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Abstract. Let Tð1Þ be the Ravenel spectrum whose BP�-homology is BP�½t1�ðH
BP�ðBPÞÞ, and let L2 denote the Bousfield localization functor with respect to v�1

2 BP.

In this paper, we show that the E4-term of the Adams-Novikov spectral sequence for

p�ðL2Tð1ÞÞ has horizontal vanishing line and is the Ey-term. We also find subgroups

of the homotopy groups p�ðL2Tð1ÞÞ.

1. Introduction

In this paper, everything is localized at the prime two. Let BP denote

the Brown-Peterson ring spectrum at the prime two. Then the homotopy

groups p�ðBPÞ turn to the polynomial algebra BP� ¼ Zð2Þ½v1; v2; . . . � over the

Hazewinkel generators vi with jvij ¼ 2 iþ1 � 2. The Ravenel spectrum Tð1Þ
is characterized by the Brown-Peterson homology as BP�ðTð1ÞÞ ¼ BP�½t1�H
BP�ðBPÞ ¼ BP�½t1; t2; . . . �. We consider the spectrum G ¼ v�1

2 BP. Let L2

denote the Bousfield localization functor on the stable homotopy category of

spectra with respect to G. One of the methods to determine the homotopy

groups p�ðL2Tð1ÞÞ is the Adams-Novikov spectral sequence E �
2 ¼ H �v�1

2 BP�½t1�
) p�ðL2Tð1ÞÞ, where H �� ¼ Ext�G�ðGÞðG�;�Þ. We study the E2-term by the

chromatic spectral sequence
P2

i¼0 H
�Mi

0½t1� ) H �v�1
2 BP�½t1� and the mod 2

Bockstein spectral sequences H �M 0
1 ½t1�)H �M 1

0 ½t1� and H �M 1
1 ½t1�)

H �M 2
0 ½t1�. Here, M 0

0 ¼ 2�1BP�, M
0
1 ¼ v�1

1 BP�=ð2Þ, M 1
0 ¼ v�1

1 BP�=ð2yÞ, M 1
1 ¼

v�1
2 BP�=ð2; vy1 Þ and M 2

0 ¼ v�1
2 BP�=ð2y; vy1 Þ. The modules H �M 0

0 ½t1� and

H �M 0
1 ½t1� are given by Ravenel in [7]. In [5], Mahowald and the second

author determined H �M 0
2 ½t1� as the tensor product of the polynomial algebra

Kð2Þ�½v3; h20� and the exterior algebra Lðh21; h30; h31; r2Þ, where Kð2Þ� ¼
Z=2½vG1

2 �. In [8], the second author determined H �M 1
1 ½t1� by the v1-Bockstein

spectral sequence H �M 0
2 ½t1� ) H �M 1

1 ½t1� to be the tensor product of Lðr2Þ and

the direct sum of modules Ai:
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A0 ¼ v�1
1 K=Kl

X
n>1

xnK=ðvan1 Þ½xnþ1�nLðgnþ1Þ
 !

nLðfh20h20Þ;

A1 ¼ v23K=ðv21Þ½x2�nLðh30; h31Þ and

A2 ¼ v3Kð2Þ�½v23 ; h20�nLðh21; h30; h31Þ:

Here K ¼ Z=2½v1; vG1
2 �, an denotes the integer 2n þ 2

3 ð2n � 2eðnÞÞ for eðnÞ ¼
ð1� ð�1ÞnÞ=2, and the elements xn; gn; hi j and fh20h20 denote the cohomology

classes represented by the cocycles of the cobar complex W�
G�ðGÞG�½t1�=ð2; v j

1Þ for

a suitable j > 0, whose leading terms are v2
n

3 ; v
4ð2 n�2�2 eðnÞÞ=3
3 t2

eðnÞ

3 ; t2
j

i and v23 t2,

respectively. Consider the submodule

A21 ¼ v3K
2
� ½v23 �nLðh21; h30; h31ÞHA2;

and put A0
2 ¼ A2=A21 as a module. We see that there is a submoduleeA2A2 ¼ v2v3K

2
� ½v23 ; h20�nLðh21; h30; h31Þ

of H �M 2
0 ½t1�, where K 2

� ¼ Z=2½vG2
2 � and x A eA2A2 is considered to be x=2v1 A

H �M 2
0 ½t1�. Then we show that the map j : H �M 1

1 ½t1� ! H �M 2
0 ½t1� given by

jðxÞ ¼ x=2 is restricted to j : A0
2 ! eA2A2 and then the sequence 0 ! ð eA2A2Þs�1 !d

