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Abstract. For a pair �X ;A� of topological spaces and w A H 1�X ; Z2� the cobordism

group Wn�X ;A;Sw� with local coe½cients is introduced. If X is a CW complex and Sw

is a local system over X determined by w, then we have an Atiyah-Hirzeburch spectral

sequence E 2
p; q � Hp�X ; Wq nSw� ) Wp�q�X ;Sw� which is regular and hence conver-

gent. For a connected CW complex X the map m : W4�X ;Sw� ! H4�X ;Sw�, de®ned by

m��M; f ; j�� � f��j��s��, is a surjection and its kernel is W4 nZ2 if w0 0, where s is a

fundamental homology class with respect to the orientation sheaf of a manifold M and j

is a local orientation. The closed 4-manifolds with ®nitely presentable fundamental

group p and the ®rst Stiefel-Whitney class induced from w are almost classi®ed modulo

connected sums with simply connected manifolds by the quotient H4�Bp;Sw�=�Aut p�w
� ,

and precisely in the case that p is abelian.

1. Introduction

The oriented cobordism functor fW��X ;A�; j�; qg satis®es the ®rst six

Eilenberg-Steenrod axioms for the category of pairs of topological spaces and

maps [2]. So, for any CW complex X the Atiyah-Hirzeburch spectral sequence

E2
p;q � Hp�X ; Wq� ) Wp�q�X�

is regular and hence convergent in the sense of [1]. Using this spectral se-

quence, the classi®cation of oriented closed 4-manifolds having the ®nitely

presentable fundamental group p modulo connected sums with simply con-

nected manifolds is given by the quotient H4�Bp; Z�=�Aut p�� [4], [7].

Our goal of this paper is to extend the above result to the non-orientable

case. We introduce a cobordism group Wn�X ;A;Sw� for a pair �X ;A� of

topological spaces and w A H 1�X ; Z2�, which reduces to Wn�X ;A� if w � 0.

Let w1 : BOr ! K�Z2; 1� be the map corresponding to the ®rst Stiefel-Whitney

class. Consider w to be a map of X to K�Z2; 1�, and let
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be the pull-back. Then Wn�X ;Sw� coincides with Wn�B; f � given by Stong in

[12, p. 17]. We show that this cobordism group has the properties similar to

the oriented cobordism group.

For a pair of points x; y A X we denote by G�y; x� the set of relative

homotopy classes of paths from x to y. Let S be a family fS�x�;S�g�g
satisfying the following conditions, which will be called a local system (of

abelian groups) over X:

(1) for each x A X , S�x� is an abelian group,

(2) for each g A G�y; x�, S�g� is an isomorphism of S�y� to S�x� and

(3) S�gg 0� �S�g� �S�g 0� for any g A G�y; x� and g 0 A G�z; y�.
By the de®nition we see that S induces a homomorphism Sx : p1�X ; x� !
Aut S�x� de®ned by Sx�a� � S�a� �a A p1�X ; x�� for each x A X . Fix x0 A X

and choose an element ax A G�x; x0� for each x A X . Then we see also that

S�g� �S�ax�ÿ1 �Sx0
�axgaÿ1

y � �S�ay�
for each g A G�y; x�. When X is arcwise connected and G is an abelian group,

any homomorphism r : p1�X ; x0� ! Aut G induces one and only one local

system over X such that S�x0� � G and Sx0
� r [10], which is called a local

system determined by r.

For w A H 1�X ; Z2� let Sw be a local system over X which satis®es the

following conditions.

(1.1) For each x A X , Sw�x� is isomorphic to the group Z of integers.

(1.2) Sw is determined by the homomorphism rw : p1�X ; x0� ! Aut Z.

Here rw is a composite of the Hurewicz homomorphism X : p1�X ; x0�
! H1�X ; Z� with w considered as a homomorphism from H1�X ; Z� to

Aut Z � Z2.

We will prove the following theorem.

Theorem 1. Let X be a CW complex and w A H 1�X ; Z2�. Then we have

a spectral sequence

E2
p;q � Hp�X ; Wq nSw� ) Wp�q�X ;Sw�

which is regular and hence convergent.

For an n-manifold N the orientation sheaf SN is de®ned as follows.

(2.1) SN�u� � Hn�N;N ÿ u; Z� for each u A Int N and SN�u� �
Hnÿ1�qN; qN ÿ u; Z� for each u A qN.
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(2.2) SN is determined by the homomorphism rN � w1�N� � X, where

X is the Hurewicz homomorphism and w1�N� is the ®rst Stiefel-Whitney class

of N.

Now we de®ne Wn�X ;Sw� assuming the notion of equivalence between

local systems. We consider a pair of a closed n-manifold M and a continuous

map f : M ! X such that SM and the induced local system f �Sw are

equivalent. Let j � fjugu AM denote the family of isomorphisms ju : SM�u� !
f �Sw�u� which gives this equivalence (See O 2). Let Mn�X ;Sw� be the set

which consists of such triples �M; f ; j�. We de®ne the equivalence relation

in Mn�X ;Sw� as follows. �M1; f1; j1�@ �M2; f2; j2� means that there exist a

compact �n� 1�-manifold W and a map F : W ! X satisfying the following

conditions:

(1) qW �M1 UM2,

(2) F jMj � fj � j � 1; 2�,
(3) there exists an equivalence F : SW ! F �Sw such that _F � F j qW :

SqW ! F �SwjqW satis®es _FjM1 � j1 and _FjM2 � ÿj2.

The set of equivalence classes Mn�X ;Sw�=@ has a natural group

structure and is denoted by Wn�X ;Sw� and called a cobordism group with

local coe½cients. We use the notation �M; f ; j� for the cobordism class in

Wn�X ;Sw�.
Since j induces an isomorphism j� : Hn�M;SM� ! Hn�M; f �Sw�, we can

de®ne a homomorphism

m : Wn�X ;Sw� ! Hn�X ;Sw�
by m��M; f ; j�� � f��j��s��, where s is the fundamental class in Hn�M;SM�.
We may call j a local orientation of M associated with f . We have only two

local orientations Gj associated with f provided that M is connected.

Using Theorem 1 we will get the following corollary.

Corollary 2. Let X be a connected CW complex and w A H 1�X ; Z2�.
The map m : W4�X ;Sw� ! H4�X ;Sw� is a surjection and the kernel is W4 if

w � 0, and W4 nZ2 if w0 0.

Let p be a ®nitely presentable group, Bp � K�p; 1� be an Eilenberg-

MacLane complex and w be an element of H 1�Bp; Z2�. We consider the set

M4
p;w consisting of the closed connected 4-manifolds M such that p1�M� � p

and w1�M� � w, or more precisely, there is a map f : M ! Bp satisfying

(3.1) f induces an isomorphism on p1, that is, f� : p1�M; u� !
p1�Bp; f �u�� is isomorphism for any u, and

(3.2) f �w � w1�M� A H 1�M; Z2�.
By Proposition 15 in O 7 M4

p;w is not empty. For every M A M4
p;w there exists

an element �M; f ; j� of M4�Bp;Sw� by Proposition 11 in O 6. For a non-zero
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w Proposition 13 in O 6 says that �M; f ; j� � �M; f ;ÿj� in W4�Bp;Sw� under

some condition which is automaticaly satis®ed when p is abelian.

We will say that closed connected 4-manifolds M and N are weakly stably

equivalent, if there exist closed simply connected 4-manifolds M0 and N0 such

that M]M0 and N]N0 are di¨eomorphic to each other. Let �Aut p�w be the

subgroup of Aut p consisting of the elements whose corresponding classifying

base point preserving maps l : Bp! Bp satisfy l�w � w on H 1�Bp; Z2�.
Then we can extend Theorem 1 in [7] to the non-orientable case at least in

the case of abelian fundamental groups.

Theorem 3. Let p be a ®nitely generated abelian group and w be a non-

trivial element of H 1�Bp; Z2�. Then, the set of weakly stable equivalence classes

in M4
p;w is in one-to-one correspondence with the quotient H4�Bp;Sw�=�Aut p�w�

by the correspondence �M; f ; j� 7! f��j��s��, where s is the fundamental homol-

ogy class of M with local coe½cients SM .

A more general form of Theorem 3 (Theorem 20 in O 7) implies the

following theorem which characterizes the Lusternik-Schnirelmann p1-category

of closed connected 4-manifolds including both the orientable and non-

orientable cases.

Theorem 4. If the Lusternik-Schnirelmann p1-category of a connected

closed 4-manifold M is not 4, then M is weakly stably equivalent to the boundary

qN�K 2� of the regular neighborhood of an embedded ®nite 2-complex K 2 in

RP4 � R realizing the fundamental group p � p1�M� and rw1�M� : p! Aut Z.

We recall the notion of equivalence between local systems and de®ne the

relative cobordism group with local coe½cients in O 2, and we describe the

properties of cobordism group with local coe½ciens in O 3. We prove Theorem

1 in O 4 and then we compute some cobordism groups with local coe½cients

and prove Corollary 2 in O 5. We discuss the relation of local orientations and

cobordism classes in O 6 and we prove Theorem 3, its generalized form Theorem

20, and Theorem 4 in O 7. Finally we give some calculations of H4�Bp;Sw�=
�Aut p�w� in O 8.

