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Abstract. We study singularities of 2-ruled hypersurfaces in Euclidian 4-space. After

defining a non-degenerate 2-ruled hypersurface we will give a necessary and su‰cient

condition for such a map germ to be right-left equivalent to the cross cap� interval.

The behavior of a generic 2-ruled hypersurface map is also discussed.

1. Introduction

The study of ruled surfaces in R3 is a classical subject in di¤erential

geometry and ruled hypersurfaces in higher dimensions have also been studied

by many authors. Although ruled hypersurfaces have singularities in general,

there have been very few studies of ruled hypersurfaces with singularities.

Recently Izumiya and Takeuchi [3] showed that every singularity that appears

for some generic Cy-map of a surface into 3-space occurs for some generic

ruled surface in R3, and vice versa.

A 2-ruled hypersurface in R4 is a one-parameter family of planes in R4.

This is a generalization of ruled surfaces in R3. In this paper, we first define

non-degenerate 2-ruled hypersurfaces in R4 and give a necessary and su‰cient

condition for a non-degenerate 2-ruled hypersurface germ in R4 to be right-left

equivalent to the cross cap� interval (Theorem 2.5). Furthermore, we show

that the singularities of generic 2-ruled hypersurfaces are cross cap� interval

(Theorem 5.3). Since any singularity of a generic smooth map of a 3-manifold

into R4 is the cross cap� interval, the singularities of generic 2-ruled hyper-

surfaces are the same as those of generic Cy-maps of 3-manifolds into R4.

The paper is organized as follows. In § 2 we define non-degenerate 2-

ruled hypersurfaces as an analogue of classical noncylindrical ruled surfaces.

Classical noncylindrical ruled surfaces are those whose rulings always change

directions and non-degenerate 2-ruled hypersurfaces will be defined in the same

way. Then we present the main theorem (Theorem 2.5). In § 3 we briefly re-

view the properties of the classical striction curve and generalize them to non-

degenerate 2-ruled hypersurfaces. It is quite remarkable that the striction curve
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coincides with the singluarity set in our case, while the set of singular points of

a noncylindrical ruled surface is contained in its striction curve but may not co-

incide. In § 4 the proof of our main theorem is completed. In § 5 we discuss

generic 2-ruled hypersurfaces. We will define almost non-degenerate 2-ruled

hypersurfaces which are generic in the usual sense and are non-degenerate al-

most everywhere. We prove that the set of 2-ruled hypersurfaces whose map

germ at any point is right-left equivalent to the cross cap� interval or an im-

mersion germ contains an open and dense subset of the space of 2-ruled hy-

persurfaces.

The author would like to thank Professors Shyuichi Izumiya, Takao

Matumoto and Osamu Saeki for their advice and suggestions. He is also

deeply grateful to the referee for careful reading and helpful comments.

2. Preliminaries and statement of the main theorem

In this section we give the definition of 2-ruled hypersurfaces and state our

main theorem.

Let S3 be the unit sphere of R4 and I ; J1; J2 open intervals.

Definition 2.1. A 2-ruled hypersurface in R4 means (the image of ) a map

Fðg; d; eÞ : I � J1 � J2 ! R4 of the form

Fðg; d; eÞðt; u; vÞ ¼ gðtÞ þ udðtÞ þ veðtÞ;

where g : I ! R4, d : I ! S3 and e : I ! S3 are smooth maps. We assume

that the dimension of the vector space hdðtÞ; eðtÞi spanned by d and e is always

equal to 2 for any t A I . We call g a base curve and two curves d and e di-

rector curves. The planes ðu; vÞ 7! gðtÞ þ udðtÞ þ veðtÞ are called rulings.

We consider ðg; d; eÞ ACyðI ;R4�S3�S3Þ and we regard CyðI ;R4�S3�S3Þ
equipped with the Whitney Cy-topology as a space of 2-ruled hypersurfaces.

A non-degenerate 2-ruled hypersurface in R4 satisfies a condition analogous to

a noncylindrical ruled surface in R3.

Definition 2.2. A 2-ruled hypersurface Fðg; d; eÞðt; u; vÞ ¼ gðtÞþudðtÞþveðtÞ
is said to be non-degenerate at t A I , if the four vectors dðtÞ, d 0ðtÞ, eðtÞ and e 0ðtÞ
span R4, that is, if

dimhdðtÞ; d 0ðtÞ; eðtÞ; e 0ðtÞi ¼ 4:

Definition 2.3. A 2-ruled hypersurface Fðg; d; eÞðt; u; vÞ ¼ gðtÞ þ udðtÞþ
veðtÞ is said to be non-degenerate, if Fðg; d; eÞðt; u; vÞ is globally non-degenerate,

that is, if it is non-degenerate at any t A I .
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Note that the non-degeneracy condition is not generic in the usual sense.

The generic condition will be discussed in § 5.

Lemma 2.4. The non-degeneracy does not depend on the choice of director

curves d and e.

