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ABSTRACT. A singular perturbation problem for a reaction-diffusion equation with a
nonlocal term is treated. We derive an interface equation which describes the dynamics
of internal layers in the intermediate time scale, i.e., in the time scale after the layers are
generated and before the interfaces are governed by the volume-preserving mean
curvature flow. The unique existence of solutions for the interface equation is dem-
onstrated. A continuum of equilibria for the interface equation are identified and the
stability of the equilibria is established. We rigorously prove that layer solutions of the
nonlocal reaction-diffusion equation converge to solutions of the interface equation on a
finite time interval as the singular perturbation parameter tends to zero.

1. Introduction

1.1. Nonlocal reaction-diffusion equation. As a model describing phase sep-
aration in binary mixtures, Novick-Cohen proposed the following equation,
called the viscous Cahn-Hilliard equation (cf. [16, 17]):

{ocuf = —A(EAu® + f(u®) —uf), >0, xeQ,
out/on = 0Au®/én = 0, t>0, xedf.

In (VCH), @ is a smooth bounded domain in RY (N >2) and n stands for
the outward unit normal vector on the boundary 0Q2. The function f is
derived from a smooth double-well potential W; f(u) = —W'(u), a typical
example being f () =u—u?. The constants o and ¢ are some small positive
parameters. In particular, u®=u®(z,x) represents, for instance, an order
parameter (or the concentration of one of the components) in the mixture, and
the term Au; is regarded as a viscous effect. If the viscous effect is negligible,
then (VCH) is reduced to the well-known Cahn-Hilliard equation.

For (VCH), Rubinstein and Sternberg treated in [18] the case where o — 0,
and they derived, by formally setting o = 0, the following nonlocal reaction-
diffusion equation

(VCH)
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1
||
ou®/on = 0, t>0, xe i,

ul = e Au® + f(u®) J SW®dx, t>0,xeQ,
Q

(1.1)

where |Q| stands for the volume of Q. Because of the presence of the nonlocal
term and no-flux boundary conditions, the spatial average of the solution u® is
preserved:

%'JQ u®(t, x)dx = éjg u®(0, x)dx, t>0.

Rubinstein and Sternberg discussed in [18] the dynamics of the solution u*
for (1.1) by employing the method of matched asymptotic expansions and the
method of multiple time scales. According to their results, the dynamics of u*
consists of three stages and is roughly summarized as follows.

1: The solution for an appropriate initial condition generates sharp in-

ternal transition layer in a narrow region of O(g) near an interface.

2: The interface begins to evolve according to a certain motion law,
called an interface equation. The interface equation is given by (2.15)
in [18].

3:  Further evolution of the interface is governed by the so-called volume-
preserving mean curvature flow (cf. (3.2) in [18]). The interface is
driven in such a way that the volume enclosed by the interface is
preserved and the area of the interface decreases. Eventually, the
interface tends to a single sphere.

Let us refer to the dynamics in the stage 2 above as intermediate in the sense
that it occurs after the formation of layers and before the volume-preserving
mean curvature flow is effective. Our results in this paper are concerned with
this intermediate dynamics.

REMARK. As the interface in the stage 3 eventually approaches a sphere,
it is known that the corresponding layer solution with spherical shape (called
the bubble solution) drifts toward the boundary of domain 0 with expo-
nentially slow speed without changing its shape. Such a motion is called a
bubble motion. For more detail of the motion, we refer to [23, 24] by Ward
and the references therein.

1.2. Interface equation. In order to capture the intermediate dynamics for
(1.1), it is adequate to rescale ¢ in (1.1) by ¢ — ¢~'t and consider the following
problem:
1
|€2]
ou®/on =0, t>0, xedR.

eut = e Au® + f(u® u®)dx, t>0,xeQ,
p 24 “)d. 0 Q
Q

(RD)
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We present in this subsection a formulation of the interface equation which
corresponds to (2.15) in [18]. Throughout the remaining part of this paper,
an “interface” means a smooth, closed, (N — 1)-dimensional hypersurface
embedded in Q < RY, staying uniformly away from 0Q.

To give a precise expression of the interface equation for (RD), we recast
the equation in (RD), by introducing an auxiliary variable v e R, as

(1.2) el (t,x) = e Au’(t,x) + f(u(t,x)) — v%(1)
with

() = L u®(t,x))dx
(1.3) v(1) == |.Q|J9f( (1,x))dx.

In this paper, we will work under the following conditions for the nonlinear
term f(u) — v as a function of (u,v) € R?.
(A1) The function f is C* on R and the nullcline {(u,v)|f(u) — v =0}
has three branches of solutions

¢ ={(u,v)|lu=h"(v),vel = (v,0)}
¢ ={(u,v)|lu=h"(v),vel :=(-00,0)},
( u=nh

6% = {(u,v)| ‘), vel" =1 NI" = (v,0)},

with A~ (v) < h%(v) < h*(v) for ve .
(A2) The following inequalities hold:

f'(h*(v)) <0 on I*, or equivalently /4 (v) <0 on I,
(A3) Define #(v) by

ht(v)

Jv) = J/(\) f(u) — v du, vel®.

Then there exists a unique point v* € 7' such that #(v*) =0 and
J'(v*) <.
Under the assumptions (Al) and (A2), it is known [9] that the following
problem

Q.- +¢c0-+ f(Q)—v=0, ze(—o0,0),
-y { Gt = iy, 000

has a unique smooth solution (Q(z;v),c(v)), where ve I’ is regarded as a
parameter. Along the line of arguments employed in Fife [8], the interface
equation turns out to be

(1.5) v (1) = co(r)),  t>0, xe ()
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Fig. 1. Profiles of nullcline {(u,v)|f(u) —v=0}.

II
<

N

In (1.5), I' is the interface deviding  into two subregions Q* such as
Q=0 UruQt, and v(x;I') stands for the normal velocity of I" at xe I" in
v-direction with the unit normal vector v(x;I") on I' at x € I' pointing into
the interior of Q. The function v(¢) € I' is interpreted as the limit of the
nonlocal term vé(¢) as ¢ — 0.

Since the interface I'(¢) driven by (1.5) is regulated by the unknown
function v(#), we need to derive another equation for I'(f) and v(z). To this
end, we employ the following conservation property of the solution u* to (RD):

(1.6) % (|£12—| L) ut(t, x)dx) =0.

According to [8], the profile of the solution u*® with ¢ « 1 is expected to be of
the form

u(t,x) =~ h*(v(1)), t>0, xe Q).

Substituting this into (1.6) and using (1.5), we can calculate

d &

O—Ejgu (1, x)dx
d d

=_ h(v(t dx—i——J I (v(t))dx
dljw s+ G| )

= J h, (v(2))o(t)dx + J = (0(0))v(x; 1(1))dS{"
Q (1)

I(n)

; : . I . d
+ Lm) hy (v(2))o()dx — J I (u(2))v(x; T(2))dSTO ( ._ E)

(1)

= [h, (w(O)|Q ()] + B (@) (Do) — (A (w(2)) = A~ ((0)]e(w()| T (1)),
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where dS’, |I'| and |Q*| are the volume element of I" at x € I, the surface area
of I' and the volume of QF, respectively. Since /hf(v(r)) < 0 for v(t) e IV (cf.
(A2)), we obtain

(1.7)

h*(v(l))| —h~(v(1)) ()| (1)), t>0.

8(1) = h-
Iy ()17 ()] + ki (0(1)) |27 (1)

The interface equation for (RD) is now explicitly represented as the
following system of equations:

(x; (1)) = c(v(r)), t>0,xel(1),
(IE) 0(2) = h(v(2); L)) (1)], >0,

where the function A(v; ") is defined by

ht(v) — h™(v)

(1.8) h(v; I') := hy (0)|Q7| + kit (v)|Q7F]

vel.

The interface equation (IE) is essentially an initial value problem for a system
of ordinary differential equations (cf. (2.7) below), and also arises as the lowest
order compatibility condition in our construction of approximate solutions (cf.
§3.4 below).

Let us heuristically describe the interface dynamics for (IE). By the
property of ¢(v)

(1.9) c<u>——(J” [Qz(z;v)]zdz)_lf(v) 0w ()

- <0 on (v,v"),

and the fact that i(-;I") <0 on I° (cf. (A1)-(A2)), we find the following:
(i) ve(@ o) =v>0, 2<0;
I'(t) evolves in such a way that the bulk region Q7 (¢) grows
uniformly, and v(¢) decreases monotonously toward v*.
(ii) ve(vv*)=v<0, 2>0;
I'(t) evolves in such a way that the bulk region Q7 (¢) shrinks
uniformly, and v(¢) increases monotonously toward v*.
(i) v=v"=v=0, 0=0;
I'(¢) and v(¢) do not evolve.
This description associated with the intermediate dynamics is the same as that
in [18]. Then a natural question arises:
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Does the interface equation (IE) have any solutions? Does a layer
solution of reaction-diffusion equation (RD) converge to a solution of
the interface equation (IE) as ¢ — 0?

We will show that the answer to this question is affirmative.

1.3. Main results. We are now in a position to state our main results. The
first result is concerned with the unique existence of solutions and the stability
of equilibrium solutions to the interface equation (IE).

THEOREM 1.1.  Suppose that the initial pair (o, vy) satisfies

(S1) Iy is smooth and divides Q into two subdomains Qoi such as
Q=0Q,Ur)yuQ,

(S2) vy lies in the open interval 1" = (v,0),

(S3) my given by

oy 120l e 190
my :=h (v)|Q| + I (vo )|Q|

lies in the open interval I" = (h™(v*),ht(v*)).
Then the following statements hold:

(1) There exists a constant T >0 such that (1IE) has a unique smooth
solution (I",v) satisfying |Q*| >0 on the time interval [0, T].

