Нікозніма Матн. J. **33** (2003), 359–369

Subgroups of $\pi_*(L_2T(1))$ at the prime two

Ippei Ichigi and Katsumi Shimomura

(Received February 17, 2003) (Revised June 2, 2003)

ABSTRACT. Let T(1) be the Ravenel spectrum whose BP_* -homology is $BP_*[t_1](\subset BP_*(BP))$, and let L_2 denote the Bousfield localization functor with respect to $v_2^{-1}BP$. In this paper, we show that the E_4 -term of the Adams-Novikov spectral sequence for $\pi_*(L_2T(1))$ has horizontal vanishing line and is the E_{∞} -term. We also find subgroups of the homotopy groups $\pi_*(L_2T(1))$.

1. Introduction

In this paper, everything is localized at the prime two. Let BP denote the Brown-Peterson ring spectrum at the prime two. Then the homotopy groups $\pi_*(BP)$ turn to the polynomial algebra $BP_* = \mathbb{Z}_{(2)}[v_1, v_2, \dots]$ over the Hazewinkel generators v_i with $|v_i| = 2^{i+1} - 2$. The Ravenel spectrum T(1)is characterized by the Brown-Peterson homology as $BP_*(T(1)) = BP_*[t_1] \subset$ $BP_*(BP) = BP_*[t_1, t_2, ...]$. We consider the spectrum $G = v_2^{-1}BP$. Let L_2 denote the Bousfield localization functor on the stable homotopy category of spectra with respect to G. One of the methods to determine the homotopy groups $\pi_*(L_2T(1))$ is the Adams-Novikov spectral sequence $E_2^* = H^*v_2^{-1}BP_*[t_1]$ $= \pi_*(L_2T(1)), \text{ where } H^* - = \text{Ext}^*_{G_*(G)}(G_*, -). \text{ We study the } E_2 - \text{tr} W_2 - B_*[t_1]$ $= \pi_*(L_2T(1)), \text{ where } H^* - = \text{Ext}^*_{G_*(G)}(G_*, -). \text{ We study the } E_2 - \text{term by the } \text{chromatic spectral sequence } \sum_{i=0}^2 H^* M_0^i[t_1] \Rightarrow H^* v_2^{-1} BP_*[t_1] \text{ and } \text{the mod } 2 \text{ Bockstein spectral sequences } H^* M_1^0[t_1] \Rightarrow H^* M_0^1[t_1] \text{ and } H^* M_1^1[t_1] \Rightarrow H^* M_0^2[t_1]. \text{ Here, } M_0^0 = 2^{-1} BP_*, M_1^0 = v_1^{-1} BP_*/(2), M_0^1 = v_1^{-1} BP_*/(2^{\infty}), M_1^1 = v_2^{-1} BP_*/(2, v_1^{\infty}) \text{ and } M_0^2 = v_2^{-1} BP_*/(2^{\infty}, v_1^{\infty}). \text{ The modules } H^* M_0^0[t_1] \text{ and } M^* M_0^0$ $H^*M_1^0[t_1]$ are given by Ravenel in [7]. In [5], Mahowald and the second author determined $H^* M_2^0[t_1]$ as the tensor product of the polynomial algebra $K(2)_{*}[v_{3}, h_{20}]$ and the exterior algebra $\Lambda(h_{21}, h_{30}, h_{31}, \rho_{2})$, where $K(2)_{*} =$ $Z/2[v_2^{\pm 1}]$. In [8], the second author determined $H^*M_1^1[t_1]$ by the v_1 -Bockstein spectral sequence $H^*M_2^0[t_1] \Rightarrow H^*M_1^1[t_1]$ to be the tensor product of $\Lambda(\rho_2)$ and the direct sum of modules A_i :

²⁰⁰⁰ Mathematics Subject Classification. Primary 55Q99, Secondary 55Q45, 55Q51.

Key words and phrases. Homotopy groups, Ravenel spectrum, Bousfield localization, Adams-Novikov spectral sequence.