Proof. Suppose that d, d 0, e and e 0 are linearly independent. Put

d1ðtÞ ¼ aðtÞdðtÞ þ bðtÞeðtÞ;
e1ðtÞ ¼ cðtÞdðtÞ þ dðtÞeðtÞ;

�

where aðtÞ, bðtÞ, cðtÞ and dðtÞ are smooth real valued functions with aðtÞdðtÞ	
bðtÞcðtÞ0 0. We prove that d1, d

0
1, e1 and e 01 are linearly independent. Sup-

pose that l1d1þ l2e1þl3d
0
1þ l4e

0
1 ¼ 0 for some l1; l2; l3; l4 AR. Then we have

ðl1a þ l2c þ l3a
0 þ l4c

0Þd þ ðl1b þ l2d þ l3b
0 þ l4d

0Þe þ ðl3a þ l4cÞd 0 þ
ðl3bþ l4dÞe 0 ¼ 0. Since d, d 0, e and e 0 are linearly independent,

l1aþ l2cþ l3a
0 þ l4c

0 ¼ 0;

l1bþ l2d þ l3b
0 þ l4d

0 ¼ 0;

l3aþ l4c ¼ 0;

l3bþ l4d ¼ 0

8>>><
>>>:

holds. Since ad 	 bc0 0, it holds that l3 ¼ l4 ¼ 0 by the last two equations.

Now, the first two equations become

a c

b d

� �
l1

l2

� �
¼ 0:

So l1 ¼ l2 ¼ 0 holds. Hence d1, d 01, e1 and e 01 are linearly independent. r

Recall that x AN is a singular point of a di¤erentiable map f :N ! P be-

tween manifolds if rankðdf Þx < minfdim N; dim Pg. The image of a singular

point of a ruled surface map or a 2-ruled hypersurface map will also be called

a singular point of a ruled surface or a 2-ruled hypersurface respectively.

Singular points of non-degenerate 2-ruled hypersurfaces are characterized

by the following main theorem, by using the notion of the striction curve s

which will be defined in the following section.

Theorem 2.5 (Main Theorem). Let F ¼ Fðs; d; eÞ be the map germ of a non-

degenerate 2-ruled hypersurface with striction curve sðtÞ at ðt0; u0; v0Þ.
(1) The point p0 ¼ Fðt0; u0; v0Þ does not lie on the striction curve (i.e.,

ðu0; v0Þ0 ð0; 0Þ) if and only if the map germ F is regular at ðt0; u0; v0Þ.
(2) If p0 lies on the striction curve (i.e., ðu0; v0Þ ¼ ð0; 0Þ), then the fol-

lowing two conditions are equivalent.
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(a) The striction curve sðtÞ is an immersion near t ¼ t0.

(b) The map germ F at ðt0; u0; v0Þ is right-left equivalent to the cross cap�
interval.

Here, a cross cap� interval means the map germ at the origin of the map

defined by

ðx1; x2; x3Þ ! ðx2
1 ; x2; x3; x1x2Þ

and the right-left equivalence is defined as follows.

Definition 2.6. Let fi : ðNi; xiÞ ! ðPi; yiÞ, i ¼ 1; 2, be Cy-map germs.

We say that f1 and f2 are right-left equivalent if there exist di¤eomorphism

germs f : ðN1; x1Þ ! ðN2; x2Þ and c : ðP1; y1Þ ! ðP2; y2Þ such that

c � f1 ¼ f2 � f:

3. Striction curve of a non-degenerate 2-ruled hypersurface

Before defining the striction curve for a non-degenerate 2-ruled hyper-

surface, we review the case of ruled surfaces [3]. A ruled surface in R3 is (the

image of ) a map Fðg; dÞ : I � J ! R3 of the form Fðg; dÞðt; uÞ ¼ gðtÞ þ udðtÞ, where
g : I ! R3 and d : I ! S2 are smooth maps, and I and J are open intervals.

A ruled surface Fðg; dÞ is said to be noncylindrical if d� d 0 never vanishes. For

any noncylindrical ruled surface, its striction curve is defined as a special base

curve as follows.

Lemma 3.1 ([3], Lemmas 2.1 and 2.2). (1) Let Fðg; dÞðt; uÞ be a noncylin-

drical ruled surface. Then there exists a smooth curve s : I ! R3 such that

Image Fðg; dÞ ¼ Image Fðs; dÞ and s 0ðtÞ  d 0ðtÞ ¼ 0 for all t A I :

The curve sðtÞ is called the striction curve of Fðg; dÞðt; uÞ.
(2) The striction curve of a noncylindrical ruled surface Fðg; dÞðt; uÞ does not

depend on the choice of the base curve g.

(3) Every singular point of a noncylindrical ruled surface is contained

in the image of the striction curve s. Moreover, at every singular point p0 ¼
Fðs; dÞðt0; u0Þ, the ruling through sðt0Þ of Fðs; dÞ is tangent to s.

We will define the striction curve of a non-degenerate 2-ruled hypersurface

after preparing Lemmas 3.2 and 3.3.

Lemma 3.2. For any 2-ruled hypersurface Fðg; d; eÞðt; u; vÞ ¼ gðtÞ þ udðtÞþ
veðtÞ, we can choose director curves d and e such that not only kdk ¼ kek ¼ 1,

but also d  e ¼ 0 and d 0  e ¼ d  e 0 ¼ 0 hold.
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We say that the director curves d and e are constrictively adapted if they

satisfy the above conditions.