(2) There exists a neighborhood I* = I° of v* such that for (Iy,vo)
satisfying (S1)—(S3) with vy € I*, the unique solution (I",v) in (1) is
defined on [0, 00). Furthermore, there exists a smooth interface I'*
such that

tim (7°(0). (1)) = (I, v").

(3) A pair (I'y,vo) is an equilibrium solution of (1E) if and only if vy = v*.
Moreover, the equilibrium solution (I'o,v*) is asymptotically stable
(relative to the system of ordinary differential equations (2.7) below).

For small 6 >0, let I'(1)° denote the d-neighborhood of the interface
Ir(:

(1) = {xeQ|dist(x, I'(t)) < 5}.

We also let

rp= U {xra’

tel0,T]

Qr = {t} x Q*(¢)
te(0,7]
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The second result is concerned with the existence of layer solutions of (RD)
which converge to a solution of (IE) on a finite time interval.

THEOREM 1.2. Let (I',v) be the smooth solution of (IE) on a time interval
[0,T). Then there exists a family of smooth solutions u® to (RD) which satisfies
the following property:

£i_r}3 u® = h*(v) uniformly on Q\I'9 for each § > 0.

This paper is organized as follows. In §2, Theorem 1.1 is demonstrated.
§3 and §4 are devoted to the proof of Theorem 1.2. In §3, approximate
solutions to the problem (RD) with an arbitrarily high degree of accuracy are
constructed by means of matched asymptotic expansions. More precisely, the
following proposition is demonstrated:

ProposITION 1.3, Let (I',v) be the smooth solution of (IE) on a time
interval [0,T). Then for each integer k > 1, there exists a family of smooth
approximate solutions u’ of (RD) which enjoys the following properties:

ou’ 1

1.10) max||e — &M — fud +—J u®))dx = 0",
(110)  manl T a) + gy | spa] =06
(1.11) %‘:o on [0,T] x 09,

(1.12) lim u% = h*(v) uniformly on Q\I'S for each § > 0.

&—0

The construction of approximate solutions consists of five parts;

(1) outer expansion (§3.1),

(2) inner expansion (§3.2),

(3) expansion of nonlocal relation (§3.3),
(4) C'-matching (§3.4),

(5) uniform approximation (§3.5).

In §4, it is shown that there exist true solutions of (RD) near the ap-
proximate solutions constructed in §3. Namely, the following proposition is
established:

PrOPOSITION 1.4. Let u% be the family of approximate solutions in
Proposition 1.3. Then there exists a family of smooth solutions u® of (RD) such
that

1.13 max [|u® — u |0 q < MeF3N

( ) [0772](”“ “A”L«(Q) = Me )

where M > 0 is a constant independent of ¢ > 0, and p is a constant satisfying
p = 3N.
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Theorem 1.2 follows from these two propositions, Proposition 1.3 and
Proposition 1.4. Since the comparison principle is not applicable to the
problem (RD) (cf. [3, 12]), we will establish Proposition 1.4 by employing a
method based upon a spectral analysis as in §4.

Finally, we give in §5 an overview of application of our approximation
method to the dynamics in the stage 3 (cf. §1.1). It is described by the
following time-rescaled equation with slower time scale

1
||
out/on = 0, t>0, xe i,

etut = 2 Au + f(u®) J SfWhdx, t>0,xeQ,
Q

(RD-s)

and the corresponding interface equation is the volume-preserving mean
curvature flow

1

(IE-s) Vs I'(0) = =l I(0) + Trey

J (e T())dS T,
()

Here, the symbol «(x; I') stands for the sum of the principal curvatures of I at
x € I' and its sign is chosen so that it is positive if the center of the curvature
sphere lies in Q7.

The convergence of (RD-s) to (IE-s) as ¢ — 0 in a radially symmetric
setting was earlier established successfully by Bronsard and Stoth [3], in which a
variational method was employed. Our approximation method developed in
this paper gives another approach to some problems with nonlocal effects, as
well as to higher order equations such as the viscous Cahn-Hilliard equation
(VCH).
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2. Analysis of interface equation

In this section we prove Theorem 1.1. For ¢ > 0, we assume that I'(7) is
expressed as a smooth embedding from a fixed (N — 1)-dimensional reference
manifold .# to R":

(2.1) wWt,): M - T(t) cQ, M>y—x=7y(ty)ellt).
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Let v(t, ) e RY be the unit normal vector on I'(f) at x = y(z, y) pointing into
the interior of Q7 (7). We normalize the parametrization (2.1) in such a way
that y, is always parallel to v (cf. [6]). A point x e I'(f)° is uniquely rep-
resented as

(2.2) x=F(t,r,p) = (1, ) +r(t, )

by the diffeomorphism F(z,,-) : (=6,0) x .4 — I'(1)°. 1In particular, (2.2) gives
the transformation of coodinate systems (z,x) < (t,r, ).

Let G(t,r) = (Gy(t,r)) (i,j=1,...,N—1) be the Riemannian metric
tensor on ./ induced from the metric on I'(1)° by F(z,r,-), and the contra-
variant metric tensor is denoted by G(t,r)"' = (G¥(1,r)). We set

N-1 N-1

J(t,r,y) H 1+ rici(t, y)) Hi(t, y)r'.
i=0

—_—

i=

Here x;(z,y) (i=1,...,N —1) stand for the principal cuvatures of I'(z) at
0

x=7y(t,y), and H; (i=0,...,N —1) are the fundamental symmetric functions
of Kly...,KN_1:
(23) Ho=1l, Hi=k:=Kx1+ - +Kky 1,..., Hy1=kK1---Ky_1.

(1) Following the treatment of Sakamoto [19], we recast (IE) as an initial
value problem for a system of ordinary differential equations.

For a given initial interface Iy, let us express the interface I'(f) as the
graph of a function r(¢, y) over I'y:

24) I ={xeQ|x=7y(y)=0,) +rt,y)0,y),y e .4}

Then an elementary calculation yields that v(z, ) = v(0, y) and r(z, y) = r(2).
Since v(x; I'(¢)) = y,(¢, ¥) - v(t, ), the first equation in (IE) is recast as (¢) =

c(v(1)).
By (2.4) and r(¢,y) = r(z), the interface I'(¢) is expressed as

(25) I'(t)={xeQ|x=y(0,y)+r(t)v(0,y), ye.d} =F0,r(t), #).

On the other hand, the surface area of the interface F(0,r,.#) is given by

N-1 )
26) WO =g0) = | 005 =3 ([ m0.5as0 )

i=0
where def(r") stands for the volume element on .# induced from dSer on the
interface I'(f) at x = y(¢, y) by the embedding y(z,-). Thus we have |I'(¢)| =
g(r(¢)) from (2.5) and (2.6).
Furthermore, thanks to the relation
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L0 = - Liar ) = | vesrasi,

(1)
it is easy to verify that the interface equation (IE) gives rise to

g h—(u(t))—“)'[;")' + 7 (o(0) 'ﬁgﬂ”'} =o.

Therefore, we obtain the conservation property

h™(v(r)) |Q|Q(|t)| + It (v(2)) % = my, t>0.

This, together with |Q7 ()| + |Q"(¢)| = |Q|, implies that |Q2%(¢)| are represented
in term of v(¢) alone:

h+(vgt)_m° >0, | =) oo,

— I (v(1)) e (u(0) = b (u(7)

from which h(v(¢); I'(¢)) is rewritten as /(v(¢)), where the function A(v) is
defined by

h(l)) — L [th(U) B hi(u)]z
Q] by () [t (v) = mo] + I (v)[mo — b (v)]

Thus the interface equation (IE) is recast as the following initial value problem
for (r,v):

F=c(v), t>0
(2.7) 0 = h(v)e(v)g(r), >0,
r(0) =0, v(0) = vo.

The statement (1) immediately follows from (2.7).
(2) Let R* >0 be a constant such that the interface F(0,r,.#) is smooth
for all re [-R*,R*]. Then there exists a constant g* > 0 such that

(2.8) g(ry=g*, re[-R",R"].

We now introduce the interval [v* — 7, v* +#] = I' for some # > 0. Since
h(v) < 0 for all ve I, there exists a constant h* > 0 such that

(2.9) h(v) < —h*, ve"—n, 0" +7.

Furthermore, the relation in (1.9) and (A3) yield that ¢(v*) =0 and
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Therefore, there exist constants k*, K* > 0 such that
(2.10) kK'(v—v") <c(v) < K*(v—v"), ve ', v" + 1),
(2.11) K*(v—0v") <c(v) <k™(v—0"), vep* —n,v".
The estimates (2.8), (2.9) and (2.10) yield that

h(v)e(v)g(r) < —w* (v —v"), ve v, v" 41,

where o*:=h*k*g* > 0. This estimate and the equation for v in (2.7)
imply that if vy € [v*,v* + 7], then v() satisfies v(¢) — v* < (v — v*)e™@"". By
(2.11) and the same argument as above, we find that v(¢) for vy € [v* — 7, v*]
satisfies v(¢) — v* > (vgp — v*)e™@"". Therefore, the solution v(¢) starting from
vy € [v* —n,v* + 7] satisfies

(2.12) lo(f) — v*| < |vo — v*|e™ .

Using (2.10), (2.11) and (2.12) in the equation for r, we obtain

*

(2.13) [r(1)] < K

—w*t
e w )

lvp —v*|(1 —e

By (2.12) and (2.13), we find that the solution (r,v) of (2.7) for
v € [v* —n,v" + 7] enjoys

Jo(t) = o[ < oo —v*[e™, [r(0)] < L7[vo — v*],

where L* := K*/w* > 0.

