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ABSTRACT. This paper is concerned with the distributions of some test statistics for a
multivariate linear hypothesis under nonnormality. The test statistics considered in-
clude the likelihood ratio statistic, the Lawley-Hotelling trace criterion and the Bartlett-
Nanda-Pillai trace criterion, under normality. We derive asymptotic expansions of the
null distributions of these test statistics up to the order n~!, where 7 is the sample size,
under nonnormality. It is shown that our general results can be effectively obtained by
deriving an asymptotic expansion of the distribution of a multivariate t-statistic. As
special cases of our general results our asymptotic expansions are given for Hotelling’s
T? statistic, one-way MANOVA test statistics, etc. Numerical accuracies of asymp-
totic expansion approximations are examined. The validity of the expansions is also
discussed. Moreover, we will find conditions such that the Bartlett correction in the
normal case implies an improved y2-approximation, even under nonnormality.

1. Introduction

We consider a multivariate linear model

Y =XZ+6,
where Y = (y,,...,y,)" is an n x p observation matrix of p response variables,
X = (x1,...,x,) is an n x k design matrix of k explanatory variables with full
rank k (< n), 5 is a k x p unknown parameter matrix and & = (ef,...,&,)" is

an n x p error matrix. It is assumed that each vector ¢; is independently and
identically distributed with E(g;) =0 and Cov(e;) = 2.
For testing a linear hypothesis
Hy: HE =0,
where H is a known /& x k matrix with rank /& (< k), let S, and S, be the

variation matrices due to the hypothesis and the error, respectively, i.e.,
Sy=&'H{HX'X)'H}'HE, S.=Y'{I,-X(X'X)'x"1Y,
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where Z = (X'X)"'X'Y. Then the following three criteria have been used, in
particular, under normality.
(i) the likelihood ratio statistic:

Tir = —(n—k+dy) log(|Se|/[Se + Sul),
(i) the Lawley-Hotelling trace criterion:
Ty = (n—k +d>) t(S,S, "),
(iif) the Bartlett-Nanda-Pillai trace criterion:
Tonp = (n—k + d3) tr{Sy(Sy + Se) '},

where the constants d;’s are the Bartlett corrections in the normal case, and
they are given as follows:

_p—h+l

dl: P ’

d, =—(p+1), dy = h.

Under normality, the distributions of these statistics have been extensively
studied, see e.g., Anderson [1] and Siotani, Hayakawa and Fujikoshi [23].
Under nonnormality it is shown that the null distributions of these statistics
converge to )(;,1 as the sample size n tends to infinity under an appropriate
regularity condition on the design matrix (see Huber [15]). Our aim is to obtain
asymptotic expansions of the null distributions of these statistics up to the order
n~! under a general condition.

As for the results of the usual asymptotic expansions under nonnormality,
Kano [17] and Fujikoshi [10] independently derived an asymptotic expansion
for the distribution of Hotelling’s 7' statistic. Fujikoshi, Ohmae and Yana-
gihara [13] obtained an asymptotic expansion of the null distributions for one-
way ANOVA test statistics. Recently, Fujikoshi [12] derived such expansions in
the cases of one-way MANOVA test statistics. For a univariate linear model,
Qumsiyeh [22] derived an asymptotic expansion for the least squares estimate of
regression coefficients. Using this result, Yanagihara [24] derived an asymp-
totic expansion of the null distribution of the likelihood ratio statistic for testing
a linear hypothesis about regression coefficients. Our work is a generalization
of these results.

One of the approaches for solving our problem will be to use an asymptotic
expansion of the joint distribution of

. 1
Z=X'X)"*(E-Z) and \/Z(ZSE - 2).

This approach was used by Fujikoshi, Ohmae and Yanagihara [13] for one-way
ANOVA test statistic, by Fujikoshi [12] for one-way MANOVA test statistics,
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and by Yanagihara [24] for a univariate linear model. However, for a multi-
variate linear hypothesis this approach leads to a prohibited calculation. In
order to solve our problem effectively, we consider the distribution of a key
statistic

U=2Zn's,) "2

The statistic U may be a multivariate t-statistic.
Note that the three statistics can be expressed in terms of U as

Te =tr(U'QU) +%[(r1 — k) tr(U'QU) 41, tr{(U'QU)*} + 0,(n3/?), (1.1)

where
Q=X'X)"VPH{HX'X) " HY "H(X'X)™2. (1.2)
Here, the constants r; and r, are defined as follows;
(i) Trr:r =d, rp=-1/2,
(i) Typ:r =d, =0, (1.3)
(i) Tpnp:r = ds, rn=-1

Needless to say, we have 2% = Q and rank(Q2) = h. Using an expansion of
the distribution function of U, we will obtain an asymptotic expansion of the
null distribution of T as

3
P(TG < x) = Gph(x) +%Zb,-Gph+2,-(x) + O(l/lil)7 (1.4)
=0

where Gy is the distribution function of a central chi-squared distribution with
f degrees of freedom. In other words, our main purposes are to get a formula
for b;’s in asymptotic expansion (1.4) and conditions for valid expansion up to
the order n!.

On the other hand, by using (1.4), the expectation of T can be expanded

as

E(Tg) = ph(1 +%) Yo .

Note that under normality, ¢; =0 from the definitions of dj, d» and ds.
Furthermore, although the error vectors are distributed as a certain nonnormal
distribution, we shall obtain some conditions of X and H such that ¢; = 0.
This means that even under nonnormality, the Bartlett correction in the normal
case has given an improvement for the mean in a y2-approximation. These
conditions are made more clear by using the coefficients b;’s in the asymptotic
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expansion (1.4). Based on such conditions, it is possible to see whether a test
statistic is robust for nonnormality or not.

The present paper is organized in the following way. In §2, we state a
main result on an asymptotic expansion of the null distribution of 7. Some
applications for our result are given in §3. In §4, numerical accuracies are
studied for Hotelling’s T2 statistic. In §5, by using coefficients of an asymp-
totic expansion, we will obtain conditions such that the Bartlett correction in the
normal case implies an improved y2-approximation, even under nonnormality.
This gives an advantage for obtaining an asymptotic expansion. Note that
such a result cannot be expected for Bootstrap method. Our derivation and its
validity are discussed in Appendix. In Appendix 1, we prepare some basic
results for the validity of asymptotic expansions for the distribution functions
of U and T up to the order n~'. We derive an asymptotic expansion of the
distribution of U in Appendix 2. Based on the expansion of the distribution of
U, we obtain an expansion of the null distribution of Ty, by expanding the
characteristic function of 7. An outline of the computation is given in Ap-
pendix 3.