Ippei ICHIGI and Katsumi SHIMOMURA

$$A_{0} = \left(v_{1}^{-1} K/K \oplus \sum_{n>1} x_{n} K/(v_{1}^{a_{n}})[x_{n+1}] \otimes \Lambda(g_{n+1}) \right) \otimes \Lambda(\widetilde{h_{20}}),$$

$$A_{1} = v_{3}^{2} K/(v_{1}^{2})[x_{2}] \otimes \Lambda(h_{30}, h_{31}) \quad \text{and}$$

$$A_{2} = v_{3} K(2)_{*}[v_{3}^{2}, h_{20}] \otimes \Lambda(h_{21}, h_{30}, h_{31}).$$

Here $K = \mathbb{Z}/2[v_1, v_2^{\pm 1}]$, a_n denotes the integer $2^n + \frac{2}{3}(2^n - 2^{\varepsilon(n)})$ for $\varepsilon(n) = (1 - (-1)^n)/2$, and the elements x_n, g_n, h_{ij} and h_{20} denote the cohomology classes represented by the cocycles of the cobar complex $\Omega^*_{G_{\epsilon}(G)}G_*[t_1]/(2, v_1^j)$ for a suitable j > 0, whose leading terms are $v_3^{2^n}, v_3^{4(2^{n-2}-2^{\varepsilon(n)})/3}t_3^{2^{\varepsilon(n)}}, t_i^{2^j}$ and $v_3^2t_2$, respectively. Consider the submodule

$$A_{21} = v_3 K_*^2 [v_3^2] \otimes \Lambda(h_{21}, h_{30}, h_{31}) \subset A_2,$$

and put $A_2^0 = A_2/A_{21}$ as a module. We see that there is a submodule

 $\widetilde{A_2} = v_2 v_3 K_*^2 [v_3^2, h_{20}] \otimes \Lambda(h_{21}, h_{30}, h_{31})$

of $H^*M_0^2[t_1]$, where $K_*^2 = \mathbb{Z}/2[v_2^{\pm 2}]$ and $x \in \widetilde{A_2}$ is considered to be $x/2v_1 \in H^*M_0^2[t_1]$. Then we show that the map $\varphi: H^*M_1^1[t_1] \to H^*M_0^2[t_1]$ given by $\varphi(x) = x/2$ is restricted to $\varphi: A_2^0 \to \widetilde{A_2}$ and then the sequence $0 \to (\widetilde{A_2})^{s-1} \xrightarrow{\delta} (A_2^0)^s \xrightarrow{\varphi} (\widetilde{A_2})^s \to 0$ for each s > 3 is exact, where $(M)^s$ denotes the submodule of M consisting of elements of cohomology dimension s, and δ is the connecting homomorphism associated to the short exact sequence $0 \to M_1^1[t_1] \to M_0^2[t_1] \to M_0^2[t_1] \to 0$. This shows our first result.

THEOREM 1.1. $H^s M_0^2[t_1]$ is isomorphic to $(\widetilde{A_2} \otimes \Lambda(\rho_2))^s$ for s > 4.

Furthermore, we show that the mod 2 Bockstein spectral sequence splits (see Lemma 3.6). A summand of the spectral sequence is $A_2^0 \Rightarrow \widetilde{A_2}$. It seems very complicated to determine the other parts $A_1 = (A_0 \oplus A_1 \oplus A_{21}) \otimes A(\rho_2)$ $\Rightarrow \widetilde{A_1}$ (cf. [6], [2], [9]).

Let W be the spectrum such that $BP_*(L_2W) = M_0^2$. Indeed, W is the cofiber of the localization map $V \to L_1V$, where V is the cofiber of the localization map $S^0 \to SQ$. Then $H^*M_0^2[t_1]$ is isomorphic to the E_2 -term of the Adams-Novikov spectral sequence for $\pi_*(L_2W \wedge T(1))$. We consider the submodule

$$\widetilde{A_{21}} = v_3^3 K_*^2[v_3^4] \otimes \Lambda(h_{30}, h_{31}) \subset H^* M_0^2[t_1],$$

and see that $\widetilde{A_{21}} \otimes \Lambda(\rho_2) \subset \widetilde{A_1}$ (see Corollary 4.4). We write $\widetilde{A_1}^0 = \widetilde{A_1}/(\widetilde{A_{21}} \otimes \Lambda(\rho_2))$ as a module. We compute the differentials of the Adams-Novikov spectral sequence on $\widetilde{A_2}$ and $\widetilde{A_{21}}$, and then show that the differentials on $\widetilde{A_1}^0$ are zero after a modification of $\widetilde{A_1}^0$ (see Corollary 4.8).

