomorphism i¤ for any l

( i ) there is a mb l such that Kerð fmÞHKerðplmÞ and

(ii) there is a nb l such that ImðqlnÞH Imð flÞ.

Proof. It is clear that the conditions are necessary. Let us show that

they are su‰cient. In [14] it is proved that a level-preserving system map is an

isomorphism i¤ for any l there is a nb l and a morphism gln : Hl ! Gl such

that gln � fn ¼ pln and fl � gln ¼ qln. Now, let l A L. Then, there is an index
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mb l such that Kerð fmÞHKerðplmÞ by (i) and an index nb m such that

ImðqmnÞH Imð fmÞ by (ii). Let us define gln : Hl ! Gl.

Let x be an element of a group H j
n of Hn. Since ImðqmnÞH Imð fmÞ and

the index map of fm : Gm ! Hm is injective, there is an unique group Gi
m of Gm

and there is a y A Gi
m (not unique, in general) satisfying that qmnðxÞ ¼ fmðyÞ.

We define glnðxÞ by plmðyÞ. Let us show that the result does not depend on

the choice of y. Let y and y 0 be two elements of Gi
m such that fmðyÞ ¼

fmðy 0Þ ¼ qmnðxÞ. Since fmðy�1y 0Þ is null, we see that plmðy�1y 0Þ is null by (i),

and hence plmðyÞ ¼ plmðy 0Þ. It is easy to show that this defines a morphism

of families of groups that satisfies gln � fn ¼ pln and fl � gln ¼ qln. r

Definition 2.18. Let f ; g : X ! Y be two proper maps. We will say

that f and g are properly homotopic, f Fp g, if there is a homotopy from f to

g that is a proper map. On the other hand, we will write f F g if f and g are

homotopic in the usual sense.

Proposition 2.19. Let X and Y be two non-compact spaces of P, and

f and g two properly homotopic proper maps from X to Y such that f is

injective on a subset M of X that is not contained in any compact subset of X.

The maps p~ppy1 ð f Þ : p~ppy1 ðX ;MÞ ! p~ppy1 ðY ; f ðMÞÞ and p~ppy1 ðgÞ : p~ppy1 ðX ;MÞ !
p~ppy1 ðY ; gðMÞÞ are defined. Then for any system of infinity neighbourhoods V

of Y there is a morphism h from p~ppy1 ðY ; f ðMÞ;VÞ to p~ppy1 ðY ; gðMÞ;VÞ such
that:

( i ) p~ppy1 ðgÞ ¼ h � p~ppy1 ð f Þ as morphisms of pro-groups.

(ii) For any V A V the corresponding map hV sends ~pp1ðV ;V V f ðMÞÞ to

~pp1ðV ;V V gðMÞÞ, and there is a W A V contained in V such that the

component map of hV from p1ðV ; f ðmÞÞ to p1ðV ; gðmÞÞ is an isomorphism

for any m A M V f �1ðWÞ.

There is a similar result for p~pp1 (in this case X and Y may be compact).

Proof of Proposition 2.19. Let F be a proper homotopy from f to

g. We will define W and h. Then, the rest of the proof is straightforward.

Let U be a system of infinity neighbourhoods of X and V an element of

V. We choose an infinity neighbourhood W of Y contained in V as follows:

Take a U A U such that F ðU � ½0; 1�ÞHV . Since F ððX �UÞ � ½0; 1�Þ is com-

pact there is a W of V such that W HV V ðY � F ððX �UÞ � ½0; 1�ÞÞ.
Now we define the component map of hV at f ðmÞ. First, when f ðmÞ AW ,

we see that m A U and thus F ðm; tÞ A V for every t A ½0; 1�. So, we can define

hV ðbÞ ¼ a�1m � b � am A p1ðV ; gðmÞÞ for any loop b of p1ðV ; f ðmÞÞ by using a

path amðtÞ ¼ F ðm; tÞ for every t of ½0; 1�. When f ðmÞ B W we can choose
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a point m 0 of M V g�1ðVÞ, because M is not contained in any compact subset

of X , and we define hV ðbÞ ¼ 0 A p1ðV ; gðm 0ÞÞ for any loop b of p1ðV ; f ðmÞÞ.
r

3. The proper L-S p1-categories

Remember that the Lusternik-Schnirelmann p1-category of a space X is

the least number of open subsets p1-contractible in X needed to cover X minus

one. The condition that a subset A of X is p1-contractible in X can be

reformulated as stating that the map from p1ðA; aÞ to p1ðX ; aÞ induced by

the inclusion is trivial for any point a of A. Analogously, we will use the

fundamental pro-group p~pp1 and the fundamental pro-group at infinity p~ppy1 to

define two new proper homotopy invariants. Since the inclusion maps should

be proper, a subset is called p~pp1-categorical (resp. p~ppy1 -categorical) if the in-

clusion of its closure in X induces a trivial morphism of pro-groups.

Definition 3.1. A morphism in pro-G is null if it has a representative

consisting of null morphisms in G (remember that a morphism in pro-G is an

equivalence class of system maps), and it is trivial if it is null or it has a

representative consisting of empty morphisms in G. A morphism in ðG; pro-GÞ
is trivial if its two component maps are trivial.

Lemma 3.2. Let G ¼ ðL; fGlg; fplmgÞ and H ¼ ðA; fHag; fqabgÞ be two

inverse systems and f : G ! H a system map in pro-G. Then, f is null i¤ for

any a there is a lb jðaÞ such that fa � pjðaÞl is null, where j : A! L is the map

between the index sets. Also, f is trivial i¤ it is null or there is a l such that Gl

is empty.

Note that if X is a space of P and A is a subset of X , then A A P and the

inclusion map from A to X is proper i¤ A is closed in X .

Definition 3.3. Let X be a space of P and A a subset of X . For every

subset M of the closure A of A the inclusion map from A to X induces

morphisms:

iM;U : p~ppy1 ðA;M;U
A
Þ ! p~ppy1 ðX ;M;UÞ

jM;U : p~pp1ðA;M;U
A
Þ ! p~pp1ðX ;M;UÞ

for every system of infinity neighbourhoods U of X , where U
A
¼ fU VA j

U A Ug. We say that A is p~ppy1 -categorical (resp. p~pp1-categorical ) in X if

iM;U (resp. jM;U) is trivial for some U and for every MHA.
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This definition does not depend on the choice of U, by the remark below

Proposition 2.15. Also, for p~ppy1 we can restrict ourselves to base sets M that

are not contained in any compact subset of X , because otherwise iM;U would

be trivial. Finally, let us see that for p~ppy1 and p~pp1 we need only one M, if it

is chosen appropriately, as explained in the following:

Definition 3.4. Let X be a space of P and M a subset of X . We say

that M covers the infinity of X if there is a system of infinity neighbourhoods

U of X such that M intersects every path component of every infinity

neighbourhood of U. Also, M is full in X if it covers the infinity of X and

intersects every path component of X .

It is straightforward that

Proposition 3.5. Let X be a space of P, A a subset of X and M a sub-

set of A. If M covers the infinity of A and the morphism iM : p~ppy1 ðA;MÞ !
p~ppy1 ðX ;MÞ is trivial, then A is p~ppy1 -categorical in X. Also, if M is full in A and

the morphism jM : p~pp1ðA;MÞ ! p~pp1ðX ;MÞ is trivial, then A is p~pp1-categorical

in X.

Lemma 3.6. Let X be a space of P. Then, any subset of a p~pp1-categorical

(resp. p~ppy1 -categorical) subset in X is also p~pp1-categorical (resp. p~ppy1 -

categorical) in X.

Definition 3.7. We define the proper Lusternik-Schnirelmann p1-category

(at infinity) of a space X of P by the least number of open subsets p~pp1-

categorical (resp. p~ppy1 -categorical) in X needed to cover X minus one, and we

will denote it by p~pp1-cat X (resp. p~ppy1 -cat X ). If there is not such a finite

cover, we define that p~pp1-cat X ¼y (resp. p~ppy1 -cat X ¼y). Also, when X is

compact, X itself is a p~ppy1 -categorical subset but it would be better to define

p~ppy1 -cat X ¼ �1 exceptionally.

Remark 3.8. The p~ppy1 -category of any non-compact space of P is equal

to the p~ppy1 -category of the closure of any of its infinity neighbourhoods.

Proposition 3.9. p~pp1-cat and p~ppy1 -cat are proper homotopy invariants.

Proof. We will prove that p~ppy1 -cat is a proper homotopy invariant, the

proof for p~pp1-cat is analogous. Let X and Y be two spaces of the same

proper homotopy type. There are f : X ! Y and g : Y ! X such that

f � gFp idY and g � f Fp idX . Note that X is compact i¤ so is Y , and thus

we may assume that X and Y are non-compact.