Proof. We may suppose that the director curves d and e satisfy the con-

ditions that kdk ¼ kek ¼ 1 and d  e ¼ 0. Now, we put

d1ðtÞ ¼ ðcos yðtÞÞdðtÞ þ ðsin yðtÞÞeðtÞ;
e1ðtÞ ¼ 	ðsin yðtÞÞdðtÞ þ ðcos yðtÞÞeðtÞ

�

for a smooth function yðtÞ. We see that kd1k ¼ ke1k ¼ 1 and d1  e1 ¼ 0. On

the other hand, we have

d 01ðtÞ  e1ðtÞ ¼ ð	ðsin yðtÞÞy 0ðtÞdðtÞ þ ðcos yðtÞÞd 0ðtÞ

þ ðcos yðtÞÞy 0ðtÞeðtÞ þ ðsin yðtÞÞe 0ðtÞÞ

 ð	ðsin yðtÞÞdðtÞ þ ðcos yðtÞÞeðtÞÞ

¼ y 0ðtÞ þ d 0ðtÞ  eðtÞ:

Since d1  e1 ¼ 0, we have d 01  e1 þ d1  e 01 ¼ 0. So any solution y of the di¤er-

ential equation

y 0ðtÞ þ d 0ðtÞ  eðtÞ ¼ 0

gives a desired pair ðd1; e1Þ of director curves. r

Lemma 3.3. Let Fðg; d; eÞðt; u; vÞ ¼ gðtÞ þ udðtÞ þ veðtÞ, t A I , be a non-de-

generate 2-ruled hypersurface whose director curves d and e are constrictively

adapted. Then, there exists a smooth curve s : I ! R4 such that

Image Fðg; d; eÞ ¼ Image Fðs; d; eÞ and s 0  d 0 ¼ s 0  e 0 ¼ 0:

Proof. Since d 0 and e 0 are linearly independent by the non-degeneracy

of the 2-ruled hypersurface Fðg; d; eÞ, we see easily that

det
d 0  d 0 e 0  d 0

d 0  e 0 e 0  e 0
� �

0 0:

So, we can put

f

g

� �
¼ d 0  d 0 e 0  d 0

d 0  e 0 e 0  e 0
� �	1 	g 0  d 0

	g 0  e 0
� �

:

Then, sðtÞ ¼ gðtÞ þ f ðtÞdðtÞ þ gðtÞeðtÞ satisfies the conditions s 0  d 0 ¼ s 0  e 0 ¼ 0.

r

Definition 3.4. A curve sðtÞ which satisfies the condition in Lemma 3.3 is

called a striction curve of a non-degenerate 2-ruled hypersurface Fðg; d; eÞðt; u; vÞ.
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Since s 0 ? d 0, s 0 ? e 0, d 0 ? d, d 0 ? e, d ? e 0, e ? e 0 and dimhd; d 0; e; e 0i ¼ 4,

we have s 0 A hd; ei. This means that the striction curve is tangent to the ruling

at any t.

Lemma 3.5. Let Fðs; d; eÞðt; u; vÞ ¼ sðtÞ þ udðtÞ þ veðtÞ be a non-degenerate

2-ruled hypersurface with the striction curve sðtÞ. Then the set of the singular

points of the 2-ruled hypersurface Fðs; d; eÞ coincides with the image of the striction

curve sðtÞ.

Proof. By definition ðt; u; vÞ is a singular point of F ¼ Fðs; d; eÞ if and only

if the Jacobian matrix

qF

qt
;
qF

qu
;
qF

qv

� �
ðt; u; vÞ ¼ ðs 0ðtÞ þ ud 0ðtÞ þ ve 0ðtÞ; dðtÞ; eðtÞÞ

of F is not of full rank. Note that s 0 A hd; ei as remarked just after Definition

3.4, and the four vectors d, d 0, e and e 0 are linearly independent. Then, we see

easily that the above matrix is not of full rank if and only if u ¼ v ¼ 0. r

Corollary 3.6. The striction curve of a non-degenerate 2-ruled hyper-

surface in R4 does not depend on the choice of a solution y of the di¤erential

equation y 0 þ d 0  e ¼ 0 in the proof of Lemma 3.2 or on the choice of director

curves d and e.

Remark 3.7. For a non-degenerate 2-ruled hypersurface Fðg; d; eÞðt; u; vÞ ¼
gðtÞ þ udðtÞ þ veðtÞ whose director curves satisfy dðtÞ  eðtÞ ¼ 0, a direct calcula-

tion gives the following formula for the striction curve:

sðtÞ ¼ gðtÞ þ AðtÞ
CðtÞ dðtÞ þ

BðtÞ
CðtÞ eðtÞ;

with

AðtÞ ¼ 	ðg 0  eÞðd 0  eÞ3 þ ðg 0  d 0Þðd 0  eÞ2

þ ððd 0  e 0Þðg 0  dÞ þ ðe 0  e 0Þðg 0  eÞÞðd 0  eÞ

þ ðd 0  e 0Þðg 0  e 0Þ 	 ðe 0  e 0Þðg 0  d 0Þ;