THEOREM 1.2. The Adams-Novikov E_{∞} -term for the homotopy groups $\pi_*(L_2T(1) \wedge W)$ is isomorphic to the direct sum of $\widetilde{A_1}^0$ and $\widehat{A_2} \otimes \Lambda(\rho_2)$, where

$$A_2 = v_2 v_3 K_*^2 [v_3^4] \otimes \Lambda(h_{20}, h_{21}, h_{30}, h_{31}) \oplus v_2 v_3 h_{20}^2 K_*^2 [v_3^4] \otimes \Lambda(h_{30}, h_{31}).$$

Note that we do not determine the structure of $\widetilde{A_1}^0$ of the theorem, though we know that the Adams-Novikov differentials are trivial on it.

By the definition of W, we have the composite $\eta: W \to \Sigma V \to S^2$, which induces the composite of connecting homomorphisms $\eta_*: H^s M_0^2[t_1] \to H^{s+1}v_2^{-1}BP_*/(2^{\infty})[t_1] \to H^{s+2}v_2^{-1}BP_*[t_1]$ in the long exact sequences

$$H^{s}M_{0}^{1}[t_{1}] \to H^{s}M_{0}^{2}[t_{1}] \xrightarrow{\delta} H^{s+1}v_{2}^{-1}BP_{*}/(2^{\infty})[t_{1}] \to H^{s+1}M_{0}^{1}[t_{1}] \quad \text{and} \\ H^{s}M_{0}^{0}[t_{1}] \to H^{s}v_{2}^{-1}BP_{*}/(2^{\infty})[t_{1}] \xrightarrow{\delta} H^{s+1}v_{2}^{-1}BP_{*}[t_{1}] \to H^{s+1}M_{0}^{0}[t_{1}].$$

Since we see that both of $H^s M_0^0[t_1]$ and $H^s M_0^1[t_1]$ are zero for s > 0 (Theorem 2.5), we see that the connecting homomorphisms are isomorphisms for s > 0, and so is η_* . In Proposition 4.7, we show that the E_4 -term is the E_{∞} -term. Since η_* is a map of spectral sequences, we have the results on $\pi_*(L_2T(1))$.

COROLLARY 1.3. The Adams-Novikov spectral sequence converging to the homotopy groups $\pi_*(L_2T(1))$ collapses from the E_4 -term.

COROLLARY 1.4. The homotopy groups $\pi_*(L_2T(1))$ contain the subgroups isomorphic to $\widehat{A}_2 \otimes \Lambda(\rho_2)$, which is the image of $\widehat{A}_2 \otimes \Lambda(\rho_2)$ under the map $\eta_* : \pi_*(L_2T(1) \wedge W) \to \pi_*(L_2T(1))$.

In the next section, we show that $H^s M_0^1[t_1]$ is zero for s > 0 by determining it. In sections 3 and 4, we give proofs of Theorems 1.1 and 1.2, respectively. The authors would like to thank Professor Xiangjun Wang who pointed out mistakes in Lemmas 3.3 and 4.3 in a draft version of this paper.

2. $H^*M_0^1[t_1]$

Let *BP* denote the Brown-Peterson spectrum at the prime two. Then $BP_* = \mathbb{Z}_{(2)}[v_1, v_2, ...]$ and $BP_*(BP) = BP_*[t_1, t_2, ...]$, and $(BP_*, BP_*(BP))$ is a Hopf algebroid. Hereafter, we write

$$H^*M = \operatorname{Ext}^*_{BP_*(BP)}(BP_*, M)$$

for a $BP_*(BP)$ -comodule M. Consider the $BP_*(BP)$ -comodule $M_1^0 = v_1^{-1}BP_*/(2)$. Then in [7, Th. 6.1.1 and Cor. 6.5.6], it is shown that

$$H^*M_1^0[t_1] = K(1)_*[v_2] \otimes \Lambda(h_{20}).$$

Here H^*M for a $BP_*(BP)$ -comodule M denotes $Ext^*_{BP_*(BP)}(BP_*, M)$, $K(1)_* =$

 $\mathbb{Z}/2[v_1^{\pm 1}]$ and h_{20} is the element represented by a cocycle of the cobar complex whose leading term is t_2 . Consider the Hopf algebroid $(A, \Gamma) = (BP_*, BP_*[t_2, t_3, \ldots])$, whose structure maps are induced from those of $BP_*(BP)$ under the projection $BP_*(BP) \to \Gamma$. We then have the change of rings theorem

$$H^*M[t_1] = \operatorname{Ext}^*_{\Gamma}(A, M),$$

for a $BP_*(BP)$ -comodule M.