If p~ppy1 -cat Y a n, then Y can be covered by nþ 1 open subsets A0; . . . ;An

that are p~ppy1 -categorical in Y . For every integer k between 0 and n there is

a commutative diagram:
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f �1ðAkÞ ����!fk
Ak???y

V
i

???y
V

j

X �������!f
Y �������!g

X

Fp

idX

where Ak denotes the closure of Ak, i and j are inclusion maps, fk denotes

f j
f �1ðAkÞ and the symbol Fp means that the corresponding part of the diagram

is commutative up to proper homotopy.

Taking the fundamental pro-groups at infinity we obtain:

p~ppy1 ð f �1ðAkÞ;MÞ ���!ð fkÞ� p~ppy1 ðAk; f ðMÞÞ???yi�

???y j�

p~ppy1 ðX ;MÞ ������!f�
p~ppy1 ðY ; f ðMÞÞ ���!g� p~ppy1 ðX ; gð f ðMÞÞÞx???h

p~ppy1 ðX ;MÞ
 ������������

������������
���

id

where c� ¼ p~ppy1 ðcÞ for any map c, M is a subset of f �1ðAkÞ not contained

in any compact subset and h is the map defined in Proposition 2.19 for a

system of infinity neighbourhoods V of X . Since j� is null, j� � ð fkÞ� is also

null. Then, g� � f� � i� must be null and so is h � i�. Since h � i� is null, for

any U A V there is a V HU such that hU � ði�ÞU � pUV is null by Lemma 3.2,

where pUV is the bonding map of p~ppy1 ð f �1ðAkÞ;MÞ determined by U V f �1ðAkÞ
and V V f �1ðAkÞ. Moreover, by Proposition 2.19 there is an infinity neigh-

bourhood W of V contained in V such that the component maps of hV
corresponding to base points in M VW are isomorphisms. And since M VW

is not empty, ði�ÞU � pUW is null, which means that i� is null. Thus, f �1ðAkÞ
is p~ppy1 -categorical in X and we have proved that P-cat X a n. r

Proposition 3.10. If ðK ; jK jÞ is a finite-dimensional locally finite simplicial

complex, then p~pp1-catjK ja dim K .

Proof. Suppose that the dimension of K is n. We will construct an open

cover fA; . . . ;Ang of jK j by nþ 1 subsets that are p~pp1-categorical in jK j. Let i

be an integer between 0 and n. First, let Bi be the 0-dimensional subcomplex

formed by the barycenters of the i-simplexes of K . Next, let Ci be the reg-

ular neighbourhood of Bi in the second barycentric subdivision sd2ðKÞ of K .
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Finally, let Ai be the interior of the regular neighbourhood of Ci in the third

barycentric subdivision sd3ðKÞ of K . Since the closure of Ai is a disjoint union

of sets that are p1-contractible in jK j, Ai is p~pp1-categorical in jK j. Since

fA0; . . . ;Ang is an open cover of jK j, the result holds. r

It is straightforward that catp1 X a p~pp1-cat X b p~ppy1 -cat X for any X of

P. An example for which p~pp1-cat is greater than p~ppy1 -cat is the wedge of the

circumference and the half-line Rþ ¼ ½0;yÞ. And p~pp1-cat is greater than catp1
for the plane. Let us recall a little about the proper categories defined by

Quintero and others in [1] and [4].

Definition 3.11. Let X be a non-compact space of P. A closed subset

A of X is called properly inessential in X if the inclusion map i : A! X

factorizes up to proper homotopy through the half-line. That is, there are

proper maps f : A! Rþ and g : Rþ ! X such that g � f Fp i. Note that

properly inessential subsets are closed. A subset of X is called properly cate-

gorical in X if it is contained in a closed subset of X which is properly

inessential in X . Any proper map from the half-line to a space is called a

ray. A properly based space is a pair ðX ; aÞ where a is a ray in X .

Definition 3.12. Let X be a non-compact space of P. The proper L-S

category p-cat X of X is the least number of open subsets properly cate-

gorical in X needed to cover X minus one. The proper L-S category at infinity

p-caty X of X is the least number of open subsets properly categorical in X

whose union is an infinity neighbourhood of X minus one.

Note that the definitions in [1] and [4] are the number of elements of the

covers defined above, so they are equal to the categories defined above plus

one.

It is easy to prove that p~pp1-cat X a p-cat X and p~ppy1 -cat X a p-caty X

for any non-compact space X of P (for the last inequality, see Remark 3.8).

A space for which the inequalities are not equalities is obtained by pasting to

the half-line a copy of the 2-sphere at each natural number.

4. Main theorem

Now we will prove the main theorem of this paper, a proper version of a

result due to Eilenberg-Ganea and Gómez-González (see [6], [8], and [10]).

Theorem 4.1. Let X be a Hausdor¤, locally compact, paracompact and

locally pathwise-connected space and P one of the functors p~ppy1 or p~pp1. If

P-cat X a n then there is a locally finite simplicial complex ðL; jLjÞ of

dimensiona nþ 1 and a proper map f : X ! jLj such that Pð f Þ : PðX ;MÞ !
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PðjLj; f ðMÞÞ is an isomorphism for every non-empty subset M of X for which

f is injective on M. Also, there is a full subset of X on which f is injective.

Before giving the proof, we remark the following:

Remark 4.2. Let X be a Hausdor¤, locally compact, paracompact and

locally pathwise-connected space, ðL; jLjÞ a locally finite simplicial complex of

dimensiona n, f : X ! jLj a proper map and M a subset of X such that

Pð f Þ : PðX ;MÞ ! PðjLj; f ðMÞÞ is an isomorphism for P ¼ p~ppy1 or p~pp1. If

M covers the infinity of X and P ¼ p~ppy1 , then p~ppy1 -cat X a n; and if M is full

in X and P ¼ p~pp1, then p~pp1-cat X a n.

Our main theorem is not the converse of this remark but it is the best

possible result due to Example 4.3.

Proof of Remark 4.2. We will prove this remark for P ¼ p~ppy1 , the proof

for p~pp1 is analogous. Since the result is trivial for compact spaces, we may

assume that X is not compact. Let us show that p~ppy1 -cat X a p~ppy1 -catjLj.
Let fAi j 0a ia p~ppy1 -catjLjg be an open cover of jLj by p~ppy1 -categorical sets.

It su‰ces to prove that the sets f �1ðAiÞ form an open cover of X by p~ppy1 -

categorical sets. Let gi : f
�1ðAiÞ ,! X be the inclusion map and Ni any subset

of f �1ðAiÞ not contained in a compact subset. Since Ai is p~ppy1 -categorical in

jLj, the morphism from p~ppy1 ðAi; f ðNiÞÞ to p~ppy1 ðjLj; f ðNiÞÞ induced by the

inclusion map is null, and thus the composition p~ppy1 ð f ;NiÞ � p~ppy1 ðgi;NiÞ is null.
We take any system UL of infinity neighbourhoods of jLj and put U ¼

f f �1ðUÞ jU A ULg. Then, U is a system of infinity neighbourhoods of X and

p~ppy1 ð f Þ is level-preserving. Since p~ppy1 ð f ;MÞ : p~ppy1 ðX ;MÞ ! p~ppy1 ðjLj; f ðMÞÞ
is an isomorphism, it satisfies the condition (i) of Lemma 2.17 for U and UL.

So, for U1 A U there is a UL
2 A UL such that for any loop a in U2 ¼ f �1ðUL

2 Þ
with base point in M, if f � a is null-homotopic in UL

2 then a is null-homotopic

in U1. Let us prove that p~ppy1 ð f ;NiÞ also satisfies the condition (i) of Lemma

2.17 for U and UL. Since M covers the infinity of X , there is a system of

infinity neighbourhoods U 0 of X such that M intersects any path-component

of every element of U 0. Moreover, there are U 02 A U 0 and UL
3 A UL such that

U3 HU 02 HU2, where U3 ¼ f �1ðUL
3 Þ. Let b be a loop in U3 with base point

in Ni such that f � b is null-homotopic in UL
3 . There is a path g in U 02

from the base point of b to some point of M. Since f � ðg�1 � b � gÞ is null-

homotopic in UL
2 , g�1 � b � g is null-homotopic in U1, which implies that b is

null-homotopic in U1 and thus the condition (i) holds for p~ppy1 ð f ;NiÞ.
Now, let us show that p~ppy1 ðgi;NiÞ is null. Let U1 A U. Since p~ppy1 ð f ;NiÞ

satisfies the condition (i) of Lemma 2.17, there is a UL
2 A UL such that U2 ¼

f �1ðUL
2 Þ is contained in U1 and for any loop a in U2 with base point in

Ni, if f � a is null-homotopic in UL
2 then a is null-homotopic in U1. Since
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p~ppy1 ð f ;NiÞ � p~ppy1 ðgi;NiÞ is null, there is a U3 A U contained in U2 such that

f � b is null-homotopic in UL
2 for any loop b in f �1ðAiÞVU3 with base point

in Ni. Applying the result just proved in the above paragraph, b must be

null-homotopic in U1, which implies that p~ppy1 ðgi;NiÞ is null and thus the set

f �1ðAiÞ is p~ppy1 -categorical in X .