BðtÞ ¼ ðg 0  dÞðd 0  eÞ3 þ ðg 0  e 0Þðd 0  eÞ2

	 ððd 0  d 0Þðg 0  dÞ þ ðd 0  e 0Þðg 0  eÞÞðd 0  eÞ

	 ðd 0  d 0Þðg 0  e 0Þ þ ðd 0  e 0Þðg 0  d 0Þ;

CðtÞ ¼ ðd 0  eÞ4 	 ððd 0  d 0Þ þ ðe 0  e 0ÞÞðd 0  eÞ2

þ ðd 0  d 0Þðe 0  e 0Þ 	 ðd 0  e 0Þ2:
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By setting d ¼ d 0 	 ðd 0  eÞe and e ¼ e 0 	 ðd  e 0Þd we see that

CðtÞ ¼ det
dðtÞ  dðtÞ dðtÞ  eðtÞ
eðtÞ  dðtÞ eðtÞ  eðtÞ

� �
0 0:

Now, we give some examples. We can easily check that the striction

curve coincides with the set of singular points in these examples by a simple

calculation.

Example 3.8. We put gðtÞ ¼ ðt; 0; 0; 0Þ, dðtÞ ¼ 0;
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p ;

tffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p ; 0

� �
;

and eðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p ; 0; 0;
tffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p

� �
. This gives a non-degenerate 2-ruled hy-

persurface whose striction curve is

sðtÞ ¼ ð2t; 0; 0; t2Þ:

Example 3.9. We put sðtÞ ¼ ðt2; t3; 0; 0Þ, dðtÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ9t2

p ;
3tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ9t2
p ; 0; 0

� �
,

and eðtÞ ¼ 0; 0;
t2 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t4 þ 3t2 þ 1
p ;

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ 3t2 þ 1

p
� �

, 	1 < t < 1: This gives a non-

degenerate 2-ruled hypersurface with the striction curve sðtÞ. In this example,

the striction curve has a ð2; 3Þ-cusp singularity at t ¼ 0 and is not an immer-

sion at t ¼ 0.

4. Proof of the main theorem

Let f : ðR3; 0Þ! ðR4; 0Þ be a smooth map germ and we consider the Thom-

Boardman singularity set S1;0 H J 2ð3; 4Þ defined in [1]. Morin [4] proved the

following lemma.

Lemma 4.1 ([4], Théorème). Let f : ðR3; 0Þ ! ðR4; 0Þ be a smooth map

germ. Then the following two conditions are equivalent.

(1) j2f ð0Þ A S1;0 and the map germ j2f : ðR3; 0Þ ! J 2ð3; 4Þ is transverse to

S1;0 at j2f ð0Þ.
(2) f is right-left equivalent to the cross cap� interval, that is, there exist

local coordinates ðx1; x2; x3Þ of R3 around 0 and local coordinates ðy1; y2; y3; y4Þ
of R4 around 0, such that f ¼ ðy1 � f ; y2 � f ; y3 � f ; y4 � f Þ is expressed as

f ðx1; x2; x3Þ ¼ ðx2
1 ; x2; x3; x1x2Þ:

Furthermore, he rewrites the above condition as follows. We use the

notation f ðx1; x2; x3Þ ¼ ð f1ðx1; x2; x3Þ; f2ðx1; x2; x3Þ; f3ðx1; x2; x3Þ; f4ðx1; x2; x3ÞÞ.

Lemma 4.2 ([4], Lemme). Let f : ðR3; 0Þ ! ðR4; 0Þ be a smooth map

germ. j2f ð0Þ A S1;0 and the map germ j2f : ðR3; 0Þ ! J 2ð3; 4Þ is transverse to
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S1;0 at j2f ð0Þ if and only if for some local coordinates ðx1; x2; x3Þ of R3 and

ðz1; z2; z3; z4Þ of R4 satisfying f2ðx1; x2; x3Þ ¼ x2, f3ðx1; x2; x3Þ ¼ x3,

qf1

qx1
ð0; 0; 0Þ ¼ qf1

qx2
ð0; 0; 0Þ ¼ qf1

qx3
ð0; 0; 0Þ ¼ 0 and

qf4

qx1
ð0; 0; 0Þ ¼ qf4

qx2
ð0; 0; 0Þ ¼ qf4

qx3
ð0; 0; 0Þ ¼ 0;

( i )
q2f

qx2
1

ð0; 0; 0Þ0 0, and

(ii) rank
q2f

qx2
1

;
q2f

qx1qx2
;

q2f

qx1qx3

 !
ð0; 0; 0Þ ¼ 2.

Proof of Theorem 2.5. The statement (1) follows directly from Lemma

3.5. So we prove (2) here.

Let Fðs; d; eÞðt; u; vÞ ¼ sðtÞ þ udðtÞ þ veðtÞ be a non-degenerate 2-ruled hy-

persurface with the striction curve sðtÞ. For any t0 A I , the point p0 denotes

Fðs; d; eÞðt0; 0; 0Þ. We put F ¼ Fðs; d; eÞ and suppose that the director curves d and

e are constrictively adapted.

