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ABSTRACT. For a pair (X, 4) of topological spaces and w e H'(X;Z;) the cobordism
group Q,(X, 4; %) with local coefficients is introduced. If X is a CW complex and %,
is a local system over X determined by w, then we have an Atiyah-Hirzeburch spectral
sequence E,% = H(X;Q2,® %) = Qy14(X; %) which is regular and hence conver-
gent. For a connected CW complex X the map u: Q4(X; %,) — Ha(X; %), defined by
(M, f,9]) = f.(p.(0)), is a surjection and its kernel is Q4 ® Z, if w # 0, where o is a
fundamental homology class with respect to the orientation sheaf of a manifold M and ¢
is a local orientation. The closed 4-manifolds with finitely presentable fundamental
group 7 and the first Stiefel-Whitney class induced from w are almost classified modulo

w
%

connected sums with simply connected manifolds by the quotient Hy(Br; %,)/(Aut 7)),
and precisely in the case that z is abelian.

1. Introduction

The oriented cobordism functor {Q.(X,A4),¢,,0} satisfies the first six
Eilenberg-Steenrod axioms for the category of pairs of topological spaces and
maps [2]. So, for any CW complex X the Atiyah-Hirzeburch spectral sequence

Epz‘q = Hp(X; Q) = Qpyg(X)

is regular and hence convergent in the sense of [1]. Using this spectral se-
quence, the classification of oriented closed 4-manifolds having the finitely
presentable fundamental group n modulo connected sums with simply con-
nected manifolds is given by the quotient Hy(Bn;Z)/(Aut z), [4], [7]

Our goal of this paper is to extend the above result to the non-orientable
case. We introduce a cobordism group Q,(X,4;%,) for a pair (X,4) of
topological spaces and we H'(X;Z,), which reduces to Q,(X,A4) if w=0.
Let w; : BO, — K(Z;,1) be the map corresponding to the first Stiefel-Whitney
class. Consider w to be a map of X to K(Z,,1), and let
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B — X

N

BO, —— K(Z,,1)
wi

be the pull-back. Then Q,(X;%,) coincides with Q2,(B, f) given by Stong in
[12, p. 17]. We show that this cobordism group has the properties similar to
the oriented cobordism group.

For a pair of points x, ye X we denote by I'(y,x) the set of relative
homotopy classes of paths from x to y. Let % be a family {¥(x), ¥ (y)}
satisfying the following conditions, which will be called a local system (of
abelian groups) over X:

(1) for each xe X, &(x) is an abelian group,

(2) for each ye I'(y,x), ¥(y) is an isomorphism of ¥(y) to ¥ (x) and

(B) ') =SL(y)oS(y) for any yeI'(y,x) and y' e I'(z, y).

By the definition we see that % induces a homomorphism % : (X, x) —
Aut ¥(x) defined by % (x) = ¥ (2) (x € m(X,x)) for each xe X. Fix xoe X
and choose an element o, € I'(x,xp) for each xe X. Then we see also that

S () =L (o) " 0 Py loyoy ) 0 S (o)

for each y e I'(y,x). When X is arcwise connected and G is an abelian group,
any homomorphism p : 7 (X, xy) — Aut G induces one and only one local
system over X such that ¥(xo) = G and %, = p [10], which is called a local
system determined by p.

For we H l(X i Z,) let S, be a local system over X which satisfies the
following conditions.

(1.1) For each x e X, %,(x) is isomorphic to the group Z of integers.

(1.2) %, is determined by the homomorphism p,, : 7;(X,xy) — Aut Z.
Here p, is a composite of the Hurewicz homomorphism = : 7 (X, xp)
— H(X;Z) with w considered as a homomorphism from H,(X;Z) to
AutZ =7,.

We will prove the following theorem.

THEOREM 1. Let X be a CW complex and we H'(X;Z,). Then we have
a spectral sequence

E}iq = HP(X; ‘Qfl ® %t) = Qp+q(X§ %1)
which is regular and hence convergent.

For an n-manifold N the orientation sheaf %y is defined as follows.
2.1) Inu)=H,(N,N—u;Z) for each uelntN and Iy(u)=
H, (ON,0N —u;Z) for each ue dN.
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(2.2) #y is determined by the homomorphism py = wi(N)o &, where
Z is the Hurewicz homomorphism and w;(N) is the first Stiefel-Whitney class
of N.

Now we define Q,(X;%,) assuming the notion of equivalence between
local systems. We consider a pair of a closed n-manifold M and a continuous
map f: M — X such that &), and the induced local system f*%, are
equivalent. Let ¢ = {¢,},.,, denote the family of isomorphisms ¢, : S (1) —
S %(u) which gives this equivalence (See §2). Let .#,(X;Y,) be the set
which consists of such triples (M, f, ). We define the equivalence relation
in M,(X;%y) as follows. (M, fi,¢,) ~ (M2, f5,9,) means that there exist a
compact (n+ 1)-manifold W and a map F: W — X satistying the following
conditions:

(1) oW = MU M,

@) FIM =/ (j=1,2), .

(3) there exists an equivalence @ : %y — F*¥, such that @ =@ | W :
Sow — F*S,|0W satisfies <15|M1 = ¢, and ¢|M2 = —0,.

The set of equivalence classes .#,(X;%,)/ ~has a natural group
structure and is denoted by Q,(X;¥,) and called a cobordism group with
local coefficients. We use the notation [M, f,¢] for the cobordism class in
Q,(X; S).

Since ¢ induces an isomorphism ¢, : H,(M; %) — H,(M; f*%,), we can
define a homomorphism

M Qn(X§ %1) - Hn(X§ %v)

by u([M, f,¢]) = f.(p.(0)), where ¢ is the fundamental class in H,(M; %).

We may call ¢ a local orientation of M associated with f. We have only two

local orientations +¢ associated with f provided that M is connected.
Using Theorem 1 we will get the following corollary.

COROLLARY 2. Let X be a connected CW complex and we H'(X;Z,).
The map u: Q4(X;%,) — Hy(X;F,y) is a surjection and the kernel is Q4 if
w=0, and Qs ® Z, if w#0.

Let = be a finitely presentable group, Bz = K(n,1) be an Eilenberg-
MacLane complex and w be an element of H'(Bn;Z,). We consider the set
Y, consisting of the closed connected 4-manifolds M such that 7;(M) ==
and wi(M) =w, or more precisely, there is a map f: M — Bn satisfying

(3.1) f induces an isomorphism on 7, that is, f,:m(M,u) —
71 (Bm, f(u)) is isomorphism for any u, and

(3.2) ffw=w(M)e H(M;Z,).

By Proposition 15 in §7 .#%  is not empty. For every M e My, there exists

an element (M, f, ) of .#4(Bn; %) by Proposition 11 in §6. For a non-zero

4
n,w
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w Proposition 13 in §6 says that [M, f,¢] = [M, f,—¢| in Q4(Br;,) under
some condition which is automaticaly satisfied when z is abelian.

We will say that closed connected 4-manifolds M and N are weakly stably
equivalent, if there exist closed simply connected 4-manifolds M, and N, such
that MM, and N#N, are diffeomorphic to each other. Let (Autz)" be the
subgroup of Aut z consisting of the elements whose corresponding classifying
base point preserving maps /4 : Bt — Br satisfy A*w=w on H'(Bn;Z,).

Then we can extend Theorem 1 in [7] to the non-orientable case at least in
the case of abelian fundamental groups.

THEOREM 3. Let 7w be a finitely generated abelian group and w be a non-
trivial element of H'(Br;Zs). Then, the set of weakly stable equivalence classes
in /%27 . I8 in one-to-one correspondence with the quotient Hy(Bm; ¥,,)/(Aut 7).

by the correspondence (M, f,¢) — f.(p.(c)), where & is the fundamental homol-
ogy class of M with local coefficients %yy.

A more general form of Theorem 3 (Theorem 20 in §7) implies the
following theorem which characterizes the Lusternik-Schnirelmann 7z;-category
of closed connected 4-manifolds including both the orientable and non-
orientable cases.