Hence, p~ppy1 -cat X a p~ppy1 -catjLja dim La n by Proposition 3.10. r

Proof of Theorem 4.1. We may assume that X is not compact. In fact,

if X is compact, p~ppy1 -cat X ¼ �1 and the map to the one point space induces

an isomorphism of pro-groups p~ppy1 , and we see easily that p~pp1-cat X ¼ catp1 X

and thus the theorem for the non-proper case can be applied. First, we will

prove the theorem for the s-compact spaces in steps one and two, and then for

paracompact spaces in step three. In the s-compact case; in step one, we will

define ðL; jLjÞ and f , and in step two we will prove that f induces an iso-

morphism of pro-groups.

Now, let us suppose that X is s-compact and P-cat X a n.

Step one: Definition of ðL; jLjÞ and f .

Let U ¼ fUm jm A Ng be a countable system of infinity neighbourhoods

of X such that Umþ1 HUm for any m and U1 ¼ X . In fact, such a system

exists when X is s-compact.

We define the sets:

G1 ¼ X �U2

Gm ¼ Um�1 �Umþ1 ðEmb 2Þ:

Note that Gm does not intersect Gm 0 if m and m 0 are not consecutive. Since

P-cat X a n, there is an open cover fAi j 0a ia ng of X by subsets that are

P-categorical in X . Let fC G
m jm A Ng and fC A

i j 0a ia ng be partitions of

unity of X subordinate to the covers fGm jm A Ng and fAi j 0a ia ng, that is,
the supports of C G

m and C A
i are contained in Gm and Ai, respectively, for any i

and m. The sets Gm VAi form an open cover of X and the products C G
m �C A

i

form a partition of unity subordinate to it.

At first we will reconstruct the cover and the partition of unity so that

every map of the partition is positive in every point of its corresponding set of

the cover, as in [10].

For any non-empty subsets G of N and S of f0; . . . ; ng we put:

~GGG ¼ fx A X jC G
p ðxÞ > 0;C G

p ðxÞ > C G
q ðxÞ ðEp A G ; Eq B GÞg and

~AAS ¼ fx A X jC A
i ðxÞ > 0;C A

i ðxÞ > C A
j ðxÞ ðEi A S; Ej B SÞg:
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Note that G is of the form fkg or fk; k þ 1g; otherwise ~GGG ¼q. We

define DS
G ¼ ~GGG V ~AAS for any G and S. The sets DS

G form a locally finite open

cover D of X . For any point x of X and any G and S as above we define:

jG
G ðxÞ ¼ maxfminfC G

m ðxÞ jm A Gg �maxfC G
m ðxÞ jm B Gg; 0g

jA
S ðxÞ ¼ maxfminfC A

i ðxÞ j i A Sg �maxfC A
i ðxÞ j i B Sg; 0g

jS
GðxÞ ¼ jA

S ðxÞ � jG
G ðxÞ FS

GðxÞ ¼
jS
GðxÞP

D;T jT
D ðxÞ

where the sum of the last formula is taken over all the sets DT
D of the cover

D. The maps FS
G form a partition of unity subordinate to D that satisfies the

property: FS
G is positive in any point of DS

G and null outside DS
G .

Next we need the sets of the cover to be path-connected. For any DS
G A D

and any point x A DS
G we define V S

G ðxÞ by the path component of DS
G that

contains x; we define V S
G ðxÞ ¼q when x B DS

G . Let V ¼ fV S
G ðxÞ jDS

G A D;

x A DS
Gg, where we distinguish V S

G ðxÞ and V S 0

G 0 ðxÞ when ðG ;SÞ0 ðG 0;S 0Þ even if

V S
G ðxÞ ¼ V S 0

G 0 ðxÞ as a subset of X . Since X is locally path-connected, V is an

open cover of X .

Let V be a path component of DS
G . Since V is open in X , FV defined by

FV ðxÞ ¼ FS
GðxÞ if x A V

0 otherwise

�

is continuous. These functions form a partition of unity subordinate to V.

Moreover, we need a cover that has a locally finite nerve. For any index

G there is a finite subfamily VG of V that covers the closure of ~GGG , because

this set is compact. Let W be the union of the families VG for all G . It is

clear that W is an open cover of X and that any element of W only intersects

a finite number of other elements of W, and thus its nerve is locally finite.

Next, we will define a subcover V 0 of W such that any V A V 0 contains a

point that does not belong to other elements of V 0. We will use this property

to construct a full subset of X on which f is injective.

Let us define V 0. Since W is countable, we can give an order to their ele-

ments and write W ¼ fVk j k A Ng. We define V 0 as a subfamily fVki j i A Ng
of W recursively. Let Vk1 be the first element of W that contains a point

that does not belong to Vk for any k > k1. This Vk1 must exist, because

only a finite number of elements of W intersect each set ~GGG . It is clear that

fVk j kb k1g is a cover of X . Next, suppose that we have defined Vkj for any

ja i, that the family fVkj j 1a ja igU fVk j k > kig is a cover of X and that

for any ja i the subset Vkj contains a point that does not belong to any other

element of this cover. We define Vkiþ1 by the first element of this cover such
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that kiþ1 > ki and Vkiþ1 contains a point that does not belong to any element

of fVkj j 1a ja igU fVk j k > kiþ1g. This set must exist, again because only a

finite number of elements of W intersect each set ~GGG . Thus we have defined

V 0.

The partition of unity subordinate to V 0 is as follows. For any x of X

and V A V 0 we define:

F 0V ðxÞ ¼
FV ðxÞP
W FW ðxÞ

where the sum is taken over each element W of V 0 that contains x.

Let ðNV 0 ; jNV 0 jÞ be the nerve of V 0. We define a map ~ff : X ! jNV 0 j as
follows. For any point x of X let fV1; . . . ;Vkg be the elements of V 0 that

contain x. Then, ½V1�; . . . ; ½Vk� are the vertices of a simplex of NV 0 , where

we use square brackets to distinguish vertices from path components. We

define ~ff ðxÞ by the point of this simplex given by the barycentric coordinates

F 0V1
ðxÞ½V1� þ � � � þF 0Vk

ðxÞ½Vk�. This map is well-defined because V 0 is locally

finite, and continuous by the definition of topology on jNV 0 j.
The dimension of ðNV 0 ; jNV 0 jÞ may be greater than nþ 1. Indeed, in the

following paragraphs we will show that 2nþ 1 is an upper bound. But we

need to define a simplicial complex ðL; jLjÞ of dimensiona nþ 1 and a proper

map from jNV 0 j to jLj. Since V 0 is a subcover of V, let us study the di-

mension of the nerve ðNV; jNVjÞ of V, that is, estimate the maximum number

of elements of V that have non-empty intersection.

First, note that if ~AAS intersects ~AAS 0 then SHS 0 or S 0HS, for if there are i

of S � S 0 and j of S 0 � S, then for any x A ~AAS V ~AAS 0 the inequalities C A
i ðxÞ >

C A
j ðxÞ and C A

j ðxÞ > C A
i ðxÞ must hold, which is impossible. Analogously it

can be proved that if ~GGG intersects ~GGG 0 then G HG 0 or G 0HG . By induction,

if the intersection ~AAS1
V � � �V ~AASk

is not empty, then there is a permutation

fi1; . . . ; ikg of f1; . . . ; kg such that Si1 H � � �HSik . Note that in the case of the

sets of the form ~GGG , the intersection of three distinct sets is always empty.

Now, let V S
G ðxÞ and V S 0

G 0 ðxÞ be two elements of V with non-empty in-

tersection. Since DS
G VDS 0

G 0 ¼ DS
G VDS

G 0 VDS 0
G VDS 0

G 0 by the definition of the

elements of D, the intersection V S
G ðxÞVV S

G 0 ðxÞVV S 0
G ðxÞVV S 0

G 0 ðxÞ is not empty.

Applying induction it can be seen that for any point x of X the intersection of

the elements of V that contain x is a set of the form:

( i ) V S1

G ðxÞV � � �VV
Sp

G ðxÞ or

(ii) V S1

G ðxÞV � � �VV
Sp

G ðxÞVV S1

G 0
ðxÞV � � �VV

Sp

G 0
ðxÞ

where S1 W � � �WSp and G WG 0. Since the sets Si are contained in f0; . . . ; ng
for any i we see that pa nþ 1. Also, the above result implies that every

simplex of NV is a face of a simplex corresponding to the form (i) or (ii).
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Thus, any simplex of NV is a face of a simplex whose dimension is at most

2nþ 1, and hence dim NV a 2nþ 1 and dim NV 0 a 2nþ 1.

