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Abstract. In this paper, some new oscillation criteria are obtained for the first order

nonlinear delay di¤erential equation

x 0ðtÞ þ pðtÞ f ðxðt� t1Þ; . . . ; xðt� tmÞÞ ¼ 0

and the corresponding advanced di¤erential equation. Our results improve the known

results in the literature. And an example is given to demonstrate the advantage of our

results.

1. Introduction

The oscillatory behavior of di¤erential equations with deviating arguments

has been studied by many authors. For some contributions in this area see the

papers [1–11].

Consider the first order delay di¤erential equation

x 0ðtÞ þ pðtÞ f ðxðt� t1Þ; . . . ; xðt� tmÞÞ ¼ 0; tb t0 ð1Þ

and the advanced di¤erential equation

x 0ðtÞ � pðtÞ f ðxðtþ t1Þ; . . . ; xðtþ tmÞÞ ¼ 0; tb t0; ð2Þ

where pðtÞb 0 is a continuous function, 0 < t1a t2a � � � a tm, and the

function f satisfies the following conditions:

(H1). f is continuous on Rm and such that

yi > 0 for i ¼ 1; . . . ;m ) f ðy1; . . . ; ymÞ > 0

and

yi < 0 for i ¼ 1; . . . ;m ) f ðy1; . . . ; ymÞ < 0;
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(H2). there exist e > 0, M b 0 and r > 0 such that

f ðu1; . . . ; umÞ �
Ym
j¼1

u
aj
j

�����
�����aM max

1ajam
fjujjg

� �rYm
j¼1

juj jaj for ui A ð�e; eÞ;

where aj > 0, j ¼ 1; . . . ;m are rational numbers with denominator of positive

odd integers, and
Pm

j¼1 aj ¼ 1.

The sepcial forms of equation (1), (2) are the equations

x 0ðtÞ þ pðtÞxðt� tÞ ¼ 0; tb t0; ð3Þ

x 0ðtÞ � pðtÞxðtþ tÞ ¼ 0; tb t0; ð4Þ

x 0ðtÞ þ pðtÞ
Ym
j¼1

½xðt� tjÞaj ¼ 0; tb t0; ð5Þ

and

x 0ðtÞ � pðtÞ
Ym
j¼1

½xðtþ tjÞaj ¼ 0; tb t0: ð6Þ

Equation (3) is a basic delay di¤erential equation, which plays a crucial role in

many investigations and therefore is always in the center of interest. So far,

there have been many oscillatory results for equation (3), we refer to the

monographies [5–7] and the reference cited therein. One basic oscillation

criteria is [2]

lim inf
t!y

ð t

t�t

pðsÞds > 1

e
: ð7Þ

In condition (7), the constant 1=e is the best possible [5].

Yu [8] extended the above results (7) for (3) to the nonlinear di¤erential

equation (5) and (6) and proved the following theorems.

Theorem A. Assume that

lim inf
t!y

Xm
j¼1

aj

ð t

t�tj

pðsÞ > 1

e
: ð8Þ

Then every solution of (5) oscillates.

Theorem B. Assume that

lim inf
t!y

Xm
j¼1

aj

ð tþtj

t

pðsÞds > 1

e
: ð9Þ

Then every solution of (6) oscillates.
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Very recently, Tang and Yu [9] obtained some new oscillation criteria for

(5) and (6), which improve Theorems A and B.

We remark that Theorems A and B are easily extended to the more

general nonlinear equations (1) and (2) respectively. In this paper, we will

establish some new oscillation criteria for (1) and (2) which contain and

improve condition (8) and (9) and other results. More precisely, we obtain the

following theorems.

Theorem 1. Assume that ðH1Þ, ðH2Þ hold, and that

lim inf
t!y

Xm
j¼1

aj

ð tþtj

t

pðsÞds > 0: ð10Þ

Suppose also that there exists T0b t0 > 0 such that

ðy
T0

pðtÞ ln e
Xm
j¼1

aj

ð tþtj

t

pðsÞds
 !

dt ¼ y: ð11Þ

Then every solution of (1) oscillates.