THEOREM 4. If the Lusternik-Schnirelmann r-category of a connected
closed 4-manifold M is not 4, then M is weakly stably equivalent to the boundary
ON(K?) of the regular neighborhood of an embedded finite 2-complex K* in
RP* x R realizing the fundamental group n = ni(M) and Pwy(pm) : T — Aut Z.

We recall the notion of equivalence between local systems and define the
relative cobordism group with local coefficients in §2, and we describe the
properties of cobordism group with local coefficiens in §3. We prove Theorem
1 in §4 and then we compute some cobordism groups with local coefficients
and prove Corollary 2 in §5. We discuss the relation of local orientations and
cobordism classes in § 6 and we prove Theorem 3, its generalized form Theorem
20, and Theorem 4 in §7. Finally we give some calculations of Hy(Br; %)/
(Aut )" in §8.

The auther would like to thank Prof. Takao Matumoto for his advice
and suggestions.

2. Cobordism group with local coefficients

Let M be a compact n-manifold, and f a map of (M,0M) into (X, A4). If
A = ¢ then M = ¢. We denote by /"%, the local system over M induced
from &, by f, that is, ", (u) = %,(f(u)) for ue M and f*F,(y) = S (f.7)
for ye I'(u',u).
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If the following conditions are satisfied, two local systems &, over M
are called equivalent, and denoted by ¢:.¥ = 7.

(4.1) For every ue M, there exists an isomorphism ¢, : & (u) — 7 (u).

(4.2) For every pair of points u,v e M and every homotopy class y of
path from v to u, the following diagram is commutative.

S) —2 T (u)

Now we define a w-singular manifold (M, f,¢) of dimension n in (X, A)
by the following three conditions.

(5.1) M is a compact n-manifold.

(5.2) f is a continuous map from (M,0M) into (X, A).

(5.3) ¢: Sy — f*F, is an equivalence.

We recall here the definition of the isomorphism () for the relative
homotopy class « of any path from u to v. For each point u € Int M there
exists an open neighborhood U of u with a homeomorphism #: (U,u) —
(R”,0). We put D(r) ={xeR%||x|]|<r} and U(r) =h !(Int D(r)) for a
positive number r. Then the inclusion i’" : (M, M — U(r)) — (M, M — u)
induces an isomorphism il : H,(M, M — U(r);Z) — H,(M, M — u;Z). For
another choice of open neghborhood U’ of u, a homeomorphism /4’, and a
positive number ' we write U’(+’') as above. If U’(r') = U(r), then the
,, induced by the inclusion ig,((g,) (M, M —U(r)) —
(M, M — U'(r")) coincides with the isomorphism (i ") 0il"). The set 2
consisting of all U(r)’s obtained by changing u, U, h,r forms an open basis of
M and %, ={U(r)e Z;uec U(r)} is a directed set. Therefore {H,(M,M —
U (r);Z),ig,(("r),)*;ue U(r)} forms an inductive system over %, and we get a
canonical isomorphism

homomorphism i g ,((r )

lim H,(M, M — U(r);Z) = H,(M, M — u; Z).

For any two points u,v of Int M and any embbeded path y from u to v,
we take a Lebesgue number ¢ of an open covering {y~!(U(r))} of [0, 1] and
a division 0 =17y <t <--- <=1 of [0, 1] such that #;, —#,_; <e. We put
»(¢)) =u;. For each j (1 <j<I) there exists some U(r) which contains
»([tj-1,t]). Denoting such U(r) by U(r;), we define a homomorphism
v, Hy(M, M —v;Z) — H,(M,M — u;Z) by

y, = l']fil("l) o (iul]]!k(rl))_l o iuL,]i(rZ) ° (l'gz*(rz))—l 6---0 lul,]i(lr*I) o (l'ul[/i(rz))—l_
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It is known that the homomorphism y, depends only on the homotopy class of
y keeping the boundary fixed [6]. When y is a closed path, p*w;(M) is an
obstruction to the trivialization of y*T(M), where T(M) is the tangent bundle
of M. So, ¥u([y]) is given by p, for any path y connecting two points of
Int M. If velnt M and ue€ M, we choose a closed neighborhood V of u
in M homeomorphic to a closed disk D", and choose a point vy e VN
Int M and an embbeded path ¢ in V from u to vy. We can assume
0NoM = {u}. Moreover we put V;=VNoM and V,=0V —V;. Let
Oy : Hy(Int M, Int M — vy;Z) — H,_1(0M,0M — u;Z) be a composite of the
following maps:

H,(Int M,Int M — vy; Z) " Hy(M, M — vy, Z)

iv,

Y H(V, 0V Z) s B, (0 Z)

-1

i k;
L H, 10V, Vs Z) = H,y 1 (V1,0V1; Z)

M Hy  (OM,0M — u;Z),

where i.,iy,,J,, ks iy,, are isomorphisms induced by the inclusions. Then
Iu([]) is given by o.. The composition of y, and J.’s gives the iso-
morphism %, () for the relative homotopy class « of any path from u to v
with u,ve M. Note that %|0M is also determined by w;(0M) and
SyloM = oy

Given an equivalence ¢ : L1y — f*F|Int M. Then we can extend it
to an equivalence ¢: %y — "%, by defining ¢, = 7,(f.[]) o 9, © o.! for
ue dM, where J is a path in M from u to vy € Int M. This remark is very
useful, especially in the proof of Propositions 5 (3) and 6. We will use
the notation ¢ : Sy — (f|OM)" %, as a restriction of ¢ on Ly |0M = Yoy
hereafter.

Let #,(X,A; %,) be the set of all w-singular manifolds of dimension # in
(X,A). For (M,f,p), (N,g, W)€ M,X,A;%,), we define

—(M,f,w) = (M,f7_(ﬂ)7 (M7f7(p)+(N7g7l//) = (MUN,ng,(pU(//)

We say that (M, f, ¢) is null cobordant: (M, f,¢) ~ 0, if there exists an element
(W,F,®) € My (X,X; ) such that (W, F, @) = (M, f,9) mod A, that is,
(6.1) M is a regular submanifold of dW,
(6.2) FIM = f and F(OW — M) < A4, and
(6.3) @|Int M = ¢ by identifying H,(0W,0W —v;Z) with H,(Int M,
Int M —v;Z) for any v e Int M.
We define (M, f,¢) ~(N,g,¢) when (M, f,¢)+ (N,g,—) ~0. Then we
have the following proposition.
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PROPOSITION 5. The relation ~ in M,(X,A; %) is an equivalence relation.

Proor. (1) For (M, f,p)e M, (X,A;%,) let W =M xI and define a
map F: W — X by

F(u,t) = f(u) ((u, 1) e M x I).

For each v = (u,t) we define a path o, from (u,0) to v and a path f, from
(u,1) to v by
oy (s) = (u, st), Po(s) = (u,1 —s+st) (sel).

Note that identifying u with (u#,0) and (u, 1) we get ¢, 0 o, = —¢@, 0 8, for
v=(u,7) € Int W and we define @, by this map. Then, identifying M x 0 and
M x 1 with M, it is easy to see

a(W7Fa¢) = (Mafv(p)+(M7fa_(p) mod 4.

(2) The reflective law is clear.
(3) Assume that

a(Wlthdjl) = (Mlaf.lﬁwl) + (M27f.27_(p2) mOdA
a(W27F27¢2) = (M25f25¢2) + (M3afé’ _¢3) mod 4.

We glue W, and W, by identifying M, by a diffeomorphism which reverses the
local orientation at each point, and denote the resulting manifold by W. We
define a map F : W — X by F(v) = Fi(v) (ve W;) fori=1,2. Forvelnt W;
(j = 1,2) the inclusion i;(v) : (Int W}, Int W; —v) — (Int W,Int W — v) induces
an isomorphism

ij(0), : Hypr(Int Wi, Int W; — v; Z) — Hyp1(Int W.Int W — v; Z).