2. Asymptotic expansion of distribution function of 7

In this section, we state a main result on an asymptotic expansion of the
null distribution of T in (1.1) up to the order n=!. Without loss of generality,
we may replace & by &X~'/2, and then E[vec(&)] =0 and Cov|vec(&)] = I,
where vec(4) = (a},...,a!) for any n x m matrix 4 = (ay, ... ,a,), since Tg is
invariant under the transformation from Y to YX~'/2. Let & =g, and let i, i,

be a moment of & defined by
luilmi,,, = E[Sfl .. '81}7,}7

where ¢; denotes the jth element of &.  Similarly the corresponding cumulant of
¢ is denoted by x;_;,, €.8.,

Kabe = Hapes Kabed = Mabed — OabOcd — OacOpa — 5ad(5bcv

where J,, is the Kronecker delta, i.e., d,, =1 and J,, =0 for a # b.
Let 4, be the smallest eigenvalue of X'X and M, =max{||x;||: j=1,...,n},
where || - || denotes the Euclidean norm. Furthermore, ¢ is a p-dimensional vec-

tor and T, = [lg,)(l +04)/2] i1s @ p x p symmetric matrix whose norm is defined

by | Tx]| = [XF_, s P +5ab)}2/4}1/2. Suppose that X and the distribu-
tion of ¢ satisfy the following assumptions Al, A2, A3, Bl and B2.
1
Al. limsup = > ||xjH4 < o0,
nj:1

n— 00
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A2. liminf ﬁ > 0,

n—ow n

A3. For some constant 6 >0, M, = O(nl/Z—é)’

Bl. E(|lel®) < oo,

B2. Cramér’s condition for the joint distribution of & and &&¢’ hold, that
is, for any b > 0,

sup  |Elexp{it'e + i tr(e'The)}]| < 1.
el T2[1>5

Then the distribution function of T can be expanded as in Theorem 2.1.

THEOREM 2.1. Under the assumptions Al, A2, A3, Bl and B2, the null
distribution of T can be expanded as (1.4), where the coefficients b; are given by

bo = ai!) — {ay + (h = 2)(h + Das
— {as — 3has — (h — 2)as}kY + %ph{(h —p—1)—2n},
by = —2ayk) + {3ay — 6as + (30> + h — 6)as}r’
+ {3as — 33h + 2)ay + (h + 6)as}x
—%ph{h—n+rz(/1+p+1)}, 2.1)
by = ai!) — {3ay — 12a4 + (h +2)(3h — 1)as}ky)
— {3as — 33h + 4)ay + 5(h + 2)as +%ph(h +p+ D)(1+2n),
by = {ay — 6as + (h+ 1) (h+ 2)as}x}’
+ {a3 — 3(h + 2)ag + 3(h + 2)as k).
Note that B2 is equivalent to the usual Cramér’s condition:

limsup |E[exp{it'e +itr(¢'Tre)}]| < 1
£l T2 )| =00

(see Bhattacharya and Ranga Rao [5], page 207).
Set

Y= XX'X)'H{HX'X)"'"H} " HX' X)X/,

and let y,, denote its (a,b)th element. Furthermore, Dy = diag(V/,y,...,¥,,)
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and ¥(3) is an n x n matrix whose (a,b)th element is denoted by Y2, Then
the coefficients a;’s in (2.1) are defined by

1
ai :§{n tr(Dy) — h(h+2)}, @ :%1;?](3)1"’

n 1 1

lqu/ﬁ”Dl]/l,,, ay l/D(]/lem ds Z—l;qjl,,,

B =g T2 8n

where 1,, is an n-dimensional vector all of whose elements are 1. Moreover,

Kgl), ng) and Kil) in (2.1) are the multivariate skewnesses and kurtosis (see

Mardia [19] and Isogai [16]) which are defined by

4 P p
(1) 2 (2) (1)
"3 :ZKabC’ K3 :E KaabKbec, Ky = E Kaabh -
ab

abe abe

Note that the final result depends on the cumulants up to the fourth order.
From the result (Hall [14]) on the univariate t-statistic, it is expected that the
assumption Bl may be weakened as

Bl'. E(|le|*) < .
Before concluding this section, we state an alternative expression of (1.4).

COROLLARY 2.2.  Under the same assumptions as in Theorem 2.1, the asymp-
totic expansion (1.4) can be written as

2x
P(TG < x) = Gph(x) - nphg,,h(x){bl + by + b3

(b2 + b3)x b3x2
ph+2 (ph+2)(ph+4)

}+omly (2.2)

where gr(x) is the density function of a central chi-squared distribution with f
degrees of freedom and the coefficients b; are given by (2.1).

3. Some applications

In this section, we obtain asymptotic expansions of the null distribution for
several test statistics by applying Theorem 2.1.

3.1. The multivariate normal case

When each error vector ¢ is independently and identically distributed
as N,(0,2), the multivariate skewnesses and kurtosis are zero, respectively.
Therefore, the coefficients b;’s are given by
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1 1
bozzph(h—p—l—Zrl), b1:—§ph{h—r1+r2(h+p+1)},

1
b, :th(h—i—p—&-l)(l—i—Zrz), b3 =0.

These results correspond to the well known formulas (see, e.g., Anderson
[1] and Siotani, Hayakawa and Fujikoshi [23]).

3.2. The univariate case
When p =1, T corresponds to a perturbation expansion of three test sta-

tistics for linear hypothesis in nonnormal univariate linear model. Note that the

three tests are essentially the same. In this case, Kgl) = K(32) = k% and Kgl) = K4.

Therefore the coefficients b;’s are given by
bo = —i3{s2 — hsy + h(h — 2)s4} + Kas) + %h{(h —2)=2r},
b = 13{3s2 — (3h + 4)s3 + h(3h + 2)s4}
— 2K481 — %h{h —r+nrh+2)},
by = —13{3s2 — (3h + 8)s3 + (h +2)(3h + 4)s4}
+ K481 + %h(h +2)(1 + 2r2),
by = x3{s2 — (h+4)s3 + (h+2)(h + 4)s4},

where

51 =ai, 52 =ax + a3, 53 = 3ay, 54 = as.

The coefficients b;’s and s;’s in the case r; =r, =0 are the same ones as in
Yanagihara [24].

3.3. Hotelling’s 77 statistic

If we specify the design matrix as X = 1,, and the constraint matrix as H = 1
and r; = 0, then the Lawley-Hotelling trace criterion becomes to Hotelling’s 72
statistic. Since 2 =1, we have

1 1 1 1 1
ay = 4; 612—12, a3_8a a4_127 a5_8~
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Using these coeflicients, we obtain b;’s as

These coefficients b;’s correspond to those in Kano [17] and Fujikoshi [10].

3.4. One-way MANOVA test statistics for equality of means

Set
L, 0 0
I, - 0
X=1. . . : (n x k matrix), (3.1)
0 0 1.,
1 0 -1
H=|: " =+ ((k —1) x k matrix), (3.2)
0 I -1

and Q = I, — pp’, where

/
_ N TR
p—(pl,...,pk)—< pRREEE n>'

Then T becomes a perturbation expansion of one-way MANOVA test statistics
for testing an equality of mean vectors of k£ populations with each sample size n;
(1 <i<k). Itis easily seen that rank(Q)=h =k —1. Set

', 0 .0
poxpxy o 0 e 0
0 ' @WM
then
wnny 1,1, oy P P, 1
¥ =D'QD = : K : ;o (33)

—1/2 124 41 gy
L T S ety 1y 1,
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where w,, is the (a,b)th element of € in (1.2). Furthermore, using w, =
Oab — PaPp, We have

Next, we consider the assumptions Al, A2 and A3. It is easily shown
that all ||x;|| =1, n~! = ||xj\|4 =1 and n/n; <n/i, Therefore Al, A2 and
A3 are replaced by

n/n; = O(1) (j=12,...,k). (3.4)
So we have

1
by = alic[(ll) — (azK(;) —|—a3lc(32)) +Zp(k - Dk—=p—2-2n),
PG W @y_L . 1
by = 2aix,’ + 3(arky’ + azxy’) 2p(k W{k—1—r+nrnlk+p}

1
by = arry) = 3(ax) + aw?) + 3 plk = 1)(k +p)(1 +2r2),

(1) o)

by = ayrcy’ + azicy’.

The coefficients b; coincide with those in Fujikoshi [12].