ðA0
2Þ

s !j ð eA2A2Þs ! 0 for each s > 3 is exact, where ðMÞs denotes the submodule

of M consisting of elements of cohomology dimension s, and d is the con-

necting homomorphism associated to the short exact sequence 0 ! M 1
1 ½t1� !

M 2
0 ½t1� ! M 2

0 ½t1� ! 0. This shows our first result.

Theorem 1.1. HsM 2
0 ½t1� is isomorphic to ð eA2A2 nLðr2ÞÞ

s
for s > 4.

Furthermore, we show that the mod 2 Bockstein spectral sequence splits

(see Lemma 3.6). A summand of the spectral sequence is A0
2 ) eA2A2. It seems

very complicated to determine the other parts A1 ¼ ðA0 lA1 lA21ÞnLðr2Þ
) eA1A1 (cf. [6], [2], [9]).

Let W be the spectrum such that BP�ðL2WÞ ¼ M 2
0 . Indeed, W is the

cofiber of the localization map V ! L1V , where V is the cofiber of the

localization map S0 ! SQ. Then H �M 2
0 ½t1� is isomorphic to the E2-term of

the Adams-Novikov spectral sequence for p�ðL2W5Tð1ÞÞ. We consider the

submodule fA21A21 ¼ v33K
2
� ½v43 �nLðh30; h31ÞHH �M 2

0 ½t1�;

and see that fA21A21 nLðr2ÞH eA1A1 (see Corollary 4.4). We write eA1A1
0 ¼eA1A1=ð fA21A21 nLðr2ÞÞ as a module. We compute the di¤erentials of the Adams-

Novikov spectral sequence on eA2A2 and fA21A21, and then show that the di¤erentials

on eA1A1
0 are zero after a modification of eA1A1

0 (see Corollary 4.8).
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Theorem 1.2. The Adams-Novikov Ey-term for the homotopy groups

p�ðL2Tð1Þ5WÞ is isomorphic to the direct sum of eA1A1
0 and bA2A2 nLðr2Þ, wherebA2A2 ¼ v2v3K

2
� ½v43 �nLðh20; h21; h30; h31Þl v2v3h

2
20K

2
� ½v43 �nLðh30; h31Þ:

Note that we do not determine the structure of eA1A1
0 of the theorem, though

we know that the Adams-Novikov di¤erentials are trivial on it.

By the definition of W , we have the composite h : W ! SV ! S2,

which induces the composite of connecting homomorphisms h� : H
sM 2

0 ½t1� !
Hsþ1v�1

2 BP�=ð2yÞ½t1� ! Hsþ2v�1
2 BP�½t1� in the long exact sequences

HsM 1
0 ½t1� ! HsM 2

0 ½t1� !
d
Hsþ1v�1

2 BP�=ð2yÞ½t1� ! Hsþ1M 1
0 ½t1� and

HsM 0
0 ½t1� ! Hsv�1

2 BP�=ð2yÞ½t1� !
d
Hsþ1v�1

2 BP�½t1� ! Hsþ1M 0
0 ½t1�:

Since we see that both of HsM 0
0 ½t1� and HsM 1

0 ½t1� are zero for s > 0 (Theorem

2.5), we see that the connecting homomorphisms are isomorphisms for s > 0,

and so is h�. In Proposition 4.7, we show that the E4-term is the Ey-term.

Since h� is a map of spectral sequences, we have the results on p�ðL2Tð1ÞÞ.

Corollary 1.3. The Adams-Novikov spectral sequence converging to the

homotopy groups p�ðL2Tð1ÞÞ collapses from the E4-term.