The auther would like to thank Prof. Takao Matumoto for his advice

and suggestions.

2. Cobordism group with local coe½cients

Let M be a compact n-manifold, and f a map of �M; qM� into �X ;A�. If

A � f then qM � f. We denote by f �Sw the local system over M induced

from Sw by f , that is, f �Sw�u� � Sw� f �u�� for u A M and f �Sw�g� �Sw� f�g�
for g A G�u 0; u�.
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If the following conditions are satis®ed, two local systems S;T over M

are called equivalent, and denoted by j : S!@ T.

(4.1) For every u A M, there exists an isomorphism ju : S�u� !T�u�.
(4.2) For every pair of points u; v A M and every homotopy class g of

path from v to u, the following diagram is commutative.

S�u� ���!ju
T�u�

S�g�
???y ???yT�g�

S�v� ���!
jv

T�v�

Now we de®ne a w-singular manifold �M; f ; j� of dimension n in �X ;A�
by the following three conditions.

(5.1) M is a compact n-manifold.

(5.2) f is a continuous map from �M; qM� into �X ;A�.
(5.3) j : SM ! f �Sw is an equivalence.

We recall here the de®nition of the isomorphism SM�a� for the relative

homotopy class a of any path from u to v. For each point u A Int M there

exists an open neighborhood U of u with a homeomorphism h : �U ; u� !
�Rn; 0�. We put D�r� � fx A Rn; jjxjja rg and U�r� � hÿ1�Int D�r�� for a

positive number r. Then the inclusion i
U�r�
u : �M;M ÿU�r�� ! �M;M ÿ u�

induces an isomorphism i
U�r�
u� : Hn�M;M ÿU�r�; Z� ! Hn�M;M ÿ u; Z�. For

another choice of open neghborhood U 0 of u, a homeomorphism h 0, and a

positive number r 0 we write U 0�r 0� as above. If U 0�r 0�HU�r�, then the

homomorphism i
U�r�
U 0�r 0�� induced by the inclusion i

U�r�
U 0�r 0� : �M;M ÿU�r�� !

�M;M ÿU 0�r 0�� coincides with the isomorphism �iU 0�r 0�
u� �ÿ1 � i

U�r�
u� . The set B

consisting of all U�r�'s obtained by changing u;U ; h; r forms an open basis of

M and Bu � fU�r� A B; u A U�r�g is a directed set. Therefore fHn�M;M ÿ
U�r�; Z�; iU�r�

U 0�r 0��; u A U�r�g forms an inductive system over Bu and we get a

canonical isomorphism

lim! Hn�M;M ÿU�r�; Z�GHn�M;M ÿ u; Z�:

For any two points u; v of Int M and any embbeded path g from u to v,

we take a Lebesgue number e of an open covering fgÿ1�U�r��g of [0, 1] and

a division 0 � t0 < t1 < � � � < tl � 1 of [0, 1] such that tj ÿ tjÿ1 < e. We put

g�tj� � uj. For each j �1a j a l� there exists some U�r� which contains

g��t jÿ1; tj��. Denoting such U�r� by Uj�rj�, we de®ne a homomorphism

g� : Hn�M;M ÿ v; Z� ! Hn�M;M ÿ u; Z� by

g� � iU1�r1�
u� � �iU1�r1�

u1� �ÿ1 � iU2�r2�
u1� � �iU2�r2�

u2� �ÿ1 � � � � � iUl�rl�
ulÿ1� � �iUl �rl�

ul� �
ÿ1:
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It is known that the homomorphism g� depends only on the homotopy class of

g keeping the boundary ®xed [6]. When g is a closed path, g�w1�M� is an

obstruction to the trivialization of g�T�M�, where T�M� is the tangent bundle

of M. So, SM��g�� is given by g� for any path g connecting two points of

Int M. If v A Int M and u A qM, we choose a closed neighborhood V of u

in M homeomorphic to a closed disk Dn, and choose a point v0 A V V
Int M and an embbeded path d in V from u to v0. We can assume

dV qM � fug. Moreover we put V1 � V V qM and V2 � qV ÿ V1. Let

d� : Hn�Int M; Int M ÿ v0; Z� ! Hnÿ1�qM; qM ÿ u; Z� be a composite of the

following maps:

Hn�Int M; Int M ÿ v0; Z� �!i� Hn�M;M ÿ v0; Z�

�!iVÿ1
�

Hn�V ; qV ; Z� �!q� ~Hnÿ1�qV ; Z�

�!j� Hnÿ1�qV ;V2; Z� �!kÿ1
�

Hnÿ1�V1; qV1; Z�

�!iV1 �
Hnÿ1�qM; qM ÿ u; Z�;

where i�; iV �; j�; k�; iV1� are isomorphisms induced by the inclusions. Then

SM��d�� is given by d�. The composition of g� and d�'s gives the iso-

morphism SM�a� for the relative homotopy class a of any path from u to v

with u; v A qM. Note that SM jqM is also determined by w1�qM� and

SM jqM � SqM .

Given an equivalence j : SInt M ! f �SwjInt M. Then we can extend it

to an equivalence j : SM ! f �Sw by de®ning ju � Sw� f��d�� � jv0
� dÿ1
� for

u A qM, where d is a path in M from u to v0 A Int M. This remark is very

useful, especially in the proof of Propositions 5 (3) and 6. We will use

the notation _j : SqM ! � f jqM��Sw as a restriction of j on SM jqM � SqM

hereafter.

Let Mn�X ;A;Sw� be the set of all w-singular manifolds of dimension n in

�X ;A�. For �M; f ; j�, �N; g;c� A Mn�X ;A;Sw�, we de®ne

ÿ�M; f ; j� � �M; f ;ÿj�; �M; f ; j� � �N; g;c� � �M UN; f U g; jUc�:
We say that �M; f ; j� is null cobordant: �M; f ; j�@ 0, if there exists an element

�W ;F ;F� A Mn�1�X ;X ;Sw� such that q�W ;F ;F�1 �M; f ; j� mod A, that is,

(6.1) M is a regular submanifold of qW ,

(6.2) F jM � f and F�qW ÿM�HA, and

(6.3) _FjInt M � j by identifying Hn�qW ; qW ÿ v; Z� with Hn�Int M;

Int M ÿ v; Z� for any v A Int M.

We de®ne �M; f ; j�@ �N; g;c� when �M; f ; j� � �N; g;ÿc�@ 0. Then we

have the following proposition.
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Proposition 5. The relation @ in Mn�X ;A;Sw� is an equivalence relation.

Proof. (1) For �M; f ; j� A Mn�X ;A;Sw� let W �M � I and de®ne a

map F : W ! X by

F�u; t� � f �u� ��u; t� A M � I�:

For each v � �u; t� we de®ne a path av from �u; 0� to v and a path bv from

�u; 1� to v by

av�s� � �u; st�; bv�s� � �u; 1ÿ s� st� �s A I�:

Note that identifying u with �u; 0� and �u; 1� we get ju � av� � ÿju � bv� for

v � �u; t� A Int W and we de®ne Fv by this map. Then, identifying M � 0 and

M � 1 with M, it is easy to see

q�W ;F ;F�1 �M; f ; j� � �M; f ;ÿj� mod A:

(2) The re¯ective law is clear.

(3) Assume that

q�W1;F1;F1�1 �M1; f1; j1� � �M2; f2;ÿj2� mod A

q�W2;F2;F2�1 �M2; f2; j2� � �M3; f3;ÿj3� mod A:

We glue W1 and W2 by identifying M2 by a di¨eomorphism which reverses the

local orientation at each point, and denote the resulting manifold by W. We

de®ne a map F : W ! X by F �v� � Fi�v� �v A Wi� for i � 1; 2. For v A Int Wj

� j � 1; 2� the inclusion ij�v� : �Int Wj; Int Wj ÿ v� ! �Int W ; Int W ÿ v� induces

an isomorphism

ij�v�� : Hn�1�Int Wj; Int Wj ÿ v; Z� ! Hn�1�Int W ; Int W ÿ v; Z�:
If v A Int M2, we take a neighborhood U of v in Int W such that �U ;U VM2� is

homeomorphic to �Rn�1;Rn�. We take further a point vj A U V Int Wj and a

path ~aj from v to vj in U VWj � j � 1; 2�. If we regard ~aj as a path in Int W ,

we rewrite this aj. Then we have isomorphisms

~a j� : Hn�1�Int Wj; Int Wj ÿ vj; Z� ! Hn�Int M2; Int M2 ÿ v; Z�;
a j� : Hn�1�Int W ; Int W ÿ vj ; Z� ! Hn�1�Int W ; Int W ÿ v; Z�:

Since U is simply connected, from the way of the gluing we get

ÿ~a1� � i1�v1�ÿ1
� � aÿ1

1� � ~a2� � i2�v2�ÿ1
� � aÿ1

2� :

So, we de®ne F by
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Fv � �Fj�v � ij�v�ÿ1
� �v A Int Wj; j � 1; 2�

ÿ�j2�v � ~a1� � i1�v1�ÿ1
� � aÿ1

1� �v A Int M2�.