3.5. One-way MANOVA test statistics for linear hypothesis in k& populations

Next, we consider test statistics for linear hypothesis in k populations, that
is, the design matrix X is the same as (3.1). Then, ¥ can be written as (3.3).
So we can rewrite the coefficients a; in Theorem 2.1 in simpler forms as

1[& I
a _8{Zpa2wfa —h(h—|—2)}7 a :EZpalpblwsb,
a=1 ab

I 1 <& 1 &
as = ggb:Pa le lwaawabwbba ag = E%;pa l/’bwaawab, as = ggb:,%ﬂbwubv

P P p -
where > G, means >0, ...5° . Furthermore, by the same reason as in

§3.4, Al, A2 and A3 are replaced by (3.4).
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3.6. Two-way MANOVA test statistics with interaction
Finally, we consider the model in which we observe independently y;; with
Vi = My + &, (i=12,...,rj=12,...,801=12...n).
Here the cell mean is decomposed in the following way.
n;=u+a;+ B+

Setn =73 > my,ni. =y njandn; =3 n; Suppose that n; satisfies
the proportional sampling in which

n;.n.;

nijj =
y n

To define u, @;, f; and y; uniquely, we need to have some constraints

Zni-ai =0, Zn.jﬁj =0, Zni.y{/ =0, Zn,yij =0.
=1 = =1 =1

Our hypothesis Hj is
Hy:y; =0 i=1,2,....,rj=12,...,5).

Set
1"11 0 0
0 1,, 0 .
X = . o s (n x rs matrix),
0 0 SR
E: (”117”121"'7”1‘3)/7 (VSXp matrlx),
/
i n Iy
p:(plvpb"'aprs),: ( 77 77"'; ﬁ)? (VSXI VeCtOI’),
(4) (4)
Gy o Gy
Gy = . (rs X rs matrix),
G\ ... G
B B
Gy - Gy
Gp = S (rs x rs matrix),
Gr(lB) ... G}(ﬁ)

Ge=1,—-G4—Gp erl),,
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where
VAL RVZU 1) VAL RV L
G — Jir : " :
i’ \/’T /_ni’-

VisA/Bir1 A Nisy/Nivg
G = diag(v TV Y ”)
1

N

Note that G2 = G¢ in the case of proportional sampling. Then, by using

(X'X )_1/ 2Ge(X'X )l/ 2. an unknown parameter matrix = can be transformed
into (yy1,712,--+,7,) - So, our hypothesis Hy can be rewritten as

Ho: (X'X)2Ge(X'X)'*Z = 0.

Since G¢ is a projection matrix, there exists an (r — 1)(s — 1) x rs matrix L such
that
L'L=Ge,  LL =1I, 1y 1)

Then an (r — 1)(s — 1) x rs restricted matrix H for hypothesis H, can be defined
by
H=L(X'Xx)""

Therefore, our theorem can be applied for
Q=Gc=1I,—Gi—Gg+pp'

Moreover, in order to simplify the coefficients a;’s, we define the indicator
matrix C by

it €2 ot Clg 1 2 S
21 (5%) s Cog S+1 S+2 2S
C= ] o ] = . . . .
Crl Gy e Cpg r—=s+1 (r—1s4+2 - rs

Then the (a,b)th element of Q can be rewritten as

VI s NN

L.y

ii/\/nT . N "

Wab = Weye;r = 51‘[/5]‘// -0

As ¥ = D'QD, where
1, 0 e 0

~1)2
D' =X(X'Xx)"?= e
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we have

lZ/’_Z o= (5= D =D{(s = 1(r—1)+2}

:é liil(wcycy)z —(s=Dr-D{6s-DFr-1)+2}
i=1 j=1

—(1=2rs) — (r—1)*(s — 1)2},

02:5;,0;1/)}71 ab — IZZZ\/FI_]]W Lclr)3

i g’

:f—z{zi%—(3s—2)zni—(3r—z)zf
i=1 j=1"Y J

i=1 """ j=1

+9rs6r6s+4},

r N

1
E a) WapWpp = E E WDc;ici Deyicr1 Dcyre,
pu pb aa*Ya \/I’l—l/\/m ij Cij jiCitj! i1 Citj!

i jj’

and a4 = as = ag =0. Therefore, the coefficients b;’s become
1
bo = a) = (au) + asc?) + 2P =D = D{r=D(s—1) —p—1-2n},

b = —2a1K£1) + 3((12ic(31> + a3K<32))

1

=5 =D =D[r=D(s = 1) =r+r{(r=Ds = 1)+ p+ 1},

by = alic‘(‘l) 3(61216(3) + a3K(3 ))
1
Jrzp(l’* Dis—D{r—=1(-1)+p+1}1 +2r),

by = azK(;) + Cl3K<32>.
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Furthermore, as in §3.4 and 3.5, Al, A2 and A3 are replaced by
n/ngsz(l) (i:1,2,...,r;j:1,2,...,s).

For a general case, i.e., non-proportional sampling, Fujikoshi [9] studied
test statistics in the two-way AMOVA model. It may be necessary to devise
an application of our formula to this general case.

4. Numerical accuracies

In this section, numerical accuracies are studied for the actual test sizes of
some multivariate tests under four distributions considered by Everitt [8].

First, Hotelling’s T2 statistic, which is denoted by Tj, is taken up. Some
effects of T to nonnormality have been pointed out by Chase and Bulgren (7]
and Everitt [8], based on Monte Carlo experiment. Our purpose is to see how
close the actual test size is to the nominal one by using the asymptotic expan-
sion approximations.

Generally, the Cornish-Fisher expansion is used as an approximation to the
true percentage point. Let #(u) and u denote the true percentage point and the
percentage point of limiting distribution of T respectively, that is

P(Tg < i(u)) = P(y,, <u),

where ;{pzh is a variate of a central chi-squared distribution with degrees of free-
dom ph. Then from (2.2), #(u) can be expanded as

_ 2u (bz + b3)u b3u2 1
’(”>_”+;17h{b‘+b2+b3+ 2 T hranga (o)
— t6(u) + o(n V). 4.1)

In actual use, we use 7g (), which is defined from ¢g(u) by replacing the unknown

parameters /c(31), K<32> and Kf) by their estimators, respectively. Set

where

1 :
y=,2% &=
n<

then the unknown parameters K_gl), ng) and Kil) can be estimated as

(1) n 2 & a3
Ky = <m> > )’

i
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2 n
7y = <(n—1)(n—2)> ;(ﬁ;ﬁ»(ﬁ;ﬁj)(ﬁ;ﬁ»,
. nn+1 SN
Ry = o 1)((” - 2))(n =3 > 55)° = pp+2).

J=1

For estimations of the multivariate skewnesses and kurtosis, see, e.g., Kaplan
[18], Mardia [19] and Isogai [16].

On the other hand, in the case of Hotelling’s 72 statistic, we can use a
modified Cornish-Fisher expansion, which gives an exact percentage point in
the normal error case. Such a modification is obtained by using the result that
(n— p)Tg/p(n—1) is distributed as F-distribution with degrees of freedom p
and n — p under normality. Then, we can modify rg(u) as

-1 _z_u{, (b + b b

P A _(p+2)(p+4)}+o(n_l)

= tg(u) +o(n™"),

where up is the percentage point of F-distribution with degrees of freedom p
and n— p and

b/ ___K( +—K3 , bi = —K —5K37,
b/ = ——K —5K37, b:/;—_K-?) +—K3 .