Corollary 1.4. The homotopy groups p�ðL2Tð1ÞÞ contain the subgroups

isomorphic to bA2A2 nLðr2Þ, which is the image of bA2A2 nLðr2Þ under the map

h� : p�ðL2Tð1Þ5WÞ ! p�ðL2Tð1ÞÞ.

In the next section, we show that HsM 1
0 ½t1� is zero for s > 0 by deter-

mining it. In sections 3 and 4, we give proofs of Theorems 1.1 and 1.2,

respectively. The authors would like to thank Professor Xiangjun Wang who

pointed out mistakes in Lemmas 3.3 and 4.3 in a draft version of this paper.

2. H �M 1
0 ½t1�

Let BP denote the Brown-Peterson spectrum at the prime two. Then

BP� ¼ Zð2Þ½v1; v2; . . . � and BP�ðBPÞ ¼ BP�½t1; t2; . . . �, and ðBP�;BP�ðBPÞÞ is a

Hopf algebroid. Hereafter, we write

H �M ¼ Ext�BP�ðBPÞðBP�;MÞ

for a BP�ðBPÞ-comodule M. Consider the BP�ðBPÞ-comodule M 0
1 ¼

v�1
1 BP�=ð2Þ. Then in [7, Th. 6.1.1 and Cor. 6.5.6], it is shown that

H �M 0
1 ½t1� ¼ Kð1Þ�½v2�nLðh20Þ:

Here H �M for a BP�ðBPÞ-comodule M denotes Ext�BP�ðBPÞðBP�;MÞ, Kð1Þ� ¼
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Z=2½vG1
1 � and h20 is the element represented by a cocycle of the cobar com-

plex whose leading term is t2. Consider the Hopf algebroid ðA;GÞ ¼ ðBP�;

BP�½t2; t3; . . . �Þ, whose structure maps are induced from those of BP�ðBPÞ under
the projection BP�ðBPÞ ! G . We then have the change of rings theorem

H �M½t1� ¼ Ext�GðA;MÞ;

for a BP�ðBPÞ-comodule M.

Lemma 2.1. In the Hopf algebroid ðA;GÞ,

hRðv1Þ ¼ v1;

hRðv2Þ ¼ v2 þ 2t2 and

hRðv3Þ ¼ v3 þ v1t
2
2 þ 2t3 � 2v1v2t2 � 2v1t

2
2 � v41 t2:

Proof. This is based on the Hazewinkel’s and the Quillen’s formulas:

vn ¼ 2mn �
Xn�1

i¼1

miv
2 i

n�i A QnBP� ¼ Q½m1;m2; . . . � and

hRðmnÞ ¼
Xn
i¼0

mit
2 i

n�i A QnBP�ðBPÞ:

We consider it in QnBP�½t2; t3; . . . �. Then hRðv1Þ ¼ 2hRðm1Þ ¼ 2m1 ¼ v1,

and hRðv2Þ ¼ 2hRðm2Þ �m1v
2
1 ¼ 2ðm2 þ t2Þ �m1v

2
1 ¼ v2 þ 2t2. For hRðv3Þ, we

compute

hRðv3Þ ¼ 2ðm3 þm1t
2
2 þ t3Þ �m1ðv2 þ 2t2Þ2 � ðm2 þ t2Þv41

¼ 2m3 þ v1t
2
2 þ 2t3 �m1v

2
2 � 2v1v2t2 � 2v1t

2
2 �m2v

4
1 � v41 t2

¼ v3 þ v1t
2
2 þ 2t3 � 2v1v2t2 � 2v1t

2
2 � v41 t2: r

We define x1;n A v�1
1 A ¼ v�1

1 BP� by

x1;0 ¼ v2; x1;1 ¼ x2
1;0 þ 2v31v2 þ 4v�1

1 v3; and x1;n ¼ x2
1;n�1:

Let d : v�1
1 A ! v�1

1 AnA G denote hR � hL. Then we have

Lemma 2.2. Let x1; i be the elements defined above. Then we see that

dðx1;nÞ1 2nþ1Xnt2 modð2nþ2Þ for nb 0, where X0 ¼ 1 and Xn ¼ x1;0x1;1 . . .

x1;n�1 for n > 0.