If v € Int M,, we take a neighborhood U of v in Int W such that (U, UN M,) is
homeomorphic to (R"™',R"). We take further a point v; e UNInt W; and a
path &; from v to v; in UNW; (j=1,2). If we regard &; as a path in Int ¥,
we rewrite this o;. Then we have isomorphisms

O : Hyp1(Int W;, Int W; — v;; Z) — H,(Int M, Int M> — v, Z),
%y Hyp(Int WoInt W —v;Z) — Hy,pi(Int W,Int W — v, Z).
Since U is simply connected, from the way of the gluing we get

—an, 0 it (v1); ooy} =t 0 ia(12); 0oy}

So, we define @ by
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o — ) (@0 i5(0); (velnt W;, j=1,2)
v ~ . —
~(py), 0 b1 0y (v1); " 0 o) (v e Int My).

The definition is independent of the choice of U, v;,a;. Moreover we
have %, (F.[w]) o @y, = @y 0 (o), for velnt My (j=1,2). Let v;elnt W,
v e Int M, be any pbint and y; be any path from v to v; in W; for j=1,2.
From the above equality we see that ,,(F.[y;]) o @, = @, 0 (y;),. This leads
to Fy(Fiy)o @y = ®P,07y, for any points v,v' € Int W and any ye I'(v',v).
Hence we get an equivalence @ : S — F *Fy|Int W. Since this can be
extended naturally to @ : %) — F*%, as remaked before, we have

a(WaF,¢)E(Mlajiv(pl)+(M37f37_(p3) mod 4. 0

We put Q,(X,4;%,) = M,(X,A4;%,)] ~ and denote by [M,f,¢| the
equivalence class of (M, f,¢p). By setting [M, f, 9]+ [N,g,¥]=[MUN, fUg,
Uy, 2,(X,4;%,) has a structure of an abelian group. We call this group
an n-dimensional cobordism group with local coefficients %, of (X,A4). If
w =0, then M and W are orientable; ¢ and @ give the orientation of M and W
respectively. Therefore Q,(X, 4; %) coincides with Q,(X, 4).

The relative cobordism group may be also defined by the method of [12,
p. 43], but our method makes clear the representatives and able to prove
Theorems 1 and 3.

3. Properties of cobordism group with local coefficients

In this section, we study the properties of cobordism group with local
coefficients needed to construct the Atiyah-Hirzeburch spectral sequence.
Cobordism groups with local coefficients have properties similar to the
Eilenberg-Steenrod axioms for the homology theory.

Fix e H'(Y;Z,) and a continuous map /: (X, 4) — (Y,B). For each
M, f,9] € 2,(X,A;h*S,), we have ¢ : S S (ho f)"%,. Hence we define a
homomorphism &, : Q,(X,4;h*,) — ,(Y, B; %) by

h*([M7f>(ﬂ]) = [M,hof,(p].

Let i:4— X be the inclusion map. We define a boundary operator
0:Q,(X, 4, %) — Q1 (4;i°S,) by

a([Maf’ (ﬂ]) = [aM,fWM, (ﬂ]a
where ¢ = ¢| Y.

PropPoSITION 6.  Cobordism groups with local coefficients have the following
properties.
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(1) Ifid:(X,A) — (X,A) is the identity map, then id, : Q,(X,A; %) —
Q,(X,A;%,) is the identity map.

(2) Let h:(X,A) — (Y,B) and h' : ( B) — (Z,C) be continuous maps
and (e HY(Z;Zy). Then (W' oh),: Q,(X,A4;(h' oh)" %) — Q,(Z,C; %) is a
composite of h.: Q,(X,4;(h' o h)" ;) — .Q (Y,B;(h')" %) and h.:Q,(Y,B;
(h')'52) — 2u(Z.,C; 7).

(3) For any ne H'(Y;Z,) and any map h: (X,A) — (Y, B), the diagram

Qu(X, A0S — Qu (A5 ih* )

h{ J(MA)*

Q(Y,B. %) — 0, (B
is commutative.
(4)  For every pair (X,A) and every we H'(X;Z,), the sequence

S QAT L) QX L) L Qu(X, A L) L Qu (A7) —

is exact.

(5) If there is a homotopy h,: (X,A) — (Y, B), then hy, = hy, : 2,(X, 4;
F) — (Y, B; S for w=hin=hin, ne H(Y;Z,).

(6) If U clInt A, then the inclusion i: (X —U,A— U) — (X, A) induces
an isomorphism i, : Q,(X — U, A — U;i*%,) — Q,(X, 4; %).

Proor. (1), (2) and (3) are trivial.

(4) For [M, f,¢p] € Q,(4;i*F,) we put W =M xI. We define a map
F:W —X by F(u,t)=f(u) ((u,t)e M xI) and a path «, from (u,0) to
v=(u,t) by o,(s) = (u,st). Moreover define @ by extending @, = ¢, o o,
(v=(u,t)eInt W). Then O(W,F,®)= (M, f,9) mod A. Hence we have
j.in=0.

Assume that j.[M, f,¢] =0 for [M, f,¢| € Q,(X;%,). Then there exists
an element (W,F,®)e M,(X,X;%,) such that (W, F, @)= (M, f, )
mod A. Now we put

N=0W-M, g=FIN, y=-@|N.

Then [N,g,¢] e Q,(4;i*%,) and i[N,g, ] =[M,f,¢]. Hence we have
Ker j, = Im .

0j, =0 and i,0 =0 are trivially verified. Assume that J[M, f,¢] =0 for
M, f,9le,(X,A4;%,). Then there exists an element (N, g, ) € M, (A, A;i*F,)
such that 0(N, g,¢) = (oM, f|oM,¢). Now we put

M =MUsy N, f'=fUg, ¢ =9Uy
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and W= M'x1. Define a map F: W — X by F(u,t) = f'(u). Moreover
define @ by extending @, = ¢, o o, (v = (u,t) € Int W). Then it holds

AW, F, @)= (M, ["¢")+ (M, f,—p) mod 4.

This implies j,[M', f',¢'] = [M, f,p]. Hence we have Ker d = Im j,.

Assume that i,[M,f,p] =0 for [M,f 0] €Q, 1(4;i*%,). Then there
exists an element (W, F,®) e #,(X,A;%,) such that (W, F,®) = (M, f,¢).
Since [W,F,®] € Q,(X, A;w), we have [M, f,¢] e Im 0. Hence Ker i, = Im 0.

(5) For [M,f,¢leR2,(X,A4;%,) we put W =M xI and define a map
F:W —YbyF(u,t) =h(f(u) ((u,t) e M xI). Since hn =w for any €1,
we can define @ just in the same way as in the proof of Proposition 5. Hence
we get

O(W,F,®)=(M,hyo f,9)+ (M,h o f,—p) mod 4.

(6) We will show that i, is surjective; the remainder of argument is
similar. For [M, f,¢]€ Q,(X,A4;%,), let P=f"'(X—Int 4) and Q= f(U).
Then there exists a compact submanifold N < M such that Pc N and
ONN=¢. We put g = f|N and y|Int N = ¢|Int N by identifying H,(Int M,
Int M —v;Z) with H,(Int N,Int N —v;Z) for any veInt N. The equiva-
lence  : Sy — ¢g*%, is defined as a natural unique extension. Then we have
[N,g, W] € 2,(X — U,A— U;i*w) and i*[N,g,¥] = [M, [, ¢]. O

From (1), (2), (3) and (4) of Proposition 6 we see that the following
sequence is exact for any triple (X, A4, B) and w according to [3].
o QA B A 5 QX B %) L (X A 5)
L Qi (A, B ) —

For we H'(X;Z,) and ne HY(Y;Zy) let E=w @1 +1Q@ne H (XX Y;Zy)
>~ H'(X;Z,) @ H'(Y;Z,) ® H(X;Z,) ® H'(Y;Z;). Then we can choose a
local system .%: equivalent to %, ® %, on X x Y. Through this equivalence
for [M, f,¢] € 2,(X,4;%,) and [N,g,y] € 2,(Y;%,) we have

PRV Saxn — (f % 9) .

Then, ¢® V¥ : Somxny — (f X g)"F:|0M x N and hence we can define a
homomorphism

O : Qu(X, 4: %) ® Qu(Y: %)) = Quin(X X Y, AX Y; )

by O(M, [, 9] ®[N,g.¥]) =[M xN,fxg,9g®y]. In particular, if Y = pt
then we get a homomorphism
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OF Qm(Xa A; g)\t) ®Q, — Qn1+n(X7 A4; *g)w)a

where Q, is the Thom group ([2], [13]).