LEMMA 2.1. In the Hopf algebroid (A, Γ) ,

$$\eta_R(v_1) = v_1,$$

$$\eta_R(v_2) = v_2 + 2t_2 \quad \text{and}$$

$$\eta_R(v_3) = v_3 + v_1t_2^2 + 2t_3 - 2v_1v_2t_2 - 2v_1t_2^2 - v_1^4t_2$$

PROOF. This is based on the Hazewinkel's and the Quillen's formulas:

$$v_n = 2m_n - \sum_{i=1}^{n-1} m_i v_{n-i}^{2^i} \in \mathbf{Q} \otimes BP_* = \mathbf{Q}[m_1, m_2, \dots] \quad \text{and}$$
$$\eta_R(m_n) = \sum_{i=0}^n m_i t_{n-i}^{2^i} \in \mathbf{Q} \otimes BP_*(BP).$$

We consider it in $Q \otimes BP_*[t_2, t_3, ...]$. Then $\eta_R(v_1) = 2\eta_R(m_1) = 2m_1 = v_1$, and $\eta_R(v_2) = 2\eta_R(m_2) - m_1v_1^2 = 2(m_2 + t_2) - m_1v_1^2 = v_2 + 2t_2$. For $\eta_R(v_3)$, we compute

$$\eta_R(v_3) = 2(m_3 + m_1 t_2^2 + t_3) - m_1(v_2 + 2t_2)^2 - (m_2 + t_2)v_1^4$$

= $2m_3 + v_1 t_2^2 + 2t_3 - m_1 v_2^2 - 2v_1 v_2 t_2 - 2v_1 t_2^2 - m_2 v_1^4 - v_1^4 t_2$
= $v_3 + v_1 t_2^2 + 2t_3 - 2v_1 v_2 t_2 - 2v_1 t_2^2 - v_1^4 t_2.$

We define $x_{1,n} \in v_1^{-1}A = v_1^{-1}BP_*$ by

$$x_{1,0} = v_2$$
, $x_{1,1} = x_{1,0}^2 + 2v_1^3v_2 + 4v_1^{-1}v_3$, and $x_{1,n} = x_{1,n-1}^2$.

Let $d: v_1^{-1}A \to v_1^{-1}A \otimes_A \Gamma$ denote $\eta_R - \eta_L$. Then we have

LEMMA 2.2. Let $x_{1,i}$ be the elements defined above. Then we see that $d(x_{1,n}) \equiv 2^{n+1}X_nt_2 \mod(2^{n+2})$ for $n \ge 0$, where $X_0 = 1$ and $X_n = x_{1,0}x_{1,1} \ldots x_{1,n-1}$ for n > 0.

PROOF. For n = 0, it follows from Lemma 2.1. For n = 1, we obtain the equation from the computations:

Subgroups of $\pi_*(L_2T(1))$ at the prime two

$$d(v_2^2) = (v_2 + 2t_2)^2 - v_2^2 = 4v_2t_2 + 4t_{2_1}^2,$$

$$d(4v_1^{-1}v_3) \equiv 4v_1^{-1}(\underline{v_1t_{2_1}^2} + \underline{v_1^4t_{2_2}}) \mod(8) \text{ and }$$

$$d(2v_1^3v_2) = 4v_1^3t_{2_2}.$$

Here, the underlined terms with the same subscript cancel out.

Inductively, suppose that $d(x_{1,n}) \equiv 2^{n+1}X_nt_2 \mod(2^{n+2})$. Then

$$d(x_{1,n}^2) \equiv (x_{1,n} + 2^{n+1}X_nt_2)^2 - x_{1,n}^2 \mod(2^{n+3})$$
$$\equiv 2^{n+2}x_{1,n}X_nt_2 \mod(2^{n+3}),$$

and obtain the congruence for n + 1.