Proof. For n ¼ 0, it follows from Lemma 2.1. For n ¼ 1, we obtain the

equation from the computations:
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dðv22Þ ¼ ðv2 þ 2t2Þ2 � v22 ¼ 4v2t2 þ 4t221
;

dð4v�1
1 v3Þ1 4v�1

1 ðv1t221 þ v41 t2 2
Þ modð8Þ and

dð2v31v2Þ ¼ 4v31 t22
:

Here, the underlined terms with the same subscript cancel out.

Inductively, suppose that dðx1;nÞ1 2nþ1Xnt2 modð2nþ2Þ. Then

dðx2
1;nÞ1 ðx1;n þ 2nþ1Xnt2Þ2 � x2

1;n modð2nþ3Þ

1 2nþ2x1;nXnt2 modð2nþ3Þ;

and obtain the congruence for nþ 1. r

Lemma 2.3. H 0M 1
0 ½t1� is the tensor product of Zð2Þ½v1; v�1

1 � and the direct

sum of Q=Zð2Þ and Z=ð2nþ1Þ generated by xs
1;n=2

nþ1 for each nb 0 and odd

s > 0.

Proof. Let B denote the module of the lemma. Then we have a se-

quence H �M 0
1 ½t1� !

j
B !2 B fitting in the commutative diagram

0 ���! H 0M 0
1 ½t1� ���!j H 0M 1

0 ½t1� ���!2 H 0M 1
0 ½t1� ���!d H 1M 0

1 ½t1����� x???
U
i

x???
U
i

����
0 ���! H 0M 0

1 ½t1� ���!j B ���!2 B ���!d H 1M 0
1 ½t1�:

Here jðxÞ ¼ x=2. If the bottom sequence is exact, then the inclusion i is

an isomorphism by [4, Remark 3.11]. To see the exactness, it su‰ces to

show that Ker dH Im 2, which is seen by dðxs
1;n=2

nþ1Þ ¼ v
2nðs�1Þþ2 n�1
2 h20 for

odd s > 0. r

Corollary 2.4. The image of j : H 1M 0
1 ½t1� ! H 1M 1

0 ½t1� is zero.

Proof. Note that each integer sb 0 is expressed uniquely as 2nþ1tþ
2n � 1 for some t; nb 0. Therefore, each generator vs2h20 A H 1M 0

1 ½t1� for sb 0

is the image of x2tþ1
1;n =2nþ1 under d. r

Theorem 2.5. HsM 1
0 ½t1� ¼ 0 for s > 0.

3. Proof of Theorem 1.1

We will study HsM 2
0 ½t1� for sb 0 by using the exact sequence

� � � ! HsM 1
1 ½t1� !

j
HsM 2

0 ½t1� !
2
HsM 2

0 ½t1� !
d
Hsþ1M 1

1 ½t1� ! � � �ð3:1Þ

Subgroups of p�ðL2Tð1ÞÞ at the prime two 363



associated to the short exact sequence

0 ! M 1
1 ½t1� !

j
M 2

0 ½t1� !
2
M 2

0 ½t1� ! 0;ð3:2Þ

where jðxÞ ¼ x=2. Here, H �M ¼ Ext�BP�ðBPÞðBP�;MÞ as before. Consider the

submodules

A2 ¼ v3Kð2Þ�½v23 ; h20�nLðh21; h30; h31Þ and

A21 ¼ v3K
2
� ½v23 �nLðh21; h30; h31Þ

of H �M 1
1 ½t1�, where Kð2Þ� ¼ Z=2½vG1

2 �, K 2
� ¼ Z=2½vG2

2 � and an element x of the

modules is considered to be an element x=v1 of H �M 1
1 ½t1�. Put A0

2 ¼ A2=A21

as a module. Then, it is shown in [8, Th. 6.13] that

HsM 1
1 ½t1� ¼ ðA0

2 nLðr2ÞÞ
s

for s > 4 and H 4M 1
1 ½t1� ¼ ðA0

2 nLðr2ÞÞ
4 l v3K

2
� ½v23 �fh21h30h31r2g, where ðMÞs

denotes the submodule of M consisting of elements of cohomology dimension s.