Theorem 2. Assume that ðH1Þ, ðH2Þ hold, and that

lim inf
t!y

Xm
j¼1

aj

ð t

t�tj

pðsÞds > 0: ð12Þ

Suppose that there exists T0b t0 > 0 such that

ðy
T0

pðtÞ ln e
Xm
j¼1

aj

ð t

t�tj

pðsÞds
 !

dt ¼ y: ð13Þ

Then every solution of (2) oscillates.

2. Some lemmas

Lemma 1. Assume that ðH1Þ, ðH2Þ hold, andðy
t0

pðtÞdt ¼ y: ð14Þ

Then every nonoscillatory solution of (1) converges to zero monotonically as

t ! y.

Proof. Suppose that xðtÞ is a nonoscillatory solution of (1) which we

shall assume to be eventually positive [if xðtÞ is eventually negative the proof

is similar]. Then there exists a t1b t0 such that xðt� tmÞ > 0, x 0ðtÞa 0 for
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tb t1. Hence the limit limt!yxðtÞ ¼ b exists and bb 0. If b > 0, then there

exists T > t1 such that f ðxðt� t1Þ; . . . ; xðt� tmÞÞ > 1
2 f ðb; . . . ; bÞ > 0 for tbT .

Integrating (1) from T to tbT , we have

xðtÞ � xðTÞa� 1

2
f ðb; . . . ; bÞ

ð t

T

pðsÞds;

which, together with (14), implies that

lim
t!y

xðtÞ ¼ �y:

This contradicts the fact that xðtÞ is eventually positive. The proof of Lemma

1 is complete.

Lemma 2. Assume that ðH1Þ, ðH2Þ and (14) hold. If (1) has a non-

oscillatory solution, then ð tþtm

t

pðsÞdsa 2

am
ð15Þ

eventually.

Proof. Suppose that xðtÞ is a nonoscillatory solution of (1) which we

shall assume to be eventually positive [if xðtÞ is eventually negative the proof is

similar]. By Lemma 1 and (1), there exists t1 > 0 such that

e > xðt� tmÞb xðt� tm�1Þb � � � b xðt� t1Þb xðtÞ > 0; for tb t1;

and limt!y xðtÞ ¼ 0, where e is given by condition ðH2Þ. From this and ðH2Þ,
there exists t2b t1 such that

f ðxðt� t1Þ; . . . ; xðt� tmÞÞb
1

2

Ym
j¼1

½xðt� tjÞaj ; tb t2: ð16Þ

It follows from (1) that

x 0ðtÞ þ 1

2
pðtÞ

Ym
j¼1

½xðt� tjÞaj a 0; tb t2: ð17Þ

Consequently, we have

x 0ðtÞ þ 1

2
pðtÞ½xðtÞ1�am ½xðt� tmÞam a 0; tb t2: ð18Þ

Set yðtÞ ¼ ½xðtÞam for tb t2 þ tm. Then

y 0ðtÞ þ 1

2
ampðtÞyðt� tmÞa 0; tb t2: ð19Þ
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From (19), it is easy to show that (15) holds eventually [5, 11]. The proof of

Lemma 2 is complete.

Lemma 3. Assume that ðH1Þ, ðH2Þ and (10) hold. If xðtÞ is a non-

oscillatory solution of (1), then xðt� tmÞ=xðtÞ, which is well defined for large t, is

bounded.

Proof. We shall assume xðtÞ to be eventually positive [if xðtÞ is even-

tually negative the proof is similar]. Set yðtÞ as in the proof of Lemma 2.

Then (19) holds. From (19), it is easy to show (see [5, 11]) that Lemma 3 is

true. The proof of Lemma 3 is complete.

Lemma 4. Assume that ðH1Þ, ðH2Þ and (14) hold. If xðtÞ is a non-

oscillatory solution of (1), then there exist A > 0 and T > 0 such that

jxðtÞjaA exp � 1

2

ð t

T

pðsÞds
� �

; tbT : ð20Þ

Proof. We shall assume xðtÞ to be eventually positive [if xðtÞ is even-

tually negative the proof is similar]. By Lemma 1 there exists t1 > 0 such that

0 < xðtÞa xðt� t1Þa � � � a xðt� tmÞ < e for tb t1;

where e is given by condition ðH2Þ. Similar to the proof of Lemma 2, it is

easy to show that there exists t2 > t1 such that (17) holds. From (17), we have

x 0ðtÞ þ 1

2
pðtÞxðtÞa 0; tb t2: ð21Þ

This yields (20), where A ¼ xðTÞ and T ¼ t2. The proof of Lemma 4 is

complete.