If ¢ is distributed as a normal distribution, then its expansion gives an exact
percentage point.
The error distributions considered are the same ones as in Everitt [8], i.e.,
1.  Multivariate Normal Distribution,
2. Uniform Distribution: Each of the p variables is generated indepen-
dently from a uniform (0,1) distribution,
3. Exponential Distribution: Each of the p variables is generated inde-
pendently from an exponential distribution with a mean of unity,
4. Lognormal Distribution: Each of the p variables is generated inde-
pendently from a lognormal distribution such that log x ~ N(0, 1).
Table 4.1 gives the actual test sizes for the nominal 10%, 5% and 1% test
in several cases of p and n. For each cell in Table 4.1, the top figure expresses
the actual test sizes based on the percentage point of F-distribution, the middle
and bottom figures show the actual sizes by using ¢g(u) and 7g(u), respectively.
From Table 4.1, it seems that 7g(u) gives a considerable improvement for the



TABLE 4.1:

Multivariate linear hypothesis

Actual test sizes of Hotelling’s T2 test.

31

Normal
Nominal Sizes

Uniform
Nominal Sizes

Exponential
Nominal Sizes

Log-Normal
Nominal Sizes

n V4 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

5 2 100 51 08 11.8 64 1.8 | 209 145 49 | 302 215 7.8
100 51 038 1.7 62 1.8 | 163 100 3.3 8.7 4.7 1.1
88 41 07 | 102 56 1.6 | 187 124 42 | 273 19.1 6.8

10 2 101 50 09 | 101 60 1.8 | 179 124 54 | 281 219 118
10.1 50 09 | 100 58 1.6 | 120 6.6 1.6 5.4 2.1 0.3
86 40 0.6 89 48 12| 151 93 35| 238 164 7.0

4 102 53 1.3 1.1 58 1.6 | 221 148 59 | 372 275 136
102 53 1.3 109 57 16 | 152 9.1 2.3 7.7 3.2 0.5
76 37 08 87 42 12| 173 109 34 | 299 209 8.5

6 99 51 1.0 | 108 54 1.1 | 21.8 129 3.7 | 393 270 102
99 51 1.0 | 10.7 53 1.1 176 102 2.7 | 147 8.5 2.3
80 40 08 84 42 09 | 181 105 28 | 340 229 8.1

15 2 10.1 53 08 10.8 5.5 1.1 17.1 11.7 55 | 264 207 119
10.1 53 0.8 10.7 54 1.1 11.8 6.7 1.1 5.4 2.0 0.2
9.5 47 04 9.5 45 09 13.8 89 28 | 224 148 6.3

4 9.1 45 07 1.6 62 14 | 208 148 55| 363 278 143
9.1 45 0.7 1.3 59 13 | 137 6.9 1.5 5.3 2.0 0.1
6.9 26 03 94 40 06 | 159 9.0 23| 272 179 7.3

6 1.1 55 11 90 42 09| 202 133 49| 413 316 163
1.1 55 1.1 89 42 09 | 135 74 25 7.0 3.5 0.5
76 35 04 6.5 29 04 | 142 79 28 | 313 220 8.1

8 10.1 5.1 1.1 103 55 1.1 | 217 130 38 | 424 320 141
10.1 5.1 1.1 102 55 1.1 16.0 86 24 | 104 5.4 1.1
64 30 08 7.7 34 05 | 156 85 23| 347 232 8.1

(cont’d on p. 32)

actual test size. However, there is a tendency that the approximation tends to
be bad as p tends to be large. Moreover, though the estimation problem for
K(;), K(32) and KQ) is left over, as these cumulants tend to be large, it becomes
difficult to obtain good estimators even when the sample size is not so small as
that.

Next, we compare the asymptotic expansion method with other ones.
Bootstrap is one of the powerful methods when error’s distribution is general.
To construct the bootstrap approximations, let x* = {y{,...,y,} denote a re-

sample drawn randomly, with replacement, from y = {y,,...,»,}. Then the
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TaBLE 4.1: (Continued)

Normal Uniform Exponential Log-Normal
Nominal Sizes Nominal Sizes Nominal Sizes Nominal Sizes
n V4 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

20 2 11.0 57 09 | 104 56 1.1 150 100 42 | 266 201 114
11.0 57 09 | 104 53 1.0 | 108 5.7 1.0 4.8 2.0 0.1
102 50 038 98 49 08 | 124 6.8 20 | 211 13.7 4.8

4 9.0 42 07 9.6 50 1.1 19.1 120 47 | 33.0 254 141
9.0 42 07 94 48 1.0 | I1.2 5.8 1.0 43 1.5 0.1
7.3 3.1 03 8.5 39 0.6 | 129 7.7 1.8 | 234 152 5.8

6 10.1 54 15 109 55 1.2 ] 208 137 55 | 381 29.0 159
10.1 54 15 10.7 53 12 | 128 70 2.0 5.0 2.1 0.5
76 35 04 8.2 35 05| 141 76 25 | 266 175 6.5

8 105 53 09 11.6 53 1.0 | 24.1 143 54 | 40.6 296 144
105 53 09 114 53 09 | 147 8.5 1.9 53 2.8 0.3
66 26 02 7.4 31 03 | 152 87 21 | 272 178 6.2

10 | 104 48 1.1 82 47 05 | 229 144 48 | 424 31.7 152
104 48 1.1 8.1 46 05| 162 9.7 2.5 7.8 3.5 0.4
60 29 05 5.7 26 02| 155 9.0 24| 313 211 7.1

bootstrap version of Hotelling’s T test statistic is defined by

7o =n(y —5)'S" (5 - ),

where

—x 1 o * * 1 . * —x * —%
e D T e DI [
= -

The percentage point of bootstrap version fg can be calculated as
P(Tg > 18]y) = o

Furthermore, Mardia [20] proposed a robust method on Hotelling’s 72 test
statistic. Let

1(by,—plp+2 1N,
5:1+n{2,pp<>}7 by = > (715"

J=1

then we use uy, a percentage point of F distribution with dp and Jo(n — p)
degrees of freedom, as an approximation of one. For the percentage points of
F distribution with non-integer values of degrees of freedom, see, Mardia and
Zemroch [21].
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TaBLE 4.2: Actual test sizes of Hotelling’s T2 test; several methods.

Normal Uniform Exponential Log-Normal
Nominal Sizes Nominal Sizes Nominal Sizes Nominal Sizes
n|p 10% 5% 1% | 10% 5% 1% | 10% 5% 1% | 10% 5% 1%
10 2o | 981 496 089 | 1063 553 148 18.62 12.75 6.30| 14.02 5.67 0.90
o | 9.81 496 0.89 | 10.55 538 1331234 735 195| 020 0.05 0.00
o3 | 835 3.84 0.63| 9.16 457 099 | 1535 1002 401 | 839 327 0.37
oy | 635 223 027 656 252 0251035 580 1.13| 389 1.1l 0.09
os | 11.08 6.03 142 | 11.47 651 196 | 20.37 1488 7.74 | 18.25 8.58 1.76
3o | 982 492 1.00 | 10.69 552 1.25]21.16 14.64 6.33| 13.98 6.10 1.21
o | 9.82 492 1.00| 10.55 542 1.21 | 1409 841 220| 025 0.08 0.00
o3 | 7.62  3.55 0.59| 8.78 422 0.78 1698 1091 393 | 830 3.11 041
og | 336 0.83 0.02| 3.55 091 0.03| 7.10 268 0.12| 1.43 0.37 0.00
os | 11.65 6.38 1.68 | 1229 696 2.00 | 2393 1746 9.13| 1941 9.89 2.37
4| o | 10.02 492 1.04 | 10.82 5.56 1.25| 2244 1523 584 | 1413 684 1.40
op | 10.02 492 1.04] 10.69 548 1.19| 1555 9.15 252 | 052 021 0.01
o3 | 721 338 0.56 | 835 380 0.76 | 17.78 10.95 348 | 8.70 3.72 0.65
g | 071 0.08 0.00| 0.76 0.07 0.00 | 2.15 027 0.00]| 036 0.03 0.00
os | 12.74  7.11 1.84| 1299 7.85 2.16 | 26.05 1897 9.31 | 1991 1096 3.10

Table 4.2 shows the actual sizes for the nominal 10%, 5% and 1% tests in
the case of n =10 and p =2, 3 and 4. Each test size «; is defined by

o = P(Tg = p(n — Dug/(n — p)),
o3 = P(TG > fE(u)),

s = P(Tg > p(n — Nur/(n — p)).