The exact sequence (3.1) defines the Bockstein spectral sequence H �M 1
1 ½t1�

) H �M 2
0 ½t1�. The di¤erential d1 is defined to be d1 ¼ dj : HsM 1

1 ½t1� !
Hsþ1M 1

1 ½t1� for the maps d and j in (3.1). Then we have the following lemma.

Lemma 3.3. The di¤erential d1 of the Bockstein spectral sequence acts on

A0
2 as follows:

d1ðv2uþ1
2 xÞ ¼ v2u2 xh20

for an integer u and x A A0
2 with v2 F x.

Proof. Each cohomology class is represented as follows:

h20 ¼ ½t2�; h21 ¼ ½t22 �; h30 ¼ ½t3� and h31 ¼ ½t23 �:

For the diagonal map D, Quillen’s formula DðtnÞ ¼ C0ðnÞ þ
Pn

k¼1 mkðCkðnÞ�
Dðtn�kÞp

k

Þ together with Hazewinkel’s formula shows that Dðt2Þ ¼ C0ð2Þ ¼ t2 n
1þ 1n t2 and Dðt3Þ ¼ C0ð3Þ � v1t2 n t2 1 t3 n 1þ 1n t3 modð4; v1Þ, where

CkðlÞ ¼
P l

i¼0 t
pk

i n t
pkþi

l�i and t0 ¼ 1. Thus this together with Lemma 2.1 shows

that

dðv2Þ1 2t2; dðv3Þ1 2t3; dðt22Þ1 2t2 n t2 and dðt23Þ1 2t3 n t3ð3:4Þ

modð4; v1Þ in W�v�1
2 BP�. By the definition of the di¤erential of the cobar

complex, the element dðv2uþ1
2 x=4Þ of W�M 2

0 ½t1� is computed

dðv2uþ1
2 x=4Þ ¼ dðv2uþ1

2 Þx=4þ v2uþ1
2 dðx=4Þ

¼ v2u2 t2x=2þ v2uþ1
2 dðxÞ=4

¼ v2u2 xh20=2þ v2uþ1
2 y=2;
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where y is an element of W�v�1
2 BP�=ð4; vy1 Þ½t1� such that dðxÞ ¼ 2y. We see

that yDGv�1
2 xh20 modð4; v1Þ by (3.4). Note here that t3 n t3 represents the

cohomology class h31ðv�1
2 h20 þ v�2

2 h21Þ þ v�3
2 v23h20h21 (see [5, p. 243, (1)]). r

The lemma indicates that h21 is redefined as

h21 ¼ ½t22 þ v2t2�

and gives rise to the di¤erential pattern on A0
2 :

0 1 2 3 4 � � �

v2v3h20 7! v3h
2
20 v2v3h

3
20 7! v3h

4
20

v2v3 7! v3h20 v2v3h
2
20 7! v3h

3
20 v2v3h

4
20 7!

v2v3h21 7! v3h20h21 v2v3h
2
20h21 7! v3h

3
20h21

v2v3h20h21 7! v3h
2
20h21 v2v3h

3
20h21 7!

v2v3h20h3i 7! v3h
2
20h3i v2v3h

3
20h3i 7!

v2v3h3i 7! v3h20h3i v2v3h
2
20h3i 7! v3h

3
20h3i

v2v3h21h3i 7! v3h20h21h3i v2v3h
2
20h21h3i 7!

v2v3h20h21h3i 7! v3h
2
20h21h3i

v2v3h20h30h31 7! v3h
2
20h30h31

v2v3h30h31 7! v3h20h30h31 v2v3h
2
20h30h31 7!

v2v3h21h30h31 7! v3h20h21h30h31
v2v3h20h21h30h31 7!

in which x 7! y denotes the d1ðx=v1Þ ¼ y=v1 for x=v1; y=v1 A A0
2 .

Observe the long exact sequence (3.1), and note that the module eA2A2 given

in the introduction is Im j. Then the above di¤erential pattern shows that d

is a monomorphism on eA2A2, since eA2A2 is generated by the elements at the tails of

the arrows.