3. Proof of theorems

Proof of Theorem 1. Assume that (1) has a nonoscillatory solution xðtÞ
which will be assumed to be eventually positive [if xðtÞ is eventually negative

the proof is similar]. By Lemma 1, there exists t1bT0 such that

0 < xðtÞa xðt� t1Þa � � � a xðt� tmÞ < e; tb t1: ð22Þ
where e is given by condition ðH2Þ. From (22) and ðH2Þ we have

f ðxðt� t1Þ; . . . ; xðt� tmÞÞb
Ym
j¼1

½xðt� tjÞaj �M½xðt� tmÞ1þr; tb t1: ð23Þ

Substituing (23) into (1), we obtain

x 0ðtÞ
xðtÞ þ pðtÞ

Ym
j¼1

xðt� tjÞ
xðtÞ

� �aj
�MpðtÞ ½xðt� tmÞ1þr

xðtÞ a 0; tb t1: ð24Þ
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Set lðtÞ ¼ �x 0ðtÞ=xðtÞ for tb t1. Then lðtÞb 0 for tb t1, and from (24), we

have

lðtÞb pðtÞ exp
Xm
j¼1

aj

ð t

t�tj

lðsÞds
 !

�MpðtÞ xðt� tmÞ
xðtÞ ½xðt� tmÞ r; tb t1 þ tm: ð25Þ

By Lemmas 2–4, there exists T > t1 þ tm, A > 0 and M1 > 0 such that

xðt� tmÞaA exp � 1

2

ð t�tm

T

pðsÞds
� �

; tbT ; ð26Þ

ð t

t�tm

pðsÞdsa 2

am
; tbT ; ð27Þ

xðt� tmÞ
xðtÞ aM1; tbT : ð28Þ

From these and (25), we have

lðtÞb pðtÞ exp
Xm
j¼1

aj

ð t

t�tj

lðsÞds
 !

�MM1 pðtÞ A exp � 1

2

ð t�tm

T

pðsÞds
� �� �r

b pðtÞ exp
Xm
j¼1

aj

ð t

t�tj

lðsÞds
 !

�MM1A1 pðtÞ exp � r

2

ð t

T

pðsÞds
� �

; tbT ;

where A1 ¼ er=amAr. It follows that

lðtÞ
Xm
j¼1

aj

ð tþtj

t

pðsÞds

b pðtÞ
Xm
j¼1

aj

ð tþtj

t

pðsÞds
 !

exp
Xm
j¼1

aj

ð t

t�tj

pðsÞds
 !

�MM1A1 pðtÞ
Xm
j¼1

aj

ð tþtj

t

pðsÞds
 !

exp � r

2

ð t

T

pðsÞds
� �

; tbT : ð29Þ
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One can easily show that gex b xþ ln eg for g > 0. Hence,

lðtÞ
Xm
j¼1

aj

ð tþtj

t

pðsÞds

b pðtÞ
Xm
j¼1

aj

ð t

t�tj

lðsÞdsþ pðtÞ ln e
Xm
j¼1

aj

ð tþtj

t

pðsÞds
 !

�MM1A1 pðtÞ
Xm
j¼1

aj

ð tþtj

t

pðsÞds
 !

exp � r

2

ð t

T

pðsÞds
� �

; tbT : ð30Þ

Set

DðtÞ ¼ MM1A1 pðtÞ
Xm
j¼1

aj

ð tþtj

t

pðsÞds
 !

exp � r

2

ð t

T

pðsÞds
� �

:

Then (30) can be written as

lðtÞ
Xm
j¼1

aj

ð tþtj

t

pðsÞdsb pðtÞ
Xm
j¼1

aj

ð t

t�tj

lðsÞds

þ pðtÞ ln e
Xm
j¼1

aj

ð tþtj

t

pðsÞds
 !