(

The de®nition is independent of the choice of U ; vj; ~aj. Moreover we

have Sw�F��aj�� �Fvj
� Fv � �aj�� for v A Int M2 � j � 1; 2�. Let vj A Int Wj,

v A Int M2 be any point and gj be any path from v to vj in Wj for j � 1; 2.

From the above equality we see that Sw�F��gj�� �Fvj
� Fv � �gj��. This leads

to Sw�F�g� �Fv 0 � Fv � g� for any points v; v 0 A Int W and any g A G�v 0; v�.
Hence we get an equivalence F : SInt W !@ F �SwjInt W . Since this can be

extended naturally to F : SW ! F �Sw as remaked before, we have

q�W ;F ;F�1 �M1; f1; j1� � �M3; f3;ÿj3� mod A: r

We put Wn�X ;A;Sw� �Mn�X ;A;Sw�=@ and denote by �M; f ; j� the

equivalence class of �M; f ; j�. By setting �M; f ; j� � �N; g;c� � �M UN; f U g;

jUc�, Wn�X ;A;Sw� has a structure of an abelian group. We call this group

an n-dimensional cobordism group with local coe½cients Sw of �X ;A�. If

w � 0, then M and W are orientable; j and F give the orientation of M and W

respectively. Therefore Wn�X ;A;S0� coincides with Wn�X ;A�.
The relative cobordism group may be also de®ned by the method of [12,

p. 43], but our method makes clear the representatives and able to prove

Theorems 1 and 3.

3. Properties of cobordism group with local coe½cients

In this section, we study the properties of cobordism group with local

coe½cients needed to construct the Atiyah-Hirzeburch spectral sequence.

Cobordism groups with local coe½cients have properties similar to the

Eilenberg-Steenrod axioms for the homology theory.

Fix h A H 1�Y ; Z2� and a continuous map h : �X ;A� ! �Y ;B�. For each

�M; f ; j� A Wn�X ;A; h�Sh�, we have j : SM !@ �h � f ��Sh. Hence we de®ne a

homomorphism h� : Wn�X ;A; h�Sh� ! Wn�Y ;B;Sh� by

h���M; f ; j�� � �M; h � f ; j�:
Let i : A! X be the inclusion map. We de®ne a boundary operator

q : Wn�X ;A;Sw� ! Wnÿ1�A; i�Sw� by

q��M; f ; j�� � �qM; f jqM; _j�;
where _j � jjSqM .

Proposition 6. Cobordism groups with local coe½cients have the following

properties.
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(1) If id : �X ;A� ! �X ;A� is the identity map, then id� : Wn�X ;A;Sw� !
Wn�X ;A;Sw� is the identity map.

(2) Let h : �X ;A� ! �Y ;B� and h
0
: �Y ;B� ! �Z;C� be continuous maps

and z A H 1�Z; Z2�. Then �h 0 � h�� : Wn�X ;A; �h 0 � h��Sz� ! Wn�Z;C;Sz� is a

composite of h� : Wn�X ;A; �h 0 � h��Sz� ! Wn�Y ;B; �h 0��Sz� and h 0� : Wn�Y ;B;

�h 0��Sz� ! Wn�Z;C;Sz�.
(3) For any h A H 1�Y ; Z2� and any map h : �X ;A� ! �Y ;B�, the diagram

Wn�X ;A; h�Sh� ���!q Wnÿ1�A; i�h�Sh�
h�

???y ???y�hjA��
Wn�Y ;B;Sh� ���!q Wnÿ1�B; i�Sh�

is commutative.

(4) For every pair �X ;A� and every w A H 1�X ; Z2�, the sequence

� � �! Wn�A; i�Sw� !i� Wn�X ;Sw� !j� Wn�X ;A;Sw� !q Wnÿ1�A; i�Sw� ! � � �
is exact.

(5) If there is a homotopy ht : �X ;A� ! �Y ;B�, then h0� � h1� : Wn�X ;A;

Sw� ! Wn�Y ;B;Sh� for w � h�0 h � h�1 h, h A H 1�Y ; Z2�.
(6) If U H Int A, then the inclusion i : �X ÿU ;AÿU� ! �X ;A� induces

an isomorphism i� : Wn�X ÿU ;AÿU ; i�Sw� ! Wn�X ;A;Sw�.
Proof. (1), (2) and (3) are trivial.

(4) For �M; f ; j� A Wn�A; i�Sw� we put W �M � I . We de®ne a map

F : W ! X by F�u; t� � f �u� ��u; t� A M � I� and a path av from �u; 0� to

v � �u; t� by av�s� � �u; st�. Moreover de®ne F by extending Fv � ju � av�
�v � �u; t� A Int W�. Then q�W ;F ;F�1 �M; f ; j� mod A. Hence we have

j�i� � 0.

Assume that j��M; f ; j� � 0 for �M; f ; j� A Wn�X ;Sw�. Then there exists

an element �W ;F ;F� A Mn�1�X ;X ;Sw� such that q�W ;F ;F�1 �M; f ; j�
mod A. Now we put

N � qW ÿM; g � F jN; c � ÿ _FjN:

Then �N; g;c� A Wn�A; i�Sw� and i��N; g;c� � �M; f ; j�. Hence we have

Ker j�H Im i�.
q j� � 0 and i�q � 0 are trivially veri®ed. Assume that q�M; f ; j� � 0 for

�M; f ; j� AWn�X ;A;Sw�. Then there exists an element �N; g;c� AMn�A;A; i�Sw�
such that q�N; g;c�1 �qM; f jqM; _j�. Now we put

M 0 �M UqM N; f 0 � f U g; j 0 � jUc
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and W �M 0 � I . De®ne a map F : W ! X by F�u; t� � f 0�u�. Moreover

de®ne F by extending Fv � j 0u � av� �v � �u; t� A Int W�. Then it holds

q�W ;F ;F�1 �M 0; f 0; j 0� � �M; f ;ÿj� mod A:

This implies j��M 0; f 0; j 0� � �M; f ; j�. Hence we have Ker qH Im j�.
Assume that i��M; f ; j� � 0 for �M; f ; j� A Wnÿ1�A; i�Sw�. Then there

exists an element �W ;F ;F� A Mn�X ;A;Sw� such that q�W ;F ;F�1 �M; f ; j�.
Since �W ;F ;F� A Wn�X ;A; w�, we have �M; f ; j� A Im q. Hence Ker i�H Im q.

(5) For �M; f ; j� A Wn�X ;A;Sw� we put W �M � I and de®ne a map

F : W ! Y by F�u; t� � ht� f �u�� ��u; t� A M � I�. Since h�t h � w for any t A I ,

we can de®ne F just in the same way as in the proof of Proposition 5. Hence

we get

q�W ;F ;F�1 �M; h0 � f ; j� � �M; h1 � f ;ÿj� mod A:

(6) We will show that i� is surjective; the remainder of argument is

similar. For �M; f ; j� A Wn�X ;A;Sw�, let P � f ÿ1�Xÿ Int A� and Q� f ÿ1�U�.
Then there exists a compact submanifold N HM such that PHN and

QVN � f. We put g � f jN and cjInt N � jjInt N by identifying Hn�Int M;

Int M ÿ v; Z� with Hn�Int N; Int N ÿ v; Z� for any v A Int N. The equiva-

lence c : SN ! g�Sw is de®ned as a natural unique extension. Then we have

�N; g;c� A Wn�X ÿU ;AÿU ; i�w� and i��N; g;c� � �M; f ; j�. r

From (1), (2), (3) and (4) of Proposition 6 we see that the following

sequence is exact for any triple �X ;A;B� and w according to [3].

� � � ! Wn�A;B; i�Sw� !i� Wn�X ;B;Sw� !j� Wn�X ;A;Sw�

!q Wnÿ1�A;B; i�Sw� ! � � �

For w AH 1�X ; Z2� and h A H 1�Y ; Z2� let x�wn1�1n h A H 1�X�Y ; Z2�
GH 1�X ; Z2�nH 0�Y ; Z2�lH 0�X ; Z2�nH 1�Y ; Z2�. Then we can choose a

local system Sx equivalent to Sw nSh on X � Y . Through this equivalence

for �M; f ; j� A Wm�X ;A;Sw� and �N; g;c� A Wn�Y ;Sh� we have

jnc : SM�N !@ � f � g��Sx:

Then, _jnc : SqM�N !@ � f � g��SxjqM �N and hence we can de®ne a

homomorphism

Y : Wm�X ;A;Sw�nWn�Y ;Sh� ! Wm�n�X � Y ;A� Y ;Sx�
by Y��M; f ; j�n �N; g;c�� � �M �N; f � g; jnc�. In particular, if Y � pt

then we get a homomorphism
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Y : Wm�X ;A;Sw�nWn ! Wm�n�X ;A;Sw�;
where Wn is the Thom group ([2], [13]).

Let A be a closed subset of X. We want to use an open subset V of X

which contains A and

(7.1) A is a deformation retract of V by a retraction r : V ! A, that is,

iA � r : V ! V is homotopic to the identity 1V : V ! V for the natural in-

clusion iA : A! V .