Lemma 3.5. The module eA2A2 given in the introduction fits in the short exact

sequence

0 ! ð eA2A2Þs�1 !d ðA0
2Þ

s !j ð eA2A2Þs ! 0

for s > 3.

Proof of Theorem 1.1. Since HsM 1
1 ½t1� ¼ ðA0

2 nLðr2ÞÞ
s for s > 4, we

have the commutative diagram

ð eA2A2 nLðr2ÞÞ
s�1 �!d ðA0

2 nLðr2ÞÞ
s �!j ð eA2A2 nLðr2ÞÞ

s �!2¼0 ð eA2A2 nLðr2ÞÞ
s �!d ðA0

2 nLðr2ÞÞ
sþ1???y ���� ???yg

???yg

����
H s�1M 2

0 ½t1� �!d H sM 1
1 ½t1� �!j H sM 2

0 ½t1� �!2 H sM 2
0 ½t1� �!d H sþ1M 1

1 ½t1�
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of exact sequences by Lemma 3.5. If we show that the images of the left

d’s agree, then the map g is an isomorphism by [4, Remark 3.11]. We denote

the maps d and j in the top sequence by d 0 and j 0. Then Im d 0 H Im d. For

any x B Im d 0, j 0ðxÞ ¼ x=20 0 and d 0ðx=2Þ0 0, which shows gðx=2Þ0 0 since

d 0 ¼ dg. Therefore, jðxÞ ¼ gðj 0ðxÞÞ ¼ gðx=2Þ0 0, and x B Im d. r

Lemma 3.6. The Bockstein spectral sequence H �M 1
1 ½t1� ) H �M 2

0 ½t1� splits
into two spectral sequences A1 ¼ ðA0lA1lA21ÞnLðr2Þ ) eA1A1 and A0

2 nLðr2Þ
) eA2A2 nLðr2Þ. Here, the module eA1A1 denotes a module fitting in the long exact

sequence

0 ! ðA1Þ0 !
j ð eA1A1Þ0 !

2 ð eA1A1Þ0 !
d ðA1Þ1 !

j � � �

!d ðA1Þs !
j ð eA1A1Þs !

2 ð eA1A1Þs !
d ðA1Þsþ1 !j � � � :

Proof. By Lemma 3.5, we have the subspectral sequence A0
2 nLðr2Þ )eA2A2 nLðr2Þ. Furthermore, Lemma 3.5 implies that all elements of A0

2 nLðr2Þ
do not survive to the E2-term of the Bockstein spectral sequence. It follows

that the di¤erential dr acts on A1. Now eA1A1 is generated by elements ~xxr such

that 2 r�1~xxr ¼ ~xx1 ¼ jðxÞ and dð~xxrÞ’s are linearly independent. r

Remark. eA1A1 is not determined here. Even the 0-dimensional part ð eA1A1Þ0
of it is very complicated (see. [6], [9]), though ð eA1A1Þs ¼ 0 for s > 4.

4. Proof of Theorem 1.2

Recall [8] the spectrum C such that BP�ðCÞ ¼ BP�=ð2; vy1 Þ½t1�. Then C

fits in the cofiber sequence

C !j W5Tð1Þ !2 W5Tð1Þ ! SC;

which induces the short exact sequence

0 ! M 1
1 ½t1� !

j
M 2

0 ½t1� !
2
M 2

0 ½t1� ! 0

by applying BP�ðL2�Þ. Let Es; t
r ðXÞ denote the Er-term of the v�1

2 BP

based Adams spectral sequence converging to pt�sðL2X Þ. Then the E2-term

is Ext�;�
v�1
2
BP�ðv�1

2
BPÞðv

�1
2 BP�; v

�1
2 BP�ðXÞÞ, which is isomorphic to H �v�1

2 BP�ðXÞ by

the change of rings theorem of Hovey and Sadofsky [1, Th. 3.1]. Indeed, we

use the modified one [3, Th. 3.3]. In our case, we consider the spectral

sequences E �
2 ðCÞ ¼ H �M 1

1 ½t1� ) p�ðL2CÞ and E �
2 ðW5Tð1ÞÞ ¼ H �M 2

0 ½t1� )
p�ðL2W5Tð1ÞÞ.