To define ðL; jLjÞ we will define the space jLj at first and afterwards

triangulate it. We will define jLj as a quotient space of jNV 0 j by an equiv-

alence relation using a map h from jNV 0 j to a topological space jCj that we

construct as follows:

Consider the family of the sets of the form fkg or fk; k þ 1g with k

any natural number. We define the abstract simplicial complex CG by the

1-dimensional complex with vertices the elements of this family and with 1-

simplices hG ;G 0i where G HG 0. Also, we define the abstract simplicial com-

plex CS with the non-empty subsets of f0; . . . ; ng as vertices and with the sets

fS1; . . . ;Sig such that S1 H � � �HSi as simplices. This complex is isomorphic

to the barycentric subdivision of the canonical n-simplex, and thus can be

embedded in Rn. Indeed, if ha0; . . . ; ani is the canonical n-simplex, the map

that sends a vertex S ¼ f j1; . . . ; jkg of CS to the barycenter of haj1 ; . . . ; ajki in

Rn is an isomorphism. On the other hand, CG can be linearly embedded in

Rþ by mapping the vertex G ¼ fkg to 2k � 1 and the vertex G ¼ fk; k þ 1g
to 2k for any k. We define the topological space jCj by the union of the

cylinders e� r of Rnþ1 such that e A CS and r A CG .

We define a piecewise linear map h : jNV 0 j ! jCj by hð½V S
G ðxÞ�Þ ¼ ðS;GÞ A

jCjHRnþ1 for any vertex ½V S
G ðxÞ�. In fact, the images of the vertices of any

simplex s ¼ hV S1

G1ðxÞ; . . . ;V
Sk

GkðxÞi of NV 0 by h are vertices of a cylinder of jCj,
because ~AAS1

V � � �V ~AASk
0q and ~GGG1

V � � �V ~GGGk
0q, and thus we can extend

h linearly to any point of s.

Now, we identify two points x, y of jNV 0 j and write xA y if they belong

to the same simplex of NV 0 and hðxÞ ¼ hðyÞ. But A is not an equivalence

relation, and thus we take the equivalence relation @ induced by A. This

equivalence relation defines a quotient topological space jLj. We define g by

the canonical projection from jNV 0 j to jLj and f ¼ g � ~ff . Then, there is a

unique continuous map ~hh such that the following diagram is commutative:

X ���!~ff jNV 0 j ���!h jCjHRnþ1

g

???y
jLj

f  ���
�����

�����
���!
~hh

We will triangulate jCj appropriately and then use ~hh to triangulate jLj.
For any simplex s A NV 0 the restriction of ~hh to gðsÞ is injective. Also hðsÞ
is known to be a convex hull inside a cylinder. We will define a triangulation

C of jCj that satisfies the following property: for any cylinder hS1; . . . ;Spi�
hG ;G 0i, the convex hull of any subset of fS1; . . . ;Spg � fG ;G 0g is the un-
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derlying space of a subcomplex of C. Thus, each hðsÞ will be the underlying

subspace of a subcomplex of C.

We triangulate each cylinder of jCj by an induction on dimension. Any

cylinder of dimension 1 is a 1-simplex, and thus it is already triangulated.

Now suppose that all the cylinders of dimensionam have been triangulated

and the triangulations agree in the intersection of every pair of cylinders.

Let e� hG;G 0i be an ðmþ 1Þ-dimensional cylinder of jCj. For each m-

dimensional cylinder r� hG ;G 0i of qe� hG ;G 0i we form two cone complexes

with vertices ðS;GÞ and ðS;G 0Þ respectively, where S is the vertex of e that does

not belong to r. We obtain 2mþ 2 cone complexes contained in e� hG ;G 0i.
The intersection of two simplices of di¤erent complexes is the convex hull of

a finite set of points of Rnþ1 (see [16], 2.6). If we form all the possible

intersections of pairs of simplices of the cone complexes, we obtain a family of

convex hulls. We can triangulate all these convex hulls, without introducing

new vertices, to form a triangulation of e� hG;G 0i that contains the cone

complexes above defined and the simplices e� fGg and e� fG 0g as sub-

complexes (see [16], 2.8 (5) and 2.9). The union of the simplicial complexes of

each mþ 1-dimensional cylinder form a simplicial complex. By induction this

defines a triangulation of jCj that satisfies the desired property.

Now we define L. Let s be a simplex of NV 0 and a a simplex of C

such that aH hðsÞ. The restriction of ~hh to gðsÞ, ~hhjgðsÞ : gðsÞ ! hðsÞ, is bijective
and continuous. Since gðsÞ is compact and jCj is Hausdor¤, it is a homeo-

morphism. Wedefine as by the inverse imageof aby ~hhjgðsÞ. Wedenote the inverse

map of ~hhjas : as ! a by ĥhs
a . We will show that the family of maps fĥhs

a ; a! as j
a A C; s A NV 0 ; aH hðsÞg define a D-complex structure on jLj, that is:

( i ) The restriction of ĥhs
a to a

�
is injective for any map ĥhs

a of the family, and

for each point p A jLj there is a unique map ĥhp (¼ ĥhs
a for some a and s)

of the family such that ĥhpða�Þ contains p.

( ii ) For any map ĥhs
a and any face b of a the restriction of ĥhs

a to b belongs to

the family.

(iii) jLj has the weak topology with respect to the family of subsets f~aas j a A C;

s A NV 0 ; aH hðsÞg.
Here a

�
is the interior of the simplex a. Note that a map of this family may

correspond to several pairs of simplices ða; sÞ: for example, ĥhs
a ¼ ĥht

a if t is a

face of s. The condition (i) states that the map ĥhs
a such that p A ĥhs

a ða
�Þ must be

unique, not the simplex s. In fact, we will see that two maps ĥhs
a and ĥht

b are

equal i¤ ĥhs
a ða
�Þ ¼ ĥht

bðb
�
Þ. The second barycentric subdivision of a D-complex is

a simplicial complex (see [11] for details), by which we will define L. We will

check the conditions (i), (ii) and (iii) above.

Since each map ĥhs
a is injective, its restriction is also injective, thus the first

statement of (i) holds. The condition (ii) is also trivial, because the restriction of
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ĥhs
a to b is ĥhs

b . Before concluding the proof of (i) we will show that the sets gðsÞ
form a locally finite closed cover of jLj in order to prove the condition (iii).

To prove that gðsÞ is closed in jLj for any simplex s A NV 0 , it su‰ces to

show that g�1ðgðsÞÞ is compact, because g is a quotient map and jNV 0 j is
Hausdor¤. To do this we will decompose g�1ðgðsÞÞ as a finite union of com-

pact sets. For any subset B of jNV 0 j let xðBÞ be the set of the points of jNV 0 j
related to the points of B by the relation A used to define jLj. Since x

commutes with the union operator, xðBÞ ¼6
t
xðBV tÞ, where t ranges over

the simplices of NV 0 . By the definition of @, the equivalence relation gen-

erated by A, g�1ðgðBÞÞ ¼6
kb0

xkðBÞ, where xk denotes the composition of x

with itself k times. Let us show that if B ¼ s this union is finite and the sets

xkðsÞ are compact, which implies that g�1ðgðsÞÞ is compact. Let K be a com-

pact subset of jNV 0 j. If t is a simplex of NV 0 , xðK V tÞ is compact, because it

is the intersection of h�1ðhðK V tÞÞ and the union of the simplices that contain

t. And since K only intersects a finite number of simplices of NV 0 , xðKÞ is
compact. Thus, applying induction, xkðsÞ is compact for any k. Now let us

check that there is an l such that xkðsÞ ¼ x lðsÞ for any kb l, and then the

above union is finite.

Note that xðBÞIB and hence xkðBÞI x lðBÞ for kb l. Since x com-

mutes with the union operator, xkðsÞ is the union of the sets xðxð� � � xðxðsV t1Þ
V t2ÞV � � �ÞV tkÞ where t1; . . . ; tk are simplices of NV 0 . If xð� � � xðsV t1ÞV � � �
V tkÞ0q then each point of this set is equivalent by @ to points of s

and points of ti for any i by the definition of x, and thus hðtiÞV hðsÞ0q
for any i. There is only a finite number l of simplices t A NV 0 such that

hðtÞV hðsÞ0q, because hðtÞ and hðsÞ must be contained in two cylinders

of jCj with non-empty intersection, and then the elements of V 0 corre-

sponding to the vertices of t must be contained in some compact subset of

X . Now let us prove that xðxð� � � xðBV t1ÞV � � �V tiÞV t1ÞH xðBV t1Þ for any

BH jNV 0 j and ib 1. Indeed, xð� � � xðBV t1ÞV � � �V tiÞH h�1ðhðBV t1ÞÞ, because
the points of xð� � � xðBV t1ÞV � � �V tiÞ are equivalent to points of BV t1. Thus

h�1ðhðxð� � � xðBV t1ÞV � � �V tiÞV t1ÞÞH h�1ðhðh�1ðhðBV t1ÞÞV t1ÞÞ

H h�1ðhðBV t1ÞÞ

and by taking the intersection with the union of the simplices that contain t1,

the result holds. Let k > l and let t1; . . . ; tk be simplices of NV 0 such that

xð� � � xðsV t1ÞV � � �V tkÞ0q. Since k > l, there are i and j such that ti ¼ tj ,

with j > i, and thus we see that xðxð� � � xðxð� � � xðsV t1ÞV � � �ÞV tiÞV � � �ÞV tjÞ is
contained in xðxð� � � xðsV t1ÞV � � �ÞV tiÞ by taking

B ¼ xðxð� � � xðsV t1ÞV � � �ÞV ti�1Þ.
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It follows that xð� � � xðsV t1ÞV � � �V tkÞ is contained in

xð� � � xðxð� � � xðsV t1ÞV � � �V tiÞV tjþ1ÞV � � �V tkÞ.