For a continuous map f : A! Y , let f : �X ;A� ! �Y U f X ;Y � be a map

de®ned by

f �x� � f �x� �x A A�
x �x A X ÿ A�:

�
We have the following theorem.

Theorem 7 (Cf. [6]). Let A be a closed subeset of X and f : A! Y be

a continuous map. If there exists an open subset V IA satisfying (7.1),

then f� : Wn�X ;A; f �Sh� ! Wn�Y U f X ;Y ;Sh� is an isomorphism for any

h A H 1�Y U f X ; Z2�.
Proof. We put Z � Y U f X and let i : �X ;A� ! �X ;V�; j : �Z;Y� !

�Z;Y U f �V�� be inclusion maps. Consider the left part of the following

commutative diagram:

Wn�X;A; f �Sh� ���!i�
Wn�X;V ; f �Sh�  ���i 0�

Wn�X ÿ A;Vÿ A; i 0�f �Sh�
f�

???y ???yf�

???yf�

Wn�Z;Y ;Sh� ���!
j�

Wn�Z;Y U f �V�;Sh�  ���
j 0�

Wn�Z ÿY; f �Vÿ A�; j 0�Sh�:

For the homotopy ht : V ! V between iA � r and 1V given by (7.1), h�t :

H 1�V ; Z2� ! H 1�V ; Z2� is an identity isomorphism for every t. Hence by (1),

(2), (3), (4) and (5) of Proposition 6 we have Wq�V ;A; i�V f �Sh� � 0 for the

natural inclusion iV : V ! X and every q. From the exact sequence of triple

�X ;V ;A� we see that i� is an isomorphism. By a similar argument we see that

j� is also an isomorphism. Next we consider the right part of the above

commutative diagram. From (6) of Proposition 6 we see that i 0� and j 0� are

isomorphisms for the natural inclusions i 0 and j 0. Since the map f : �X ÿ A;

V ÿ A� ! �Z ÿ Y ; f �V ÿ A�� is a homeomorphism, f� on the right-hand side

is an isomorphism. Hence so is f� on the center. Consequently f� on the

left-hand side is an isomorphism. r

Let X be a CW complex and X p its p-skeleton. Hereafter until the end

of O 5, i : X p ! X denotes the natural inclusion. For each p-cell el of X,
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hl : �Dp
l ;S

pÿ1
l � ! �el; _el� denotes its characteristic map. Then we have the

following corollary applying Proposition 7 to X � `l D
p
l , A �`l S

pÿ1
l ,

Y � X pÿ1 and f � `l hl, because a CW complex has the homotopy extension

property.

Corollary 8. The map Shl� :
P

l Wn�Dp
l ;S

pÿ1
l ; h�l i�Sw� ! Wn�X p;X pÿ1;

i�Sw� is an isomorphism.

Moreover, we have

Corollary 9. The map Y : Wn�X n;X nÿ1; i�Sw�nWq ! Wn�q�X n;X nÿ1;

i�Sw� is an isomorphism.

Proof. Since D
p
l is simply connected, the local system h�l i�Sw is

equivalent to S0. So, the map

Yl : Wn�Dn
l ;S

nÿ1
l ; h�l i�Sw�nWq ! Wn�q�Dn

l ;S
nÿ1
l ; h�l i�Sw�

is an isomorphism for every l by [2]. Furthermore, the following diagram is

commutative:P
l Wn�Dn

l ;S
nÿ1
l ; h�l i�Sw�nWq ���!SYl P

l Wn�q�Dn
l ;S

nÿ1
l ; h�l i�Sw�

Shl�n1

???y ???yShl�

Wn�X n;X nÿ1; i�Sw�nWq ���!
Y

Wn�q�X n;X nÿ1; i�Sw�:

Therefore, Corollary 8 implies Corollary 9. r

4. Proof of Theorem 1

For �M; f ; j� A Wn�X ;A;Sw� let �Hn�Int M;SInt M� be a homology group

of in®nite chains with local coe½cients SInt M and j] : �Hn�Int M;SInt M�
! �Hn�Int M; f �Sw� be the isomorphism induced by jjInt M. We know

that there is a natural isomorphism i : �Hn�Int M; f �Sw� ! Hn�M; qM; f �Sw�
for any compact manifold M (cf. [6]). We put j� � i � j] and de®ne a

homomorphism

m : Wn�X ;A;Sw� ! Hn�X ;A;Sw�

by m��M; f ; j�� � f��j��sM��, where f� is an induced homomorphism

f� : Hn�M; qM; f �Sw� ! Hn�X ;A;Sw�
and sM is a fundamental class of �Hn�Int M;SInt M�. Then, for the any CW

complex X we have the following.
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Theorem 10. The map m : Wn�X n;X nÿ1; i�Sw� ! Hn�X n;X nÿ1; i�Sw� is

an isomorphism for every w A H 1�X ; Z2�.
Proof. We know that the map

ml : Wn�Dn
l ;S

nÿ1
l ; h�l i�Sw� ! Hn�Dn

l ;S
nÿ1
l ; h�l i�Sw�

is an isomorphism for every l by [2], and the following diagram is

commutative:P
l Wn�Dn

l ;S
nÿ1
l ; h�l i�Sw� ���!Sml P

l Hn�Dn
l ;S

nÿ1
l ; h�l i�Sw�

Shl�

???y ???yShl�

Wn�X n;X nÿ1; i�Sw� ���!
m

Hn�X n;X nÿ1; i�Sw�:

Since the vertical map at the right-hand side is an isomorphism, Corollary 8

implies Theorem 10. r

Proof of Theorem 1. For w A H 1�X ; Z2� and each pair of integers �p; q�
such that ÿya pa qay, we put H�p; q� �Pn Wn�Xÿp;Xÿq; i�Sw�. Then

fH�p; q�g satis®es the axioms in the theory of spectral sequences [1, Chap. XV,

p. 334]. Now let H�p; q� � H�ÿp;ÿq�, H�p� � H�p;ÿy�, H � H�y;ÿy�.
We de®ne a ®ltration Fp;qH of H by

Fp;qH � Im�Hp�q�p� ! Hp�q� � Im�Wp�q�X p; i�Sw� ! Wp�q�X ;Sw��:

We de®ne also

Z r
p;q � Im�Hp�q�p; pÿ r� ! Hp�q�p; pÿ 1��

� Im�Wp�q�X p;X pÿr; i�Sw� ! Wp�q�X p;X pÿ1; i�Sw��
Br

p;q � Im�Hp�q�1�p� rÿ 1; p� ! Hp�q�p; pÿ 1��

� Im�Wp�q�1�X p�rÿ1;X p; i�Sw� ! Wp�q�X p;X pÿ1; i�Sw��
E r

p;q � Z r
p;q=Br

p;q

where 1a ray, ÿy < p <y. Since Hn�p� � Wn�X p; i�Sw� � 0 for every n

and paÿ1, F is regular and hence convergent in the sense of [1]. Then we

have particularly

E1
p;q � Wp�q�X p;X pÿ1; i�Sw�:

By Corollary 9 and Theorem 10 we get
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Wp�q�X p;X pÿ1; i�Sw�  G Wp�X p;X pÿ1; i�Sw�nWq !G Hp�X p;X pÿ1; i�Sw�nWq:

By the universal coe½cient theorem for the homology with local coe½cients [6]

we have

Hp�X p;X pÿ1; i�Sw�nWq  G Hp�X p;X pÿ1; Wq n i�Sw�:
Moreover, through these isomorphisms, we have the following commutative

diagram:

Wp�q�X p;X pÿ1; i�Sw� ���!G Hp�X p;X pÿ1; Wq n i�Sw�
q

???y ???yq

Wp�qÿ1�X pÿ1;X pÿ2; i�Sw� ���!
G

Hpÿ1�X pÿ1;X pÿ2; Wq n i�Sw�:

Therefore the di¨erential d 1
p;q : E1

p;q ! E1
pÿ1;q is identi®ed with the boundary

operator q : Hp�X p;X pÿ1; Wqn i�Sw� !Hpÿ1�X pÿ1;X pÿ2; Wqn i�Sw�. Hence

we have

E2
p;q GHp�X ; Wq nSw�:

Thus we proved Theorem 1.

5. Some calculations and proof of Corollary 2

Using Theorem 1 we will calculate the cobordism group with local

coe½cients for some examples and prove Corollary 2.

Example 1. Let X � S1 and w0 0. We have an exact sequence

0! Ey
0;n ! Wn�S1;Sw� ! Ey

1;nÿ1 ! 0

since E2
m;nÿm � 0 for m0 0; 1. From H0�S1;Sw� � Z2 and H1�S1;Sw� � 0,

we have Ey
0;n GH0�S1; Wn nSw�GWn nZ2 and Ey

1;nÿ1 GH1�S1; Wnÿ1 nSw�
GTor�Z2;Wnÿ1�. It is known that W0 GZ, W1 � W2 � W3 � 0, W4 GZ.

Hence we have Wn�S1;Sw�GWn nZ2 for na 5.