�DðtÞ; tbT : ð31Þ

Integrating (31) from T to N > T þ 2tm, we get

Xm
j¼1

aj

ðN

T

lðtÞ
ð tþtj

t

pðsÞdsdt

b
Xm
j¼1

aj

ðN

T

pðtÞ
ð t

t�tj

lðsÞdsdt

þ
ðN

T

pðtÞ ln e
Xm
j¼1

aj

ð tþtj

t

pðsÞds
 !

dt�
ðN

T

DðtÞdt: ð32Þ

By (27), we have

Xm
j¼1

aj

ð tþtj

t

pðsÞdsa 2

am
; tbT : ð33Þ

Therefore,
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ðy
T

DðtÞdta 2MM1A1

am

ðy
T

pðtÞ exp � r

2

ð t

T

pðsÞds
� �

dt

¼ 4MM1A1

am

ðy
0

e�ru du

¼ 4MM1A1

ram
< y; ð34Þ

Interchanging the order of integration, we find

ðN

T

pðtÞ
ð t

t�tj

lðsÞdsdtb
ðN�tj

T

lðsÞ
ð sþtj

s

pðtÞdtds:

Substituting this into (32) we have

Xm
j¼1

aj

ðN

N�tj

lðtÞ
ð tþtj

t

pðsÞdsdtb
ðN

T

pðtÞ ln e
X

aj

ð tþtj

t

pðsÞds
� �

dt

�
ðN

T

DðtÞdt: ð35Þ

From (11), (34) and (35), we have

lim
N!y

Xm
j¼1

aj

ðN

N�tj

lðtÞ
ð tþtj

t

pðsÞdsdt ¼ y: ð36Þ

On the other hand, by (33) and Lemma 3, we have

lim
N!y

Xm
j¼1

aj

ðN

N�tj

lðtÞ
ð tþtj

t

pðsÞdsdt

a lim sup
N!y

Xm
j¼1

2aj
am

ðN

N�tj

lðtÞdt

¼ 2

am
lim sup
N!y

xðN � tjÞ
xðNÞ


 �aj

a
2

am
lim sup
N!y

xðN � tmÞ
xðNÞ


 �aj
< y;

which contradicts (36). The proof of Theorem 1 is complete.

Theorem 2 could be proved by the method similarly to those of Theorem

1, and so we omit it here.
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4. An example

Example. Consider the following delay di¤erential equation

x 0ðtÞ þ 3

4pe
ð1þ cos tÞ½expðxðt� pÞÞ2=3ðxðt� 3pÞÞ1=3 � 1 ¼ 0; tb 0: ð37Þ

where

pðtÞ ¼ 3

4pe
ð1þ cos tÞ; f ðu1; u2Þ ¼ expðu2=31 u

1=3
2 Þ � 1:

Obviously, f ðu1; u2Þ satisfies condition ðH1Þ and ðH2Þ. We observe that

t1 ¼ p, t2 ¼ 3p, a1 ¼ 2
3, a2 ¼ 1

3, and

a1

ð tþt1

t

pðsÞdsþ a2

ð tþt2

t

pðsÞds ¼ 1

4pe
ð5p� 6 sin tÞ;

a1

ð t

t�t1

pðsÞdsþ a2

ð t

t�t2

pðsÞds ¼ 1

4pe
ð5pþ 6 sin tÞ:

It follows that

lim inf
t!y

X2
j¼1

aj

ð tþtj

t

pðsÞds ¼ lim inf
t!y

X2
j¼1

aj

ð t

t�tj

pðsÞds ¼ 5p� 6

4pe
<
1

e
:

This shows neither (8) nor (9) are true. But

ð2p
0

pðtÞ ln e
X2
j¼1

aj

ð tþtj

t

pðsÞds
" #

dt

¼ 3

4pe

ð2p
0

ð1þ cos tÞ ln 1

4p
ð5p� 6 sin tÞ


 �
dt

¼ 3

2e
ln

5

4
� 3

4pe

Xy
n¼1

1

2n

6

5p

� �2nð2p
0

sin2n t dt

>
3

2e
ln

5

4
� 3

8e

Xy
n¼1

6

5p

� �2n
A0:27=e > 0:

Hence

ðy
0

pðtÞ ln e
X2
j¼1

aj

ð tþtj

t

pðsÞds
 !

dt ¼ y:

In view of Theorem 1, every solution of equation (37) is oscilatory.
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