Let A be a closed subset of X. We want to use an open subset V' of X
which contains 4 and

(7.1) A is a deformation retract of V' by a retraction r: V' — A, that is,
iqor:V — V is homotopic to the identity 1y : V' — V for the natural in-
clusion iy : 4 — V.

For a continuous map f: 4 — Y, let /:(X,4) — (YU; X,Y) be a map
defined by

f _{f(X) (xe )
X (xeX —A4).

We have the following theorem.

THEOREM 7 (Cf. [6]). Let A be a closed subeset of X and f: A — Y be
a continuous map. If there exists an open subset V o> A satisfying (7.1),
then f,:Q,(X,4; %) — Q,(YU; X,Y;,) is an isomorphism for any
ﬂEHl(YUfX;Zz).

Proor. We put Z=YU,X and let i:(X,4)— (X,V), j:(Z,Y)—
(Z, YU f(V)) be inclusion maps. Consider the left part of the following
commutative diagram:

Q,(X, 4; f*S) LN QX Vi f*S,) e QX — AV — A;i"f*F)

/| | k

e L

J

For the homotopy h,: V — V between iyor and 1y given by (7.1), A/ :
H'(V;Z,) — H'(V;Z,) is an identity isomorphism for every ¢. Hence by (1),
(2), (3), (4) and (5) of Proposition 6 we have Q,(V,A4;i}f*%,) =0 for the
natural inclusion iy : ' — X and every ¢. From the exact sequence of triple
(X,V,A) we see that i, is an isomorphism. By a similar argument we see that
j. 18 also an isomorphism. Next we consider the right part of the above
commutative diagram. From (6) of Proposition 6 we see that i/ and ;. are
isomorphisms for the natural inclusions i’ and j’. Since the map f : (X — 4,
V—A)— (Z-Y,f(V—A4)) is a homeomorphism, f, on the right-hand side
is an isomorphism. Hence so is f, on the center. Consequently f, on the
left-hand side is an isomorphism. ]

Let X be a CW complex and X7 its p-skeleton. Hereafter until the end
of §5, i: X? — X denotes the natural inclusion. For each p-cell ¢; of X,
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h;: (D?,S"") — (&;,¢;) denotes its characteristic map. Then we have the
following corollary applying Proposition 7 to X =][,D?, 4=1[, 8",
Y = X7~V and f =[], h;, because a CW complex has the homotopy extension
property.

COROLLARY 8. The map Zh;, : Y, Q,,(Df,Sf’l;hji*%) — Q. (X7, xr 71,
i*%,) is an isomorphism.

Moreover, we have

COROLLARY 9. The map O : Q,(X", X" 1i*"%,) ® Q; — Qi (X", X" L
i*%,) is an isomorphism.

Proor. Since DY is simply connected, the local system #}i*%, is
equivalent to %,. So, the map
0, : (D}, S} b S ) @ Qy — Quiy(D}, S) s hji* Sy
is an isomorphism for every A by [2]. Furthermore, the following diagram is
commutative:

S, QD1 SIL R L) @ Q) — S, Qg (DY, SIS,

th@ll JEhM

QX" X" Li"%,) @ Q, — QX" X" F,).

Therefore, Corollary 8 implies Corollary 9. O

4. Proof of Theorem 1

For [M, f,9] € Q,(X,4;%,) let H,(Int M; %1, 3) be a homology group
of infinite chains with local coefficients Y1y and g, : H,(Int M; S M)
— H,(Int M; f*%,) be the isomorphism induced by ¢|Int M. We know
that there is a natural isomorphism z: H,(Int M; f*%,) — H,(M,0M; f*%,)
for any compact manifold M (cf. [6]). We put ¢, =10¢, and define a
homomorphism

M Qn(X7A§ Spw) - H11(X7 A; f%v)
by u([M, f,¢]) = f.(p.(ox)), where f, is an induced homomorphism
So i Ho(M, aM;f*=¢w) — H,(X, 4; %)

and oy is a fundamental class of H,(Int M; %1 5). Then, for the any CW
complex X we have the following.
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TueoreM 10. The map p: Q,(X", X" i*%,) — H (X", X" i*%,) is
an isomorphism for every we H'(X;Z,).
Proor. We know that the map
w2 Qu(DY,SI Y it ) — Hy (DY, SE Y hiit S,

is an isomorphism for every 4 by [2], and the following diagram is
commutative:

3, QDY Sy S e S, H (D SE )

A2

le,i*J/ J/Zh,*

QX" XL g)) —— H (X", X" Li*%,).
u

Since the vertical map at the right-hand side is an isomorphism, Corollary 8§
implies Theorem 10. O

PrROOF OF THEOREM 1. For we H'(X;Z,) and each pair of integers (p, q)
such that —o0 < p < ¢ < o0, we put H(p,q) =>.,2,(X 7, X %i*%,). Then
{H(p,q)} satisfies the axioms in the theory of spectral sequences [1, Chap. XV,
p. 334]. Now let H(p,q) = H(—p,—q), H(p) = H(p,—0), H = H(0, —0).

We define a filtration F,,H of H by
Fyofl = 1Im(Hp1o(p) — Hpig) = Im(Qp (X730 F) — Qpig(X5. ).
We define also
Zy g =1m(Hpy(p,p—71) = Hpy(p,p = 1))
= Im(Qp (X7, X751 S) — Qg (X7, XP7107 )
B, ,= =Im(H, g1 (p+r—1,p) = Hyy(p,p— 1))
= Im(Qpi g1 (X XP0F) — Qg (X2, X7V 0°9,))
=2 B,

where 1 <r < o0, —o0 < p<oo. Since H,(p) = Q,(X7;i*%,) = 0 for every n
and p < —1, F is regular and hence convergent in the sense of [1]. Then we
have particularly

E, = QX0 X510,

By Corollary 9 and Theorem 10 we get
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Qig(XP, XP7L ) S QX0 XP L) @ Q= Hy (X2, XP L0 S,) @ Q.
By the universal coefficient theorem for the homology with local coefficients [6]
we have

H, (X", X" ,) @ Q, & Hy(X?, X" 1,0, ® i* ).
Moreover, through these isomorphisms, we have the following commutative

diagram:

Qpg(X7 XV S) S H(X0 XL 0,010 )

Qp«H/fl (Xp*l 5 prz; l*gpn) - p—1 (Xp*l 5 prz; Qq ® l*fspu)

Therefore the differential dp{ M Epl, . EILL , is identified with the boundary

operator 0: H,(X?, X" 1 Q,®i*%,) — H,.1 (X!, X""%Q,®i*¥,). Hence
we have

E, , = H)(X;Q,® %)

Thus we proved Theorem 1.

5. Some calculations and proof of Corollary 2

Using Theorem 1 we will calculate the cobordism group with local
coefficients for some examples and prove Corollary 2.

ExampLE 1. Let X =S!' and w#0. We have an exact sequence
0— Ef, — 2,84 %) — Ef,_y — 0

since E2,_,, =0 for m#0,1. From Hy(S';%,) =12, and H,(S';%,) =0,
we have EP =~ Hy(S%;Q,® %,) ~Q,®Z, and ErF, | = H (S1 9,1 ® %)
~ Tor(Z,,2,-1). It is known that Qy=~Z, Q=20 =0Q;=0, Q4 =Z.

Hence we have Q,(S%;%,) ~Q,®Z, for n <5.

ExXAMPLE 2. Let X be a real projective plane P> and w # 0. We see that

Q2,7 (Wl = 0)
Tor(Z,,2,-1) (m=1)

E? = H, PZ'anm Sy) =
e S T (m=2)
0 (m>3)

since Ho(P?*;.%,) = Zo, H|(P?*;%,) =0, Hy(P?;#,) = Z. Hence for n <5 we
have an exact sequence
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0— E&Cn — Q,,(PZ;(SFW) - Ezcn—Z — 0.

Then we have Q,(P%*.%,) = Q and Q,(P* %) =Q,®Z, for n #2, n < 5.