Example 2. Let X be a real projective plane P2 and w0 0. We see that

E2
m;nÿm � Hm�P2; Wnÿm nSw�G

Wn nZ2 �m � 0�
Tor�Z2;Wnÿ1� �m � 1�
Wnÿ2 �m � 2�
0 �mb 3�

8>>><>>>:
since H0�P2;Sw� � Z2, H1�P2;Sw� � 0, H2�P2;Sw� � Z. Hence for na 5 we

have an exact sequence
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0! Ey
0;n ! Wn�P2;Sw� ! Ey

2;nÿ2 ! 0:

Then we have W2�P2;Sw�GW0 and Wn�P2;Sw�GWn nZ2 for n0 2, na 5.

Proof of Crollary 2. Since W0 GZ, W1 � W2 � W3 � 0, W4 GZ, we

have an exact sequence

0! Ey
0;4 ! W4�X ;Sw� ! Ey

4;0 ! 0:

The map m induces a map m� from the Atiyah-Hirzeburch spectral sequence

for Wp�q�X ;Sw� to the Atiyah-Hirzeburch spectral sequence fE 0rp;qg for

Hp�q�X ;Sw� and we have the following commutative diagram:

W4�X ;Sw� ���! Ey
4;0 � H4�X ; W0 nSw�

m

???y ???ym�

H4�X ;Sw� ���!id
E 0y4;0 � H4�X ;Sw�:

Since m� is an isomorphism, we may identify the map m with the above map

W4�X ;Sw� ! Ey
4;0. Since X is connected, H0�X ;Sw�GZ if w � 0, and

H0�X ;Sw�GZ2 if w0 0. Therefore we have Ey
0;4 GW4 if w � 0, and Ey

0;4 G
W4 nZ2 if w0 0. Hence we get the conclusion.

6. Local orientations of non-orientable manifolds

At ®rst we prove the following Proposition.

Proposition 11. Let X be an arcwise connected space and w A H 1�X ; Z2�.
Suppose that M is a connected manifold without boundary. Then for any

continuous map f : M ! X the local system SM is equivalent to f �Sw if and

only if f �w � w1�M�.
Proof. Assume that j : SM ! f �Sw is an equivalence. We regard w

and w1�M� as the homomorphisms from H1�X ; Z� to Aut Z � Z2 and

H1�M; Z� to Aut Z � Z2 respectively. We put rw � w � X and rM �
w1�M� � X for the Hurewicz homomorphism X. For every point u A M and

every element g A p1�M; u�, the following diagram is commutative:

SM�u� ���!ju � f �Sw��u� � Sw� f �u��
SM �g�

???y ???ySw� f�g�

SM�u� ���!ju � f �Sw��u� �Sw� f �u��:
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So, �SM�u�g� � jÿ1
u � �Sw� f �u�� f�g� � ju as an automorphism of SM�u�.

Because ju identi®es SM�u� � Sw� f �u��GZ, this means rM � rw � f�. Since

X is a surjection, we see f �w � w1�M� by the following commutative diagram:

p1�M; u� ���!f� p1�X ; f �u��
X

???y ???yX

H1�M; Z� ���!f� H1�X ; Z�:
Conversely assume that f �w � w1�M�. Fix a base point u0. Then, the

local systems f �Sw and SM have the same associated homomorphism rM �
rw � f� : p1�M; u0� ! Aut Z. We choose an element au A G�u; u0� for each

point u A M. If we choose an isomorphism ju0
: SM�u0� ! � f �Sw��u0� for the

base point u0, the isomorphism ju : SM�u� ! � f �Sw��u� is determined by ju �
Sw� f�au�ÿ1 � ju0

�SM�au�. In fact j � fjug satis®es

ju �SM�g� � Sw� f�au�ÿ1 � ju0
� �SM�u0

�augaÿ1
v � �SM�av�

� Sw� f�au�ÿ1 � �Sw� f �u0�� f��augaÿ1
v �� � ju0

�SM�av�

� Sw� f�g� � jv

for every g A G�v; u�. Hence j is an equivalence. r

Let M be a closed connected n-manifold, p � p1�M� and f ; f 0 : �M; u0� !
�Bp; y0� be two maps which satisfy the conditions (3.1) and (3.2). Moreover

let j : SM ! f �Sw and j 0 : SM ! f 0�Sw be equivalences. Suppose that f

and f 0 are homotopic by a homotopy F : M � I ! Bp. For each point u A M

let gu be a path from �u; 0� to �u; 1� in M � I de®ned by gu�t� � �u; t� and

de®ne isomorphisms du : f 0�Sw�u� ! f �Sw�u� and kF �u� : SM�u� !SM�u� by

du � Sw�F��gu�� and kF �u� � jÿ1
u � du � j 0u:�8:1�

Then we have

kF �u� � SM�a�ÿ1 � kF �u0� �SM�a�
for every relative homotopy class a of paths from u0 to u in M. We may

regard kF as a map from M to Aut Z. From the above equation we see that

kF is continuous. We de®ne sgn kF by

sgn kF � 1 if kF �u� � id for any u

ÿ1 if kF �u� � ÿid for any u.

�
We have the following proposition.
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Proposition 12. Let M be a closed connected n-manifold, p � p1�M� and

f ; f 0 : �M; u0� ! �Bp; y0� be two maps which satisfy the conditions (3.1) and

(3.2). Moreover let j : SM ! f �Sw and j 0 : SM ! f 0�Sw be equivalences.

Suppose that f and f 0 are homotopic by a homotopy F. Then it holds �M; f ; j�
� �M; f 0; �sgn kF �j 0� in Wn�Bp;Sw�, where kF is a map de®ned by (8.1).

Proof. We put W �M � I . For v � �u; t� A Int W we de®ne Fv :

SW �v� ! F �Sw�v� by

Fv � Sw�F��av��ÿ1 � ju � av�;

where av is a path from �u; 0� to v � �u; t� de®ned by av�s� � �u; st�. Let bv be

a path from �u; 1� to v � �u; t� de®ned by bv�s� � �u; 1ÿ s� st�. By the

de®nitions of Fv and kF �v� we see that

Fv � ÿSw�F��bv��ÿ1 � j 0u � kF �u�ÿ1 � bv�

� ÿSw�F��bv��ÿ1 � �sgn kF �j 0u � bv�:

So, _Fv : SqW �v� ! �F jqW��Sw�v� is written as

_Fv �
ju �v � �u; 0��
ÿ�sgn kF �j 0u �v � �u; 1��:

�
Hence we get �W ;F ;F�1 �M; f ; j� � �M; f 0;ÿ�sgn kF �j 0�. r

Let g be an element of orthogonal group O�nÿ 1� with det g � ÿ1 and

denote by N the quotient space of R�Dnÿ1 gained by identifying �s; v� and

�s� 1; gv� for each �s; v� A R�Dnÿ1. Then N is a non-orientable smooth

O�nÿ 1� bundle over S1 with ®ber Dnÿ1. We denote by �s; v� the point

represented by �s; v� in N.

Let d : �0; 1� ! �0; 1� be a monotone and smooth function such that

dj�0; e� � 1 and dj�1ÿ e; 1� � 0 for a positive number e which is small enough.

For each t A I we de®ne a map Ht : N ! N by

Ht��s; ru�� � �s� td�r�; ru�;
where s A R, 0a ra 1 and u A qDnÿ1. Then Ht is a di¨eomorphism such that

HtjqN � 1qN for each t and H1 is homotopic to H0 � 1N .

Let M be a closed, connected and non-orientable n-manifold and a be a

simple closed arc with based point u0 such that w1�M���a��0 0. The tubular

neighborhood of a is di¨eomorphic to the above bundle N for a some

g A O�nÿ 1� with det g � ÿ1. Hence we have a di¨eomorphism h : �M; u0� !
�M; u0� which satis®es the conditions

(9.1) h is the identity map out of a tubular neighborhood N�a�,
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(9.2) h is homotopic to the identity map 1M by a homotopy H : M � I

!M and

(9.3) H��gu0
� � �a�,

where gu0
is a path from �u0; 0� to �u0; 1� in M � I de®ned by gu0

�t� � �u0; t�.
We de®ne a family of isomorphisms h � fhug : SM ! h�SM by

hu �SM�H��gu��ÿ1;

where gu is a path from �u; 0� to �u; 1� de®ned by gu�t� � �u; t�. Then h is an

equivalence. In particular, hu0
�SM��a��ÿ1 � ÿid.

Let f : �M; u0� ! �Bp; y0� be a continuous map which satis®es the con-

ditions (3.1) and (3.2), and j : SM ! f �Sw be an equivalence. Composing h

with j we get an equivalence h�j � fjh�u� � hug : SM ! � f � h��Sw.

Proposition 13. Let M be a closed, connected and non-orientable n-

manifold, a be a simple closed arc with based point u0 such that w1�M���a��0 0

and h : �M; u0� ! �M; u0� be a di¨eomorphism which satis®es the conditions

(9.1), (9.2) and (9.3). Let f : �M; u0� ! �Bp; y0� be a continuous map which

satis®es the conditions (3.1) and (3.2), and j : SM ! f �Sw be an equivalence.

If f and f � h are homotopic preserving the base point, then �M; f ; j� �
�M; f ;ÿj� in Wn�Bp;Sw�. Moreover, the assumption that f and f � h are

homotopic preserving the base point is always satis®ed when p is abelian.