For the sake of simplicity, we compute di¤erentials by setting v22 ¼ 1. In

[8, Lemma 7.4], it is shown that for any v4tþ3
3 x=v1 A E

s;u
2 ðCÞVA2,
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d3ðv4tþ3
3 x=v1Þ ¼ v4tþ1

3 xh320=v1 A E
sþ3;uþ2
2 ðCÞ:ð4:1Þ

The other di¤erentials on E �
r ðCÞ are trivial except for the di¤erentials

d3ðxs
n
fh20h20=v

an
1 Þ ¼ v

2nðs�1Þþ4ð2 n�2�1Þ=3þ1
3 h220h21h30=v1 n is even

v2v
2 nðs�1Þþ8ð2n�3�1Þ=3þ1
3 h220h21h31=v1 n is odd

(
andð4:2Þ

d3ðxs
ngnþ1

fh20h20=v
an
1 Þ ¼ v2

ns�3
3 h220h21h30h31=v1 n is even

v2v
2 ns�3
3 h220h21h30h31=v1 n is odd

�
for nb 2 and odd s > 0, and a v2-multiple of them ([8, Lemmas 7.6 and 7.8]).

Here fh20h20 is defined as the class represented by the cocycle et2t2 in the congruence

dðv43Þ1 2v21 et2t2 modð4Þ, whose leading term is v32v
2
3 t2.

Lemma 4.3. In the Adams-Novikov E �
3 -term for p�ðL2W5Tð1ÞÞ,

d3ðv33x=2v1Þ ¼ v2v3xh21h
2
20=2v1 and d3ðv2v33y=2v1Þ ¼ v2v3yh

3
20=2v1

for x A K 2
� ½v43 �nLðh30; h31Þ and y A K 2

� ½v43 ; h20�nLðh21; h30; h31Þ, and

d3ðxs
n
fh20h20=2v

an
1 Þ ¼ v2v

2 nðs�1Þþ4ð2 n�2�1Þ=3þ1
3 h320h30=2v1 n is even

v2v
2 nðs�1Þþ8ð2 n�3�1Þ=3þ1
3 h220h21h31=2v1 n is odd;

(

d3ðxs
ngnþ1

fh20h20=2v
an
1 Þ ¼ v2v

2ns�3
3 h320h30h31=2v1 n is even

v2v
2ns�3
3 h220h21h30h31=2v1 n is odd;

�

d3ðv2xs
n
fh20h20=2v

an
1 Þ ¼ v2v

2 nðs�1Þþ8ð2 n�3�1Þ=3þ1
3 h220h21h31=2v1 n is even

v2v
2 nðs�1Þþ4ð2 n�2�1Þ=3þ1
3 h320h30=2v1 n is odd

(
and

d3ðv2xs
ngnþ1

fh20h20=2v
an
1 Þ ¼ v2v

2ns�3
3 h220h21h30h31=2v1 n is even

v2v
2ns�3
3 h320h30h31=2v1 n is odd

�
for positive integers s and n with n > 1. Here the equations are all up to sign.

Proof. Note that v3xh
3
20=2v1 ¼ v2v3xh21h

2
20=2v1 in E �

3 ðW5Tð1ÞÞ, since

dðv2v3xh220=2v1Þ ¼ v3xh
3
20=v1 þ v2v3xh21h

2
20=v1 by Lemma 3.3. In the same

manner as this, we have the relations v
2 nðs�1Þþ4ð2 n�2�2 eðnÞÞ=3þ1
3 h220h21h3eðnÞ=2v1