Four error distributions considered are the same ones as in the previous sim-
ulation. From Table 4.2, we can see that the bootstrap method gives conser-
vative approximations but the approximations are not so good. Especially,
for p = 3 and 4, the bootstrap approximation is very bad since the determinant
of S* is near 0 occasionally when p is large in comparison with n. On the
other hand, the asymptotic expansion with estimators improves the first order
approximations for actual test sizes constantly. However, these improvements
are not enough, in comparison with the case of normality. Mardia’s method is
robust in the non-skewness data only.

0y = P(TG > ZE(M)),

oy = P(Tg = 1),

5. Bartlett corrections

In this section, first we consider the situation where the Bartlett corrections
do work even under nonnormality. More precisely, we shall find conditions
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such that the Bartlett correction in the normal case implies an improved y>-
approximation, even under nonnormality. Note that 7; has been adjusted by
the Bartlett correction in the normal case, namely, under normality, E(Ts) =
ph+o(n™1).

By using the formula in Theorem 2.1, the expectation of T can be calcu-
lated as

1< , _
E(Tg) =ph+-~> bi(ph+2))+o(n”")
=0

:ph(l +%) +o(nM).

Noting that Zﬁ:o b;j =0, we obtain

2 3
€] = —h;]bj.

P
From (2.1),
by + 2by + 3b3 = das(iy)) + x). (5.1)
Therefore
8 (DO
13 :p—has(K3 +x357).

If as =0, then E(7g) = ph+o(n~!). This means that if as =0, then T has
an improved y? approximation by the Bartlett correction in the normal case.
On the other hand,

1
as = @1;X(X’X)*1/2Q(X’X)*1/2)(’1,1.

So, as =0 is equivalent to
QX'x)""2x'1, =0. (5.2)

If H is given by a concrete form, then the condition (5.2) may be changed into
a simpler form as

HX'X)'x'1,=0. (5.3)

Moreover,

1
ay = Elsz.,,X(X’X)_l/zQ(X’X)_l/zX’ln.

Therefore, under condition (5.2), the coefficient a4 becomes 0. This result can
be summarized as the following Theorem 5.1.
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THEOREM 5.1.  Suppose that X and H satisfy the condition (5.2) (or more
concretely (5.3)), then the test statistics adjusted by the Bartlett correction in the
normal case have an improved y*-approximation, i.e., even under nonnormality,
E(Tg) = ph+o(n71).

Related to Theorem 5.1, we examine the condition (5.2) in the one-way
MANOVA model. In this model, the design matrix X is defined by (3.1).
Then the condition (5.2) can be rewritten as H1; = 0, which means that the rows
of H are contrast vectors. Therefore, the test statistics for equality of means in
the one-way MANOVA model can be improved by the Bartlett correction in the
normal case.

Next, we consider the second moment of Tg, which can be calculated as

3

> bi(ph+2/)(ph+2+2j) +o(n")
j=0

= ph(ph+2)(1+2) +o(n™").

E(T2) = ph(ph+2) +

3\'—‘

Note that Zj}:o b; =0, and we obtain

3
= Z]pth]Jr
1

ph+2 =

4
=——{(ph+2)(b1 +2b 3b 2(b 3b3)}.
ph(ph—|—2){(p1+ )(br + 2by + 3b3) + 2(b2 + 3b3)}
From (2.1),

by +3b3 = allc4 —{6as —4(h + 2)a5}(lcgl) + K<32>)
1
+th(h+p+l)(l+2r2). (5.4)

Substituting (5.1) and (5.4) into ¢, yields

8 )

ch :m a1K4 {6(14— ph—|—2h+6 aS}(Kz + K3 )

1
+th(h +p+ D)1+ 2;’2)].

If the condition (5.2) is satisfied, then the coefficients a4 and as become O.
Then ¢, has a simpler form as

8 a1
‘2_ph(ph+2){alK4 +4ph(h+p+1)(1+2rz)}.
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Furthermore, if
ay = 0, (5.5)

then ¢, does not depend on unknown parameters, ie., ¢ =2(h+p+1)-
(14 2r,)/(ph+2). So, the n~! term of variance of T; is independent of un-

known parameters K(3]), ng) and Ki”, in fact

Var(Tg) = Eph{l Jr%(p +h+1)(1 +2r2)} +o(nh).

Under these conditions, a modified Bartlett transformation (see, Fujikoshi [11])
can be defined by

T(;:(ph+2){ n (p—|—h—|—1)(1+2r2)TG}-

(P +ht ) +2m) %} log{l T+ 2)
Furthermore, the mean and variance of T become

E(Tg) = ph+o(n™"), Var(TZ) = 2ph +o(n™").
These results can be summarized as Theorem 5.2.

THEOREM 5.2. Suppose that X and H satisfy the condition (5.2) (or more
concretely (5.3)) and (5.5), then the Lawley-Hotelling and Bartlett-Nanda-Pillai
trace criteria can be improved in the variances as well as the means by the mod-
ified Bartlett transformation in the normal case, which are defined by

- n 1
Tur = (ph+2){(p+h+l)+2} log{l -l-mTHL

- n 1
T"””:‘<”’“”){<p+h+1>‘§} IOg{l‘ n(ph+2) T}

i.e., even under nonnormality,
E(THL) :p/’l + O(”l—l), Var(THL) = 2p/’l + 0(7’1_1),
E(Tgnp) = ph+o(n™"), Var(Tgyp) = 2ph +o(n™").

For Tyg, it may be noted that under conditions (5.2) and (5.5), Var(7.r) =
2ph + o(n™1), so it shall not be necessary to consider the transformation such as
THL and TBNP-