Proof. At ®rst we show that �M; f ; j� � �M; f � h; h�j�. We put F �
f �H. Let kF be a map de®ned by (8.1). Since du0

� Sw� f��a�� � ÿid and

�h�j�u0
� ju0

� hu0
� ÿju0

, kF �u0� � jÿ1
u0
� du0

� �h�j�u0
� id. Hence we get

�M; f ; j� � �M; f � h; h�j� by Proposition 12.

Next we show that �M; f ; j� � �M; f � h;ÿh�j�. Let G be a homotopy of

f to f � h preserving the base point. Since du0
� Sw�G��gu0

�� � Sw�1y0
� � id,

we have kG�u0� � ÿid. Hence we get �M; f ; j� � �M; f � h;ÿh�j� by Propo-

sition 12.

Assume now that p is abelian and two continuous maps f ; f 0 : �M; u0� !
�Bp; y0� are homotopic by a homotopy F : M � I ! Bp. We put X �M � I ,

A �M � 0UM � 1U u0 � I . Then �X ;A� can be considered to be a pair of

CW complexes by the triangulation theorem of di¨erentiable manifolds. We

de®ne a map G 0 : �A; �u0; 0�� ! �Bp; y0� by

G 0�a� �
f �u� �a � �u; 0� A M � 0�
f 0�u� �a � �u; 1� A M � 1�
y0 �a � �u0; t� A u0 � I�.

8<:
We regard p1�M � 0; �u0; 0�� and p1�M � 1U u0 � I ; �u0; 0�� as the subgroups

of p1�A; �u0; 0��. For any g A p1�M � 0; �u0; 0�� we have G 0��g� � f��g� �
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F� � i��g�, for the natural inclusion i : A! X . Any element g 0 of p1�M � 1U
u0 � I ; �u0; 0�� is represented by �gu0

�g�gÿ1
u0
�, where gu0

is a path de®ned by gu0
�t�

� �u0; t�. Remark that F�gu0
is a closed arc with base point y0. By the

assumption that p is abelian we have F� � i��g 0� � �F��gu0
�� f 0��g��F��gu0

��ÿ1 �
f 0��g� � G 0��g 0�. Hence G 0 has an extension G : �X ; �u0; 0�� ! �Bp; y0� by the

obstruction theory. G gives a homotopy of f to f 0 preserving the base point.

Since f � h�u0� � y0 and f and f � h are homotopic, we may apply the

argument to f 0 � f � h and get the result: f and f � h are homotopic pre-

serving the base point when p is abelian. r

Let l : �Bp; y0� ! �Bp; y0� be a classi®ng map for l� A �Aut p�w. Since

l�w � w, two local systems Sw and l�Sw are equivalent and there is a unique

equivalence �l : Sw ! l�Sw such that �ly0
� id holds. Then we have a ca-

nonical isomorphism ~l� associated to l de®ned by ~l� � l� � �l� : Hn�Bp;Sw� !
Hn�Bp;Sw�, where l� : Hn�Bp; l�Sw� ! Hn�Bp;Sw� is a natural isomorphism

induced from l and �l� : Hn�Bp;Sw� ! Hn�Bp; l�Sw� is an isomorphism

induced from �l. We denote by �Aut p�w� the set consisting of such ~l�. For

a local orientation j of M associated with f : M ! Bp, we de®ne a local

orientation �l�j of M associated with l � f by ��l�j�u � �l f �u� � ju. Since the

diagram

Hn�M;SM� ���!�l�j��
Hn�M; �l � f ��Sw� ���!�l� f ��

Hn�Bp;Sw�
j�

???y f�

x???l�

Hn�M; f �Sw� ���!f� Hn�Bp;Sw� ���!l�
Hn�Bp; l�Sw�

 �����

is commutative, we obtain

~l� � f� � j� � �l � f �� � �l�j��:�10:1�
For closed connected n-manifolds M and M 0 let h : �M; u0� ! �M 0; u 00� be

a di¨eomorphism. Let f : �M; u0� ! �Bp; y0� and f 0 : �M 0; u 00� ! �Bp; y0�
be continuous maps satisfying the conditions (3.1) and (3.2), and j, j 0 be

local orientations associated with f and f 0 respectively. Since h is a dif-

feomorphism, we have a natural isomorphism �h��u0
: Hn�M;M ÿ u0; Z� !

Hn�M 0;M 0 ÿ u 00; Z�. As above we take a unique equivalence h : SM !
h�SM 0 satisfying hu0

� �h��u0
and de®ne an isomorphism ~h� : Hn�M;SM� !

Hn�M 0;SM 0 � by ~h� � h� � h�. Moreover, from j 0 we de®ne a local orientation

h�j 0 of M associated with f 0 � h by �h�j 0�u � j 0h�u� � hu.

On the other hand, since the isomorphism � f 0 � h�� � f ÿ1
� : p1�Bp; y0� !

p1�Bp; y0� is an automorphism of p, there is a based point preserving map

l : �Bp; y0� ! �Bp; y0� such that l � f is homotopic (not necessarily preserving
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the base point) to f 0 � h. Then, it is easy to see l� A �Aut p�w. Let F be a

homotopy from l � f to f 0 � h and de®ne an equivalence c : �l � f ��Sw !
� f 0 � h��Sw by cu �Sw�F��gu��ÿ1, where gu is a path in M � I de®ned by

gu�t� � �u; t�. We consider the following diagram:

Hn�M;SM� ���!�l�j��
Hn�M; �l � f ��Sw�

h�

???y �h�j 0��
???yc�

�l� f ��

Hn�M; h�SM 0 � Hn�M; � f 0 � h��Sw� ���!� f 0�h��
Hn�Bp;Sw�:

h�

???y ???yh� f 0�

Hn�M 0;SM 0 � ���!j 0�
Hn�M 0; f 0�Sw�

 ���  ���
 ���

The diagrams is commutative except the upper triangle part including the upper

horizontal arrow where the diagram is commutative up to sign, more precisely,

it holds c� � ��l�j�� � �h�j 0�� or c� � ��l�j�� � ÿ�h�j 0�� according to cu0
� id or

cu0
� ÿid. Hence it holds

�l � f �� � �l�j�� �
f 0� � j 0� � ~h� if cu0

� id

ÿ f 0� � j 0� � ~h� if cu0
� ÿid.

(
�11:1�

Summarizing and extending the above argument, we will get the following

Proposition 14.

Proposition 14. Let M and M 0 be mutually di¨eomorphic closed con-

nected n-manifolds. Let f : M ! Bp and f 0 : M 0 ! Bp be continuous maps

which satisfy the conditions (3.1) and (3.2). Moreover, let j and j 0 be local

orientations associated with f and f 0 respectively. Then �m��M; f ; j��� �
�m��M 0; f 0; j 0��� or �m��M; f ; j��� � �ÿm��M 0; f 0; j 0��� in Hn�Bp;Sw�=�Aut p�w� .

Proof. If f : �M; u0� ! �Bp; y0�, f 0 : �M 0; u 00� ! �Bp; y0� and there is

a di¨eomorphism h : �M; u0� ! �M 0; u 00�, then the above argument implies

Proposition 14. So, if f �M�V f 0�M 0�0 f, we can choose y0; u0; u
0
0 and

h : �M; u0� ! �M 0; u 00� and then the proposition follows.

In case f �M�V f 0�M 0� � f, we choose y0, u 00 such that f 0 : �M 0; u 00� !
�Bp; y0� and choose u0 so that h : �M; u0� ! �M 0; u 00�. We put y1 � f �u0� and

choose a path b from y1 to y0. Let gt : fu0g ! Bp be a homotopy such that

gt�u0� � b�t�. We can consider that �M; u0� is a pair of CW complexes. By

the homotopy extension theorem there exists a homotopy ft : M ! Bp such

that ft�u0� � gt�u0� and f0 � f . We see that f1 satis®es the conditions (3.1)

and (3.2). Therefore f �Sw and f �1 Sw are equivalent. Hence there is a unique
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equivalence b : f �Sw ! f �1 Sw satisfying bu0
�Sw��b��ÿ1. For a local orien-

tation j associated with f we de®ne a local orientation j1 associated with f1 by

�j1�u � bu � ju. Then �M; f ; j� � �M; f1; j1�. In fact, the cobordism is given

by �W ;F ;F� de®ned as follows. We put W �M � I and de®ne a map

F : W ! Bp by F �u; t� � ft�u�. Furthermore we de®ne a local orientation F

associated with F by extending

Fv � Sw�F��gv��ÿ1 � ju � gv��v � �u; t� A Int W�;

where gv is a path in W de®ned by gv�s� � �u; st�. Then _FjM � 0 � j,
_FjM � 1 � ÿj1 and q�W ;F ;F�1 �M; f ; j� � �M; f1;ÿj1�.

Now we can apply the previous argument to f1 with j1 and the propo-

sition follows. r

7. Generalized form and proof of Theorem 3

In this section we present a generalized form of Theorem 3 as Theorem 20

and using it we prove Theorems 3 and 4.