LEMMA 2.3. $H^0 M_0^1[t_1]$ is the tensor product of $Z_{(2)}[v_1, v_1^{-1}]$ and the direct sum of $Q/Z_{(2)}$ and $Z/(2^{n+1})$ generated by $x_{1,n}^s/2^{n+1}$ for each $n \ge 0$ and odd s > 0.

PROOF. Let *B* denote the module of the lemma. Then we have a sequence $H^*M_1^0[t_1] \xrightarrow{\varphi} B \xrightarrow{2} B$ fitting in the commutative diagram

Here $\varphi(x) = x/2$. If the bottom sequence is exact, then the inclusion *i* is an isomorphism by [4, Remark 3.11]. To see the exactness, it suffices to show that Ker $\delta \subset$ Im 2, which is seen by $\delta(x_{1,n}^s/2^{n+1}) = v_2^{2^n(s-1)+2^n-1}h_{20}$ for odd s > 0.

COROLLARY 2.4. The image of $\varphi: H^1M_1^0[t_1] \to H^1M_0^1[t_1]$ is zero.

PROOF. Note that each integer $s \ge 0$ is expressed uniquely as $2^{n+1}t + 2^n - 1$ for some $t, n \ge 0$. Therefore, each generator $v_2^s h_{20} \in H^1 M_1^0[t_1]$ for $s \ge 0$ is the image of $x_{1,n}^{2t+1}/2^{n+1}$ under δ .

THEOREM 2.5. $H^s M_0^1[t_1] = 0$ for s > 0.

3. Proof of Theorem 1.1

We will study $H^s M_0^2[t_1]$ for $s \ge 0$ by using the exact sequence

$$(3.1) \qquad \cdots \to H^s M_1^1[t_1] \xrightarrow{\varphi} H^s M_0^2[t_1] \xrightarrow{2} H^s M_0^2[t_1] \xrightarrow{\delta} H^{s+1} M_1^1[t_1] \to \cdots$$

363

associated to the short exact sequence

(3.2)
$$0 \to M_1^1[t_1] \xrightarrow{\varphi} M_0^2[t_1] \xrightarrow{2} M_0^2[t_1] \to 0,$$

where $\varphi(x) = x/2$. Here, $H^*M = \operatorname{Ext}_{BP_*(BP)}^*(BP_*, M)$ as before. Consider the submodules

$$A_2 = v_3 K(2)_* [v_3^2, h_{20}] \otimes \Lambda(h_{21}, h_{30}, h_{31})$$
 and
$$A_{21} = v_3 K_*^2 [v_3^2] \otimes \Lambda(h_{21}, h_{30}, h_{31})$$

of $H^*M_1^1[t_1]$, where $K(2)_* = \mathbb{Z}/2[v_2^{\pm 1}]$, $K_*^2 = \mathbb{Z}/2[v_2^{\pm 2}]$ and an element x of the modules is considered to be an element x/v_1 of $H^*M_1^1[t_1]$. Put $A_2^0 = A_2/A_{21}$ as a module. Then, it is shown in [8, Th. 6.13] that

$$H^s M_1^1[t_1] = (A_2^0 \otimes \Lambda(\rho_2))^s$$

for s > 4 and $H^4 M_1^1[t_1] = (A_2^0 \otimes \Lambda(\rho_2))^4 \oplus v_3 K_*^2[v_3^2] \{h_{21}h_{30}h_{31}\rho_2\}$, where $(M)^s$ denotes the submodule of M consisting of elements of cohomology dimension s.

The exact sequence (3.1) defines the Bockstein spectral sequence $H^*M_1^{1}[t_1]$ $\Rightarrow H^*M_0^{2}[t_1]$. The differential d_1 is defined to be $d_1 = \delta \varphi : H^s M_1^{1}[t_1] \to H^{s+1}M_1^{1}[t_1]$ for the maps δ and φ in (3.1). Then we have the following lemma.

LEMMA 3.3. The differential d_1 of the Bockstein spectral sequence acts on A_2^0 as follows:

$$d_1(v_2^{2u+1}x) = v_2^{2u}xh_{20}$$

for an integer u and $x \in A_2^0$ with $v_2 \not\mid x$.