Hence, xkðsÞH xk�jþiðsÞ. If k � j þ i > l, repeat the argument. Then, we see

that xkðsÞH x lðsÞ. Thus, we have proved that gðsÞ is closed in jLj.
Next we will prove that the cover fgðsÞ j s A NV 0 g is locally finite. Any

point of jLj is contained in the preimage of the simplicial star of a vertex of C

by ~hh. Remember that the simplicial star Stðp;CÞ of a point p of jCj is an

open subset defined by the finite union of the interiors of the simplices of C

that contain p. Let a be a simplex that contains p. If s is a simplex of NV 0

such that gðsÞV ~hh�1ða�Þ0q then hðsÞV a
�
0q, which implies that aH hðsÞ,

because hðsÞ is the underlying space of a subcomplex of C. But if hðsÞ and
hðtÞ contain a then hðsÞV hðtÞ 6¼q, and thus there is only a finite number of

simplices s such that gðsÞ intersects ~hh�1ðaÞ. Hence, only a finite number of

sets of the cover fgðsÞ j s A NV 0 g intersect the preimage of the star, and thus the

cover is locally finite.

Now, we can prove the condition (iii), that a set F is closed in jLj i¤
F V as is closed in as for any as. The necessity is obvious. For the su‰-

ciency, suppose that F V as is closed in as for any as. Then F V as is also

closed in gðsÞ, because as is closed in gðsÞ. And since the sets gðsÞ form a

locally finite closed cover of jLj, F is closed.

Finally, let us prove the second part of (i). First, let us show that such a

map exists. Let p be a point of jLj. There is a simplex s of NV 0 such that

p A gðsÞ, because fgðsÞ j s A NV 0 g is a cover of jLj. On the other hand, there

is a simplex a of C such that ~hhðpÞ A a
�
. Since ~hhðpÞ A hðsÞV a

�
, we see that

aH hðsÞ and hence p A ĥhs
a ða
�Þ.

If a is a simplex of C and s a simplex of NV 0 such that a
�
V hðsÞ0q then

there is a face r of s such that a
�H hðr�Þ. In fact, if a

�
intersects hðsÞ then

aH hðsÞ. If a
�Q hðs�Þ then a

�
intersects hðqsÞ, thus there is a proper face r 0 of

s such that a
�
intersects hðr 0Þ, and hence aH hðr 0Þ. If a

�Q hðr�0Þ we apply the

same argument to r 0, and after some repetitions of the argument we obtain the

desired face r.

Now, let us check the uniqueness of ĥhs
a . We prove that if two images

ĥhs
a ða
�Þ and ĥht

bðb
�
Þ have non-empty intersection then ĥhs

a ¼ ĥht
b. If ĥhs

a ða
�Þ intersects

ĥht
bðb
�
Þ, then taking the images by ~hh, a

�
must intersect b

�
, and thus a ¼ b. We

may assume that a
� H hðs�Þ, for if a

�Q hðs�Þ then there is a face s 0 of s such

that a
�H hðs� 0Þ, and since gðs 0ÞH gðsÞ, we see that as ¼ as 0 , which implies that

ĥhs
a ¼ ĥhs 0

a , and thus we can redefine s by s 0. Similarly, we may assume that

a
�H hðt�Þ.

Then, we can prove that ĥhs
a ða
�Þ ¼ ĥht

aða
�Þ. It su‰ces to show that ĥhs

a ða
�Þ

is contained in ĥht
aða
�Þ; the other inclusion follows in the same way. Since
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ĥhs
a ða
�ÞV ĥht

aða
�Þ0q, there are two equivalent points xs A s and xt A t such that

hðxsÞ ¼ hðxtÞ A a
�
. Now we prove that for any ys A s such that hðysÞ A a

�
there

is a yt A t equivalent to ys. In fact, since xs @ xt, there are points z1; . . . ; zm
such that xsAz1A � � �AzmAxt. Thus, there are simplices e1; . . . ; em�1 such

that z1 A sV e1, ziþ1 A ei V eiþ1 for any i, and zm A em V t. Since a
�

intersects

hðei V eiþ1Þ for any i, a
�H hðei V eiþ1Þ. Analogously, a

�
is contained in hðsV e1Þ

and hðem�1 V tÞ. Thus, there are points w1 A sV e1, wm A em�1 V t and wiþ1 A
ei V eiþ1 for any i such that hðw1Þ ¼ hðwiþ1Þ ¼ hðwmÞ ¼ hðysÞ. Thus, ysAw1

A � � �Awn, and if we define yt ¼ wm, the result holds.

Since gðsÞ is closed in jLj, the closure of ĥhs
a ða
�Þ in jLj is equal to its closure

in gðsÞ. And since ~hhjgðsÞ is an homeomorphism, this closure is equal to the

inverse image by this map of the closure of a
�
in hðsÞ, that is a. Thus, the

closure of ĥhs
a ða
�Þ in jLj is as. Analogously, the closure of ĥht

aða
�Þ in jLj is at.

Thus, as ¼ at, which implies that ĥhs
a ¼ ĥht

a , by the definition of these maps.

Hence we have defined a simplicial complex L. Also, L is locally finite,

because fgðsÞ j s A NV 0 g is a locally finite cover of jLj and each gðsÞ only

contains a finite number of simplices of L. We define f ¼ g � ~ff . It is con-

tinuous. We will prove that g and ~ff are proper and thus f is proper. The

map from g�1ðgðsÞÞ to gðsÞ that coincides with g on any point of g�1ðgðsÞÞ is
proper, because g�1ðgðsÞÞ is compact. Since fgðsÞ j s A NV 0 g is a locally finite

closed cover of jLj, g is proper, by Proposition 3 of I.72 of [3]. Similarly, since

the cover of jNV 0 j formed by its closed stars is locally finite and the inverse

image by ~ff of any closed star is compact (because it is closed and contained in

some X �Uj), ~ff is proper. Thus, f is proper. Also, ~hh�1ðhðsÞÞ is compact for

any simplex s of NV 0 , because it is contained in a finite union of sets of the

form gðtÞ, where t is a simplex of NV 0 . And since fhðsÞ j s A NV 0 g is a locally

finite closed cover of ~hhðjLjÞ, the map from jLj to ~hhðjLjÞ that coincides with
~hh in every point is proper. Hence, ~hh is proper, because ~hhðjLjÞ ¼ hðjNV 0 jÞ is

closed in jCj.
Now, let us show that there is a subset M of X that is full and such that f

is injective on M. For every V A V 0 we take a point xV of V that does not

belong to any other element of V 0. We define M ¼ fxV jV A V 0g. Since M

has points in any element of V 0, it is full in X . On the other hand, since
~ff ðxV Þ ¼ ½V � and g is injective on the vertices of NV 0 , f is injective on M.

This concludes step one. In step two we will need the following

Assertion: The inverse image g�1ðStðp;LÞÞ of the simplicial star of any

vertex p of L in L is path-connected.

Note that the image by ~hh of a simplex of L is not a simplex of C but that

of its second barycentric subdivision. Hereafter we will use the notation as for

a simplex of L, where s is a simplex of NV 0 and a is a simplex of the second
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barycentric subdivision of C contained in hðsÞ such that ~hhðasÞ ¼ a, although we

used the notation as for a simplex a of C in the step one above. Let Stðp;LÞ
be the simplicial star of a vertex L. It is a union of sets of the form as � bs
such that p is a vertex of as and bs is the simplex spanned by the vertices of as
di¤erent from p. To prove that g�1ðStðp;LÞÞ is path-connected, it su‰ces to

prove that g�1ðas � bsÞ is path-connected, because these inverse images have

non-empty intersection, namely, g�1ðpÞ.
First, we see that g�1ðas � bsÞ ¼ g�1ðgðh�1ða� bÞV sÞÞ for any simplices

as and bs as above. In fact, if x A g�1ðas � bsÞ then gðxÞ A as � bs. Thus

gðxÞ A gðsÞ and also hðxÞ A a� b, by taking the images by ~hh. This implies that

there is a y A s such that gðyÞ ¼ gðxÞ and hðyÞ A a� b. On the other hand, if

x A h�1ða� bÞV s then gðxÞ A gðsÞ and hðxÞ A a� b. Thus, gðxÞ A as � bs.

Next, let us prove that g�1ðgðBÞÞ is path-connected for any path-connected

subset B of jNV 0 j. Let x and y be two points of jNV 0 j such that xA y.