Set #:= R*/L* >0 and I* := (v —n,v* +#). We immediately find that
if vy € I'*, then the solution (r(z),v(¢)) satisfies |r(¢)] < R* for t € [0, c0). Hence
the corresponding interface I'(¢) = F(0,7(¢),.#) is smooth for all 7> 0.
Moreover, it is also easy to show that there exists r* € [-R*, R*] such that
(r(t),v(t)) — (r*,v*) as t — oo. Hence the smooth interface defined by I'* :=
F(0,r*, #) is the limit interface as t — oo.

(3) The relation in (1.9) together with (A3) proves the first state-
ment. To prove the second statement, we linearize (2.7) arround the corre-
sponding equilibrium solution (0,v*). Then we obtain the eigenvalues 0 and
h(v*)c’'(v*)g(0) < 0 because of the fact that h(v*) <0, ¢'(v*)>0 and
g(0) = |I'y| > 0. This completes the proof of Theorem 1.1. O

ReEmMARK. The equation (2.7) implies dv/dr = h(v)g(r), from which we
have

Y odv

(2.14) G(r') = J ot
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where

ri+1

60)= | atpip =3 ([ 0. 3yaso ) L

0 i=0

The relation (2.14) is uniquely solvable with respect to r* € [-R*, R*], and we

obtain
U dy
=G (J —)
Uy h(v)

3. Construction of approximate solutions

In this section, we prove Proposition 1.3. Let u® be a solution of (RD)
with an appropriate initial condition u%(0,-) = uf, (appropriate initial functions
ug will be chosen later, cf. §4.2):

(3.1) eul(t,x) = e Au®(t,x) + f(u®(t,x)) — v°(¢), t>0,xeQ.
Note that v® is related to u® as

(3.2) b(f) = ﬁjﬁ T (tx))dx, 120,

For ¢ > 0, we define the interface I'*(f) as a level set of the solution u*.
Transition layers are expected to develop near {x e Q|u®(¢,x)~h°(v*)} and
we may identify the point (4°(v*),v*) with (0,0*) in R? by an appropriate
translation. Therefore, we define the family of e-dependent interfaces by

(3.3) I'é(r) :={xe Q|u(t,x) = 0}.
We also expect that I'°(¢) is expressed as the graph of a function over I'(¢):
(3.4) I'’'(t)y={xeQ|x=y(t,y)+ R, y)v(t, ),y € M}.

In terms of (z,r, y), the differential operators 0/d¢, 4 and the volume element
dx transform as follows:

0 0 0 4
E—)g—yt'VE—rvt'(DyF)G Vy)

2 N—-1
(3.5) A go, 1 3

A

0
or? Or  \/det G 5= 0y’

L=

(\/det GG/ i) ,
Oy./

dx = J drdS, (ds, = dS;'(fv')).
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Here K(t,r, y) is the sum of the principal curvatures of the interface F(¢,r, .#)
at x =F(¢,r, ), and is given by

K(try):NZ Ki(lvy)
Y i—1 1+r’€i<tay>.

We note that K(z,0,y) = x(t, ).
3.1. Outer expansion. Let Q“*(¢) be the components of Q separated by the

interface I"°(7) such as Q = Q> (1)U T*(r)UQ>"(r). We substitute the formal
expansions

(3.6)  Ui(L,x)=U"(,x) =Y UM (rx),  v'() =) &v/(1)

j=0 j=0
into (3.1) in order to approximate the solution away from the layer region.
Equating the coefficient of each power of ¢ in the resulting equation, we obtain
the following equations:

(3.7) FUY) =0 =0,
(3.8) U UL = o' + UOE,
(3.9) f’(UO’i)Uj’i — —l—F}i, =2

Here Fjir stand for terms depending only on U™* (0 <m < j), and are
explicitly given by

F}i = U[-i—l.i —AUIT2E % % (Z gmUm,+>

m=>0

+ f(UOH) U,
e=0

As a solution of (3.7), we choose
(3.10) U%E(t,x) = UY3(t) = 12 (0°(r)),  x e Q*(p).

Once we make this choice, U/* (j > 1) can be successively expressed, by (3.8)
and (3.9), as

(3.11)  U*(t,x) = UME(t) = h=(0°(1))v/ (1) + I/,i(t), x e Q* (1),

with Vji being some functions depending only on v (0 <m < j). Note that
v/ (j > 0) are unknown at this stage and will be determined in §3.4.
Setting

U“E(1) = U (1),

j=0



276 Koji OkADA

and extending U®* up to the interface I'%(¢), we define
(3.12) Uit x) == U5(f), xeQ°*(1).

3.2. Inner expamsion. To describe layer phenomena near r = eR%(t, y) (cf.
(3.4)), we introduce a stretched variable z:=é¢ ![r —eR%(t,y)]. Under this
change of variables, the differential operators and the volume eclement in the
right hand side of (3.5) are replaced as

0 0 OR* 0 0 10 0 0 OR* 0
_——— — — —_— == _— Y — ——
ot 0t o0t oz’ or &0z’ oyt oyl oyt oz’

J drdS, = &J* dzdS,,
where J%(t,z,y) is defined by
(3.13) Jé(t,z, y) == J(t, ez + eR(¢, ), y).
Our problem (3.1) is then recast in terms of (¢,z,y) as follows:
(3.14) ai. + (y, - vt + f(a®) + eRjul — v + 2°u° =0,
ze(—d/e — R*,5/e — R®).
In the equation above, 2° stands for the differential operator defined by

e .__ sa 2 & erve\—1 o eﬁ
9* = K* 4 (24 Ry, (DF)'(GY) <v VR az>

= Ni 2 re 2\ |Vareei (-2~ re, L) |20 L
det G* ; oyt Yoz ayl "V ez or’

i,j=1

where K¢, (DF)°, and G® are functions of (¢,z,y) defined by K, DF and G
with r being replaced by r=ez+eR%(z,y). In terms of (z,z,y), we write
Ué(t,x) as

Ut(t,z,y) == U (6,98, y) + (ez + eR*(1, ) )v(1, ).

By (3.12), it turns out that U? is nothing but the function given by
~ U= (1 —J/e — R%(1, ¥),0
US(I,Z,y): ()7 Ze( /8 (’y)’ )’
Us(1), ze€(0,6/e— R%(1,)).

Let us now seek an asymptotic solution to (3.14) of the form

(3.15) u(t,z,y) = U%t,z, y) + ¢°(¢, 2, »),
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where ¢° is a layer correction. For this, we expand R® and ¢° as
(316) Ra(tv y) = Rl(la y) + 8R2(’7 y) + 82R3(Z7 y) Ty
(3.17) @(t,z, ) = a3 (t,2, ) = U (1,2, p) + 6°% (1,2, )
= IV + Y (1,2,
j=0 j=0
=: Zsfﬁ/’i(t,z, ),
Jj=0

and determine qg-f’i in such a way that #%% in (3.17) asymptotically satisfy
(3.14) for +z € (0,00). We also expand Z° as 9° =}, 208’2, Tt is easy to
find that 29 =0, 9| = x0/0z — 0/0t, and Z; (j > 2) are differential operators
with respect to ¢, z, y depending only on I, R” (1 <m < j). Substituting the
formal expansion (3.17) and the expansion for v* in (3.6) into (3.14), and
equating the coefficient of each power of ¢ in the resulting equation, we obtain
the following equations for #/'* in +z e (0, 0):

(3.18) %+ (- v)i °++f(°+) 0’ =0,
(3.19) @zt + ( vurt + f@° ) (R1 PE !

(3.21) Fit =t —alt,
~ j_l . }
(3 22) %i _ Rtmagfm 4 Z g g/t
m=1 m=1

Note that 97+ depend only on I, R™ (1 <m < j) and a™* (0 <m < j).
Using (3 15) and the fact that U* satisfies (3.14), we also obtain the
equations for ¢/* in +z e (0,0):

(3.23) PUE+ (7 V)P E + f($7F +hE") — o0 =0,

(324) GLE+ (P E+ PO+ REWO)FIE+GE =0, =1,

where féji are functions given by
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J _ J B
7+ j—m, + j—m, +
GE=> RIGITELY D0t
m=1 m=1

]1' ;,l:/ [ (Z oM ¢m + U"’h*)) _f<z EmUm’+>

m=>0 m=0
TP+ 1)),

We impose the following boundary conditions for j > 0.
(i) Boundary conditions at z =0 (interface conditions, cf. (3.3)):

e=0

(3.25) @ (1,0,y) = U(0) + ¢7%(1,0, y) = 0.
(i) Boundary conditions at z = +o0 (outer-inner matching conditions):
(3.26) ¢/1(t,z,y) =0  exponentially as z — +oo.

Lemma 3.1, Let (Q(z;v),¢(v)) be the unique solution pair of (1.4). If the
condition y, - v = ¢(v°) is satisfied and the solutions ¢** of (3.23) are chosen so
that

(3.27) §7E (1,2, y) = 0z 0°(0) = *(0°()), 2 € (0, 0),

then the boundary conditions (3.25) and (3.26) are valid for j=0. Moreover,
there exist unique solutions ¢** of (3.24) satisfying (3.25) and (3.26) for each
j=1

PROOF. When 7, - v = ¢(v°) and ¢%* are given by (3.27), they satisfy the
boundary conditions (3.25) and (3.26) (j =0) thanks to (1.4).

We next consider the equations (3.24) (j =1). The equations are recast
as

(3.28) gt () + 110050 + G =0,
where
(3.29) G = (R +10082% = 4% + [/1(0(50°) = [ ()],

To treat this, we use the following result without proof:

N
[

LEMMA 3.2. Let #*(z) be continuous functions and consider the following
initial value problems:

{ uf + cuf + f1(Qut + #* =0, +ze(0,0),

(3.30) wE(+0) =0, ut(0) = ut,

where (Q,c) satisfies (1.4). Then the solutions u*(z) of (3.30) uniquely exist,
and are given by
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+ — ug _ : e_({ ¢ e dnd
W (2) = 0-() [QZ(O) o @ )., <ot manac .
If #*(z) decay exponentially as z — +oo, then u™(z) decay exponentially as
z — t+o0.