PROOF. Each cohomology class is represented as follows:

$$h_{20} = [t_2], \quad h_{21} = [t_2^2], \quad h_{30} = [t_3] \quad \text{and} \quad h_{31} = [t_3^2].$$

For the diagonal map Δ , Quillen's formula $\Delta(t_n) = \Psi_0(n) + \sum_{k=1}^n m_k(\Psi_k(n) - \Delta(t_{n-k})^{p^k})$ together with Hazewinkel's formula shows that $\Delta(t_2) = \Psi_0(2) = t_2 \otimes 1 + 1 \otimes t_2$ and $\Delta(t_3) = \Psi_0(3) - v_1 t_2 \otimes t_2 \equiv t_3 \otimes 1 + 1 \otimes t_3 \mod(4, v_1)$, where $\Psi_k(l) = \sum_{i=0}^l t_i^{p^k} \otimes t_{l-i}^{p^{k+i}}$ and $t_0 = 1$. Thus this together with Lemma 2.1 shows that

(3.4)
$$d(v_2) \equiv 2t_2, \quad d(v_3) \equiv 2t_3, \quad d(t_2^2) \equiv 2t_2 \otimes t_2 \quad \text{and} \quad d(t_3^2) \equiv 2t_3 \otimes t_3$$

 $mod(4, v_1)$ in $\Omega^* v_2^{-1} BP_*$. By the definition of the differential of the cobar complex, the element $d(v_2^{2u+1}x/4)$ of $\Omega^* M_0^2[t_1]$ is computed

$$d(v_2^{2u+1}x/4) = d(v_2^{2u+1})x/4 + v_2^{2u+1}d(x/4)$$
$$= v_2^{2u}t_2x/2 + v_2^{2u+1}d(x)/4$$
$$= v_2^{2u}xh_{20}/2 + v_2^{2u+1}y/2,$$

where y is an element of $\Omega^* v_2^{-1} BP_*/(4, v_1^{\infty})[t_1]$ such that d(x) = 2y. We see that $y \neq \pm v_2^{-1} x h_{20} \mod(4, v_1)$ by (3.4). Note here that $t_3 \otimes t_3$ represents the cohomology class $h_{31}(v_2^{-1}h_{20} + v_2^{-2}h_{21}) + v_2^{-3}v_3^2h_{20}h_{21}$ (see [5, p. 243, (1)]). \Box

The lemma indicates that h_{21} is redefined as

$$h_{21} = [t_2^2 + v_2 t_2]$$

and gives rise to the differential pattern on A_2^0 :

0	1		2		3		4	
$v_2v_3 \mapsto$	$v_2v_3h_{20} \ v_3h_{20} \ v_2v_3h_{21}$	\rightarrow \rightarrow	$\begin{array}{c} v_3h_{20}^2\\ v_2v_3h_{20}^2\\ v_3h_{20}h_{21}\\ v_2v_3h_{20}h_{21} \end{array}$	\mapsto	$v_2v_3h_{20}^3\ v_3h_{20}^3\ v_2v_3h_{20}^2\ h_{21}\ v_3h_{20}^2h_{21}$	\rightarrow \rightarrow	$v_3h_{20}^4 \ v_2v_3h_{20}^4 \ v_3h_{20}^3h_{21} \ v_2v_3h_{20}^3h_{21}$	\mapsto
	$v_2v_3h_{3i}$	\mapsto	$v_2v_3h_{20}h_{3i}$ $v_3h_{20}h_{3i}$ $v_2v_3h_{21}h_{3i}$	\mapsto	$v_3h_{20}^2h_{3i}$ $v_2v_3h_{20}^2h_{3i}$ $v_3h_{20}h_{21}h_{3i}$ $v_2v_3h_{20}h_{21}h_{3i}$	\mapsto	$\begin{array}{c} v_2 v_3 h_{20}^3 h_{3i} \\ v_3 h_{20}^3 h_{3i} \\ v_2 v_3 h_{20}^2 h_{21} h_{3i} \\ v_3 h_{20}^2 h_{21} h_{3i} \end{array}$	\mapsto
			$v_2 v_3 h_{30} h_{31}$	\mapsto	$v_2v_3h_{20}h_{30}h_{31}\\v_3h_{20}h_{30}h_{31}\\v_2v_3h_{21}h_{30}h_{31}$	\mapsto	$\begin{array}{c} v_3h_{20}^2h_{30}h_{31}\\ v_2v_3h_{20}^2h_{30}h_{31}\\ v_3h_{20}h_{21}h_{30}h_{31}\\ v_2v_3h_{20}h_{21}h_{30}h_{31}\end{array}$	\mapsto

in which $x \mapsto y$ denotes the $d_1(x/v_1) = y/v_1$ for $x/v_1, y/v_1 \in A_2^0$.

