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ABSTRACT. The history of problems of evaluation of series associated with the
Riemann Zeta function can be traced back to Christian Goldbach (1690-1764) and
Leonhard Euler (1707-1783). Many different techniques to evaluate various series
involving the Zeta and related functions have since then been developed. The authors
show how elegantly certain families of series involving the Zeta function can be
evaluated by starting with a single known identity for the generalized (or Hurwitz)
Zeta function. Some special cases and their connections with already developed series
involving the Zeta and related functions are also considered.

1. Introduction, definitions, and the main result

The Riemann Zeta function {(s) defined by

| | R 1
2 =i oy 9>

n=1 n=1

(L) s) = B
-2 5 w0 s

satisfies the functional equation (see [24, p. 269]):

(1.2) {(s) = 25771 (1 = 5)¢(1 — s) sin <§>

and takes on the following special or limit values (see [24, p. 271]):

(13) d-D=-1.  QO)=-3. and  C(0)=; log(2n)
' T -~ 8 — T OB
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and

(14) lim (C(s) - ﬁ) —

s—1

in terms of the Euler-Mascheroni constant y given by

n—oo

N
y:= lim (Z .~ log n) ~ 0.577215 664901 532 860 606 512.. ...
k=1

The generalized (or Hurwitz) Zeta function ((s,a) is defined by

(1.5) {(s,a) = g (n—:a)s (R@s)>1; a#0,—1,-2,...),

which, just as ((s), can be continued meromorphically everywhere in the
complex s-plane except for a simple pole at s =1 (with residue 1). It is not
difficult to see from the definitions (1.1) and (1.5) that

(1.6) C(s,a—i—n)_f(s,a)—::; (k—ia)s (neN:={1,2,3,...})
and
(1.7) (s, 1) = L(s) = (2° - 1>‘c(s,§).

The subject of evaluations of series involving the Zeta and related
functions has a long history which can be traced back to Christian Goldbach
(1690-1764) and Leonhard Euler (1707-1783) (see, for details, [19] and [20]).
Many different techniques to evaluate various families of series involving the
Zeta and related functions have since then been developed (cf., e.g., [2], [5], [8]
to [12], [13], [19], and [20]). The main object of this paper is to show how
nicely certain families of series involving the Zeta and related functions can be
evaluated by starting with the following known identity for {(s,a) [19, p. 18,
Eq. (6.13)):

= (s
(1.8) Z%c +k,a)t* =C(s,a—1) (1] < |al]).

k=0
where (1), denotes the Pochhammer symbol defined, in terms of the familiar
Gamma function, by

F()Hrn):{l (n=0; 1#0)

(19) (O =—pr5 MO+ ...(h+n—1) (neN; ieC).
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The general series identity, which is to be proved in this paper, is con-
tained in the following

THEOREM. For every nonnegative integer n,

10y YD E g~ na)

= (K nl
+ kzl (—1n)!"+k (Z)KH” — H, 1)(k —n,a)
— (k= n,a)]t*
@I (< s neNo)

where H, denotes the harmonic numbers defined by

n
1
(1.11) H, =Y =

and it is understood (as elsewhere in this paper) that an empty sum is nil.

For the sake of ready reference, we recall here the following identities
and relationships which will be required in our proof of the above Theorem.

First of all, there exists a relationship between the generalized Zeta
function {(s,a) and the Bernoulli polynomials B,(a) in the form (see [3, p. 264,
Theorem 12.13]):

Bn+l (a)

(1.12) {(—n,a) = — o

(neNj :=NU{0}),

which can be applied in order to evaluate {(—n,a) for special values of n e Ny.
The following identity involving the Bernoulli polynomials:

Bu(a+1) ~(n\Biala) , o "
113 2drlo " N
(1.13) S ; k) ker " Ty e

results from the known formula (see [3, p. 275]):

n

(1.14) Bn(a-i-t):Z(Z)Bk(a)Z”—k (nGN())

k=0

when we replace n in (1.14) by n+1 and divide both sides of the resulting
equation by n+ 1.
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We also recall here the following Laurent series expansion of {(s,a) at
s=1 (see [24, p. 271]):

(1.15) {(s,a) = ! 7~ Y(a) + zcn(sf ",
n=1

K

where the coefficients ¢, are constants to be determined and the Psi (or
Digamma) function ¥/(z) defined by

(1.16) U(z) = or log I'(z) = J Y(t)dt

1

is meromorphic in the complex z-plane with simple poles at z=0,—1, -2

(with residue —1). In fact, we have (see, e.g., [21, pp. 24-25]):

5 PRI

1 1
(1.17) w(z+n):¢(z)+;m7._1 (neN)
and
(1.18) L1 = O+ (),

which follows easily from the definitions (1.9) and (1.16).