Since féli in (3.29) decay exponentially as z — 400, we can apply Lemma
3.2 by setting as #*:=%; and uf:=-U"* so that we obtain unique
solutions ¢§1,i of (3.28) which decay exponentially as z — +o0.

For j > 2, we proceed by induction on j. Consider the j-th equations in
(3.24). The equations are recast as

(3:31) L5+ ()L + 11000+ GF =0
with
amy i -Ymirne s Sagen

m=1

“r% % lf(Zem(ém,i + Um,i)) _f(Z&,mUm,i>

m=0 m=0

e=0
— (050 *.

Let us suppose that ¢§m~,i (0 <m < j) decay exponentially as z — +o0. We
note that the first line of (3.32) depends polynomially on ¢~m,i 0<m<)),
while the second and third lines consist of the term [f”(Q(-;v°))—
f'(hE(0°)]U7* and a polynomial in ¢"™* (0 <m < j). Therefore g+ decay

exponentially as z — +oc0. Lemma 3.2 with #*:= g and “6 =-U/t
again implies the unique existence of solutions ¢/’+ to (3. 31) with exponential
decay as z — +oo. ]

3.3. Expansion of nonlocal relation. In this subsection, we deal with the
nonlocal relation (3.2).

Lemma 3.3.  The relation (3.2) is recast as
(333)  US[Q |+ USHQY = (U — U)2% + 5% 4 O e 1)

Sfor some n > 0. The functions P*(t) and S°(t) are given by

H;
(3.34) P = J (eR?)'MdS,,
i>0 A i+ 1

(3.35) A ;:J J (B2 + (7, - V)@° + eR P? + D*¢?|J* dzdS,.

—o0
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ProOF. We first rewrite the right hand side of (3.2) as

(uf _L ¢ L & _ e
@Lﬂ” (hx)dx =155 Jgf(U (1)) + 1o L(,)&[f(” (t,%)) — £(U*(t, x))]dx

1 . )
+@JQ\F(!)d[f(u (1,x)) = S (U* (2, x))]dx

and explicitly compute N/ as follows.
By (3.12) and the fact that U®* are spatially homogeneous and satisfy
(3.1) in %%, N becomes

& __ L & — L &+
Ny = Q|JQ&([)f(U (1))dx + |Q|JQ‘H(r) S(U™(1))dx
= L &= &= L &+ &+
~1q] (U= (@) + Q] (Uer (@)L (1)
_ 1 . . - eR*(t,y) I
= @(v (1) + U (1)) <|.Q (0| + J// Jo J(t,r, y)dr Sy>

M J0

L e 7o) [ 1@ e drdS
+ g 0°0) +2U <r>>< (r)%” J(t,r,y)dr )

=v'(1) +ﬁ(U£”(I)IQ‘(I)\ + U ()27 (1))

&

g (00 = U ()20,

As for N, we can compute it by rewriting in terms of (z,z, y) so that

P Jd/e—R:(1,y) ~ s
N :_J J [f(@(t,2, ) = f(U(t,z, )| (¢, 2, y)dzdS,
121 )i ) 5/—re1,y)
S/e-R* } . }
— | [ G ki N s,
|Q M J—d/e—R?

&
= — S0 + ),
12|
since #° and U°® satisfy (3.14) and ¢° = O(e"Fl) for some 5 >0. We
immediately have Nj = O(e‘”/g)ﬂ since the solution u® is O(e "/*)-near of
outer solutions U»* on Q\I'(r)°. The relation v(r) = N + Ni + N¥ yields
(3.33). O
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Using the expansion (3.16) and the definitions (3.13) and (3.34), we first

expand J¢ and 2¢ as

i>0

(3.36) Ji(t,z,y) = ZHi(t, ») (62 + ngRf(z, y)) = Z,g/]/(t, Z,9),

j=1 j=0

i+1
(337) 96([) = Z Jl/% (Zijj(L y)) dSy = Zgj@j(l‘),

i>0 j=1 j=0

where H; (0 < i< N — 1) are the same as in (2.3) and we define as H; = 0 for

i > N. We immediately find in (3.36) and (3.37) that
J'=1, J'=«kR'+kz,

=0, 2! :J R' ds,.
M

For each j > 2, one can find that J/ and #/ depend on I', R" (1 <m < j),
including R/ as kR’ and [, R/ dS), respectively. We expand .#° in (3.35) as

IH1) =328/ 7 (1), where #7 (j = 0) are given by

0 ~ ~
(3.38) s [ g1 deas,

— 0

4 j j B0 + (7, 1010 dzds,,
M J0

and for j>1,

. 0 ~ ~ .
(3.39) I = J/{J (0%~ + (y, - v)¢2 ]I/ d=dsS,

— 00

+ J 627 + (7, - )@ 717 dzdS,

X
f=]

m

J 0
2L Loy

+3 " gt ] T dzds,
=1

+XJ:J//J:

m=1 "M

e S R DD
=1

+ 9,&””-*] JITM dzdS,.
I=1
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Substituting the expansions for U¢, #° and #° into (3.33), and equating the
coefficient of each power of ¢ in the resulting equation, we obtain the following
equations for j > 0:

J
(3.40) UrtlQt |+ Ut =y (Ut = U )2 g
m=0

3.4. C'-matching. We show in this subsection that (I",v°) and (R/,v’) can
be chosen in such a way that the following C!-matching conditions

(3.41) (1,0, ) = al " (1,0, y)

and the equations (3.40) are both satisfied for all j > 0.

Let us first begin with j = 0 to determine (I",v°). Since the problem (1.4)
has the unique smooth solution pair (Q(z;v),c(v)) for veI’, the equations
(3.18) together with the boundary conditions (3.25) and (3.26) (j =0) have
unique solutions which satisfy #% (1,0, y) = a%*(¢,0,y) if and only if

(3.42) 7o v=c(), Vel

When (3.42) is satisfied, the unique solutions are given by

(3.43) %% (t,z, ) = 0(z;0°(1)), +z €0, 0).

Therefore, ¢** are given by (3.27). By these facts and (3.10), (3.38), J* =1
and 2° =0, the equation (3.40) (j =0) becomes

o0

e (02 |+ 0N = | | (@i + coupazas,
M

= [ (0") = b (0")]e(”)| T.
Thanks to the fact that hF(v) <0 for veI" (cf. (A2)), this yields
(3.44) 0% = h(v’; I)e()|T],

where A(v; I) is the function in (1.8). Thus (3.40) and (3.41) (j = 0) are recast
as (3.42) and (3.44), which are nothing but the interface equation (IE). Once
the initial condition (7°(0),v%(0)) = (I'p,vJ) is given so that the assumptions in
Theorem 1.1 are satisfied, (I",v°) is uniquely determined on a finite time
interval [0, 7).

We move on to determine (R',v'). The equations (3.19) are recast as

(3.45) it 4 calt 4+ f(Q)atE + (RIQ. —v' + #1) =0,

where | := kQ. — 0,#° by (3.21) and (3.43). Applying Lemma 3.2 to (3.45)
and (3.25) with j =1, we find that the equations (3.45), together with the
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boundary conditions (3.25), have unique solutions #'* satisfying @}~ (2,0, y) =
ul* (1,0, y) if and only if

J e“ ;(R}Qz—vlﬁ—%;l)dz:O

— 0

This condition turns out to be equivalent to
(3.46) R (1, y) = ' (@ ()0 (1) + pi (1, »),
where p, is a function depending only on (I",v°) given explicitly by

17, e=0. Q,, dz
JZee(2 '

On the other hand, the equation (3.40) (j=1) is

py =K+

(3.47) vttt |+ Ut et = (Ut - Ut )2 + !

with

0
(3.48) lej J (6% + g (R + 2)d=dS,
M I -

+ (@2 + ¢ F)k(R' + 2)dz=dS,
M IO
’ n 71 17 ~ .
]| el RIGE 4 el — e,
]| W T R+ (g2 - ) dzd,

= I +.5 +5 1+

Employing (3.46) and ¢! ’(t 0,y) = @¢1*(1,0, ) (which are equivalent to the
C'-matching conditions ! ~(¢,0, y) = @l *(¢,0, y)), we closely examine (3.47).

By the expression of outer solutions (3.11) (j =1), we find that the left
hand side of (3.47) is expressed as follows:

ULT1Q7|+ UNTIQT| = [y (0°)1Q7| + A (1)@ 16!
+ (g, (00)]Q7] + i, (o)1 oo
+ Tl + Vet

In the right hand side of (3.47), the first term becomes
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(OO — UO)2" = [t (o) — h‘(vo)]{;oj R' ds,.
M
For the second term .#', the term 7! + .4 in (3.48) is expressed as

0 0

I 47t = Jﬁ J, (0= + cQ.)kR' dzdS, + J{/J (Q-: + ¢Q.)xz dzdS,

—o0

= 1 (%) — b (O))e(e”) j

M

while .7 + 7] becomes

kR dS, — [t (0°) — h~ (")) J/{ K dS)

S} = (U = U )e) T + uﬁ (€00 + py) + K] Q- d=d,

o0

_ J/{ JO (0 —h™ (")) ,d=dS, — J%J (0 — I (o)), dzdS,

—0 0

= (1 (") = b= @) @)t + [ (0°) = Iy (0)]e(®) Ilo!