First, changing the coordinates ðz1; z2; z3; z4Þ of R4 by an orthogonal

transformation if necessary, we may assume dðt0Þ ¼ ð0; 1; 0; 0Þ and eðt0Þ ¼
ð0; 0; 1; 0Þ. Let us define the new coordinates ðx1; x2; x3Þ of R3 by

x1 ¼ t	 t0;

x2 ¼ ðF ðt; u; vÞ 	 Fðt0; 0; 0ÞÞ  dðt0Þ;

x3 ¼ ðF ðt; u; vÞ 	 Fðt0; 0; 0ÞÞ  eðt0Þ:

Then, we get

qF

qx1
ð0; 0; 0Þ ¼ 0;

qF

qx2
ð0; 0; 0Þ ¼ dðt0Þ;

qF

qx3
ð0; 0; 0Þ ¼ eðt0Þ:

So, the coordinates ðx1; x2; x3Þ and ðz1; z2; z3; z4Þ are adapted coordinate systems

in the sense of Morin [4].

We use the notation: s0 ¼ sðt0Þ, s 0
0 ¼ s 0ðt0Þ, d0 ¼ dðt0Þ, d 00 ¼ d 0ðt0Þ, e0 ¼

eðt0Þ and e 00 ¼ e 0ðt0Þ. We have

s 00ðt0Þ ¼
q2F

qt2
ðt0; 0; 0Þ

¼
 
q2F

qx2
1

þ ðs 0
0  d0Þ

2 q
2F

qx2
2

þ ðs 0
0  e0Þ

2 q
2F

qx2
3

þ 2ðs 0
0  d0Þ

q2F

qx1qx2
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þ 2ðs 0
0  e0Þ

q2F

qx1qx3
þ 2ðs 0

0  d0Þðs 0
0  e0Þ

q2F

qx2qx3

þ ðs 00
0  d0Þd0 þ ðs 00

0  e0Þe0

!
ð0; 0; 0Þ;

d 0ðt0Þ ¼
q2F

qtqu
ðt0; 0; 0Þ

¼ ðs 0
0  d0Þ

q2F

qx2
2

þ q2F

qx1qx2
þ ðs 0

0  e0Þ
q2F

qx2qx3

 !
ð0; 0; 0Þ;

e 0ðt0Þ ¼
q2F

qtqv
ðt0; 0; 0Þ

¼ ðs 0
0  e0Þ

q2F

qx2
3

þ q2F

qx1qx3
þ ðs 0

0  d0Þ
q2F

qx2qx3

 !
ð0; 0; 0Þ;

0 ¼ q2F

qu2
ðt0; 0; 0Þ ¼

q2F

qx2
2

ð0; 0; 0Þ;

0 ¼ q2F

quqv
ðt0; 0; 0Þ ¼

q2F

qx2qx3
ð0; 0; 0Þ;

0 ¼ q2F

qv2
ðt0; 0; 0Þ ¼

q2F

qx2
3

ð0; 0; 0Þ:

Since dimhdðtÞ; d 0ðtÞ; eðtÞ; e 0ðtÞi ¼ 4 and s 0ðtÞ  d 0ðtÞ ¼ s 0ðtÞ  e 0ðtÞ ¼ 0 for any t,

we have

s 0ðtÞ ¼ ðs 0ðtÞ  dðtÞÞdðtÞ þ ðs 0ðtÞ  eðtÞÞeðtÞ

and hence

s 00ðtÞ 	 ðs 00ðtÞ  dðtÞÞdðtÞ 	 ðs 00ðtÞ  eðtÞÞeðtÞ ¼ ðs 0ðtÞ  dðtÞÞd 0ðtÞ þ ðs 0ðtÞ  eðtÞÞe 0ðtÞ:

So we obtain

q2F

qx2
1

ð0; 0; 0Þ ¼ 	ðs 0
0  d0Þd

0
0 	 ðs 0

0  e0Þe 00:

Hence

q2F

qx2
1

;
q2F

qx1qx2
;

q2F

qx1qx3

 !
ð0; 0; 0Þ ¼ ð	ðs 0  dÞd 0 	 ðs 0  eÞe 0; d 0; e 0Þðt0Þ:
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This means that the condition (ii) of Lemma 4.2 is always satisfied for F.

Furthermore, the condition (i) is equivalent to

q2F

qx2
1

ð0; 0; 0Þ ¼ 	ðs 0
0  d0Þd

0
0 	 ðs 0

0  e0Þe 00 0 0;

that is, either s 0
0  d0 0 0 or s 0

0  e0 0 0. Since s 0 A hd; ei, this condition is

equivalent to s 0 0 0 at t ¼ t0. This completes the proof. r

5. Singularities of generic 2-ruled hypersurfaces

In this section, we will define almost non-degenerate 2-ruled hypersurfaces

which are generic in the usual sense. They have exceptional rulings where the

striction curve cannot be defined and there are no singular points. So, we get

Theorem 5.3 which characterizes the singularities of generic 2-ruled hypersur-

faces. We will also discuss the behavior of the striction curve near the ex-

ceptional rulings.

First, we define an almost non-degenerate 2-ruled hypersurface.

Definition 5.1. A 2-ruled hypersurface Fðg; d; eÞðt; u; vÞ ¼ gðtÞþudðtÞþveðtÞ,
t A I , is said to be almost non-degenerate on I, if there exists a discrete subset

DH I such that the following four conditions hold.