Then, hðxÞ ¼ hðyÞ and there is a simplex t that contains x and y. The points

x and y belong to tV h�1ðhðxÞÞ, which is convex in t because it is equal to

ðhjtÞ
�1ðhðxÞÞ and hjt is linear. Thus x and y can be joined by a linear path

formed by pointsAx. This implies that the equivalence class of any point

of jNV 0 j by @ is path-connected. Thus, since g�1ðgðBÞÞ is the union of the

equivalence classes of the points of B, it is path-connected.

Finally, let a, b and s be as above. Since a� b is convex and hjs is linear,

h�1ða� bÞV s is convex in s, and thus path-connected. Then, g�1ðas � bsÞ is
path-connected and hence the inverse image by g of the simplicial star of any

vertex of L is path-connected.

Step two: Proof of the isomorphism condition.

Now let us check that Pð f Þ is an isomorphism. We will describe only the

proof for the case P ¼ p~ppy1 ; the case P ¼ p~pp1 can be deduced from it.

First we fix the systems of infinity neighbourhoods of X and jLj. For X

we choose U, which was used to define Gm and CG . The embedding of jCG j
in Rþ defines an order on jCG j. For any mb 1 we define U G

m ¼6 StðG ;CGÞ
where G ranges over the vertices of CG such that G b fmg. These sets define

a system of infinity neighbourhoods UG of jCG j that satisfy U G
mþ1 HU G

m for

any m. Let ~hhG (resp. hG ) be the composition of the projection of jCj onto jCG j
and ~hh (resp. h). Since ~hhG is proper the sets UL

m ¼ ~hh�1G ðU G
m Þ define a system of

infinity neighbourhoods UL of jLj. Also, ~hhG is continuous and thus UL
mþ1 H

~hh�1G ðU G
mþ1ÞHUL

m for any m.

Let us show that f is level-preserving. Since Um VGi ¼q for any

i < m, Um V ~GGG ¼q for any G < fmg. Then Um H6
Gbfmg

~GGG , which implies

that f ðUmÞHUL
m . Thus by Lemma 2.17 it su‰ces to check that p~ppy1 ð f Þ :

194 Antonio Regidor-García



p~ppy1 ðX ;M;UÞ ! ðjLj; f ðMÞ;ULÞ for any subspace M of X on which f is

injective satisfies:

( i ) for any m there is an m 0bm such that Ker ~pp1ð fm 0 ÞHKer ~pp1ðpmm 0 Þ,
(ii) for any m there is an m 0bm such that Im ~pp1ðqmm 0 ÞH Im ~pp1ð fmÞ,
where pmm 0 : Um 0 ,! Um and qmm 0 : U

L
m 0 ,! UL

m are the inclusion maps and

fm ¼ f jUm
.

In the proof of (i) and (ii) we will use repeatedly the following fact.

Let ðK ; jK jÞ be a simplicial complex, a a path in jK j and B a family of

simplicial stars of vertices of K that covers the image of a. Then there are

Stðp1;KÞ; . . . ; Stðpk;KÞ A B and paths a1; . . . ; ak in jK j such that a ¼ a1 . . . ak
and ai is contained in Stðpi;KÞ for any ia k. In fact, the inverse images by

a of the elements of B form an open cover of ½0; 1�, and it su‰ces to take

subintervals of length less than the Lebesgue number.

We begin with the condition (ii) and prove that Im ~pp1ðqm;mþ2ÞH Im ~pp1ð fmÞ.
Let aL be a loop in UL

mþ2 with base point in f ðMÞ. We will construct a loop

aX in Um such that f � aX is homotopic to aL in UL
m . By the above fact, there

are vertices p1; . . . ; pk of L and paths aL
1 ; . . . ; a

L
k in jLj such that aL ¼ aL

1 . . . aL
k

and aL
i is contained in Stðpi;LÞ for any i. Since Stðpi;LÞ intersects Stðpiþ1;LÞ,

g�1ðStðpi;LÞÞ intersects g�1ðStðpiþ1;LÞÞ for any i. Let us choose a point yi in

this intersection. Since g�1ðStðpi;LÞÞ is path-connected for any i by the as-

sertion written in the last part of step one, there is a path aN
i in g�1ðStðpi;LÞÞ

that connects yi�1 and yi. Let aN ¼ aN
1 . . . aN

k . Using the above fact again,

we can take simplicial stars Stð½W1�;NV 0 Þ; . . . ; Stð½Wl �;NV 0 Þ that cover aN such

that Stð½Wj �;NV 0 Þ intersects Stð½Wjþ1�;NV 0 Þ for any j. Then, ½Wj� and ½Wjþ1�
belong to the same simplex of NV 0 and thus Wj intersects Wjþ1. So, we can

define a path aX ¼ aX
1 . . . aX

l in X as before such that aX
j is contained in Wj .

Now, since the intersection of simplicial stars is path-connected and the sim-

plicial stars themselves are contractible, ~ff � aX is homotopic to aN in jNV 0 j and
g � aN is homotopic to aL in jLj.

Note that hG : NV 0 ! CG is simplicial and thus hGðSt½V �;NV 0 ÞÞ is con-

tained in StðhGð½V �Þ;CGÞ for any vertex ½V � of NV 0 . Let us show that
~hhGðStðp;LÞÞH Stð~hhGðpÞ;CGÞ for any vertex p of L. Let e be a simplex of L

that contains p. Then there is a simplex s of NV 0 such that ~hhðe�ÞH hðs�Þ.
Then ~hhGðpÞ A hGðsÞ and ~hhGðe�ÞH hGðs�Þ. Since hG is simplicial, hGðsÞ is a sim-

plex of CG and hGðs�Þ is its interior, which implies that ~hhGðe�ÞH Stð~hhGðpÞ;CGÞ.
Thus ~hhGðStðp;LÞÞH Stð~hhGðpÞ;CGÞ.

Let us prove that f � aX is homotopic to aL in UL
m . Since ~ff � aX is

homotopic to aN in Stð½W1�;NV 0 ÞU � � �U Stð½Wl �;NV 0 Þ and g � aN is homotopic

to aL in Stðp1;LÞU � � �U Stðpk;LÞ, it su‰ces to check that gðStð½Wj �;NV 0 ÞÞ and
Stðpi;LÞ are contained in UL

m for any j and i. Since Stðpi;LÞ intersects UL
mþ2,

Stð~hhGðpiÞ;CGÞ intersects U G
mþ2. If we denote by d the Euclidean distance
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in jCG jHR, then dðx; yÞa 1 for any two points x; y A jCG j with Stðx;CGÞV
Stðy;CGÞ0q. So, dð~hhGðpiÞ;GÞa 1 for some vertex G b fmþ 2g. Then
~hhGðpiÞb fmþ 1;mþ 2g and thus Stð~hhGðpiÞ;CGÞHU G

mþ1. Hence, Stðpi;LÞH
UL

mþ1 HUL
m . On the other hand, since aN intersects Stð½Wj�;NV 0 Þ, there is

an i 0 such that Stð½Wj�;NV 0 Þ intersects g�1ðStðpi 0 ;LÞÞ. Then StðhGð½Wj�Þ;CGÞ
intersects Stð~hhGðpi 0 Þ;CGÞ and thus hGð½Wj�Þb fmþ 1g, because ~hhGðpi 0 Þb
fmþ 1;mþ 2g. Then StðhGð½Wj �Þ;CGÞHU G

mþ1 and hence gðStð½Wj�;NV 0 ÞÞH
UL

mþ1 HUL
m .

Finally, since hGð½Wj�Þb fmþ 1g, we have Wj H6
ibmþ1Gi HUm and

thus aX is contained in Um.

Now, let us prove the condition (i). There is an m 00bm such that any

loop in Ai VUm 00 with base point in M is null-homotopic in Um for any i. We

will prove that Ker ~pp1ð fm 00þ2ÞHKer ~pp1ðpm;m 00þ2Þ. Let aX be a loop in Um 00þ2
with base point in M verifying that the closed path aL ¼ f � aX is contractible

to a point in UL
m 00þ2. We need to check that aX is contractible to a point

in Um.

Since aL is null-homotopic in UL
m 00þ2 there is a map cL from the unit

2-disk D2 to UL
m 00þ2 such that cLjqD2 ¼ aL. It su‰ces to define a map cX :

D2 ! Um such that cX jqD2 ¼ aX . Since the simplicial stars of the vertices of

L form an open cover of jLj, their inverse images by cL form an open cover

of D2 that is compact. We take a triangulation Q of D2 such that the di-

ameter of each simplex of Q is less than the Lebesgue number of this cover.

Then, the image by cL of any simplex of Q is contained in the simplicial star of

a vertex of L. We define cX on qQ by aX . Let t be a 1-simplex and s a 2-

simplex of Q not contained in qQ. We define Et by the closed simplicial star

of the barycenter of t in the second barycentric subdivision of Q. We define

Es by a 2-disk in the interior of s that does not intersect Er for any 1-simplex r

of Q� qQ. We will define cX on D2 �6Et �6Es so that the paths cX jqEt

and cX jqEs
are null-homotopic in Um, where t and s range over all the 1- and

2-simplices of Q not contained in qQ.