* 0.0, dz .
V= VD)l 4 () h-(v°>]%v°m
0 ©
(] 0=+ [ 00 e}

Then we arrive at the following equation:

(3.49) 8(1) = J alt, )R (1, y)dS, + b(1)0 (1) + o1(2).
M

Here a and b are some functions depending only on (I",0°), defined by

(%) —h (0%)

v

(3.50) a:=h’ e + @)@+ I (0027 v,

(3.51) b= h(o"; I)e'(0°)|T]

L (0 (0°) = hy (@0)e)T] = (hy, ()27 + hy (o))"
hy )|Q7 | + i (1) Q7] '

The term o, also depending only on (I,v°), is given by
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o] == —h(UO;F)J K dS,
M

o0

+ [y (O))Q7 + O [c<v°> (jﬂ 0. dz> jx s,

0 ©

- (J (Qv — hy (v°))dz + J (Qv — h;(vo))dz) 00|
. :

st o) e T2 o

[7, e=(0.)d.

+ (V= VD)@ = (Fy|Q7 |+ ViR

Hence the equations (3.40) and (3.41) (j =1) are recast as (3.46) and (3.49).

Once the initial condition (R'(0,y),v'(0)) = (R}(»),vl) is given, the
equations (3.46) and (3.49) determines (R',v') uniquely. Indeed, this problem
is reduced to an initial value problem for a system of linear non-homogeneous
ordinary differential equations as follows. From (3.46), it turns out that
R!(t,y) — pi(t, y) is independent of ye.#. Defining R!(f) by

t

(3.52) RU(1):= R'(1.y) — RY(y) - joms, y)ds

and substituting this into (3.46) and (3.49), we obtain

d - , .
SRI(0) = ()0 () = B! (1),

%v%z) = (L alt y)dSy)R%m +b(1)v' (1)

+ Jl/ a(t, y) (Ré(y) + J;pl (s, y)ds> ds, + a1(1)

=: C({)R' (1) + D(t)v' (¢) + Ey (¢).

Therefore our problem is now rewritten as

Dl
det(l) _ B(I)Ul(t)>
(3.53) % — C(ORY (1) + D) (1) + E (1),

RY(0)=0, v'(0)=ruvl.
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This problem has a unique solution pair (R',»') on the time interval [0, 7],
from which and (3.52) the pair (R',v!) is uniquely determined. Consequently,
#"* are smoothly joined at z =0 and give rise to the function #' defined by
al(z) = al*(z) (+zel0,0)).

We will show that the same procedure as above works for each j> 2
namely, the pair (R/,v/) is chosen so that the condition @/~ (z,0,y) =
u/ (2,0, y) and the j-th equation in (3.40) are satisfied. Let us assume that
(R™,v™) (1 <m < j) have been already determined in order to join a™*
smoothly at z=0. We now deal with the j-th equation in (3.20). Since the
functions g:;i in (3.22) depend only on I, R™ (1 <m <) and umE

0<m< j),' they give rise to the smooth known function % defined on
(—o0,00). Thus the equations (3.20) are recast as

(3.54) = + cil® + f1(Q)a* + (RIQ: — v/ + %) = 0.

Applying Lemma 3.2 to (3.54) and (3.25), we find that the equations (3.54) with
(3.25) have unique solutions #/* satisfying #/'~ (7,0, y) = u/ (2,0, y) if and
only i

J v eCZQZ(R,jQ; —v/ + %)dz =0.

— 0

This condition is equivalent to

(3.55) Ri(t.y) = ()0 (1) + py(1, »),

where p; is computed in terms of functions which have been already known.

Let us next rewrite the j-th equation in (3.40) by employing (3.55) and the
condition ¢/~ (1,0, y) = ¢/ (,0, y). For this purpose, only the terms including
the pair (R/,v’) are expressed explicitly, and we simply denote by “--.” the
other terms with indices less than j. Then the left hand side of (3.40) is
represented, by (3.11), as

U.f’_|.Q_‘ + U«/%+|Q+| — [hL—(UO)LQ—l +h:—(vo)‘9+|]uf
+ (o, (V)] Q7| + B ()| F )6 0 4 - -

In the right hand side of (3.40), the first term is expressed, by 2/ =
[y R dSy+--, as

J
2:((]111‘7L _ Um,f)@jfm — [/’l;r(l)o) _ h;(UO)]bOJ R/ dSy e
=0 M

while .#/ has the following expression thanks to (3.39) and J/ = xR/ + ---:
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o0

0
g/ = J J (8% 4 c¢® )/ dzdS, + J J (@%T + cg®T)J/ dzdsS,
M M

—0 0

0 ~ . ~ . .~
+J J (¢ + el + RI$> +--)J° dzdS,
M J—0
o ~ . ~ . . o~
+J J (" + el + RIGOT 4 - )T dzdS, + - --
M0

:J JO (% + ()% ) (kR + - -)dzdS,
M I -0

+ (@2 + ()% ) (KR' + - - -)dzdS,
A Jo
0 rgi ~i .~
+ (9L + ()L™ + ' (W)/42 " + - )dzdS,
J -0
+ ‘ (~é,_;+ +c(vo)¢§£.+ + c’(uo)v*'ql;?’+ + - )dzdSy + - -
o Jo

= [t (%) — b (09)]e(0®) J/{ kR’ dS,

+ [0 (") = hm ()] (W) + [ (0°) = g (0)]e@) I + -

v

Hence we have the following equation from (3.40):

(3.56) /(1) = J_/{ a(t, y)R/(t, p)dS, + b(t)v’(t) + o;(1).

Here a, b are the functions as in (3.50) and (3.51), while o; is a function
calculated by using functions which have been already determined.

By the same argument for j =1 as above, the equations (3.55) and (3.56)
with an initial condition (R/(0, y),v/(0)) = (R}(»),v]) are recast as the fol-
lowing linear non-homogeneous equations for v/(¢) and

t

RI(0) 1= RI(1.) = RY () = | pis )

de(l) . j
- = B(t)v/(1),
(3.57) W0 _ (o)1) + D)ol (1) + E;(1),
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Here the coefficient functions B, C and D are all the same as in (3.53) and the
non-homogeneous term E; can be treated as a known function. Therefore,
once the initial condition (R/(0, y),v/(0)) = (R] ( y),vé) is given, the problem
(3.57) determines (R’,v/) and (R’/,v/) uniquely on the time interval [0, 7).

3.5. Uniform approximation. We are now ready to construct an approximate
solution u%. For each k > 1, we determine (I",v°), (R',v!),...,(R¥ ,vk) by
the procedure described in the previous subsection, and define

Ri(t,y) == R'(t,y) +eR*(t,y) + - + 'R (1, ),

(3.58) Vi (1) == zk:e/vj(t)
=0

We also define the approximate interface I'j(z) by
Li(t) == {xeQ|x =yt y) +eRi(t, »)v(t, ),y € M},

and denote by Q%%() the subregions divided by I7j(r) as Q=075 ()U
i(nUQ;™(r). Using the functions U/* and ¢/* (j =0,...,k) determined
in the outer and inner expansions, we set U5* and ¢5*

k
1) = Zstj’i(t), (t,z, ) Zefqﬁ/’ t,z,y).
j=0

Let ©(r) be a smooth cut-off function defined by

(1, <62,
@(r).—{()? o 0=O=L

and (r(t,x), y(t,x)) € (—9,0) x .4 the inverse map of F(z,-,-) in (2.2). We
now define our approximate solution u% on [0,7] x Q as follows:

(3.59)  ui(t,x) = Uj(t,x) + ¢5(¢,x)O(r(¢, x)), (t,x) €0, T] x Q.
Here Uj and ¢ are given by
Ui(t,x) = UsE(n),  xeQ5%(),

#i1x) = gt (,, ") Rat, y(t,0)), x>).

&

¢%(t,x) is also denoted by ggfl(t,z,y) in terms of (¢,z,y), where z=
e r—eR (1, »)):

5000 = (1= Ri(0.0). ) = Fyl0.2.0)
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We define J§, Z§, ... by the same formula as J¢, Z°,... with R* being replaced
by RY. In particular, #{ and J; are defined as

H. :
P J i GRe) S,
A IZZO //l+1( A) y

7= H () (7 V)5 + e(RE), (F5). + D515 dzdS,

— 00

By our way of construction and the Taylor-Cauchy formula with integral
remainder

1
m(e) = Zaj%m(j)(O) 4 gkt Jo %(1 — 8) m* D (se)ds,

we can easily find that the following approximations are valid:
(i) Outer approximation (cf. §3.1):

U} .
(3.60) max||e—4 — 2AU? — f(U?) + v°, = 0",
o.7]| Ot L7(Q)
(ii) Inner approximation (cf. §3.2):
ous, , , ,
(3.61) max||e 24 — e Au’ — f(uf) + v =0,
(0,7 t Lo (92

(i) Approximation of nonlocal relation (cf. §3.3):
(362 max|U5TIQ7|+ UsIRY = (U5 - U57)25 - 741 = 06H*)

Using these results, we have the following

Lemma 3.4. Let uf, vy be the functions defined as in (3.59), (3.58),
respectively. Then the following estimates are valid:

out
3.63 A72A£7 e & -0 k+1
36 e S | =06,
1
3.64 max|v® ——J u®)dx| = O(eF).
(3.64) max 1 1o || = 0()

ProoF. Let us first prove (3.63). Since uf(t,x) = Uj(t,x) on Q\I(1)°,
the estimate (3.60) immediately yields that
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— 0(8k+1).

a &
s — &y — [ () + 0
a[ LGJ(Q\F‘S)

3.65
(3.65) max

In I'(£)°\I'(1)°%, we can compute as

P+ ()~ — o0
= 24U+ (Uf) v e
FEAP00) + (U] +300) - /(Uf) — P10
= 24U+ (U} oy — e CoA
+820(r) 445 + 270" (V. +&2¢5(0"(r) + 0'(r)4r)

o
ot

)

1
+ ¢50(r) Jof’(Uj + 5¢50(r))ds + £0'(r)¢’v — eO(r)

where the following identities are employed:
r(t,x) = =v(x; (1), Vr(t,x) = v(x; I(1)).