Let M4�Bp;Sw� be the subset of M4�Bp;Sw� consisting of triples �M; f ; j�
such that f induces an isomorphism on p1. Proposition 11 together with

following proposition guarantees that M4�Bp;Sw� is not empty.

Proposition 15 ([5]). Let p be a ®nitely presentable group. For each

element w of H 1�Bp; Z2�, there exist a connected closed 4-manifold M and a map

f : M ! Bp which induces an isomorphism on p1 and satis®es f �w � w1�M�.
In fact the zero element of W4�Bp;Sw� is representable by �N0; g0;c0�, where g0

induces an isomorphism on p1 and c0 is a local orientation associated with g0.

Proof. Let K 2 be a geometric realization of p by a compact 2-complex.

We have a map g1 : K 2 ! Bp which induces an isomorphism on p1. Let w :

Bp! K�Z2; 1� � Py � R be the map corresponding to w. Here, Pn, 2a n

ay, denotes the n-dimensional real projective space. Then we ®nd a map g :

K 2 ! P4 � R such that g is an embedding approximating w � g1 and g�w1�P4�
� g�1 w. Note that g�w1�P4� � g�i�w1�Py�. We regard K 2 HP4 � R. Let

N�K 2� be the regular neighborhood of K 2 and g2 : N�K 2� ! K 2 be the

projection. We put N0 � qN�K 2� and g0 � �g1 � g2�jN0. Then g0 induces

an isomorphism on the fundamental group and g�0 w � �g2jN0��g�1 w �
�g2jN0��g�w1�P4� � w1�N0�. Hence the pair �N0; g0� is a desired one. Note

that �N0; g0;c0� � 0 A W4�Bp;Sw� for any local orientation c0, because

�N0; g0;c0� bounds �N�K 2�; g1 � g2;F� for some F. In fact, F is uniquely

determined because the natural inclusion N0 ! N�K 2� induces an isomorphism

on p1. r
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For the proof of Theorem 20 we need some lemmas.

Lemma 16. Let �M; f ; j� A W4�X ;Sw� and g be a nonzero element of

Ker� f� : p1�M� ! p1�X ��. We can perform the 1-dimensional surgery on the

embedded circle representing g and get a new triple �N; g;c� A M4�X ;Sw� which

represents the same element �M; f ; j�. Note that p1�N� � p1�M�=�g � 1�.
Proof. For an element �M; f ; j� A W4�X ;Sw� put W1 �M � I and F1 :

W1 ! X be a map de®ned by F1�u; t� � f �u�. Then there is an equivalence

F1 : SW1 !@ F �1 Sw such that _F1jM � 0 � ÿj and _F1jM � 1 � j. Since j is an

equivalence of SM to f �Sw and g A Ker f�, the normal bundle n of g is

orientable and hence trivial. Let ~g : S1 �D3 !M � 1 be a trivialization of n.

We may assume that f j~g�S1 �D3��x; y� � f � ~g�x; 0� for �x; y� A S1 �D3.

Since f��g� � 0, there exists a map g1 : D2 � 0! X such that g1jS1 � 0 �
f � ~gjS1 � 0. We extend g1 to F2 : D2 �D3 ! X by F2�x; y� � g1�x; 0�. We

put W2 � D2 �D3 and W �W1 U~g W2 by straightening the angles (cf. [2]).

Let F : W ! X be a map de®ned by F�z� � Fj�z� �z A Wj ; j � 1; 2�. Note

that there is an equivalence F2 : SW2 !@ F �2 Sw so that ÿ _F2jS1 �D3 �
jj~g�S1 �D3�. Using Fj � j � 1; 2� similarly to the proof of Proposition 5, we

get an equivalence F : SW !@ F �Sw such that _FjM � 0 � ÿj. Now we put

N � qW ÿM � 0, g � F jN, and c � _FjN by identifying H4�qW ; qW ÿ u; Z�
with H4�N;N ÿ u; Z� for u A N. Then we get q�W ;F ;F�1 �M; f ;ÿj��
�N; g;c�. r

Lemma 17. Let p be a ®nitely presentable group. Any element of

W4�Bp;Sw� is representable by a triple �N; g;c� with an additional property that

g : N ! Bp induces an isomorphism on p1.

Proof. The null element is already represented by �N0; g0;c0� in Propo-

sition 15. Let �M; f ; j� be a representative of a given element of W4�Bp;Sw�
and we put f 0 � f ]g0 and j 0 � j]c0. Then �M]N0; f 0; j 0� A W4�Bp;Sw�
and f 0� : p1�M]N0� ! p is surjective. Let fa1; . . . ; ang and fb1; . . . ; bmg be

generators of p1�N0� and p1�M� respectively. They are generators of

p1�M]N0�. We put bj � gÿ1
0� f��bj� �1a j am�. If every bjb

ÿ1
j �1a j am�

anihilates, then any element of Ker f 0� anihilates. Using Lemma 16 we

anihilate the elements bjb
ÿ1
j �1a j am� of p1�M]N0� by 1-dimensional

surgery on the embedded circles representing these elements. Then we get

a new closed 4-manifold N and a map g : N ! Bp which induces an isomor-

phism on p1 such that �N; g;c� � �M]N0; f 0; j 0� � �M; f ; j� � �N0; g0;c0�. The

equivalence c : SN ! g�Sw is given as in the proof of Lemma 16. r

Lemma 18. If two triples �M; f ; j� and �N; g;c� represent the same

element of W4�Bp;Sw� such that the induced maps on the fundamental group are
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isomorphic, then we have a cobordism �W ;F ;F� such that q�W ;F ;F�1
�M; f ; j� � �N; g;ÿc� and both M HW and N HW induce isomorphisms on p1.

Proof. Let �W 0;F 0;F 0� be a cobordism of �M; f ; j� and �N; g;c�. We

see that F 0� : p1�W 0� ! p is surjective. Let g1; . . . ; gl be the generators

of p1�W 0�. We put bj � f ÿ1
� F 0��gj� � j � 1; 2; . . . ; l�. Then bjg

ÿ1
j A Ker F 0�

� j � 1; 2; . . . ; l�. We can consider that bj and gj are elements of p1�Int W 0�
and so bjg

ÿ1
j A Ker�F 0jInt W 0��. Since F 0 is an equivalence of SW 0 to F 0�Sw,

we can anihilate bjg
ÿ1
j � j � 1; 2; . . . ; l� by 1-dimensional surgery on 5-

dimensional manifold W 0 as in the proof of Lemma 16. If we anihilate the

elements bjg
ÿ1
j � j � 1; 2; . . . ; l�, we get a manifold W and a map F : W ! Bp

such that the inclusion M HW and F induce isomorphisms on p1. Since

N HW !F Bp induces an isomorphism on p1, N HW also induces an iso-

morphism on p1. Note that the surgery does not a¨ect the existence of F as in

the proof of Lemma 16. r

Lemma 19. Assume that the 5-dimensional cobordism W between M and N

satis®es the condition that qW �M UN and both M HW and N HW induce

isomorphisms on p1. Then, there are M0 and N0 which are connected sums of

some copies of S2 � S2 or S2 ~�S2 such that M]M0 is di¨eomorphic to N]N0.

Proof. We can simplify the handle decomposition of W relative to M so

that it has only 2-handles and 3-handles as in the usual proof of s-cobordism

theorem in higher dimension, because M HW and N HW induce isomorphism

on p1. Then the feet of 2-handles are isotopic to the trivial one because it

should represent the zero element in p1 by the assumption. So, the middle

level manifold is a connected sum of M and some copies of S2 � S2 or S2 ~�S2.

By thinking from another direction it is also di¨eomorphic to a connected sum

of N and some copies of S2 � S2 or S2 ~�S2. r

Theorem 20 (Generalized form of Theorem 3). Let p be a ®nitely

presentable group and w A H 1�Bp; Z2�. Then, any equivalence class �x� of

H4�Bp;Sw�=�Aut p�w� has a representative �M; f ; j� in M4�Bp;Sw� such

that x � m��M; f ; j��, and for another representative �M 0; f 0; j 0� of the same

class M and M 0 are weakly stably equivalent. Moreover, the induced map:

H4�Bp;Sw�=�Aut p�w� !SM4
p;w is 1 : 1 or 2 : 1 according to that �m��M; f ; j��� �

�m��M; f ;ÿj��� or not, where SM4
p;w is the set of weakly stable equivalence

classes in M4
p;w.