PrROOF OF CROLLARY 2. Since Qo =Z, Q1 =2, =2:=0, Q4 =7, we
have an exact sequence

0— E(ﬁ - U(X; %) — Efy — 0.

The map u induces a map p, from the Atiyah-Hirzeburch spectral sequence
for Q,.4(X;%,) to the Atiyah-Hirzeburch spectral sequence {E) } for
H, ,(X;%,) and we have the following commutative diagram:

QUX; %) —— Efy = Ha(X;20© %)

| |-

Hi(X; %) —  Ef = Hi(X; %,).
Since u, is an isomorphism, we may identify the map u with the above map
Q(X;%,) — Ef. Since X is connected, Hy(X;%,) =Z if w=0, and
Hy(X;%,) =Z, if w+# 0. Therefore we have E§?4 ~Quif w=0, and Ef, =
Q,®7Z, if w+#0. Hence we get the conclusion.

6. Local orientations of non-orientable manifolds
At first we prove the following Proposition.

PROPOSITION 11. Let X be an arcwise connected space and w e H'(X;Z,).
Suppose that M is a connected manifold without boundary. Then for any
continuous map f: M — X the local system Sy is equivalent to [, if and
only if fw=w(M).

PrROOF. Assume that ¢ : % — f*, is an equivalence. We regard w
and w;(M) as the homomorphisms from H;(X;Z) to AutZ =7, and
H\(M;Z) to AutZ =17, respectively. We put p,=woZ and p, =
wi(M) o & for the Hurewicz homomorphism Z. For every point u € M and
every element y € 7;(M,u), the following diagram is commutative:

Su(u) —2— (f* L)) = So(f (1))

ffM(V)J/ lf/ﬂv(f*"/)

Iu) =L (F* )W) = Sl f (w)).
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So, (9m), () =90," o (%) juy(fr) 09, as an automorphism of S (u).
Because ¢, identifies Sy (u) = S, (f(u)) = Z, this means p,, = p,, o f,. Since

—

E is a surjection, we see f*w = w;(M) by the following commutative diagram:

(M) — s m(X, ()

H(M;Z) —'— H\(X;Z).

Conversely assume that f*w = w;(M). Fix a base point uy. Then, the
local systems f*%, and %), have the same associated homomorphism p,, =
PO fuim(M,uy) — Aut Z. We choose an element o, € I'(u,uy) for each
point u € M. If we choose an isomorphism ¢, : S (uo) — (f~F,)(uo) for the
base point up, the isomorphism ¢, : (1) — (f*%,)(u) is determined by ¢, =
Folfuot) ' o Pu © Sar(o). In fact o = {g,} satisfies

240 I (1) = Lul£.) ™" 0 Py © (Far)yy () © S (o0)
— i) 0 (B iy o (07%™)) © 04 © Faa ()
= Sw(f7) oo,
for every ye I'(v,u). Hence ¢ is an equivalence. O

Let M be a closed connected n-manifold, 7 = 71 (M) and f, /" : (M,uy) —
(Bm, y,) be two maps which satisfy the conditions (3.1) and (3.2). Moreover
let ¢: Sy — S, and ¢’ : Sy — f*F, be equivalences. Suppose that f
and f’ are homotopic by a homotopy F : M x I — Brn. For each point ue M
let y, be a path from (#,0) to (#,1) in M x I defined by y,(r) = (u,7) and
define isomorphisms &, : S (u) — S (u) and kp(u) : Sa(u) — Sy(u) by

(8.1) Oou = Lu(Filya]) and kr(u) =@, 08,00
Then we have

ICF(L{) = yM(OC)71 o ICF(M()) o VM(oc)

for every relative homotopy class « of paths from #y, to u in M. We may
regard xr as a map from M to Aut Z. From the above equation we see that
Kr 1s continuous. We define sgn kg by

if xp(u) = id for any u

1
sgn Kp = { | if xp(u) = —id for any u.

We have the following proposition.
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PROPOSITION 12.  Let M be a closed connected n-manifold, 7 = (M) and
[ f" (M, uy) — (Br, y,) be two maps which satisfy the conditions (3.1) and
(3.2). Moreover let ¢: Sy — S and @' : Sy — [ S, be equivalences.
Suppose that f and f' are homotopic by a homotopy F. Then it holds [M, f, ¢]
=M, f', (sgn kp)¢'] in Q,(Br;¥,), where xr is a map defined by (8.1).

ProoF. We put W=Mx1I. For v=(ut)elnt W we define &,:
Fw () — F*%,(v) by

D, = *%V(F*[OCUD_I O Py O Ay,

where o, is a path from (u,0) to v = (u, ) defined by o,(s) = (u,st). Let f, be
a path from (u,1) to v=(u,t) defined by p,(s)=(u,1—s+st). By the
definitions of @, and xp(v) we see that

@, = ~SW(F.[B)) " oplonr(u) of,,

= —SW(F[B,)) " o (sgn kp)g) o B,

So, @, : Sy (v) — (F|oW)*F,(v) is written as

gy (0 = (,0))
o= { ~(sgnkr)l (v =(u1)).
Hence we get (W,F,®)= (M, f,p)+ (M, f',—(sgnxr)p’). O

Let g be an element of orthogonal group O(n — 1) with det g = —1 and
denote by N the quotient space of R x D"~! gained by identifying (s,v) and
(s+1,gv) for each (s,v)eRx D""!. Then N is a non-orientable smooth
O(n—1) bundle over S' with fiber D"~!. We denote by [s,v] the point
represented by (s,v) in N.

Let 6:[0,1] — [0,1] be a monotone and smooth function such that
d|[0,¢] =1 and d|[1 — &, 1] =0 for a positive number ¢ which is small enough.

For each tel we define a map H,: N — N by

H([s,ru]) = [s + 5(r), ru],

where se R, 0 <r <1 and ue dD""'. Then H, is a diffeomorphism such that
H,|ON = 1,y for each ¢ and H; is homotopic to Hy = ly.

Let M be a closed, connected and non-orientable n-manifold and « be a
simple closed arc with based point uy such that w(M)([«]) # 0. The tubular
neighborhood of o is diffeomorphic to the above bundle N for a some
g € O(n—1) with det g = —1. Hence we have a diffeomorphism % : (M, uy) —
(M, up) which satisfies the conditions

(9.1) £ is the identity map out of a tubular neighborhood N(x),
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(9.2) A is homotopic to the identity map 1, by a homotopy H : M x I
— M and

(93) H*[yuo] = [OC]:
where y, is a path from (ug,0) to (uo,1) in M x I defined by y, (1) = (uo, ).
We define a family of isomorphisms 4 = {h,} : %y — h* Sy by

b= Su(H )™

where 7, is a path from (u,0) to (u, 1) defined by y,(f) = (u,7). Then £ is an
equivalence. In particular, &, = %y ([o]) " = —id.

Let f: (M,uy) — (Bm, y,) be a continuous map which satisfies the con-
ditions (3.1) and (3.2), and ¢ : %) — f*, be an equivalence. Composing /
with ¢ we get an equivalence h*p = {g,, ohy}: Sy — (foh)' S,

ProposITION 13. Let M be a closed, connected and non-orientable n-
manifold, o be a simple closed arc with based point uy such that wi(M)([o]) # 0
and h: (M,uy) — (M,uy) be a diffeomorphism which satisfies the conditions
(9.1), (9.2) and (9.3). Let f:(M,uy) — (B, y,) be a continuous map which
satisfies the conditions (3.1) and (3.2), and ¢ : Sy — S be an equivalence.
If f and foh are homotopic preserving the base point, then [M,f,¢] =
M, f,—¢| in Q,(Br;Sw). Moreover, the assumption that f and foh are
homotopic preserving the base point is always satisfied when 7 is abelian.

Proor. At first we show that [M, f,¢] = [M, fohh*p]. We put F =
foH. Let kp be a map defined by (8.1). Since J,, = %, (f.[¢]) = —id and
(h*0)uy = Oy © iy = =0y K1 (0) = 9! 08y, 0 (h*9),, =id. Hence we get
M, f,p] =M, fohh*p] by Proposition 12.