Furthermore, we consider the two-way MANOVA test statistics as in §3.6.
In this case, it can be checked that condition (5.2) holds through a simple
calculation. More specifically, we consider the case r =s=3 and n;; =np =
nz (i=1,2,3). In this case, if ny:my:n3;=1:2:3 (j=1,2,3), then the
condition (5.5) holds. Therefore, when r=s=3 and nj;:ny:n3=1:2:3,
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TaBLE 5.1:  Actual test sizes of test statistics in two-way MANOVA model with interaction;
Bartlett corrections.
Normal Uniform Exponential Log-Normal
Nominal Sizes Nominal Sizes Nominal Sizes Nominal Sizes
a 10% 5% 1% | 10% 5% 1% | 10% 5% 1% | 10% 5% 1%
Trr —-1.00 | Tp | 10.0 50 0.9 96 49 1.1 92 47 09 79 37 0.5
T | 103 52 1.0 99 51 1.1 9.5 49 1.0 81 38 0.6
0.00 | To 96 49 091|102 49 10| 100 51 09 96 49 1.2
TG 98 50 09| 104 51 1.1 | 102 52 09 98 50 1.3
1.25 | To 96 47 09 96 49 09107 56 14| 120 6.6 19
T 99 50 09 98 51 09| 110 58 15| 122 6.8 2.0
Ty —-1.00 | Tp | 125 7.0 1.7 119 66 18 | 114 65 18| 101 49 1.0
T | 10.8 57 131|105 57 1.6 | 10.1 54 14 86 42 0.8
T¢ | 104 53 10 100 51 1.1 9.5 49 1.0 82 38 06
000 | To | 120 66 16| 126 6.7 18| 122 69 1.7 120 66 19
T | 10.5 56 13| 11.1 57 1.5]| 106 58 13| 104 56 1.6
T¢ | 101 51 10| 104 52 1.1]103 53 1.0 98 51 13
125 | Tp | 124 65 16| 120 6.7 1.6 | 131 75 24| 144 86 29
T | 10,6 56 13| 104 58 12| 116 65 20| 128 76 24
Te¢ | 100 50 10100 52 1.0| 11.1 58 15| 124 69 21
Tgnp | =100 | Tp | 11.3 56 1.0 73 34 05 72 31 05 58 23 02
TG 9.5 46 0.7 92 45 038 89 42 06 86 42 08
Tg | 102 52 1.0 9.9 51 1.1 94 48 1.0 81 38 0.6
0.00 | Tp | 109 54 09 77 34 06 76 35 04 73 34 08
T | 92 45 0.7 9.8 45 038 9.6 47 0.7 104 56 1.6
Te | 98 50 09104 50 10| 1001 52 09 98 50 13
125 | Tp | 11.1 53 09 76 32 0.5 83 41 0.7 94 47 12
T¢ | 93 41 0.6 93 45 07104 52 11| 128 76 24
T | 99 49 09 99 51 09| 110 58 14| 122 67 19

the Lawley-Hotelling and Bartlett-Nanda-Pillai trace criteria in the two-way
MANOVA model can be improved by the modified Bartlett transformation in

the normal case.

Table 5.1 shows the actual test size of the three test statistics in two-
way MANOVA model with iteration in the case r =s=3 and n;; =np = ny
For each test statistic, let Tp denote the test statistics without
the Bartlett correction, T the statistics with the Bartlett correction and Tc
the transformed test statistics based on a modified Bartlett transformation.

(i=1,2,3).
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Needless to say, each correction is obtained under normality and we do not
deal with Ty for the likelihood ratio statistic. In Table 5.1, values of a; are
given by

a) = —1.00, (I/llj = 10,]’12,' = 10,113] = 10),

ay = 0.00, (I’ll_/ = 5,n2_,- = 10,1’13/ = 15),
a) = 1.25, (1’11_/ = S,I’lzj = 5,I’l3j = 20).

Four error distributions considered are the same ones as in the previous
section. From Table 5.1, we note that the Bartlett correction in the normal
case can improve the approximation well enough, even if an error vector is not
distributed as a normal distribution. Moreover, when a; = 0, the difference be-
tween the actual test size and the nominal ones is the smallest in all the cases,
since the n~! terms of mean and variance of Tg are independent of K(31), K(32)
and Kf‘l). In this case, Tg gives better size than Ty and Tg. Furthermore, Te
under the condition (5.5) gives the best size in all the cases. Therefore, we can
say that test statistics T, which satisfies the conditions (5.2) and (5.5), is robust
for nonnormality. So, when we consider a test statistic which satisfies the con-
dition (5.2), we recommend to get the sample data satisfying the condition (5.5)
and transforming the test statistic by the modified Bartlett transformation.

Appendix

A.1. Some basic results on validity

The aim of this section is to prepare some basic theorems in order to
assure the validity of asymptotic expansions in Appendices A.2 and A.3, which
are given later.

In this section, we may assume, without loss of generality, that 2 = I,.
Let x1, x5, ... be a sequence of non-random k-dimensional vectors and ¢, &1, &3, . . .
be a sequence of i.i.d. random vectors with E(¢) = 0 and Cov(e) = 1,. Set

1 n

~1/2

Z=(x'x)""?x's, V:ﬁg (&8 — 1),
j=1

and Q' = (X'X)"'’X' =(q,,....q,) and g¢; = ¢\”,...,q"). The assump-
tions in Section 2 are used, but Al and Bl are replaced by more general ones
as follows: |
Al. For some integer s> 3, limsup . Z; [|lx;]|* < o0.
=

n—oo
Bl. For some integer s >3, E(|*) < oo.
We prepare the following two lemmas.
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LemMmA A.1. Under the assumptions Al, A2 and A3,
max{”q]” : J = 17 cee ,I’l} = O(n76/2)7

—Z|q .m =0(m™?)  (0<r<s),

where i(1),...,i(r) are arbitrary positive integers not larger than k.
The proof of Lemma A.l is easy, and is therefore omitted.

LEmMMA A.2. Set

ngiTiTiq, 1
L 1<j< f =5
(1’!) {] J=n lln#O tr(T1 T/ ) 2’

where Ty is a k x p matrix, then under the assumptions Al, A2 and A3,

liminf n°#L(n) > 0,

where #L(n) denotes the number of integers in L(n).
Proor. If Ty # 0, then

Zq] TIT ‘I,
tr T1
— #L
< ﬂ—k #L(n) max{q;q; : 1 < j<n}

- 2n

IA

1 )
3+ n°K#L(n),
for some positive constant K.

For the underlying distribution of & we make alternative assumptions:
Bl’. For some integer s > 3, E(|l¢]|*) < o0.
B2’. The Cramér’s condition holds, that is, for any b > 0,

sup |E(exp(it’e))| < 1,
ll#ll>b

where ¢ is a p x 1 vector.
In the proof of the following theorem, Bhattacharya and Ranga Rao [5] is
referred to as BR because of its frequent usage.

THEOREM A.l. Under the assumptions Al, A2, A3 and B1', B2/,

= o(n~ /%), (A.1)

sup
Be%,. 4

P(ZeB) - JB Uy n(2)dz
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where \ ,, is the asymptotic expansion of the density function of Z which is
formally derived up to the order n="=2/2 and

Bey = {Be BV ®(0B)°) < ce* for all &> 0}.
Here, %P denotes the class of all k x p-dimensional Borel sets.