¼ v2v
2 nðs�1Þþ4ð2 n�2�2 eðnÞÞ=3þ1
3 h320h3eðnÞ=2v1 and v2

ns�3
3 h220h21h30h31=2v1 ¼

v2v
2ns�3
3 h320h30h31=2v1, since h221 ¼ h220. Then the di¤erentials in (4.1) and (4.2)

of the form d3ðxÞ ¼ y (resp. d3ðxÞ ¼ v2y) yield di¤erentials d3ðx=2Þ ¼ v2z=2

and d3ðv2x=2Þ ¼ v2y=2 (resp. d3ðx=2Þ ¼ v2y=2 and d3ðv2x=2Þ ¼ v2z=2Þ of

E �
3 ðW5Tð1ÞÞ, where z is an element such that dðwÞ ¼ y� z A H �M 1

1 ½t1� for

an element w of H �M 2
0 ½t1�. r
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Corollary 4.4. The module fA21A21 given in Introduction is a submodule

of H �M 2
0 ½t1�. In other words, the map sending an element x A fA21A21 to x=2v1 A

H �M 2
0 ½t1� is a monomorphism.

Proof. It su‰ces to show that x=2v1 0 0 A H �M 2
0 ½t1� for x A fA21A21. The

first equation of Lemma 4.3 shows d3ðx=2v1Þ0 0. r

Corollary 4.5. After a suitable modification of eA1A1
0, the v�1

2 BP based

Adams di¤erentials d3 originating in eA1A1
0 are all zero.

Proof. The only non-trivial di¤erentials originating in eA1A1
0 are given

in Lemma 4.3, and their targets are all in the image of d3 originating in

ð eA2A2 l fA21A21ÞnLðr2Þ. r

Remark. This modification of eA1A1
0 does not change the additive struc-

ture of eA1A1
0 nor the E2-term H �M 2

0 ½t1�. In fact, each generator x A eA1A1
0 is just

replaced by xþ y for some y A ð eA2A2 l fA21A21ÞnLðr2Þ.

Theorem 4.6. The E4-term of the v�1
2 BP based Adams spectral sequence

contains bA2A2 nLðr2Þ, which is obtained from the subgroup eA2A2 nLðr2Þ of the

E2-term. Here, bA2A2 is the module given in Theorem 1.2.

Proof. The v�1
2 BP based Adams di¤erential d3 makes ð eA2A2; d3Þ a dif-

ferential module by Lemma 4.3, whose homology is

bA2A2
0 ¼ v2v3K

2
� ½v43 ; h20�=ðh320ÞnLðh21; h30; h31Þ:

We decompose bA2A2
0 into the direct sum of the two modules

cA21A21
0 ¼ v2v3K

2
� ½v43 �nLðh20; h21; h30; h31Þl v2v3h

2
20K

2
� ½v43 �nLðh30; h31Þ and

cA22A22
0 ¼ v2v3h

2
20h21K

2
� ½v43 �nLðh30; h31Þ:

The first di¤erential in Lemma 4.3 gives the isomorphism d3 : fA21A21 G cA22A22
0, and

we obtain the theorem by setting

bA2A2 ¼ cA21A21
0: r

Proposition 4.7. The v�1
2 BP based Adams spectral sequence converging

to p�ðL2W5Tð1ÞÞ collapses from the E4-term. That is, E �
4 ¼ E �

y.

Proof. Since ð eA1A1Þs ¼ 0 for s > 4 and ð bA2A2 nLðr2ÞÞ
s ¼ 0 for s > 5, we

see that Es
5 ¼ 0 for s > 5. Therefore, the di¤erentials dr are all trivial for

r > 5. Suppose that d5ðx=2 lÞ ¼ y=2 for x=2 l A eA1A1. Then y=2 A cA21A21
0, and so

dðy=2Þ0 0 A E6
2 ðCÞ. Send the relation d5ðx=2 lÞ ¼ y=2 by d, and we see that

d5ðdðx=2 lÞÞ ¼ dðy=2Þ A E6
5 ðCÞ. Since E6

5 ðCÞ ¼ 0 by [8, Corollary 7.9], there is
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an element z0 0 A E3
3 such that d3ðzÞ ¼ dðy=2Þ. Then, j�ðzÞ must be hit by

x=2 lþ1 under d3. By Lemma 4.3, there is no such di¤erential. r

From the proof of this together with Corollary 4.5, we obtain the fol-

lowing:

Corollary 4.8. The di¤erentials dr of the v�1
2 BP based Adams spectral

sequence for p�ðL2W5Tð1ÞÞ are trivial on eA1A1
0 HE �

2 .
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