Next we show that [M, f,¢] = [M, foh,—h*p]. Let G be a homotopy of
f to foh preserving the base point. Since d,, = % (G:ly,]) = L(ly,) = id,
we have rg(ug) = —id. Hence we get [M, f,¢] =[M, f oh,—h*¢p] by Propo-
sition 12.

Assume now that 7 is abelian and two continuous maps f, f” : (M,ug) —
(Bm, y,) are homotopic by a homotopy F: M xI — Bn. Weput X =M X I,
A=M x0UM x 1Uuy x I. Then (X,A) can be considered to be a pair of
CW complexes by the triangulation theorem of differentiable manifolds. We
define a map G’ : (4, (uy,0)) — (Br,y,) by

S (u) (a=(u,0)e M x0)
G'(a) = {f’(u) (a=(u1)eMx1)
Yo (a = (uo, 1) eup x I).

We regard 71 (M x 0, (up,0)) and 71 (M x 1Uuy x I, (uy,0)) as the subgroups
of 7(4,(up,0)). For any yemn (M x0,(up,0)) we have G.(y) = f.(y) =
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F, oi.(y), for the natural inclusion i: 4 — X. Any element y’ of 7;(M x 1U
uy x 1, (uo,0)) is represented by [y, ]7[y,.'], where 7, is a path defined by y, (7)
= (uop,t). Remark that F.y, is a closed arc with base point y,. By the
assumption that 7z is abelian we have F, oi.(y') = (F.[p, ) /. () (F.lp,) " =
f1(y) = G/(y"). Hence G' has an extension G : (X, (uo,0)) — (Br, y,) by the
obstruction theory. G gives a homotopy of f to f’ preserving the base point.

Since f o h(up) = y, and f and f oh are homotopic, we may apply the
argument to f' = foh and get the result: f and f oh are homotopic pre-
serving the base point when 7 is abelian. O

Let 4: (Br,y,) — (Bm, y,) be a classifing map for A, € (Autx=)". Since
A*w = w, two local systems .4, and .*%, are equivalent and there is a unique
equivalence 1S — A%, such that Zy“ =id holds. Then we have a ca-
nonical isomorphism /.. associated to A defined by S = Ju O Ay H,(Br; %,) —
H,(Br; %), where A, : H,(Br; 1" %,) — H,(Br;%,) is a natural isomorphism
induced from 4 and 1, : H,(Brn; %,) — H,(Br; \*¥,,) is an isomorphism
induced from 4. We denote by (Aut z)" the set consisting of such 4,. For
a local orientation ¢ of M associated with f : M — Bn, we define a local
orientation 1,¢ of M associated with lof by (;l*go)u =2 fu) © @, Since the
diagram

Ho(M: %) 22 o (M Goo 1)) 225 1y (Br )

y N

Hn(va*'%v) L’ Hn(Bn7 '%t) L} Hn(BT[, /‘L*%t)

is commutative, we obtain

(10.1) jeo foop, = (o f), o (L),

For closed connected n-manifolds M and M’ let h: (M, uy) — (M’,u}) be
a diffeomorphism. Let f:(M,up) — (Bn,y,) and f': (M’ ul) — (Br, )
be continuous maps satisfying the conditions (3.1) and (3.2), and ¢, ¢’ be
local orientations associated with f and f’ respectively. Since h is a dif-
feomorphism, we have a natural isomorphism (h.), : H,(M, M —uy;Z) —
H,(M' .M’ —uy;Z). As above we take a unique equivalence h:. %) —
NAYE satisfyingﬁu0 = (h.),, and define an isomorphism h, - Hy(M; %) —
H,(M'; %) by hy = h, o h,. Moreover, from ¢’ we define a local orientation
h*g" of M associated with " oh by (h'), = pj, © hu.

On the other hand, since the isomorphism (f'o#h), o f;': 7 (Bn, y,) —
71 (Bm, yy) is an automorphism of 7, there is a based point preserving map

A (Bm, yy) — (Bm, y,) such that 1o f is homotopic (not necessarily preserving
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the base point) to f’ oh. Then, it is easy to see A, € (Autn)”. Let F be a
homotopy from Ao f to f'oh and define an equivalence v : (Ao f)"%, —
(f'oh) Sy by ¥, = %u(F.[y])"", where y, is a path in M x I defined by
7.(t) = (u,t). We consider the following diagram:

Ho(M; %) 205 Hy(M; (o f)" )
) (h.o). (o).
/Ll \ ll//* \

Ho(M; 1" Sp) HoM; (f o) %) L 1y (B ).
h*J( Jh* /ﬁ

H(M'; %) —2s  H (M5 f7F,)

The diagrams is commutative except the upper triangle part including the upper
horizontal arrow where the diagram is commutative up to sign, more precisely,
it holds ¥, o (4.9), = (h.¢'), or Y, o (A.p), = —(h.¢'), according to ¥, = id or
¥,, = —id. Hence it holds

flogloh. iy, =id

(11.1) (ﬂ»of>*o(/h</)>*={_f;oq,;oil* if 4, = —id.

Summarizing and extending the above argument, we will get the following
Proposition 14.

PROPOSITION 14. Let M and M' be mutually diffeomorphic closed con-
nected n-manifolds. Let f: M — Bn and f': M’ — Brn be continuous maps
which satisfy the conditions (3.1) and (3.2). Moreover, let ¢ and ¢’ be local
orientations associated with f and f' respectively. Then [u(IM,f,¢])] =

(M, 10 D] or [u((M. f o)) = [=u([M", f',9"))] in Hy(Bm; %,)/(Autm)".

PrOOF. If f:(M,uy) — (Br,yy), f':+(M',uj) — (Br,y,) and there is
a diffeomorphism /i : (M,up) — (M',u)), then the above argument implies
Proposition 14. So, if f(M)Nf'(M') # ¢, we can choose yg,uo,u; and
h:(M,uy) — (M',u}) and then the proposition follows.

In case f(M)Nf'(M')=¢, we choose y,, uj such that f': (M’ uj) —
(B, y,) and choose uy so that /i : (M, uy) — (M',u}). We put y, = f(up) and
choose a path f from y, to y,. Let g;: {up} — Bn be a homotopy such that
g:(up) = p(t). We can consider that (M,u) is a pair of CW complexes. By
the homotopy extension theorem there exists a homotopy f,: M — Bn such
that f,(uo) = ¢.(up) and fy, = f. We see that f| satisfies the conditions (3.1)
and (3.2). Therefore /"%, and f;*¥,, are equivalent. Hence there is a unique
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equivalence f: f*%, — f"Y, satisfying ﬁ_uo = yjt,([/)’})_]. For a local orien-
tation ¢ associated with f we define a local orientation ¢, associated with f; by
(91), =PBuo@,. Then [M,f 9] =[M,f,p]. In fact, the cobordism is given
by (W,F,®) defined as follows. We put W =M x I and define a map
F: W — Br by F(u,t) = f,(u). Furthermore we define a local orientation @
associated with F by extending

¢U = '%V(F*[yv])il o (pu o Vv*(v = (u7 t) € IIlt W)a

where 7, is a path in W defined by y,(s) = (u,st). Then @M x 0 =g,
¢‘MX 1= —0 and 6(W5F7¢) = (M7fa¢)+(M7fl7_¢])'

Now we can apply the previous argument to f; with ¢, and the propo-
sition follows. [

7. Generalized form and proof of Theorem 3

In this section we present a generalized form of Theorem 3 as Theorem 20
and using it we prove Theorems 3 and 4.

Let .4 4(Br; %,) be the subset of .#4(Bn; ¥,) consisting of triples (M, f,¢)
such that f induces an isomorphism on 7z;. Proposition 11 together with
following proposition guarantees that .#4(Bn;.%,) is not empty.

ProprosITION 15 ([5]). Let © be a finitely presentable group. For each
element w of H'(Bn;Z,), there exist a connected closed 4-manifold M and a map
f: M — Bz which induces an isomorphism on m; and satisfies f*w = wi(M).
In fact the zero element of Q4(Bm; %) is representable by (No,go, V), where go
induces an isomorphism on w and Y, is a local orientation associated with go.