2. Proof of the Theorem

Upon transposing the first n + 2 terms from k =0 to k =n+1 in (1.8) to
the right-hand side, if we divide both sides of the resulting equation by s+ n,
we get

= t* g.(s,t,a)
@1 3 O+t D ke =220 (<o neNy),
k=n+2 : stn

where, for convenience,
n+1 (S)

(2.2) guls, t,a) = C(s,a— 1) — ; k!" (s + k,a)t”.

Now we shall show that
(2.3) lim g,(s,t,a) = 0.

S——n
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Since {(s+n+ 1,a) has a simple pole at s = —n with its residue 1, we find that

(2.4) lim (s+n){(s+n+1,a) =1

S——n
By rewriting (2.2) in the form:

tn+1

gn(s,t,a) ={(s,a—1) — ; %C(S+ k,a)tk — (s), (s +n){(s+n+ l,a)m,

if we take the limit as s — —n with the aid of (2.4) and make use of the
elementary identity:

(2):% (neNp; AeC),

we obtain

) n o n - (_1)n+1 .
lim g,(s,t,a) ={(—n,a—1t) — (-1 k< )C(—k,a)t" byt 2 el
s —n kz:; k n+1

which, in view of the relationship (1.12), can be put in its equivalent form:

b

. Buiila—1) e\ Ben(@) o  (=D"
1 _ _ont 1)k " ln+1
Jm, gns. £,) S DU U U by nl o

from which our assertion (2.3) follows easily by applying (1.13). Thus, by
I’Hopital’s rule, we have

n e : a
lim M: li a{g,,(s,t,a)}.

2.5
( ) s——n S—4+n s——

Next, by appealing to (2.2) and (1.18), we observe that

08 alals Al =Usa-0-Csa)

_ ;h(s, a,k)]i—k!f h(s,an + 1) (nl+ o
where, for convenience,
(2.7) h(s, a, k) := () [{W(s + &) = h()}(s + k,a) + (s + K, a)].
In view of (1.17), (2.7) yields
(28)  lim hs,a.k) = —(~n)|(H, — Hy )Lk —n.a) — 'k — n.a)]
| (k=1,...,n)
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and

(2.9) lim A(s,a,n+1)

s——n

= lim Ki: S@”j) (s+n)l(s+n+1,a)+(5),,(s+n+1,a)],

s——n
Jj=0

which, upon writing

n n—1

]z:S-i-j ]z:s—i—] s+n

reduces to the form:

n—1
(2.10) lim As,an+1) =S4 fim gs.an),

s——n n—j s—-n
where, for convenience,
(2.11) (s,a,n) = (5),{(s +n+1,0) + (5),,{ (s +n+ La).

Now, by virtue of (1.15), we readily have

(2.12) lim ¢(s,a,n) = bhm (8), | —¥(a)+ i(]+ De(s 4 n)’

S——n

= (=1)""nly(a).
It follows from (2.10) and (2.12) that
(2.13) lim h(s,a,n+ 1) = (—=1)""'nl[H, + y(a)),

S——n

where H, denotes the harmonic numbers defined by (1.11).
Making use of (2.8) and (2.13), we find from (2.6) that

(214 Jim < {g(s.t.a)} = (-ma—0)—C(-na)
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Finally, since

% k -
(215) lim > (s),(s+n+ 1), (s +k a) . "anC( e,
s——n Pty =2 (k n+1

by equating the second members of (2.14) and (2.15), we are led immediately
to the desired series identity (1.10). This evidently completes our proof of the
Theorem.

Infinite sums of the type occurring in (1.10) can also be evaluated, in a
markedly different manner, in terms of such higher transcendental functions as
the multiple Gamma functions (see, for details, [16, p. 10, Theorem 1]).

3. Applications of the Theorem

Upon setting n=0,1,2,3, and 4 in (1.10), if we make use of the
appropriate identities which are readily available in the mathematical litera-
ture, we shall obtain the following known or new formulas for closed-form
evaluations of several families of series involving the generalized (or Hurwitz)
Zeta function {(s,a):

(3.1) f: 5(’;’ 9k _log I'(a— 1) — log I'(a) + p(@)  (t] < |al),
k=2

which is given (for example) in [24, p. 276], [15, p. 358, Entry (54.11.1)], and [8,
p. 107, Eq. (2.11)];

(3.2)

< k+2
(3-3) szkJr k+z)‘

“lE2a-n - 2.0+ Ll‘ <a2 a +é) T c’<—1,a>}r

2 3

+ B —3a+1log(2r) —2 log F(a)} % + [3+21p(a)}1t—2 (el < lal);
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= {(k,a) «
34 +3
Z;kk+ )k +2)(k + 3)