Proof. Take any element x of H4�Bp;Sw�. Then there exists an element

z of W4�Bp;Sw� such that m�z� � x by Corollary 2. It comes from a triple

�M; f ; j� in M4�Bp;Sw� by Lemma 17. Let �M 0; f 0; j 0� be another triple in

M4�Bp;Sw� such that m��M; f ; j�� � m��M 0; f 0; j 0��. Then we have �M; f ; j� �
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�M 0]mCP2; f 0]e; j 0]c0� for some m by Corollarly 2 and the fact that W4 is

generated by the complex projective plane CP2, where mCP2 means the

connected sum of jmj copies of CP2 or CP2 (the manifold CP2 with the

opposite orientation) according to the signature of m, e is a map sending CP2's

to one point and c0 is the orientation of mCP2, that is, an appropriate

equivalence of SmCP2 to e�Sw. Therefore, the manifolds M and M 0 are

weakly stably equivalent by Lemmas 18 and 19. Let x � m��M; f ; j��, x 0 �
m��M 0; f 0; j 0�� for �M; f ; j�, �M 0; f 0; j 0� A M4�Bp;Sw�. Assume now that

�x� � �x 0� in H4�Bp;Sw�=�Aut p�w� and not necessarily m��M; f ; j�� �
m��M 0; f 0; j 0��. Then there is a classifying map l : �Bp; y0� ! �Bp; y0� for

some element of �Aut p�w such that x 0 � ~l�x, where ~l� is an element of

�Aut p�w� de®ned in O 6. Since ~l� � f� � j��sM� � �l � f �� � ��l�j���sM� by

(10.1) in O 6, we have m��M 0; f 0; j 0�� � m��M; l � f ; �l�j��. By the same argu-

ment as before M and M 0 are weakly stably equivalent. Therefore, we can

assign a weakly stable equivalence class of M to �x�.
On the other hand, let M be an element of M4

p;w. Then, there is an

element �M; f ; j� of M4�Bp;Sw� by Proposition 11. The triple determines the

cobordism class �M; f ; j� in W4�Bp;Sw� and then an element m��M; f ; j�� of

H4�Bp;Sw�. Any weakly stabilized w-singular manifold determines the same

element of H4�Bp;Sw� because m��M]M0; f ] f0; j]j0�� � f��j��s��, where M0 is

a closed simply connected manifold, f0 : M0 ! Bp is a collapsing map to one

point, j0 is an equivalence of SM0
to f �0Sw and s is the fundamental homology

class of M with local coe½cients SM . If M and M 0 are weakly stably

equivalent, we may assume that M and M 0 are already di¨eomorphic as far as

we consider the element of H4�Bp;Sw�. Take another element �M 0; f 0; j 0� A
M4�Bp;Sw�. Then, by Proposition 14 we have �x 0� � �x� or �x 0� � �ÿx� for x �
m��M; f ; j�� and x 0 � m��M 0; f 0; j 0��. This means that there are at most two

elements �x�, �ÿx� A H4�Bp;Sw�=�Aut p�w� corresponding to the weakly stable

equivalence class of M. The correspondence is 1 : 1 or 2 :1 according to that

�x� � �ÿx� or not.

Even when w � 0, this theorem holds because we did not use Proposition

13 yet. In this case the induced map H4�Bp; Z�=�Aut p�� !SM4
p;w is just the

orientation forgetful map. r

Proof of Theorem 3. Let M be any element of M4
p;w. By Theorem 20

there are at most two elements �Gx� � �m��M; f ;Gj��� of H4�Bp;Sw�=�Aut p�w�
corresponding to the weakly stable equivalence class of M. Since p is abelian

and w0 0, it holds �M; f ; j� � �M; f ;ÿj� by Proposition 13. This means

�x� � �ÿx�. Hence we get the conclusion. r

Proof of Theorem 4. Let p � p1�M� and take a map f : M ! Bp

inducing an isomorphism on p1. If the Lusternik-Schnirelmann p1-category of

Ichiji Kurazono286



M is not 4, then f � : H 4�Bp; Hom�Sw;Zm�� ! H 4�M; Hom� f �Sw;Zm�� is a

zero map for any m by [8]. From the universal coe½cient theorem for the

cohomology with local coe½cients [6], we see that f� : H4�M; f �Sw� !
H4�Bp;Sw� is a zero map. Hence f��j��s�� � 0 for any equivalence j : SM !
f �Sw. On the other hand �qN�K 2�; g0;c0� � 0 for the example given in the

proof of Proposition 15. Especially m��qN�K 2�; g0;c0�� � g0��sqN�K 2�� � 0.

So, by Theorem 20 M is weakly stably equivalent to qN�K 2�. r

If the fundamental group p is a non-trivial free group, then its classifying

space is a bouquet of circles and H4�4S1;Sw� � 0 so that every manifold in

M4
p;w with w0 0 is weakly stably equivalent to ]kS1 � S3]lS

1 ~�S3 as shown in

[9]. We know that its Lusternik-Schnirelmann p1-category is 1. If p is not a

free group, then the Lusternik-Schnirelmann p1-category of M is 2 for the

manifold M which belongs to the weakly stable equivalence class corresponding

to the zero element of H4�Bp;Sw� and 4 otherwise by Theorem 4.

8. Some calculations of H4�Bp;Sw�=�Aut p�w�
In this section we calculate H4�Bp;Sw�=�Aut p�w� for some examples.

Example 3 contains many non-trivial group cases. Example 4 is a non-abelian

group case where H4�Bp;Sw� � Z. Here, Pn, 2a nay, denotes the n-

dimensional real projective space. For convenience sake we put A �
H4�Bp;Sw�=�Aut p�w� .

Example 3. Let p � p1 (a closed aspherical k-manifold) �k a 3�. Then

A � H4�Bp;Sw� � 0 for any w. Therefore, the weakly stable equivalence

classes of closed 4-manifolds in M4
p;w is unique. Moreover the ones of closed

4-manifolds is 1 : 1 correspondence with the equivalence classes of w modulo

automorphisms of p.

Example 4. Let p � Z� Z� p1�P2]P2� and Sw � S0 nS0 nSh with

h � w1�P2]P2�0 0. Take S1 � S1 � P2]P2 as Bp. Then we have H4�Bp;Sw�
� H2�S1 � S1;S0�nH2�P2]P2;Sh� � Z because H2�P2]P2;Sh� � Z. Note

that Aut�Z� Z��H �Aut p�w� � contains an element which exchanges the sign of

one of two generators of H1�S1 � S1;S0� and hence change the sign of the

generator of H2�S1 � S1;S0�. Then we get A � Z=fG1g. The generator of

H4�Bp;Sw� is given by m��Bp; id; j��.
Example 5. Let p � Zl � � � lZ (n copies) and w0 0. Take

S1 � � � � � S1 as Bp. Any Sw is equivalent to S0 n � � � nS0 nSh for a

non-trivial element h A H 1�BZ; Z2� � Z2. Then each canonical generator

of H4�Bp;Sw� � Z2 l � � � lZ2 (
nÿ 1

4

� �
copies of Z2) corresponds to a

4-element subset in f1; 2; . . . ; nÿ 1g. Let C4;nÿ1 be the set which consists of
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subsets of distinct 4-elements in f1; 2; . . . ; nÿ 1g. Then the symmetric group

Snÿ1 operates naturally on C4;nÿ1, which corresponds to the set of non-trivial

elements of H4�Bp;Sw� with the operation by �Aut p�w� . Hence we get

jAj � jC4;nÿ1=Snÿ1j � 1b 2 �nb 5�
1 �na 4�.

�
When n � 5; 6, we see that Snÿ1 operates transitively on each subset of

C4;nÿ1 consisting of the same number of 4-element subsets and hence jAj �
nÿ 1

4

� �
� 1. Let N be a closed 4-manifold obtained from T 4 by attaching a

non-orientable 1-handle and ~T 4
w be a manifold with p1 � p which is obtained

from N by 1-dimensional surgery. In the case n � 5 the non-trivial element of

A is represented by m�� ~T 4
w; f ; j��. Even when nb 6, any element of A can be

constructed by using several copies of ~T 4
w. Furthermore, in the case na 4 the

weakly stable class of the closed non-orientable 4-manifold is unique, because

any w0 0 is equivalent modulo automorphisms of p.

Example 6. Let p � Z2 and w0 0. Take Py as Bp. Then we have

A � H4�Bp;Sw� � Z2. The non-trivial element is represented by m��P4; i; j��,
where i : P4 ! Py is a natural inclusion.

Example 7. Let p � Z2 lZ2 and w0 0. Take Py � Py as Bp. Any

Sw is equivalent to Sh nSh for a non-trivial element h of H 1�Py; Z2�.
Hereafter we distinguish the ®rst Py from the second Py. Let f 01 : N !
Py

1 � Py
2 be a closed w-singular 4-manifold obtained from i1 : P4 ! Py

1 by

attaching a non-orientable 1-handle and f1 : ~P4
w ! Py

1 � Py
2 be a w-singular

manifold with p1 � p obtained from f 01 : N ! Py
1 � Py

2 by 1-dimen-

sional surgery. Then H4�Bp;Sw� � Z2 lZ2 lZ2 is generated by x0 �
m��P2 � P2; i � i; j��; x1 � m�� ~P4

w; f1; j1�� and x2 � m�� ~P4
w; l � f1; j2��, where l

is an automorphism which exchanges Py
i �i � 1; 2�. The exchange of the

canonical basis of p � Z2 lZ2 is a non-trivial element of �Aut p�w but

the other non-trivial elements of Aut p � Z2 lZ2 lZ2 does not belong to

�Aut p�w. So, �Aut p�w� identi®es only the generators x1 and x2. Hence we

get jAj � 6. In fact, A consists of �0�, �x0�, �x1�, �x0 � x1�, �x1 � x2� and

�x0 � x1 � x2�.
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