Observe the long exact sequence (3.1), and note that the module \tilde{A}_2 given in the introduction is Im φ . Then the above differential pattern shows that δ is a monomorphism on \tilde{A}_2 , since \tilde{A}_2 is generated by the elements at the tails of the arrows.

LEMMA 3.5. The module $\widetilde{A_2}$ given in the introduction fits in the short exact sequence

$$0 \to (\widetilde{A_2})^{s-1} \xrightarrow{\delta} (A_2^0)^s \xrightarrow{\varphi} (\widetilde{A_2})^s \to 0$$

for s > 3.

PROOF OF THEOREM 1.1. Since $H^s M_1^1[t_1] = (A_2^0 \otimes \Lambda(\rho_2))^s$ for s > 4, we have the commutative diagram

of exact sequences by Lemma 3.5. If we show that the images of the left δ 's agree, then the map g is an isomorphism by [4, Remark 3.11]. We denote the maps δ and φ in the top sequence by δ' and φ' . Then Im $\delta' \subset \text{Im } \delta$. For any $x \notin \text{Im } \delta'$, $\varphi'(x) = x/2 \neq 0$ and $\delta'(x/2) \neq 0$, which shows $g(x/2) \neq 0$ since $\delta' = \delta g$. Therefore, $\varphi(x) = g(\varphi'(x)) = g(x/2) \neq 0$, and $x \notin \text{Im } \delta$.

LEMMA 3.6. The Bockstein spectral sequence $H^*M_1^{1}[t_1] \Rightarrow H^*M_0^{2}[t_1]$ splits into two spectral sequences $A_1 = (A_0 \oplus A_1 \oplus A_{21}) \otimes \Lambda(\rho_2) \Rightarrow \widetilde{A_1}$ and $A_2^0 \otimes \Lambda(\rho_2)$ $\Rightarrow \widetilde{A_2} \otimes \Lambda(\rho_2)$. Here, the module $\widetilde{A_1}$ denotes a module fitting in the long exact sequence

$$0 \to (\mathbf{A}_1)^0 \xrightarrow{\varphi} (\widetilde{\mathbf{A}_1})^0 \xrightarrow{2} (\widetilde{\mathbf{A}_1})^0 \xrightarrow{\delta} (\mathbf{A}_1)^1 \xrightarrow{\varphi} \cdots$$
$$\xrightarrow{\delta} (\mathbf{A}_1)^s \xrightarrow{\varphi} (\widetilde{\mathbf{A}_1})^s \xrightarrow{2} (\widetilde{\mathbf{A}_1})^s \xrightarrow{\delta} (\mathbf{A}_1)^{s+1} \xrightarrow{\varphi} \cdots$$

PROOF. By Lemma 3.5, we have the subspectral sequence $A_2^0 \otimes \Lambda(\rho_2) \Rightarrow \widetilde{A_2} \otimes \Lambda(\rho_2)$. Furthermore, Lemma 3.5 implies that all elements of $A_2^0 \otimes \Lambda(\rho_2)$ do not survive to the E_2 -term of the Bockstein spectral sequence. It follows that the differential d_r acts on A_1 . Now $\widetilde{A_1}$ is generated by elements \tilde{x}_r such that $2^{r-1}\tilde{x}_r = \tilde{x}_1 = \varphi(x)$ and $\delta(\tilde{x}_r)$'s are linearly independent.

REMARK. $\widetilde{A_1}$ is not determined here. Even the 0-dimensional part $(\widetilde{A_1})^0$ of it is very complicated (see. [6], [9]), though $(\widetilde{A_1})^s = 0$ for s > 4.