Proor. Let K? be a geometric realization of 7 by a compact 2-complex.
We have a map g, : K> — B which induces an isomorphism on 7;. Let i :
Brn — K(Z,,1) = P* x R be the map corresponding to w. Here, P", 2 <n
< o0, denotes the n-dimensional real projective space. Then we find a map g :
K? — P* x R such that g is an embedding approximating i o g; and g*w;(P*)
=giw. Note that g*wi(P*) = g*i*w;(P*). We regard K> < P* xR. Let
N(K?) be the regular neighborhood of K? and g¢»:N(K?) — K? be the
projection. We put Ny = 0dN(K?) and go = (g1 092)|No. Then go induces
an isomorphism on the fundamental group and giw = (92|No) giw =
(92|No)“g* w1 (P*) = wi(No). Hence the pair (Ny,go) is a desired one. Note
that [No, go, o] = 0 € Q4(Br; #,) for any local orientation 1, because
(No, go, Vo) bounds (N(K?),g;0gs, @) for some ®. In fact, @ is uniquely
determined because the natural inclusion Ny — N(K?) induces an isomorphism
on mj. O
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For the proof of Theorem 20 we need some lemmas.

LemMA 16. Let [M, f,p] € Qu(X; ) and y be a nonzero element of
Kerlf, :mi(M) — n(X)]. We can perform the l-dimensional surgery on the
embedded circle representing y and get a new triple (N, g, V) € M4(X; ) which
represents the same element (M, f,¢p]. Note that n;(N) =m(M)/(y =1).

Proor. For an element [M, f,¢] € Q4(X; ) put Wi =M x I and F) :
W) — X be a map defined by Fj(u,t) = f(u). Then there is an equivalence
&y : Sy, = F S, such that &;|M x 0 = —p and &1|M x 1 = ¢. Since ¢ is an
equivalence of ¥ to f*%, and ye Ker f,, the normal bundle v of y is
orientable and hence trivial. Let 7:S' x D3 — M x 1 be a trivialization of v.
We may assume that f]5(S! x D3)(x,y) = fo3(x,0) for (x,y)eS!x D3,
Since f.(y) =0, there exists a map g;: D?> x 0 — X such that ¢;|S!' x 0=
fo7S' x0. We extend g; to F>: D> x D* — X by F(x,) =g1(x,0). We
put W, =D?x D* and W = W, U; W, by straightening the angles (cf. [2]).
Let F: W — X be a map defined by F(z) = Fj(z) (ze W}, j=1,2). Note
that there is an equivalence @, : %y, = F;%, so that —&,|S' x D3 =
9|7(S' x D*). Using @; (j = 1,2) similarly to the proof of Proposition 5, we
get an equivalence @ : S = F*¥, such that ®|M x 0= —¢p. Now we put
N =0W —M x0, g=FI|N, and = ®|N by identifying Hy(0W,0W — u;Z)
with Hy(N,N —u;Z) for ue N. Then we get O(W,F,®)=(M,f,—p)+
(N,g,¥). O

LemMa 17. Let m be a finitely presentable group. Any element of
Q4(Br; &) is representable by a triple (N, g, ) with an additional property that
g : N — Br induces an isomorphism on .

Proor. The null element is already represented by (N, go, ) in Propo-
sition 15. Let (M, f,p) be a representative of a given element of Q4(Bn; %)
and we put f'=ftgo and ¢’ =gty Then [MEN,, [’ ¢'] € Qu(Br;S,)
and f. :m (MENy) — n is surjective. Let {oy,...,o,} and {B,,...,B,} be
generators of 7;(Ny) and 7 (M) respectively. They are generators of
m(MEN,). We put B =gglf.(B) (1<j<m). If every BB (1<j<m)
anihilates, then any element of Ker f! anihilates. Using Lemma 16 we
anihilate the elements [)_’j/)’jfl (1<j<m) of m(MENy) by 1-dimensional
surgery on the embedded circles representing these elements. Then we get
a new closed 4-manifold N and a map g : N — Bz which induces an isomor-
phism on 7; such that [N, g, ] = [MiNy, f',¢'] = [M, f, 0] + [No, g0, ). The
equivalence  : Yy — g* %, is given as in the proof of Lemma 16. O

Lemma 18. If two triples (M, f,p) and (N,g,W) represent the same
element of Q4(Bm; %) such that the induced maps on the fundamental group are
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isomorphic, then we have a cobordism (W, ,F,®) such that 0(W,F,®)=
(M, f,9) + (N,g,—V) and both M = W and N = W induce isomorphisms on 7.

PrOOF. Let (W' F’,@') be a cobordism of (M, f,¢) and (N,g,¥). We
see that F!:m(W') — = is surjective. Let y,,...,7, be the generators
of m(W'). We put ﬁ,:fglFJ(y/) (j=1,2,...,1). Then ﬁ,yj*l e Ker F/
(j=1,2,...,1). We can consider that f; and y; are elements of z(Int W’)
and so ﬁjyj’l e Ker(F'|Int W'),. Since @’ is an equivalence of Sy to F*%,,
we can anihilate ﬁjyj‘l (j=1,2,...,1) by l-dimensional surgery on 5-
dimensional manifold W' as in the proof of Lemma 16. If we anihilate the
elements ﬂjyj’l (j=1,2,...,1), we get a manifold W and a map F: W — Bz
such that the inclusion M < W and F induce isomorphisms on 7;. Since
N < w £ Br induces an isomorphism on n;, N = W also induces an iso-
morphism on ;. Note that the surgery does not affect the existence of @ as in
the proof of Lemma 16. O

LeEmMMA 19.  Assume that the 5-dimensional cobordism W between M and N
satisfies the condition that OW = M UN and both M < W and N < W induce
isomorphisms on wy. Then, there are My and Ny which are connected sums of
some copies of S* x S* or S? X S? such that M§M, is diffeomorphic to N{Nj.

Proor. We can simplify the handle decomposition of W relative to M so
that it has only 2-handles and 3-handles as in the usual proof of s-cobordism
theorem in higher dimension, because M = W and N = W induce isomorphism
on m;. Then the feet of 2-handles are isotopic to the trivial one because it
should represent the zero element in 7; by the assumption. So, the middle
level manifold is a connected sum of M and some copies of S? x S? or §? x §2.
By thinking from another direction it is also diffeomorphic to a connected sum
of N and some copies of S% x S? or §% % S2. O

THEOREM 20 (Generalized form of Theorem 3). Let © be a finitely
presentable group and we H'(Br;Z,). Then, any equivalence class [£] of
Hy(Br; %,)/(Aut n) has a representative (M, f,p) in M4 Br;%,) such
that & = u([M, f,¢|), and for another representative (M',f' ¢') of the same
class M and M’ are weakly stably equivalent. Moreover, the induced map:
Hy(Br; &)/ (Aut nt) — Sy, is 1:1 or 2:1 according to that [u([M, f,¢])] =
(M, f,—9))] or not, where V%i’w is the set of weakly stable equivalence
classes in M7 .

Proor. Take any element ¢ of Hy(Bn;.%,). Then there exists an element
{ of Q4(Bn;%,) such that u({) = ¢ by Corollary 2. It comes from a triple
(M, f,p) in .44Br;%,) by Lemma 17. Let (M', f',¢') be another triple in
M 4(Br; ) such that u([M, f,¢]) = u([M’, f',¢']). Then we have (M, f,¢] =
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[M'tmCP?, f'4e, p'thy] for some m by Corollarly 2 and the fact that Q4 is
generated by the complex projective plane CP?, where mCP? means the
connected sum of |m| copies of CP? or CP? (the manifold CP? with the
opposite orientation) according to the signature of m, ¢ is a map sending CP?’s
to one point and ), is the orientation of mCP?, that is, an appropriate
equivalence of ,,cp» to &*%,. Therefore, the manifolds M and M’ are
weakly stably equivalent by Lemmas 18 and 19. Let &= u([M, f,¢]), &' =
w(M', f',¢")) for (M, f,p), (M' f' ¢')e.lsBr;¥,). Assume now that
[E]=1[¢"] in  Hy(Br;%,)/(Autn)” and not mecessarily u([M,f,¢p]) =
u([M', f',¢']). Then there is a classifying map 4: (Br,y,) — (Bn,y,) for
some element of (Autz)" such that ¢ =1, where 4, is an element of
(Aut 7)" defined in §6. Since A, o f. 0@, (ox)= (Ao f), o (Jup).(oa) by
(10.1) in §6, we have u([M', f',¢']) = u([M, Ao f,2¢]). By the same argu-
ment as before M and M’ are weakly stably equivalent. Therefore, we can
assign a weakly stable equivalence class of M to [£].