By the estimate (3.60) and the fact that ¢° and its derivatives with respect to ¢,
x of any order are O(e™"/*) for some 5 >0, we obtain

&

0 X X X
e A S Auly — f(uf) + 05

-0 k+1 )
3 (&)

e (Iv)'\[wi/Z)

(3.66) max
[0, 7]

Combining (3.61), (3.65) and (3.66) together, we obtain (3.63).
Let us next prove (3.64). The terms in the left hand side of (3.64) are
recast as

L PR o] o
@Lf(uA)dx—vA —@L[f(UA) —vA}dx+@L2[f(uA) — £ (U%)dx
- ﬁjg[f(Uj) — vgldx + @HLM [f () — f(Uf))dx
+ﬁjr"\r5/z[f(uj) — f(UY)]dx

1 ey \dx
1 RUCORNITAY

= Nj+Ni+Nj+Nj.
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Using (3.60), (3.62) and (3.63), we treat N} + N7 as follows.
Ni+N;
1

2|

o &

1ol

||, — Ay v || g, - agiia + 0
Q 2] Jpar

(U5105 7|+ U5 71257)

e 0/2e—R} - - - .
1) 0 GG, R ). + i s,

+ O(EkJrl)

= g U107+ U5 19| = (U = U)o = ] + 0™
+ 05
= 0(42) + 0(e %) + 0(cH)
= O(c"*).
On the other hand, N3 is computed as

1

Nj=—
el

Jyoponld Wi+ 02000) = (Ul

-5 J . b0 (Jol 103 + 585600 ) ds

= 0(e7?),

and N4 = 0 since u% (¢, x) = U%(t,x) on Q\I'(¢ J Therefore, we obtain (3.64).
4 4 4
[

It is easily verified that our approximate solution u% is smooth on Q.
From Lemma 3.4, we immediately obtain (1.10). It also turns out that uf
satisfies the boundary conditions (1.11) since u%(t,x) = U5*(t) on Q\I" (1)5.
Furthermore, we can verify that

lim u = K*(°)  uniformly on Q;\I'7,
in which (I",v°) is the solution of (IE) on [0,7]. This means that (1.12) is
satisfied, and therefore our u% defined as in (3.59) is the desired approximate
solution. This completes the proof of Proposition 1.3. O
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ReMARK. The spatial average of the approximate solution u% above is not
preserved. However, it is approximately preserved in the following sense:

1 1
@JQ ub(t,x)dx = @JQ u? (0, x)dx + O(e"), tel0,T].

4. Estimates for perturbation

In this section, we prove Proposition 1.4 based on the idea presented in
[11, 20]. For each 7 € [0, T] fixed, let #*(¢) be the linearized operator of (RD)
arround the approximate solution u% obtained in §3:

L = edp + & [ (uh(t,)p — (i (1,)) ).

Here the symbol {-) stands for the statial average over Q. We rescale the time
tin Z4(t) by t =¢’t and seek a true solution u of (RD) as follows:

w'(ele, ) =uh(n, ) +of()(),  tel0, T/,
Our equation (RD) is recast as an evolution equation for ¢°(7)
(4.1) 9 (v) = A (1)9"(v) + N (7, 0°(1)) + %°(7),

[TEEE]

where dot stands for the differentiation with respect to 7 and

A ()= L) = g + e[ £ (i (20, ))g — (2, )],
N, 9) = el f (i (%n,) + 9) — fuh(e®n, ) = [ (e, ))o
= S i(En,) +0) = fuh(e%n,) = £ (i (e%,)) )],

Ro(1) = e | P Ay (&2, ) + [ (6T,) — (f (e, )y — 6Ol

Notice that the following estimates are valid for 7 e [0, T'/&*:

(4.2) Ne(z,0) /e = O(lg]?),
(4.3) 12 (0) | 1 ) = O(°1).

The unique existence of smooth solutions to (4.1) is known, and therefore our
task is only to have an estimate on [lp*(7)l .- (o)
We now decompose a solution ¢¢(7) to (4.1) as

(4.4) 9 (1)) = pi(0) () + 93(7),
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in which ¢f(7) satisfies {¢{(r)) =0 while ¢5(z) € R is spatially homogeneous,
and also decompose the equation (4.1) for ¢*(z) as an evolution equation for
¢;(t) and an ordinary differential equation for ¢i(t):

(4.5) 9i(0) = ()i (v) + N (1, 0{(7) + 93(7)) + R° (1, 95(7)),
(4.6) 95(1) = {#°(7)).
Here #%(t,p,) is given by

4.7)  R(1,9,) := R(1t) — {R*(7)) + A (1),
= A°(1) — (R () + e[ f (i (%, ) — (f (%, ) oy
with ¢, being spatially homogeneous.

4.1. Preliminaries. In order to deal with the evolution equation (4.5), let us
now set up appropriate function spaces.
Let p > 2 and we define the basic space X{j and the domain X} of .27%(7)
by
X§=Lr(QNM,  X{=W>2F(Q)NM,
where M stands for the space consisting of average-zero functions, and
Wszj (Q) is the same as the usual Sobolev space

WP (Q) := {ue W>P(Q)|du/on =0 on 0Q}
as a set, with the weighted norm
(48) Nl y2piey = (Nl gy + (21Dl i) + (1Dl ig))") 7

For o€ (0,1), let X7 be the real interpolation spaces between X and X} (cf. [5,
22]):

X? = (X3, XP),, = (LP(Q), W5 (Q)),, "M

o%Lp ’

where (-,-), , stands for the standard real interpolation method (functor).
Thanks to the weighted norm (4.8), X? enjoy some continuous embedding
properties with embedding constants being independent of ¢ > 0:

O<au<p<l=ueXy— X, (Jull,, < MJulls.

We note that the spaces (L”(Q), Wf; (2)),,, have the following character-
ization as sets (cf. [22], Theorem 4.3.3):

1 1
2, _ p2a
(49) (LP<Q)’ Ws%{)(g))up - Bp,p,,%(g)a 0 <a< 1 (OC 75 §+5>
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Here B) , ,(2) (0 <5 <2) stand for the spaces defined by
B {ue B (2)|0u/dn=0 on 0Q}, 1+1/p<s<2,
Q) = b
D B} ,(Q), 0<s<1+1/p,

with B () being the usual Besov spaces. As for the characterization in the
case where o =1/2+1/2p, we refer to [22].

We also set up weighted Holder spaces Cgp(é) for o € (0, 1), which plays
an important role in the treatment of the nonlinear term ./"°(z,¢) in (4.5).
These spaces are the same as the usual Holder spaces C*(Q) as sets, with the
weighted norm

(4.10) Hu”Cf,p(f_l) e (83/2)N/p||u||L¢(Q) + (83/2)a+N/P[u]C1<§)’
where

|u(x) — u(x")]

[”}C%(fz) = Sup x— x’\“

x,x'eQ,x#x'

In particular, if the relation 20 — N/p > f is valid for some o, f € (0,1), then
X} is continuously embedded in Cfp(é) with embedding constants being
independent of ¢ > 0 (thanks to the weighted norms):

N _ _
(4.11) 2a—;>/>’:>ueX;‘—> Cfp(.Q), ||u\|C£[)(§> < M|ul|,.

4.2. Proof of Proposition 1.4. Let us first treat the ordinary differential
equation (4.6) together with appropriate initial data ¢5(0). We immediately
find that ¢5(7r) is uniquely determined as

(4.12) i) = 05(0) + | A0
We now choose ¢5(0) so small that

(4.13) |05(0)] = O(e"*).

Then (4.12) and (4.3) yield the estimates

|93 (D)| < [p3(0)] + L 12°(0) | = (o) do

T
k+1 k+2
< M8 + + M8 2. 8—2
Therefore, the solution ¢4(7) of (4.6) with (4.13) satisfies

(4.14) lps(7)| = O(e"), te(0,T /.
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Substituting the solution ¢j(r) satistying (4.14) into (4.5), we move on
to deal with (4.5). We simply denote by |- ||, and |- ||, ; the norm of X7
and the operator norm of a bounded linear operator X/ — X, respectively.
One can find that the operator .«7%(t) — .«/*(g) (0 < t,0 < T/&?) consists of a
multiplication operator and an integral operator. In particular, it does not
involve any differential operator. Thanks to this fact, the operator norm of
o/*(1) — o/%(0) has the following characterization.

LemMa 4.1. Let a€[0,1/2). Then there exists a constant M > 0 such
that the following estimate holds for 0 <o <t < T/e*:

(4.15) |.2%(x) — (o)., < Me* (1 — o).

On the other hand, by examining the principal eigenvalue of £*(¢), we
obtain the following

LeMMA 4.2. The operator </%(t) is sectorial for all t€[0,T/e?]. More
precisely, there exist some constants L, >0, 6, € (0,7/2) and M, > 0 such that

p(A(1)) 2 8, :={AeC|A+#e*A, |arg(h — &2A)| < /2 + 0.}

and the following resolvent estimate is valid for all t e [0, T /&%)

S e M,
(4.16) (A= 2%(2) g0 < ¥ LéeS..

— &2’

Lemma 4.1 and Lemma 4.2 allow us to obtain some estimates on

D%(t,0) : X7 — X with @°(-,-) being the evolution operator associated with
the family {/°(t)},c (0, 7/02)-

LemMa 4.3. For 0 <o < f <1, there exists a constant M >0 such that
the following estimate holds for 0 <o <t < T /&%

& L=, 82 T—0
417) @ (7,0), 5 < M(z—0)" PRI () #(0,1),
where K > 0 is a certain constant.