Let u be a vertex of Q not lying in qQ. Since g is onto, g�1ðcLðuÞÞ is not
empty and we can define a point cNðuÞ A g�1ðcLðuÞÞ. Let e be the simplex of

NV 0 that contains cNðuÞ in its interior. Then, the intersection of the elements

of V 0 which correspond to the vertices of e is not empty, and we define cX ðuÞ
by a point of this intersection. Note that ~ff ðcX ðuÞÞ lies in the interior of a

simplex of NV 0 that contains e. Moreover, if v is a vertex of Q and t 00 is a 1-

simplex of the second barycentric subdivision of Q containing v and contained

in the 1-skeleton of Q but not in qQ, we define cX ðxÞ ¼ cX ðvÞ for any x A t 00.

Also, we define cNðu 0Þ ¼ ~ff ðcX ðu 0ÞÞ for any vertex u 0 A qQ.

We define ~hhS (resp. hS) by the composition of the projection of jCj onto
jCSj and ~hh (resp. h). Note that hS is a simplicial map that sends a vertex
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½V S 0
G ðxÞ� of NV 0 to the vertex hS 0i of CS. Let p be a vertex of L. We define

hp by the unique simplex of CS that contains ~hhSðpÞ in its interior. Let us

prove that for any path a 0 in g�1ðStðp;LÞÞ and any vertex hS 0i of hp we can

cover a 0 by simplicial stars Stð½W �;NV 0 Þ such that hSð½W �Þ ¼ hS 0i. Fix a

point a 0ðtÞ of a 0. Then, a 0ðtÞ belongs to the interior of some simplex d

of NV 0 . Since d intersects g�1ðStðp;LÞÞ, hSðdÞ intersects ~hhSðStðp;LÞÞ. But
~hhSðStðp;LÞÞ is contained in Stð~hhSðpÞ;CSÞ, by an argument similar to that of

hG . So, there is a simplex e of CS containing ~hhSðpÞ such that hSðdÞV e
�0q.

Then e is a face of hSðdÞ and since hp is a face of e, hp is also a face of

hSðdÞ. Hence there is a vertex ½W � of d such that hSð½W �Þ ¼ hS 0i for any

vertex hS 0i of hp. Finally, since ½W � is a vertex of d, a 0ðtÞ A Stð½W �;NV 0 Þ.
Let t be a 1-simplex of Q not contained in qQ. We will define cX on

qEt. Let s and s 0 be the 2-simplices of Q that contain t. Let p (resp. p 0) be

a vertex of L such that Stðp;LÞ (resp. Stðp 0;LÞ) contains cLðsÞ (resp. cLðs 0Þ).
Also, let u and v be the vertices of t. Since cNðuÞ and cNðvÞ belong to

g�1ðStðp;LÞÞ that is path-connected, there is a path b in g�1ðStðp;LÞÞ from

cNðuÞ to cNðvÞ. Similarly, there is a path b 0 in g�1ðStðp 0;LÞÞ from cNðuÞ
to cNðvÞ. Let ~bb be the loop b � ðb 0Þ�1 with base point cNðuÞ ¼ ~bbð0Þ. Since

Stðp;LÞV Stðp 0;LÞ0q, p and p 0 span a 1-simplex r of L. Since ~hhðrÞ is a

simplex of sd2 C, there is a simplex e of C such that ~hhðr�ÞH e
�
. By the

definition of barycentric subdivision, ~hhðpÞ or ~hhðp 0Þ belongs to e
�
. There is a

simplex m of NV 0 such that e
�H hðm�Þ. Thus ~hhSðpÞ or ~hhSðp 0Þ belongs to

hSðm�Þ. After exchanging p 0 with p if necessary, we may assume that ~hhSðpÞ
belongs to hSðm�Þ. Then, hp ¼ hSðmÞ by the definition of hp and hp 0 H hSðmÞ.
So, hp V hp 0 ¼ hp 0 and hence hp V hp 0 is shown to be non-empty.

Let hS 0i be a vertex of hp V hp 0 . We can cover the path ~bb by simplicial

stars Stð½W �;NV 0 Þ such that hSð½W �Þ ¼ hS 0i, because ~bb is contained in

g�1ðStðp;LÞÞU g�1ðStðp 0;LÞÞ. Thus there are simplicial stars Stð½W1�;NV 0 Þ;
. . . ; Stð½Wk�;NV 0 Þ that cover ~bb and such that hSð½Wi�Þ ¼ hS 0i for any i, and

also there are paths ~bbi in Stð½Wi�;NV 0 Þ for any i such that ~bb ¼ ~bb1 . . .
~bbk. Since

Stð½Wi�;NV 0 Þ intersects Stð½Wiþ1�;NV 0 Þ, Wi intersects Wiþ1 and then we can

define a path ~ggi in Wi such that ~ggið1Þ ¼ ~ggiþ1ð0Þ. Since cNðuÞ ¼ ~bbð0Þ belongs
to Stð½W1�;NV 0 Þ, ~ff ðcX ðuÞÞ A Stð½W1�;NV 0 Þ and then cX ðuÞ A W1. Similarly,

cX ðvÞ A Wl for some la k. There are a path g0 in W1 from cX ðuÞ to ~gg1ð0Þ
and a path gl in Wl from ~gglð1Þ to cX ðvÞ. Let ~gg ¼ g0~gg1 . . . ~gglglðglÞ

�1~gglþ1 . . .

~ggkðg0Þ
�1. We can define cX on qEt by the loop ~gg.

Thus, we have defined cX on qEt for any 1-simplex t of Q� qQ. If t is a

1-simplex of qQ we define Et ¼q. Let s be a 2-simplex of Q and t1, t2 and

t3 its 1-faces. Since s� ðEs UEt1 UEt2 UEt3Þ is homeomorphic to a cylinder

over S1, and cX is already defined on one of the components of its boundary

qðs� ðEt1 UEt2 UEt3ÞÞ, we can extend cX to this cylinder in the obvious way.
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Let us prove that cX ðqEtÞHUm 00 and cX ðqEsÞHUm 00 for any 1-simplex t

and 2-simplex s of Q not contained in qQ. Let ½W1�; . . . ; ½Wk� be the vertices

of NV 0 and p and p 0 the vertices of L used to define cX on qEt. For any

i, gðStð½Wi�;NV 0 ÞÞ intersects Stðp;LÞ or Stðp 0;LÞ, and these simplicial stars

intersect UL
m 00þ2, then Wi HUm 00 , by the same argument as in (ii). Thus

cX ðqEtÞHUm 00 . On the other hand, for a 2-simplex s we see that cX ðqEsÞH
cX ðqEt1 U qEt2 U qEt3 U qQÞHUm 00 , where t1, t2 and t3 are the 1-faces of s.

As a consequence, we have defined a map cX : D2 �6Et �6Es ! Um 00 that

coincides with aX on qD2.

Let t be a 1-simplex of Q not contained in qQ. Let ½Wj � be the vertices of

NV 0 and hS 0i the vertex of CS used to define cX on qEt. Then 6
j
Wj H ~AAS 0 ,

because hSð½Wj �Þ ¼ hS 0i for any j. So, cX ðqEtÞHAl for any l A S 0 and thus

cX jqEt
is null-homotopic in Um.

Let us check that for any 2-simplex s of Q there is an Ar that contains

cX ðqEsÞ, and thus cX jqEs
is null-homotopic in Um. There is a simplicial star

Stðp;LÞ such that cLðsÞH Stðp;LÞ. Let t1, t2 and t3 be the 1-faces of s. If

ti Q qQ, let ½W i
j � be the vertices of NV 0 and hS 0i i the vertex of CS used

to define cX on qEti . If ti H qQ, since the path ~ff � cX jti is contained in

g�1ðStðp;LÞÞ, then for any vertex hS 0i i of hp there are simplicial stars

Stð½W i
1 �;NV 0 Þ; . . . ; Stð½W i

k �;NV 0 Þ that cover ~ff � cX jti and such that hSð½W i
j �Þ ¼

hS 0i i. Let hS1i; . . . ; hSti be the vertices of hp. Then, 6
i; j
W i

j H ~AAS1
U � � �U

~AASt
. Since hp is the image of a simplex of NV 0 by hS, there is a permutation

fSi1 ; . . . ;Sitg of fS1; . . . ;Stg such that Si1 H � � �HSit . So, ~AAS1
U � � �U ~AASt

HAr

for any r in Si1 . Thus, cX ðqEsÞHAr for any r A Si1 .

Step three: The paracompact case.

We have proved the result for a s-compact space X . Now we will study

the case when X is paracompact. Since X is a Hausdor¤, locally compact,

and paracompact space, it can be decomposed as a disjoint union of s-compact

subspaces (see [3], I, p. 70, Theorem 5). Let us denote them by Xa with a A A.