On the other hand, let M be an element of .#2 . Then, there is an
element (M, f,¢) of .#4(Br;¥,) by Proposition 11. The triple determines the
cobordism class [M, f,¢] in Q4(Br; %) and then an element u([M, f,¢p]) of
Hy(Br; %,). Any weakly stabilized w-singular manifold determines the same
element of Hy(Br;.%,) because u([MEMy, /o, pipo]) = f.(p.(0)), where My is
a closed simply connected manifold, f,: My — Bn is a collapsing map to one
point, ¢, is an equivalence of Sy, to f;%, and o is the fundamental homology
class of M with local coefficients ). If M and M’ are weakly stably
equivalent, we may assume that M and M' are already diffeomorphic as far as
we consider the element of Hy(Br;#,). Take another element (M’ f' ¢') €
M 4(Br; &,). Then, by Proposition 14 we have [¢'] = [£] or [¢'] = [—¢] for & =
w(M, f,9]) and & = pu([M’, f',¢']). This means that there are at most two
elements [&], [—¢] € Hy(Br; %)/ (Aut #),’ corresponding to the weakly stable

equivalence class of M. The correspondence is 1:1 or 2:1 according to that
[£] = [-¢] or not.

Even when w = 0, this theorem holds because we did not use Proposition
13 yet. In this case the induced map Hi(Brn;Z)/(Aut n), — yﬂi ,» 18 just the

orientation forgetful map. ]

PrOOF OF THEOREM 3. Let M be any element of .#% . By Theorem 20
there are at most two elements [+&] = [u([M, f, +¢])] of Hu(Br; ¥,)/(Aut n))
corresponding to the weakly stable equivalence class of M. Since 7 is abelian
and w#0, it holds [M,f,¢|=[M,f,—¢] by Proposition 13. This means

] =[—¢]. Hence we get the conclusion. U

PrROOF OF THEOREM 4. Let n=m (M) and take a map f: M — Bz
inducing an isomorphism on 7;. If the Lusternik-Schnirelmann z;-category of
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M is not 4, then f*: H*Br;Hom(%,,Z,)) — H*(M;Hom(f*%,,Z,)) is a
zero map for any m by [8]. From the universal coefficient theorem for the
cohomology with local coefficients [6], we see that f, : Hy(M; f*F,) —
H,(Br; %,) is a zero map. Hence f,(p,(c)) = 0 for any equivalence ¢ : ¥y —
f*%,. On the other hand [0N(K?),go, ] =0 for the example given in the
proof of Proposition 15. Especially u([ON(K?),go,¥o]) = go(0anx2) = 0.
So, by Theorem 20 M is weakly stably equivalent to ON(K?). ]

If the fundamental group 7 is a non-trivial free group, then its classifying
space is a bouquet of circles and Hy(vS';%,) =0 so that every manifold in
A3, with w # 0 is weakly stably equivalent to #.S' x S°;S! X S3 as shown in
[9]. We know that its Lusternik-Schnirelmann 7;-category is 1. If z is not a
free group, then the Lusternik-Schnirelmann n;-category of M is 2 for the
manifold M which belongs to the weakly stable equivalence class corresponding

to the zero element of H4(Bm;#,) and 4 otherwise by Theorem 4.

8. Some calculations of Hy(Br; %,)/(Aut )

In this section we calculate Hy(Br; %,)/(Autn)) for some examples.
Example 3 contains many non-trivial group cases. Example 4 is a non-abelian
group case where Hi(Bm;%,)=7Z. Here, P", 2 <n < oo, denotes the n-
dimensional real projective space. For convenience sake we put A =
Hy(Br; %)/ (Aut ).

ExampLE 3. Let 7 =m; (a closed aspherical k-manifold) (k < 3). Then
A = Hy(Br; %,) =0 for any w. Therefore, the weakly stable equivalence
classes of closed 4-manifolds in .#2  is unique. Moreover the ones of closed
4-manifolds is 1:1 correspondence with the equivalence classes of w modulo

automorphisms of 7.

EXAMPLE 4. Let n=Z x Z x m(P*4P?) and ¥, = % ® % @ ¥, with
n=wi(P*4P?) #0. Take S' x S! x P?4P?> as Bn. Then we have Hy(Br;.%,)
= H)(S' x S'; %) @ Ho(P*4P* %) = Z because H,(P*4P* ;) =Z. Note
that Aut(Z x Z)( = (Aut n).") contains an element which exchanges the sign of
one of two generators of H;(S' x S';.%) and hence change the sign of the
generator of H>(S' x S';.%). Then we get A =Z7Z/{+1}. The generator of
Hy(Br; %,) is given by u([Br,id,¢]).

ExampLE 5. Let n=Z® --- ®Z (n copies) and w #0. Take
S!x .- x S! as Bn. Any ¥, is equivalent to % ® -+ @ % ® ¥, for a
non-trivial element 5 € H'(BZ;Z,) = Z,. Then each canonical generator

of Hy(Bm; %)) =7r® - @ L, ((n

4
4-element subset in {1,2,...,n—1}. Let C4,_1 be the set which consists of

> copies of Z,) corresponds to a
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subsets of distinct 4-elements in {1,2,...,n—1}. Then the symmetric group
Sy—1 operates naturally on Cy ,_;, which corresponds to the set of non-trivial
elements of Hy(Br;¥,) with the operation by (Autz)). Hence we get

lA‘: |C4,n71/Snfl|+122 (nZS)
1 (n<4).

When n = 5,6, we see that S, | operates transitively on each subset of
Cy -1 consisting of the same number of 4-element subsets and hence |4| =

-1
(n 4 > + 1. Let N be a closed 4-manifold obtained from 7* by attaching a
non-orientable 1-handle and 7 be a manifold with z; = 7 which is obtained
from N by l-dimensional surgery. In the case n = 5 the non-trivial element of
A is represented by u([T* f,¢]). Even when n > 6, any element of A can be
constructed by using several copies of T“f Furthermore, in the case n < 4 the
weakly stable class of the closed non-orientable 4-manifold is unique, because
any w # 0 is equivalent modulo automorphisms of 7.

ExamMPLE 6. Let n =7, and w # 0. Take P* as Br. Then we have
A = Hy(Br; %,) = Z,. The non-trivial element is represented by u([P*,i,¢]),
where i: P* — P is a natural inclusion.

ExampLE 7. Let n=Z,®Z, and w #0. Take P* x P* as Bn. Any
S 1s equivalent to %, ® 9, for a non-trivial element # of H (P~ Zs).
Hereafter we distinguish the first P from the second P*. Let f]:N —
PP x PY be a closed w-singular 4-manifold obtained from i : P* — P} by
attaching a non-orientable 1-handle and f; : P? — P¥ x PY be a w-singular
manifold with 7y ==z obtained from fj:N — Py x PY by I-dimen-
sional surgery. Then Hy(Brm; %) =Zo@®Z, ®Z, is generated by &)=
w([P> x P2ix i), & = u((Py, fi,1]) and & = ([P}, 20 fi,9,]), where 4
is an automorphism which exchanges P (i=1,2). The exchange of the
canonical basis of 7 =7, ®Z, is a non-trivial element of (Autz)” but
the other non-trivial elements of Autn =7, ® Z, ® Z, does not belong to
(Autz)"”. So, (Autn)) identifies only the generators &; and &,. Hence we
get |[A]=6. In fact, A consists of [0], [&], [&1], [&o+ &), [&1+ &) and
[Co + &1 + &)
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