2 2

— g3 - C-aa-0)- [5 (¢ -3+ 0) #3020

2
n B <a2 - a+é> + 65'(-1,@} 11—2
3

11 t
+ {7— 11a + 3 log(27) — 6 log F(a)] %
4

6@l gy (< laD;

- {(k,a) k+4
3.5
(3:5) z;k ES TR

= (-4a—1) - (-4,a)

+ % <a4 -2a° +a? - 310> +4'(-3 )} 2—[4
r 2

— % <a3 - %az +;a) + 12{'(—2,61)} ;—8

1 , 3

!
+ [25 — 50a + 12 log(2n) — 24 log I'(a)]

576
5
FRS 1@ s (< Jal).
Setting @ =1 in (3.5), we readily obtain
. {(k) k+4
(3.6) t
z;k D(k+2)(k+3)(k+4)
_ 1 3(05) S (@) »
24{((4,1t)4n4} (72+41 C) 1 Ten2!

4

25 &
+ (6 — 24 log A) Taa T [12 log(2n) — 25] — 576

s
+(25-12y)——

!
6
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which, for ¢=1, yields

(37 ,; Tk £ 1)(k+2)((k)+ 3)(k 1 4)2F

2

1
~ 48

—% logA—g log C+@—31§(5)

log(27) —
0g(27) e R D

7
240
where we have made use of such results as (for example) the relationship

(1.7) and the derivative formula (cf., e.g., [20, p. 387, Eq. (1.15)]):

(2n)!

C/(_zn) = (_1)n 2(27‘[)2n

(2n+1) (neN),
which follows easily from
{(=2n) =0 (neN)

and Riemann’s functional equation (1.2). Here, and elsewhere in this paper,
A denotes the Glaisher-Kinkelin constant defined by

- 1 1 1 1
log A = ,}Lrg{kz:lk log k — (5”2 +§n +E) log n —+—4—‘nz}7
the numerical value of A being given by

A =~ 1.282427130...,

and C is a mathematical constant defined by

1 =1 31 N -3 o2 1 I )
ogC_nm}O |J€E_1k ng (41’1 +2n +4I’l 120 0gn+16n 127’1 s

the numerical value of C being given by
C =~ 30139339241246784 x 1072714341,

Some of these and other mathematical constants have already occurred in
the recent revival of the multiple Gamma functions [4] in the study of the
determinants of the Laplacians on the n-dimensional unit sphere S” (see [6],
[18], [22], and [23]).
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Similarly, we obtain

(38) szk+1 +2)(k + 3)2K

75290 log2+112 logn—&—logA—fl C—l—%,
(39) 1;2 k(k + lg)((kk)Jr 2)2k
:_%+2mgmy—ﬁ—21 fﬁ%
(3.10) ézg@%%ﬁzz—%+éi%2+;kgn—3bgA

which is recorded in [8, p. 109, Eq. (2.23)];

:—7+ log 7,

(3.11) f:

k=2

which is also recorded in [8, p. 109, Eq. (2.21)].

We remark in passing that the various series identities presented here
are potentially useful in deriving further identities for series involving the
Zeta and related functions. For example, if we replace ¢ in (3.2) by —t, we
get

(3.12) (-1)

={(-l,a—1t)={(~1,a) + B—a—log I'(a) —s—% log(zn)}t

2

~[I+v@y (< Jal).
And since [7, p. 164, Eq. (2.8)]

(3.13) Is(a) = (hwﬂ“mﬁm%—l+aphw+o—@(m@}

12

by making use of the following consequence of Hermite’s formula for {(s,a)
(see [24, pp. 270-271)):
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{'(0,a) = %{C(s, a)}],—o = log I'(a) —% log(2n),

the series identity (3.12) can be written as follows in an equivalent form
involving the double Gamma function I7%:

(3.14) ] (—l)l‘k%{kfi)tk“ = (1 —a) log I'(a) — log I';(a)
=2

+(+a—-1)logI'(a+1t)+log In(a+1)

1 1
+ E—a+§ log(27) —log I'(a) |t

2

“W@+15 (< a),

which was proven, in a markedly different way, by Choi and Srivastava [8§,
p. 108, Eq. (2.14)].

Finally, we deduce yet another interesting identity by suitably combining
the special cases of (1.10) when ¢ =1 and a = 2. By applying (1.7), (1.8), and
the familiar relationship:

1
lﬁ(l/l) = _V+ % (n € N)a
k=1
we thus find that
0 tn+k (71)n+1
3.15 = 1—10)"log(1—¢
G193 gm0 el =
n _1 n+k n
+Z ( n)' (k)(Hn —H,,,k)tk (Jtf < 1; neNp),
k=1 :

which, in the special case when n = 2, is a known result recorded (for example)
by Hansen [15, p. 37, Entry (5.7.40); p. 74, Entry (5.16.26)].
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