PrOOF.  Set r; = vec(xse)) (j=1,2,...) and V,, = n! >jo1 Cov(ry). Then
Ve=n"1,® (X'X) and

vee(Z) = (I, ® (X'X) /%) Xn:"jv
=

which is a standardized sum of independent random vectors. If the result
(20.56) of Theorem 20.6 of BR is true in our problem, then it implies Theorem
2.1. The moment conditions (i), (ii) and (iii) in Theorem 20.6 can be easily
checked as well as (20.54) in our case. In our problem, each distribution of
r; is degenerate, and so, the uniform Cramér condition (20.55) is not satisfied.
The proof of Theorem 20.6 is similar to that of Theorem 20.1 of BR. There-
fore we have to check the parts where the nonsingularity of each covariance
matrices and the condition (20.55) have been used. The first part where the
nonsingularity of Cov(r;) is required is (20.21) and (20.22) with Theorem 9.10
of BR. In the non-iid case, instead of Theorem 9.10, Theorem 9.9 of BR is
used in order to estimate (20.21). In Theorem 9.9, the nonsingularity is not
required. Let g;(#;) be the characteristic function of r;, where #; = vec(T).
Then Lemma A.1 implies that for any positive constant J, there exists a positive
constant d such that

1]l <d  implies sup |g;(t1) — 1] < 3 —9,
J

r}gloqc max{P(||rj|| > V/n):j=1,...,n} =0, (A.2)

sup [ max J ||;{,~H‘Y/:j:1,...,n <K,
n {lrjll>/m}

for some K >0 and s’ > 3. Replace the right-hand side of (20.21) with

cs (s, k)”_(s+k_l)/2’75+k+1 )
and 4, in (20.22) with
An = C7(S, k)nl/z(’]S-Fk-H)_]/(S+k_l)a

where

1 <& _ ,
ne= 2 BV Prall) (> 0),
j=1
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Here r; , is a truncated and centralized version of r; as in Theorem 20.1. Then
(20.23) holds with

1< ;
pe= > Bl ).
=1

In the rest of the proof of Theorem 20.1, (20.26), (20.35), (20.36), (20.37),
(20.39), (20.42) and (20.43) use the covariance matrix D, of (in our problem)
rj,. In the non-iid case we can replace D, with

1 n
—Z Cov(r; n)
nés

which is nonsingular for sufficiently large n by (20.54). Therefore we do not
need to require the nonsingularity of each covariance matrix of r;. It remains
to check the parts where the uniform Cramér condition (20.55) is used. The
unique part where (20.55) is used is the estimation of /; in (20.26). Let g; (1)
be the characteristic function of R;,. Then the left-hand side of (20.28) is esti-
mated as

PP 0, (1)] =

Dﬂ*fx H gj,n (n—l/z V;l/ztl)
j=1

()" 12, |l
<ol ()] sup Bl )

n 1<j<n
‘|7

where  — o is a nonnegative integral vector, | — o = Y v;, D% = (8/ot;)" ...
(6/8[,(17)\%,’ for ﬁ—(x = (vl,...,vkp), t = ([1,...,lkp)/ and J, = {jl,...,j‘/;,od :
1 <ji <--- <jjp-o <n}. From Lemma 14.1 of BR and A3, we see that if
s’ =|p —a| >s, then

[T gn(n12v, 1 P0)

Tn | j ¢,

X [sup

E(||n=120;,, |7 < 25 nl" 920752 x| "B (|Je ) ) = o(nt'=9/2),
and if s’ <s, then

E(|ln" 2|77 < 2072 E([Je]|*) = o(1).
Furthermore,

\gjn(n™ 12V
< |E[exp{it|(I, ® (X'X)""*)(g; ® x))}]| + 2P(|lel| > n'> M ")

= |E(exp(ig; T1&))| + 2P(||¢]| > n'2M.
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Therefore

sup | ] E(exp(in'q;T1z))
te(T\ T|)>b jéJ(m,n)

< H sup |E(exp(in1/2q_;T1£j))|
jed(mn) 0 L(n) 1(T])>b

H sup |E(exp(it}e;))|

jeJ(m,n)N L(n) 1/7>b/2

IA

IA

#L(n)—m
sup [E(exp(it's))| 7
't>b/2

where 7; = n'/? T{qj. By the same argument as in Theorem 20.1, from Lemma
2.2 and (A.2) we see that I} = o(n~("2/2),

In order to expand the joint distribution of (Z,V) up to the order
o(n~=2/2) we use the assumptions Bl and B2.

COROLLARY A.2. Under the assumptions Al, A2, A3 and Bl1, B2,

sup |P((Z,V) € B) _J Wy (2, 0)dzdv| = o(n™ 72/, (A.3)
B

Be %, ,

where W, is an asymptotic expansion of the joint density function of (Z, V)

formally derived up to the order n==2/2, and

Be.y = {Be B PP B((8B)°) < c&* for all &> 0}.

Here, B+ 70012 denotes the class of all kp + p(p + 1)/2-dimensional Borel sets,
considering (Z,V) as a point of kp + p(p + 1)/2-dimensional Euclidean space.

A.2. Edgeworth expansion of -statistic

In this section, using the assumption 2 = [, as in the previous section, we
derive an asymptotic expansion for the distribution function of U.

In order to get a valid expansion of U up to the order n~!', we need
some assumptions for the design matrix X and the distribution of ¢&. For the
design matrix X, we assume Al with s =4, A2 and A3, given in Appendix A.l.
Moreover, for the distribution of & we also assume Bl with s =4 and B2.

Since S, is rewritten as S, = &'6 — Z'Z = nl, + /nV — Z'Z, we can expand
(Se/n)”"? as

1,\"? 1 13 , 1_, 32
ES@ :Ip—mV+E gV +§ZZ —l—Op(n )



Multivariate linear hypothesis 43
Therefore

1 1_/3 1
=Z———7ZV+-Z(ZVv?P+-7'7 —3/2y, A4
U N A (8 +5 )+o,,(n ) (A.4)

Using (A.4), under the assumptions Al, A2, A3 and Bl the characteristic func-
tion Cy(Ty) of U can be expanded as

Cy(Ty) = Efexp{i tr(T{U)}]

=E exp{itr(T{Z)}{l 3 te(T{ZV)

NG

l . .2
+- { %i W(T{ZV?) + 3 w(T{ZZ'Z) + 5 (u(T{ZV))’ }} +o(n )

1 1
= CE(T) + = Cy () +- € (T1) +o(n™),

N

where 71 = [zlf,l 3] is a k x p matrix. Each term in the expansion of Cy (7)) can
be evaluated by using the joint characteristic function of Z and V, which can be
expressed as

¥(T),T,) = Elexp{i t«(T|Z + n~ 2T, V)}]

Elexp{i tr(T|q,¢ + n*I/ZTz(sg’ —I,)}]
1

n

o

Zlog{h (T, T2)}|,

o=1

= H hy(Ty, Tr) = exp
a=1

where T3 is defined in §2. Then the following identities hold:
Elexp{i tr(T{Z)}{i tr(T{ZV)}]

IZZ e ¥(Ty, T)

’b ab

)

T>=0

Elexp{i tr(T|Z)}{i tr(T|ZV?)}]

A3

k p
_ i ¢ (T, T
z::zb:“ Dot Dod? (1, T2)

aa ab

T,=0
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Elexp{i tr(T{Z)}{i tr(T{ZZ'Z)}]

722 ab W(TlaTZ)

b ab alb, alb,b

T,=0

Elexp{i tr(T|Z)}{i tr(T|ZV)}]

64
ZZ’M vz ¢ (T T2)

a'b’ abcd aﬁlbrbOZac Ly

T>=0

Note that

62

——— (T, T>)
ooy

T,=0

n 2

—m o log{h(T1, T2)}
1 2
ai oy

0
+ 0 lOg{/’lx(Tl, Tz)}m log{ha(Tl, Tz)} Y/(Th Tz)

a'b ab

T>=0

and

~2
‘P(TI,O)_exp{z (T|Th) + ZZ ) 1) e Kae

a’b’c’ abc

i4

-1
+ 2am > Z O Ty abea + 0 )},

a'b’c'd’ abed

where the coefficient %, , is defined by

Zul...a/ = _Z H \/_Cla, )

i=1 I=
e.g.,
Labe = \/_an g5t Habed = ”th(zj)qéj)‘lgj)qy)~
J=1

Therefore we can get an expansion of Cy(7)), whose formal inversion
yields a valid expansion of the distribution function of U as in the following
Theorem A.2.
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THEOREM A.2. Suppose that X and & satisfy Al, A2, A3, Bl and B2
with s =4. Set u=vec(U), then the distribution function of U can be ex-
panded as