Each Xa is s-compact, locally compact, locally pathwise-connected, and Haus-

dor¤. Also, since Xa is open and closed in X , an open cover fAk j 0a ka ng
of X by P-categorical sets induces an open cover fAk VXa j 0a ka ng of Xa

by P-categorical sets. Thus, P-cat Xa a n, and applying the previous steps we

obtain complexes ðLa; jLajÞ and maps fa : Xa ! jLaj for every a. We define

the complex ðL; jLjÞ by the disjoint union of the complexes ðLa; jLajÞ, and the

map f : X ! jLj by the union of the fa.

For any a let Ua be the system of infinity neighbourhoods of Xa and V 0
a

the covering of Xa by connected sets used to define ðLa; jLajÞ. We define the

cover V 0 ¼6
a
V 0
a of X and using V 0 we define NV 0 , C, ~ff , g, h and ~hh as in

the s-compact case. The ðL; jLjÞ and f defined in this way coincide with the
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simplicial complex and map obtained in the last paragraph. Now we define a

system of infinity neighbourhoods U of X given by the sets U ¼6
a
U a

ma
where

U a
ma

A Ua and all but a finite number of indices ma are equal to 1. Using this

system of infinity neighbourhoods U and cover V 0 we can prove the iso-

morphism condition for f in a similar way to the s-compact case. It su‰ces

to replace Um with 6
a
U a

ma
and then in the condition (ii) Umþ2 with 6

a
U a

ka
,

where ka ¼ ma þ 2 if ma 0 1 and 1 otherwise, and in the condition (i) we

replace Um 00 and Um 00þ2 by 6
a
U a

ra
and 6

a
U a

sa
, respectively, where sa ¼ ra þ 2

if ra 0 1 and 1 otherwise.

This concludes the proof of the theorem. r

Example 4.3. There is a 4-dimensional manifold X with p~pp1-cat X ¼
p~ppy1 -cat X ¼ 3 such that there is no proper map f : X ! jLj for any locally

finite simplicial complex ðL; jLjÞ of dimension 3 that induces an isomorphism of

fundamental pro-groups.

Let A be an aspherical homology 3-sphere, which can be constructed by

Jørgensen-Thurston’s hyperbolic Dehn surgery theory, see [15]. We define X

by the product of A and the half-line. We choose the system of infinity

neighbourhoods of X formed by Um ¼ A� ðm;yÞ for any integer mb 0.

The space X is Hausdor¤, locally compact, paracompact and locally path-

connected.

The L-S p1-category of A is 3, because its fundamental group is not

free (see [10]). Let fAi j 0a ia 3g be an open cover of A by p1-contractible

subsets. Since A is normal, it is easy to get an open cover fBi j 0a ia 3g of A
such that the closure Bi HAi and hence Bi is p1-contractible in A for any i.

The sets Xi ¼ Bi � ½0;yÞ form an open cover of X that is p~pp1-categorical

in X . Indeed, since the inclusion map from Xi to X is the product of the

inclusion map from Bi to A and the identity map of the half-line, Xi is

~pp1-contractible in X . Analogously, for each mb 0 the inclusion map from

Xi VUm ¼ Bi � ðm;yÞ to Um is the product of the inclusion map from Bi to A

and the identity map of ½m;yÞ, and then Xi is p~ppy1 -categorical in X . Thus

p~ppy1 -cat X a p~pp1-cat X a 3.

If there were a 3-dimensional simplicial complex ðL; jLjÞ, a map f : X !
jLj and a subset M of X verifying the conditions of Theorem 4.1 for p~ppy1 , there

will be a morphism h of pro-groups such that the following diagram commutes:

p~ppy1 ðX ;MÞ ��������!¼
p~ppy1 ðX ;MÞ

p~ppy
1
ð f Þ  ��

���

�����
!
h

p~ppy1 ðjLj; f ðMÞÞ
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We may assume that M is countable. Now we will define a proper map

from the underlying space of a subcomplex of L to X . Let G 0 be the category

of groups and tow-G 0 the category of towers of groups, that is, the category of

inverse systems of groups for which the index set is N. We can define an

equivalence relation in the set of proper maps from an infinity neighbourhood

to another in the following way: two maps defined in infinity neighbourhoods

are equivalent if they coincide in a smaller infinity neighbourhood. We call

the equivalence classes germs. Two germs are homotopic at infinity if two

representatives are properly homotopic in an infinity neighbourhood. These

definitions can be extended to properly based spaces. In this case the germs

must preserve the base ray and the homotopies must be homotopies relative to

the base ray. In [4] it is proved (Proposition 3.5) the following:

Lemma 4.4. Let ðP; aÞ be a properly based connected locally compact one-

ended polyhedron and ðQ; bÞ a properly based space that is properly aspherical at

infinity, that is, the pro-groups pro-pnðQ; bÞ are trivial in tow-G 0 for any nb 2.

Then, the fundamental pro-group functor induces a natural bijection

½P;Q�Rþy GHomðpro-p1ðP; aÞ; pro-p1ðQ; bÞÞ

where ‘‘Hom’’ stands for the morphism set in tow-G 0 and ½P;Q�Rþy is the set of

proper homotopy classes of germs relative to the base ray.

Let L0 be the subcomplex of L formed by the simplices that intersect f ðX Þ
and their faces. Since A is path-connected, our infinity neighbourhoods of X

are also path-connected, and thus X is one-ended. This implies that jL0j is
one-ended, because f : X ! jL0j is proper. Also, jL0j is path-connected, be-

cause f ðXÞ is path-connected. If M ¼ fxn j nb 0g then there is a ray g in X

such that gðnÞ ¼ xn for any n. The image of this ray by f is a ray g0 in jL0j.
Since Um ¼ A� ½m;yÞ for any m, pnðUm; ðp; qÞÞ ¼ pnðA; pÞl pnð½m;yÞ; qÞ for
any ðp; qÞ A Um and nb 1. Thus, X is properly aspherical at infinity. Hence,

ðjL0j; g0Þ and ðX ; gÞ satisfy the hypothesis of the Lemma 4.4. Since the iso-

morphisms of p~ppy1 fundamental pro-groups of the above diagram induce a

corresponding diagram of isomorphisms of pro-p1 fundamental pro-groups,

applying this lemma we obtain a germ g making the following diagram of

germs commutative up to homotopy at infinity relative to the base rays:

ðX ; gÞ ��������!¼ ðX ; gÞ

f  ��
���

�����
!

g

ðjL0j; g0Þ
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where the n arrows denote germs. There is a corresponding diagram for the

end homology. This homology is defined for locally finite CW-complexes as

follows. If CmðY Þ and Cy
m ðY Þ denote the chain complexes of the cellular finite

chains and cellular infinite chains with coe‰cients in Z over a locally finite

CW-complex Y , there is an exact sequence:

0! CmðY Þ ! Cy
m ðYÞ ! Cy

m ðYÞ=CmðY Þ ! 0

that induces a long exact sequence in homology:

� � � ! HmY ! Hy
m Y ! HmðCy

� ðY Þ=C�ðYÞÞ ! � � �

The homology He
m�1Y ¼ HmðCy

� ðYÞ=C�ðYÞÞ is called the end homology and

is an invariant of homotopy at infinity type. The homology Hy
m Y is called

the infinite homology and is a proper homotopy invariant, see [9] or [13] for

details. As we wrote above, there is a corresponding diagram for the end

homology:

He
3U1 ��������!¼

He
3U1

f�  ��
���

�����
!
g�

He
3 jL0j

Note that U1 is a locally finite polyhedron and thus He
3U1 is well-defined.

Since dimjL0ja 3, He
3 jL0j ¼ H4ðCy

� ðjL0jÞ=C�ðjL0jÞÞ ¼ 0 and thus He
3U1 ¼ 0.

On the other hand, there is an exact sequence:

0! lim �
1 H4Ui ! He

3U1 ! lim � H3Ui ! 0

where the limits are taken on the index i A N (see [9]). Since Ui is of the same

homotopy type as A, H4Ui ¼ 0 for any i, and the first derived limit is 0.

Thus, He
3U1 is isomorphic to lim � H3Ui. But, since H3Ui ¼ H3A ¼ Z, and the

bonding maps are the identity, this limit is Z, which is a contradiction.

As a byproduct we obtain that p~ppy1 -cat X ¼ 3 and thus p~pp1-cat X ¼ 3,

because if it is a 2 then there are a simplicial complex ðL; jLjÞ of dimension

da 3 and a map f satisfying the conditions of Theorem 4.1, and using the 3-

dimensional complex L� ½0; 1�3�d we reach a contradiction as above.

Moreover, we may consider a contractible space CAUX instead of X ,

where CA is the topological cone of A, and prove that p~ppy1 -cat CAUX ¼
p~pp1-cat CAUX ¼ 3. Furthermore, we can take a compact contractible (to-

pological) manifold Y with qY ¼ A instead of CA to get an open contractible

4-manifold with p~ppy1 -cat ¼ p~pp1-cat ¼ 3.
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