(1) Fðg; d; eÞ is non-degenerate at any t B D.

(2) dimhdðtiÞ; d 0ðtiÞ; eðtiÞ; e 0ðtiÞi ¼ 3 for any ti A D.

(3) Let At denote detðdðtÞ; d 0ðtÞ; eðtÞ; e 0ðtÞÞ. Then dAt=dtjt¼ti 0 0 for any

ti A D.

(4) g 0ðtiÞ B hdðtiÞ; d 0ðtiÞ; eðtiÞ; e 0ðtiÞi for any ti A D.

It is easy to check that the condition (4) does not depend on the choice

of the base curve g. For an almost non-degenerate 2-ruled hypersurface the

rulings ðu; vÞ 7! gðtiÞ þ udðtiÞ þ veðtiÞ for ti A D are called exceptional rulings.

Note that the condition (4) implies that Fðg; d; eÞ is non-singular at any point in

the exceptional rulings.

The following lemma shows that there are plenty of almost non-degenerate

2-ruled hypersurfaces, that is, the condition is generic in the usual sense.

Lemma 5.2. The set

fðg; d; eÞ jFðg; d; eÞ is an almost non-degenerate 2-ruled hypersurfaceg

is open and dense in CyðI ;R4 � S3 � S3Þ with respect to the Whitney Cy-

topology.

Proof. First, we put

Q1 ¼ f j1ðg; d; eÞðtÞ j dimhdðtÞ; eðtÞi ¼ 1; t A IgH J 1ðI ;R4 � S3 � S3Þ:
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Then Q1 is a closed submanifold of codimension 3. Second, we put

Q2 ¼ f j1ðg; d; eÞðtÞ A J 1ðI ;R4 � S3 � S3ÞnQ1 j

dimhdðtÞ; d 0ðtÞ; eðtÞ; e 0ðtÞi ¼ 2; t A Ig:

Then Q2 is a closed submanifold of J 1ðI ;R4 � S3 � S3ÞnQ1 of codimension

4. Note that X ¼ J 1ðI ;R4 � S3 � S3ÞnðQ1 UQ2Þ is an open submanifold of

J 1ðI ;R4 � S3 � S3Þ. Third, we put

Q3 ¼ f j1ðg; d; eÞðtÞ A X j dimhdðtÞ; d 0ðtÞ; eðtÞ; e 0ðtÞi ¼ 3; t A Ig:

We define a Cy-map z by

z : X C j1ðg; d; eÞðtÞ 7! detðdðtÞ; d 0ðtÞ; eðtÞ; e 0ðtÞÞ A R:

Then Q3 ¼ z	1ð0Þ and we see that 0 A R is a regular value for z. So, Q3 is a

closed submanifold of X of codimension 1. Moreover, the set

S ¼ f j1ðg; d; eÞðtÞ A Q3 j g 0ðtÞ A hdðtÞ; d 0ðtÞ; eðtÞ; e 0ðtÞi; t A Ig

is a closed submanifold of Q3 of codimension 1.

By Thom’s jet transversality theorem, the set

R ¼ fðg; d; eÞ A CyðI ;R4 � S3 � S3Þ j

j1ðg; d; eÞ is transverse to Q1;Q2;Q3 and Sg

is a residual subset of CyðI ;R4 � S3 � S3Þ with respect to the Whitney Cy-

topology. So R is dense in CyðI ;R4 � S3 � S3Þ.
We can easily check that j1ðg; d; eÞ is transverse to Q1, Q2, Q3 and S if

and only if Fðg; d; eÞ is an almost non-degenerate 2-ruled hypersurface. So, R

coincides with the set fðg; d; eÞ jFðg; d; eÞ is an almost non-degenerate 2-ruled hy-

persurfaceg.
Now we prove that R is an open set. Since X is open in

J 1ðI ;R4 � S3 � S3Þ, CyðI ;XÞ is open in CyðI ; J 1ðI ;R4 � S3 � S3ÞÞ. On the

other hand, since Q3 and S are closed submanifolds of X, the set

fg A CyðI ;X Þ j g is transverse to Q3 and Sg

is open in CyðI ;X Þ. Hence the set

R 0 ¼ fg A CyðI ; J 1ðI ;R4 � S3 � S3ÞÞ j g is transverse to Q1;Q2;Q3 and Sg

¼ fg A CyðI ;X Þ j g is transverse to Q3 and Sg

is open in CyðI ; J 1ðI ;R4 � S3 � S3ÞÞ. Since the map

j1 : CyðI ;R4 � S3 � S3Þ ! CyðI ; J 1ðI ;R4 � S3 � S3ÞÞ

Singularities of non-degenerate 2-ruled hypersurfaces 319



is continuous (see [2, p. 46], for example), R ¼ ð j1Þ	1ðR 0Þ is an open subset of

CyðI ;R4 � S3 � S3Þ.
Therefore R ¼ fðg; d; eÞ jFðg; d; eÞ is an almost non-degenerate 2-ruled hyper-

surfaceg is an open and dense subset of CyðI ;R4 � S3 � S3Þ. r

Now, we prove the following theorem which shows that the generic sin-

gularities of 2-ruled hypersurfaces are the cross cap� interval. Since any sin-

gularity of a generic smooth map germ of a 3-manifold into R4 is the cross

cap� interval, the following theorem asserts that the generic singularities of 2-

ruled hypersurfaces are the same as those of generic Cy-maps of 3-manifolds

into R4, although the set of 2-ruled hypersurfaces is a thin subset in the space

of all Cy-maps.