We postpone the proof of Lemma 4.1 through Lemma 4.3 to §4.3, and
treat the equation (4.5) with appropriate initial data ¢{(0). Applying the
variation of constants formula to (4.5), we obtain

T

(4.18) ¢m=¢%m¢@+L¢%mmw@md+@@Mo

+ JT & (1,0)%° (0, ¢5(0))da.
0
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Let p > 3N and choose o€ (1/2,1). Then there exists fe (0,1) such that
20— N/p > f. Therefore, by (4.2), (4.10), (4.11), (4.14) and X} — X{, we
have the following estimates for o € [0, T'/&]:

[-47%(a, pi(0) + 03(a))llo
< Meljpi(a) + 93(0)|| = (o) 91 (2) + 93 (0)lo
< Me([|91(9)l =) + o3 () ) ([lei (o) llo + lo3(a)])
< Me(eM 29 (0)]l, + O)) i (9)], + O("))
< MNP pi(0) 12+ MeF V(14 V) g )], + M)
< ME N2 i ()2 + 52 pi(o)], + £
Moreover, by using (4.3) and (4.14) in (4.7), we have for o € [0, T /&?]
1225 (0, p3())lg < || (0) = <Z*(0) ]l
+ell S (620, ) — < (i (e, ) D llolwi(o)]
< 2(|12°(0) | L+ () + llf ' (i (20, )| Lo o) 05 (0)])
— 0(z2) +50(1) O(e)
< Mgkt

Using these estimates in (4.18), we find that

(4.19) e (D], < 12°(z, 0)]l,,. /|27 (0)l,

T
B 2
+ Mel 3N/ L | P4 (t, G)||o,a||‘ﬂis(‘7)”ada
T
4+ MkH1I3N/ JO ||d5‘7(f,G)Ho,a||("f(‘7)“a<da

# MEGE 1) [ 1050l o

Let r®(r) be the function defined by
) (7)== ||gf ()| e ¢ Bt KT, €0, T/%.
4.20 ¢ ToOll,e®

Then, by the estimates (4.17), we can compute (4.19) in terms of r°(z) so
that
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(4.21)  rf(r) < M(ra(O) + e“*”()Tsl_w/sz (t — 0) *r*(0)*do
0

T Tlfot
+ 8k+173N/2pJ (T _ O_)fara(o_)do_ + M8k+1 . 82(11))
0 — o

< M(rs(O) + 8173N/2PJ (t — o) *r(0)*do
0

T
L k13N /2p J
0

(t — o) "r’(o)do + 6”2“1).
We now choose ¢f(0) so small that

(4.22) r(0) = lpf (0], = O(""1).

Then from the continuity of r%(z) it follows that

(4.23) ré(z) < &k

for small 7> 0. Setting Ty :=sup{te [0,T/e?]|ré(c) <&k for all ge]0,1]},
we have one of the alternatives r*(Ty) =& or Ty = T/e>. Assuming the
former situation is realized, and noting that k > 1, « € (1/2,1) and p > 3N, we
can compute by employing (4.22) in (4.21) so that

1—
Ek _ Ve(T()) < M(EkJrl + 8173N/2p62k IT * 872(17a)
— o

Tlfa
+ 8/(+173N/2p6k . 872(171) + 8k+20<71
—

1—
S 81{ <M8+ ZjilT 181(73]\//2[)4»20{71 + Mgzml)
— o
Ek
< A
2

which is a contradiction. Thus (4.23) is valid for 7 € [0, T/&?], and by (4.20)
we have

lpf (D), < M 8Tk = 0("), w0, T/e).
By employing (4.10) and (4.11), it follows that
(4.24) 105Dl e (@) = OE*N), 20, T/e.

Combining (4.14) and (4.24) in (4.4), we have
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9° (D)l @) < 07 (Dl L= () + lo5(D)]
— 0(£k73N/2p) + 0(8k)
= 03Ny 1 e0,T /6.

Thus (1.13) is obtained, which completes the proof of Proposition 1.4. O

4.3. Proof of key lemmas. In this subsection, we prove Lemma 4.1, Lemma
4.2 and Lemma 4.3.

PrOOF OF LEMMA 4.1. For pe X{ and 0 <o <7< T/e?, we set

ul = (A1) — A%(0))p.

7,0

Then an elementary calculation gives

(4.25) U, (x) = [F} (x)GE (x)p(x) — <FE,GE o)) (T — o),
where

1

F} (x):= Jo I (uh (%0, x) + s(uy(e%T, x) — u’ (e%a, x)))ds,

U o,

G; ,(x) = Jo £, (e2(a + s(t — 0)), X)ds.

Since it is easily verified that F?, and G?, for 0 <o <7< T/&* satisfy
||F‘L'S(7||L/V(.Q) = 0(1)’
1G22y = OC),

we obtain, by (4.25), (4.26) and the embedding X| — X,

(4.26)

(4.27) 4 llg < Me?(z— a)llol);,

which establishes (4.15) with o = 0.

We move on to prove (4.15) for o€ (0,1/2). By virtue of (4.9) and
the relation between Besov and Sobolev-Slobodeckii spaces [1, 22], it turns out
that the space (L”(Q), W;zj’ (2)),,, coincides with W,**?(Q), where W*7(Q) =
W2P(Q) as a set, equipped with the following weighted norm equivalent to the
norm of (L7(Q), W (€))

“«,F:

1/p
P
— P 3/2\20p |u(x) — u(x")] /
||u||W21.p(Q) = <|u||U<Q> + (&%) JJQxQ—|X - x’|N+2‘“p dxdx )
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Let us now compute \|u§70||sz.,7<Q>. From (4.25), we can calculate
(x) —uf ,(x') so that '

H
7,0

u
u;a(x) - u:,a(x,) = [(F:;J(x) - F;;a(xl))Gf,a(x)w(x)
+ FL (X)) (G 4(x) = GF ,(x"))p(x)
+FL,(x) G, (x") (p(x) — p(x"))]e(x - a).

By (4.26) we thus easily find that

ué (x)—ué _(x"|?
(428) (83/2)20(])JJ ‘ 1.0'( ) ]\1-[:72(1 )| dxdx'
oxe  |x— x|
< M[e*(z — )P (If + I} + I})
with
X I’Fs x) — F¢ X/ P
g [ POIE
QxQ |x — x/| VT
X)|?|G? _(x) — GE (X))
g [ OGO G
Joxe |x — x/| 7
Ié = 83o<p ‘(o(x) B (p(x,)|p dxdx’
. Jaxa |x— x/|VPP .

We first examine I{. Let D°:= (Q x Q)\(I'%? x I'%/?), namely,
D’ = [(Q\I°7) x (\T )] U [(\T?) x TPIUT O x (@\P)].
We also define S° = D? by S°:= {(x,x") € D% |x — x| <J/4} and introduce

|u(x) — u(x')]
[Ul] i s6) i= sup @— .
Lip(5%) x,x' €S9 x#X! |X - xl|

It is easily verified that F?, for 0 <o <7<T/e enjoys the following
properties:

(429) [F;;J}Lip(S“) = 0(1),
(4.30) [F! Jenory = O)  for all fe(0,1).

Since o € (0,1/2), we can choose € > 0 so small that 0 < 20+ 6 < 1. Using
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(4.29), (4.30) with f:=20+ 0 and the embedding X{ — X together with
spherical coodinates, we can compute /{ as

dxdx’

F—gw“'wwmﬁAﬂ—ﬁAﬂV
-
S 0

|X _ x/|N+201p

X)|P|FE (x) — F¢ _(x)|)?

+e3“1’” lp(xX)["|F7 5(x) 21,0( )| dedy!

Do\S§o |x — x/| V2P
4 83c{p |(0(x)|p|F‘[£(7<x) - Fre‘a'(x/)‘p dxdx'

o2 2 |x _ x/|N+2“P

P
3apre 1P |(p(x)| /
<eé [FT7(7:|Lip(Sr5) JJS{S x—f x/|N+(2O(*1)p dxdx
|p(x)]”

+ M| FE |7 ” dxdx’

| ) {(x,x") e D% |x—x'|>5/4} |X — x’|N+2°"’

P
3opre 1P |(ﬂ(X)| !
+¢e [Ff,a]cﬁ(fa/z) JJF'S/ZXF'S/Z Ix — x,|N+(2a7ﬁ)p‘ dxdx

dx’
3up P _—
< Mc¢ JQ lo(x)] (JQ |x_x,|N+<2o<1)p>dx
dx’
+Mg3“PJ o(x)|)? J i | AX
QI (x)] onev|za/y [ — x|

!
+ Mg(hf/?)pj lo(x)|” J _ & dx
o Q|X_X/|N+(20t—ﬁ)p

< Mgl + Me> 07 |g||f.

Choosing 6 > 0 so small that « — 0 > 0, we obtain
I < Mlglly.-

For I7, we find that G;, enjoys the same estimates as in (4.29) and (4.30)
for F} _, and therefore I; can be estimated, by the same computations as above,
so that I§ < M||g||?. The estimate I{ < M||p|? follows from the embedding
Xf o X e W20(Q).

By substituting these three estimates for /7 into (4.28), the resultant es-
timate together with (4.27) implies
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1(2°(z) = (ol < Ml[ug ||y ) < Me*(x = )0l

(@
which completes the proof of Lemma 4.1. O

ProorF oF LEmMmA 4.2. We first treat the case where p=2. It is easy
to verify that #*(¢) under the Neumann boundary condition is formally self-
adjoint in L?>(2)NM, and therefore eigenvalues are real. We also obtain by
the variational characterization for the principal eigenvalue 1° of #%(¢) that

2 — 2
2 Jo —elVol™ + &'/ (uf) ]| dx

= sup 5

peW12(2),20, (p>=0 lollz2 ()

2 — . 2

< swp Jo —elVol™ + 1" (uf) ]| dx
- 2

peW2(Q),p#0 ol 220

2 AN

- sup Jrs —elVol” + e " Wi)lpl"dx .
- ) 2 T ’

peWI2(I?),p£0 el 2oy

due to f’(u%) <0 in Q\I'° and |p 12(@) 2 1ol 2oy This says that 4° is
estimated from above by the principal eigenvalue u“ of the Allen-Cahn operator
ed + e 'f'(u%) in a neighborhood I'°. According to the results established by
Alikakos et al. [2] and Chen [4], it is known that x° is bounded above for ¢ > 0
and te€[0,7]. Thus we have A° < u® < p, for some u, > 0.