P(vec(U) < x) J J b (1) {1 + LR +%R2(u) du+o(n™),

—00 -0 \/ﬁ
where
1 k. p
Ri(u) = — 3 Z Z}?H/Kabea/a(”)
a'=1 ab
1 k p
+6 Z Z(Zﬂbw - 3za/5b’c’)KabcHa’a.b’b.c’c(”)a (AS)
a'b’c’ abc

| QLI
Ry(u) = 3 Z Zxad{b/ (KaceKbdd + 3Kabekedd + 4acakved) Hara, bb (1)
a'b’ abed

k p
%(p +k+1) ;;Hu,u,a,u(u)

1 &L
+ﬁ E E (Za’b’c’d’ - 35a’b’5c’d’)’€abcd
a'b'c’'d" | abed

)4
-2 E {za’b’c’Zd’(Kachdee + 3Kaa'eKb(?e)
abcde

- 3)?a’Zb’5c’d’(KaeeKbcd + KabeKcede + 2KaceKbde)} Ha’a,b’b,c’c,d’d(”)

1 k p
+ Z Z Z Hu’a.u’b‘b’a,b’b (ll)

a'b’ ab
1 & 2
+7_2 Z Z ()?a’b’c")?d’e’f’ - 6Za’b’c’/?d’5e'f’

a'b'c'd'e'f" abcbdef
+ 9Zu’(5b’6’2d’5€’f’)Ka/dee_fHa’a,b’b,c’cﬁd’dﬁe’e,f’f(”)- (A.6)

Here ¢, (u) is the probability density function of Ny (0, L) given by ¢, (u) =
(271)71”]‘/2 exp(—u'u/2), and Hya, .. a/;a_,,(u) is the Hermite polynomial defined by

o/

Hyay,.oata, () = (1))
adiy...,d;a; aua{al e auaj’aj

¢pk(")’
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where uy, is the (a’,a)th element of U.  Furthermore, we call the integrand for
the distribution function of U the pseudo density function of U.

Using Corollary A.2, we can prove the validity of Theorem A.2 in the same
manner as in Bhattacharya and Ghosh [3].

When k =1, the test statistic becomes the usual multivariate t-statistic
defined by

u=/nS~'(y—E(»)),

n

where y=n"' 3" y; and S=n"'Y " (y;—§)(y; —F)'. Tts pseudo density
can be written as

¢p(u)

1 p P
l———= Ha 2 a (rHa c
6ﬁ{3§Kabb (u) + ZK beHa,b, (")}

abc

1 P
+ m {3 ;(Kacckbdd + 3Kachcdd + 4Kachbcd)Ha7b(”)

p P
+ 12(P + 2) Z Ha,a(u) + 4 Z (Kaeekbcd + 3Kabe’€cde)Ha,b, c,d(u)
a abcde

)4 )4
-2 Z KabedHy b,c,a(#) + 6 Z Hyopp(1)

abced ab
3
+ Z Z Kachde{fHa,h, c:d.e,f(”) .
abcdef

n

The corresponding results in the case where S = (n — 1) Yy =)y — y)
was derived by Fujikoshi [10].

The moment condition B1 will be replaced with B1’ with s = 4 in Appendix
A.l as in Hall [14], Bhattacharya and Ghosh [4] and Babu and Bai [2].

A.3. Outline of computation on Theorem 2.1

In this section, we explain our method for finding an asymptotic expansion
of the null distribution of T up to the order n~'. Without loss of generality,
we may replace & by £X1/2, which has E[vec(&)] = 0 and Cov|vec(&)] = I,
in the expressions of 7T, since T is invariant under the transformation from Y
to YX 12

Suppose that X and the distribution of & satisfy Al with s =4, A2, A3, Bl
with s = 4 and B2. Note that T is a smooth function of U. From the results

of Chandra and Ghosh [6] and Corollary A.2, it can be shown that 7 has a
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valid expansion up to the order n~! under the assumptions Al, A2, A3, Bl and
B2. In the following we will derive an asymptotic expansion of the character-
istic function of T up to the order n~!, which can be inverted formally. From
(1.1), we can write the characteristic function of T; as

Cry (1) = Co(0) 4 C1(1) o™, (A7)
where
Colt) = Elexplin r(U"2U)}),
Ci(1) = iE[{(r1 — k) tr(U'QU) + r(t(U'QU))?} explit tr(U'QU)}].

For an evaluation of each term in (A.7), we will use the pseudo density function
of U in Theorem A.2.
For the computation of Cy(#), using the pseudo density of U, we have

Co(t) = ka exp{it tr(U'QU)}

%Rl (u) + %Rz(u)}du +o(n),

where R;(u) and R,(u) are defined by (A.5) and (A.6) respectively. Set ¢ =
(1—=2it)"" and I' = I + (p — 1)Q. Then

X ¢pk(u){l +

exp{it tr(U'QU)} exp{—; tr(U’U)} = exp{—; tr(U’FlU)}.

Using the transformation from U to U* =I'"'?U and the equation u =
vec(I'V2U*) = (I, ® I'/?)u*, where u* = vec(U*), Co(f) is expressed as the
expectation on U*, that is

1
Co(t)=Ey+|1+—=R
o(0) = |1+ 2 R
This expectation is taken with respect to U* whose columns are independently
distributed as N,(0,1,). Set W = I''/2U*, then it is seen that w = vec(W) ~
Ny«(0,I, ® I').  Therefore the expansion (A.8) can be rewritten as

L) 41 Rl @ IV | o). (AS)

Co(1) = p""?Ey, [1 + %R, (w) + %Rg(w)} +o(nh). (A.9)
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Applying a similar method to C(¢) yields
Ci(1) == (1 — o D" 2By [{(r — k) tr(W'QW)

+ r{tr(W'QW)}*}] + o(1). (A.10)

Through the calculations of (A.9) and (A.10), we use the following identities
which are expectations of the Hermite polynomials, and the relations among
the elements of Q. As for the former, let the (a,b)th elements of Q and I" be
denoted by w,, and y, respectively. Note that y, =Jdmp + (¢ — 1), and

Ew[Hyaw)] =0,  Ew[Hyapn(w)] = (¢ — Dowpdaw,
Ew[Haapp,crc(w)] = 0,

Ew [Hyrapp,cre.araw)] = (p — 1) Zw"’b'w""l'(s"[’é"d’ (A-11)
B3l

EW[Ha’u,b’b,(,”c.,d’d.,e’e,f’f(w)] == ((0 - 1)3 Z wa’b’wc’d’we’f’éabécdéefa
(15]

where 7, means the sum of all j possible combinations of the set a; and g,
for example

E Wa'p'Derd'OapOcd = WDatp'Derd'OabOcd + Ware'Wp'd'OacObd + Ward'@pre'OadOpe-
(3]

As for the latter, using the property that 2 is an idempotent matrix, we have

k
§ WacWpe = Wab,
c=1

k k
(@)= waw=h (@)= wy=h (A.12)
a=1 ab
k k
tr(Q°) = Zwaba)bca)ac =h, tr(Q%) = Zwabwbcwcdcoad =h.
abc abed

Substituting (A.11) and (A.12) into both of (A.9) and (A.10) yields
13,
Cr(t) = "1+ b +o(n™)] (A1)
=0

where the coefficients b;’s are defined by (2.1). Finally, by inverting (A.13), we
have Theorem 2.1.
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