Theorem 5.3. There exists an open and dense subset OH
CyðI ;R4 � S3 � S3Þ such that for any ðg; d; eÞ A O the 2-ruled hypersurface map

germ Fðg; d; eÞ is an immersion germ or is right-left equivalent to the cross cap�
interval at any point ðt; u; vÞ.

Proof. First, by Lemma 5.2 the set R ¼ fðg; d; eÞ A CyðI ;R4 � S3 � S3Þ j
ðg; d; eÞ gives an almost non-degenerate 2-ruled hypersurfaceg is an open and

dense subset. By the condition (4) in Definition 5.1, Fðg; d; eÞ for ðg; d; eÞ A R is

non-singular at any point in the exceptional rulings.

We take ðg; d; eÞ A CyðI ;R4 � S3 � S3Þ such that

j2ðg; d; eÞðt0Þ A J 2ðI ;R4 � S3 � S3Þnð ~QQ1 U ~QQ2 U ~QQ3Þ;

where p2
1 : J 2ðI ;R4 � S3 � S3Þ ! J 1ðI ;R4 � S3 � S3Þ is the natural projection,

~QQi ¼ ðp2
1Þ

	1ðQiÞ ði ¼ 1; 2; 3Þ, and Qi are the submanifolds defined in the proof

of Lemma 5.2. Then, since Fðg; d; eÞ is non-degenerate at t0, there exists a stric-

tion curve sðtÞ near t0. Now we rewrite the condition s 0ðt0Þ ¼ 0 by using the

formula in Remark 3.7. By replacing e with

e1 ¼
e	 ðd  eÞd

ke	 ðd  eÞdk

so that d  e1 ¼ 0, we get

s 0ðt0Þ ¼ 0 , s 0ðt0Þ  dðt0Þ ¼ 0 and s 0ðt0Þ  e1ðt0Þ ¼ 0

, G ¼ 0 and H ¼ 0;

where

G ¼ ðg 0ðt0Þ  dðt0ÞÞ þ
d

dt

AðtÞ
CðtÞ

� �����
t¼t0

þ Bðt0Þ
Cðt0Þ

� �
ðe 01ðt0Þ  dðt0ÞÞ
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and

H ¼ ðg 0ðt0Þ  e1ðt0ÞÞ þ
Aðt0Þ
Cðt0Þ

� �
ðd 0ðt0Þ  e1ðt0ÞÞ þ

d

dt

BðtÞ
CðtÞ

� �����
t¼t0

:

Here, AðtÞ, BðtÞ and CðtÞ are obtained by replacing e with e1 in the formulas in

Remark 3.7. Note that G and H are Cy-functions of the partial derivatives at

t ¼ t0 of the components of g, d and e of order at most two. Then we define a

Cy-map F by:

F : J 2ðI ;R4 � S3 � S3Þnð ~QQ1 U ~QQ2 U ~QQ3Þ C j2ðg; d; eÞðt0Þ 7! ðG;HÞ A R2:

To determine the rank of the Jacobian matrix of F at j2ðg; d; eÞðt0Þ,
we calculate the derivative of F with respect to the coordinates of

J 2ðI ;R4 � S3 � S3Þ corresponding to the second order derivatives of the four

components of g. Then the derivatives of G coincide with the four compo-

nents of

ðd 0ðt0Þ  e1ðt0ÞÞðd 0ðt0Þ  e 01ðt0ÞÞdðt0Þ

þ ððd 0ðt0Þ  e1ðt0ÞÞðe 01ðt0Þ  e 01ðt0ÞÞ 	 ðd 0ðt0Þ  e1ðt0ÞÞ3Þe1ðt0Þ

þ ð	ðe 01ðt0Þ  e 01ðt0ÞÞ þ ðd 0ðt0Þ  e1ðt0ÞÞ2Þd 0ðt0Þ þ ðd 0ðt0Þ  e 01ðt0ÞÞe 01ðt0Þ;

and the derivatives of H coincide with those of

ð	ðd 0ðt0Þ  d 0ðt0ÞÞðd 0ðt0Þ  e1ðt0ÞÞ þ ðd 0ðt0Þ  e1ðt0ÞÞ3Þdðt0Þ

	 ðd 0ðt0Þ  e1ðt0ÞÞðd 0ðt0Þ  e 01ðt0ÞÞe1ðt0Þ

þ ðd 0ðt0Þ  e 01ðt0ÞÞd
0ðt0Þ þ ð	ðd 0ðt0Þ  d 0ðt0ÞÞ þ ðd 0ðt0Þ  e1ðt0ÞÞ2Þe 01ðt0Þ:

Now we calculate the determinant of the matrix formed by the coe‰cients of

d 0ðt0Þ and e 01ðt0Þ of the above two formulas:

ð	ðe 01ðt0Þ  e 01ðt0ÞÞ þ ðd 0ðt0Þ  e1ðt0ÞÞ2Þð	ðd 0ðt0Þ  d 0ðt0ÞÞ

þ ðd 0ðt0Þ  e1ðt0ÞÞ2Þ 	 ðd 0ðt0Þ  e 01ðt0ÞÞðd
0ðt0Þ  e 01ðt0ÞÞ

¼ Cðt0Þ0 0:

So the rank of the Jacobian matrix is always equal to 2. Hence ð0; 0Þ A R2

is a regular value of F and T ¼ F	1ðð0; 0ÞÞ is a closed submanifold of

J 2ðI ;R4 � S3 � S3Þnð ~QQ1 U ~QQ2 U ~QQ3Þ of codimension 2.