For 1€ C and a complex-valued function v with zero average, let us now
consider the resolvent equation

6u_

431 — P = .
(4.31) u— Li(tu=v, n 0

Multiplying the equation in (4.31) by the complex conjugate # of u and
integrating over 2, we have

(4.32) iH”HiZ(Q) = (L, 1) 12g) + (#,0) 120,

where the symbol (-,-);>o) stands for the usual L?-inner product. We de-
compose L€C, u: Q2 — C and v: Q — C so that

(4.33) A=1R4idl u=ul 4 i’ v=0vR4 il

We note that the real-valued functions u® : Q@ — R and u/ : Q — R also have
zero average and satisfy the Neumann boundary conditions. Associated with
the decomposition in (4.33), the real part of (4.32) is computed as
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ARH”H%Z(Q) = (fg(t)“Ra”R)LZ(Q) + (L0, HI)LZ(Q)
+ (w®, UR)LZ(Q) + (', UI)LZ(.Q)
< (1" 220y + ' 0)
+ ||”RHL2(Q)||UR||L2(Q) + HuI”LZ(Q)”UI”LZ(Q)
< ,u*(HuRHIZJ(Q) + ||u1||22(9))
+ (112 + e 1 Z2(2) 2 N ® M 72y + N0 1220
< N*H“”iz(g) + llull 20y l0]l 120
to obtain
(4.34) (2% = ) ull ) < I0ll2(g)-
On the other hand, the imaginary part of (4.32) becomes
M ull 2y = — (L5 u") gy + (L5 (0" u") g
+ (uf, Ul)Lz(Q) - (u, UR)U(Q)
= (”Ravl)u(g) - (u17UR)L2(Q)’

where integration by parts and the Neumann boundary conditions are used.
Thus we have

(4.35) AT lull 2y < (10l 2.
Setting 1. := u, > 0, we obtain, from (4.34) and (4.35), the estimate
(A5 = 2) + 12 Mull o) < 2010l (@),
which implies that

M,
(4.36) [ull 20y < m”vnm(g)

is valid for Ae {1e C|A# A, |arg(A — A)| < n/2 + 0.} < p(L%(¢)) with O, €
(0,7/4) and M, := v/2/cos(0, + 7/4).

Once this is established, then we find, along the line of arguments in
Tanabe [21], that the following L7-version (p > 2) of (4.36)
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M,
(4.37) ull ) < mHUHU(m

holds for all 2e {Ae C| 1 # A, |arg(A — 4)| < m/2+ 0.} = p(¥L*(r)) with the
same A, > 0 in (4.36), replacing 0, and M, by other constants. The estimate
(4.16) then follows from (4.37) and the rescale ¢ = ¢*>z, which completes the
proof of Lemma 4.2. ]

ProOF OF LEMMA 4.3. Let o9 €[0,1/2). By Lemma 4.1, it follows that
(4.38) |.2%(x) = A% (0)l)., < Mo*(z — o).

Moreover, from Lemma 4.2 above and Proposition 2.3.1 in Lunardi [14], we
find that for 0 <« < § < I, there exists a constant M = M, g > 0 such that the
estimate

(4.39) el ],y < M= o) P70

is valid. We emphasize that M can be chosen independent of ¢ > 0 thanks to
the weighted norm (4.8). We now define the operator k{(-,-) by

ki(z,0) i= (4°(x) = /(@)=
Then we can estimate k{ by employing (4.38) and (4.39) as

1—0).d (0 2).(1—c
k5 (200, wy < Nl25(x) = (0)ly 4 1€ g < MoMeZe” ).

H],O(o
For this kf, it is known [5] that the evolution operator @¢ is the unique
solution of the integral equation

D¢ (1,0) = T ¢ J D°(1,5)ki (s, 0)ds,

a

and that the solution @° has the unique representation

(4.40) ®%(1,0) = IO 4 J T Okt (s, 6)ds

g

with resolvent kernel k°(-,-). This kernel can be successively constructed
starting from k{. We inductively define k% (-,-) (m = 2) by
ke () 0) = J ke (z, )kE(s, 0)ds.

ag

By the repeated application of the following estimates

T
1.0Vl < | 11525 75, o
ag
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we find, by induction, that

(MoMe*)™

1 T—0
Il . oy < <y (£ @) e
This immediately implies that the series
[ee]
(4.41) (1,0) := Z (7,0)

m=1

converges and that it can be estimated as

0 2 m—1
2,62 (1-0) (MoMe(t — o))

—M()M82 g2 ) +MOM)(‘E O’)

Therefore, there exist some constants M, K > 0 such that the resolvent kernel
k¢ defined in (4.41) satisfies the estimate

(442) (2. )l o, < Maer" e 0e-0),

Let us now examine the norm [|®“(z,0)||, ; by using the estimates (4.39)
and (4.42) in (4.40). Suppose that 0 <o < ff < 1. Then, by using (4.42) with
oo = 0, we have

12°(z,0)ll, 5 < et ||aﬂ+J 1™ g g1k (s, )l 06l

< M(t — 0)* Pt tK)(-0)

M (2 PRI 5, )]
(t—o)”
< M(T _ O') Ot—ﬁe!,‘z().*JrK)(‘L'fﬂ') + M82ez:2(/1*+K)(17(7) T ; Gﬂ

1—
< M(‘L’ _ O') “7[3682().*+K)(T*ﬂ> + ]‘147; ﬂx 820((7,' _ )0( ﬂ e2(L+K)(t—a)

< M(t— G)aiﬂeez(jﬁm(ff").

In the case where 0 < o < ff =1, we choose oy > 0 so small that o > a.
Then we have
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T

1D°(, )1 < el +J e O 1K (s, )] s

o, 0o
a

< M(‘L’ _ O_)d*lesz(/h+K)(rfa)

T
+ MJ (T _ S) aoflea-(m+l<)(r—s) ||k8(S, O') HO,aodS

a

11,2t K)(0) 4 ge2 P UetK) i—0) (F = 0)™
< M(t—o0)" TR 4 Mo HTRITTE
oo
< M(x—g)* e UK 0]
1o
T MT( 7)+3€0 62(@(7&0)(‘[ - O') “71882(2*4»1()(‘[70')
oo
< M(‘L’ _ O_)ocflesz(/l*-&-]()(f—a).
Thus (4.17) is obtained, which completes the proof of Lemma 4.3. O
REMARK. Only the estimates ||®%(7,0)l|,, and [|®*(7,0)], , are used in

the proof of Proposition 1.4. Even if («,f) = (0,1), the norm [[@*(z,a)| ,
can be also estimated, by employing (4.39) and (4.42) with o > 0, so that

@2z, )|y < Me® R[] 4 (- g)7).

5. Discussion

In order to capture the dynamics occurs in the stage 3 mentioned in
§1.1, it is adequate to employ the following equation with the slower time
scale:

e __ & o8 1 o8
(RD-s) eu’ = 2 Mt + f(u’) — @Lf(u )dx.
Let us recast (RD-s) as
(5.1 eu,(t,x) = 2 Au’® + f(u®(t,x)) — v¥(1),
where v¢(f) is given by
S ;
(5.2) vi(t) = 0] JQ f(uf(t,x))dx.

Through the representation 1%(r) ={xeQ|x=y(t, y) + eR*(t, y)v(t, y), y € M},
we substitute the expansions
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RE=R' +eR*+ &R+, 08228-/0/
Jj=0
into (5.1) and (5.2). Then C!-matching conditions and the nonlocal relation
(5.2) also give rise to a series of equations. The lowest order equation is
v" = v*, which means that the interface dynamics of (IE) is in equilibrium in
this time scale.

The first order equation is

7, v=—x+c (v,

1

(5:3) (v ! = —J K dS
i),

which is nothing but the volume-preserving mean curvature flow:

(IE-s) v(x; I'(1)) = —x(x; (1)) + LJ re(oe; T(£))dST.
FAGIRRS *
In contract to the system of equations (IE), we can see in (5.3) that one of the
equations involves the other and consequently the scalar equation (IE-s) is
obtained. It is known [7, 10, 13] that if the initial interface is uniformly
convex, then the solution I'(¢) of (IE-s) exists globally in time and it converges
to a sphere as t— oo. We also mention that the flow (IE-s) can derive
interfaces to self-intersections in finite time (cf. [15]) because of the failure of
comparison principles for (IE-s).
The j-th (j > 2) order equation is

N-1
R/ = (A“” +> K%) RITV 4 /(v )ol + -+

i=0

(v = : J{/aRj’l as, +---,

AR

which is equivalent to the scalar equation

N-1
(5.4) R] = (M +> ;c,.2> R/ + mj oR/dS,+p;,  j=1.
i=0 M

Here the symbol A stands for the Laplace-Beltrami operator on ./
induced from that on I', « is a function depending only on I, and the non-
homogeneous term f; depends only on /" and R™ (1 <m < j). Since the
equation (5.4) for R’/ is non-homogeneous linear parabolic equation with
nonlocal term, the unique existence of solutions are known. Our method of
approximations developed for the equation (RD) also works for the rescaled
version (RD-s).
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