Therefore, the set O ¼ fðg; d; eÞ A CyðI ;R4 � S3 � S3Þ jFðg; d; eÞ is an almost
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non-degenerate 2-ruled hypersurface and the striction curve is an immersiong
coincides with the set

O 0 ¼ fðg; d; eÞ A CyðI ;R4 � S3 � S3Þ j

j2ðg; d; eÞ is transverse to ~QQ1;
~QQ2;

~QQ3;
~SS and Tg;

where S is defined in the proof of Lemma 5.2 and ~SS ¼ ðp2
1Þ

	1ðSÞ. By Thom’s

jet transversality theorem, the set O 0 is dense in CyðI ;R4 � S3 � S3Þ. Hence

O is dense in CyðI ;R4 � S3 � S3Þ.
On the other hand, we define a map F] : C

yðI ;R4 � S3 � S3Þ !
CyðI � J1 � J2;R

4Þ by F]ðg; d; eÞ ¼ Fðg; d; eÞ. Then, F] is continuous. Further-

more, it is easy to check that the set S ¼ f f A CyðI � J1 � J2;R
4Þ j f is an

immersion or is the right-left equivalent to the cross cap� interval at any point

of I � J1 � J2g is an open set.

Hence the set F 	1
] ðSÞVR is an open subset of CyðI ;R4 � S3 � S3Þ.

By Theorem 2.5, it is clear that O ¼ F 	1
] ðSÞVR. So, O is an open set

of CyðI ;R4 � S3 � S3Þ. Therefore, O is an open and dense subset of

CyðI ;R4 � S3 � S3Þ. This completes the proof. r

Before closing this section, we discuss the behavior of the striction curve

near the exceptional rulings. Let Fðg; d; eÞ be an almost non-degenerate 2-ruled

hypersurface. Then Fðg; d; eÞ has the striction curve except for ti A D (see Defi-

nition 5.1). Moreover, recall that Fðg; d; eÞ is non-singular at any point in the

exceptional rulings. So, the singular points of Fðg; d; eÞ are located only on the

striction curve. To study the behavior of the striction curve near a given point

ti A D, we take constrictively adapted director curves d and e. By interchang-

ing d and e if necessary, we may assume that e 0ðtiÞ ¼ kd 0ðtiÞ for some k A R.

Since d, d 0, e and g 0 span R4 near t ¼ ti, we can write e 0ðtÞ ¼ aðtÞg 0ðtÞ	
aðtÞðg 0ðtÞ  dðtÞÞdðtÞ þ bðtÞd 0ðtÞ 	 aðtÞðg 0ðtÞ  eðtÞÞeðtÞ for t near ti. The coe‰-

cients for the striction curve sðtÞ ¼ gðtÞ þ ðAðtÞ=CðtÞÞdðtÞ þ ðBðtÞ=CðtÞÞeðtÞ are

given by

AðtÞ ¼ aðtÞbðtÞzðtÞ; BðtÞ ¼ 	aðtÞzðtÞ and CðtÞ ¼ aðtÞ2zðtÞ;

where z ¼ ðd 0  d 0Þððg 0  g 0Þ 	 ðg 0  dÞ2 	 ðg 0  eÞ2Þ 	 ðg 0  d 0Þ2. Since e 0ðtÞ ! kd 0ðtÞ
as t ! ti, we have aðtÞ ! 0, bðtÞ ! k as t ! ti and zðtÞ0 0, aðtÞ0 0 for t0 ti.

So, we have

lim
t!ti

BðtÞ
CðtÞ

����
���� ¼ lim

t!ti

	1

aðtÞ

����
���� ¼ y:

Furthermore, since sðtÞ ¼ gðtÞ þ ðBðtÞ=CðtÞÞððAðtÞ=BðtÞÞdðtÞ þ eðtÞÞ and ðAðtÞ=
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BðtÞÞdðtÞ þ eðtÞ ! 	kdðtiÞ þ eðtiÞ as t ! ti, the striction curve near ti has an

asymptotic direction

	kdðtiÞ þ eðtiÞ

in the exceptional ruling, that is, the two branches of the striction curve ap-

proaching to the exceptional ruling from the both sides have the same asymp-

totic direction.

Moreover, by the condition (3) of almost non-degeneracy (see Definition

5.1) we see that a 0ðtiÞ0 0, so they diverge to opposite directions (see Figure 1).
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Fig. 1. The striction curve near an exceptional ruling
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