4. Proof of Theorem 1.2

Recall [8] the spectrum C such that $BP_*(C) = BP_*/(2, v_1^{\infty})[t_1]$. Then C fits in the cofiber sequence

$$C \xrightarrow{\varphi} W \wedge T(1) \xrightarrow{2} W \wedge T(1) \to \Sigma C,$$

which induces the short exact sequence

$$0 o M_1^1[t_1] \xrightarrow{\varphi} M_0^2[t_1] \xrightarrow{2} M_0^2[t_1] o 0$$

by applying $BP_*(L_2-)$. Let $E_r^{s,t}(X)$ denote the E_r -term of the $v_2^{-1}BP$ based Adams spectral sequence converging to $\pi_{t-s}(L_2X)$. Then the E_2 -term is $\operatorname{Ext}_{v_2^{-1}BP_*(v_2^{-1}BP)}^{**}(v_2^{-1}BP_*,v_2^{-1}BP_*(X))$, which is isomorphic to $H^*v_2^{-1}BP_*(X)$ by the change of rings theorem of Hovey and Sadofsky [1, Th. 3.1]. Indeed, we use the modified one [3, Th. 3.3]. In our case, we consider the spectral sequences $E_2^*(C) = H^*M_1^1[t_1] \Rightarrow \pi_*(L_2C)$ and $E_2^*(W \wedge T(1)) = H^*M_0^2[t_1] \Rightarrow \pi_*(L_2W \wedge T(1))$.

For the sake of simplicity, we compute differentials by setting $v_2^2 = 1$. In [8, Lemma 7.4], it is shown that for any $v_3^{4t+3}x/v_1 \in E_2^{s,u}(C) \cap A_2$,

Subgroups of $\pi_*(L_2T(1))$ at the prime two

(4.1)
$$d_3(v_3^{4t+3}x/v_1) = v_3^{4t+1}xh_{20}^3/v_1 \in E_2^{s+3,u+2}(C).$$

The other differentials on $E_r^*(C)$ are trivial except for the differentials

$$(4.2) d_3(x_n^s \widetilde{h_{20}}/v_1^{a_n}) = \begin{cases} v_3^{2^n(s-1)+4(2^{n-2}-1)/3+1}h_{20}^2h_{21}h_{30}/v_1 & n \text{ is even} \\ v_2 v_3^{2^n(s-1)+8(2^{n-3}-1)/3+1}h_{20}^2h_{21}h_{31}/v_1 & n \text{ is odd} \end{cases}$$

$$d_3(x_n^s g_{n+1}\widetilde{h_{20}}/v_1^{a_n}) = \begin{cases} v_3^{2^n s-3}h_{20}^2h_{21}h_{30}h_{31}/v_1 & n \text{ is even} \\ v_2 v_3^{2^n s-3}h_{20}^2h_{21}h_{30}h_{31}/v_1 & n \text{ is odd} \end{cases}$$

for $n \ge 2$ and odd s > 0, and a v_2 -multiple of them ([8, Lemmas 7.6 and 7.8]). Here $\widetilde{h_{20}}$ is defined as the class represented by the cocycle $\widetilde{t_2}$ in the congruence $d(v_3^4) \equiv 2v_1^2 \widetilde{t_2} \mod(4)$, whose leading term is $v_2^3 v_3^2 t_2$.

LEMMA 4.3. In the Adams-Novikov E_3^* -term for $\pi_*(L_2W \wedge T(1))$,

$$d_3(v_3^3 x/2v_1) = v_2 v_3 x h_{21} h_{20}^2/2v_1 \qquad and \qquad d_3(v_2 v_3^3 y/2v_1) = v_2 v_3 y h_{20}^3/2v_1$$

for $x \in K^2_*[v_3^4] \otimes \Lambda(h_{30}, h_{31})$ and $y \in K^2_*[v_3^4, h_{20}] \otimes \Lambda(h_{21}, h_{30}, h_{31})$, and

$$d_{3}(x_{n}^{s}\widetilde{h_{20}}/2v_{1}^{a_{n}}) = \begin{cases} v_{2}v_{3}^{2^{n}(s-1)+4(2^{n-2}-1)/3+1}h_{20}^{3}h_{30}/2v_{1} & n \text{ is even} \\ v_{2}v_{3}^{2^{n}(s-1)+8(2^{n-3}-1)/3+1}h_{20}^{2}h_{21}h_{31}/2v_{1} & n \text{ is odd}, \end{cases}$$

$$d_{3}(x_{n}^{s}g_{n+1}\widetilde{h_{20}}/2v_{1}^{a_{n}}) = \begin{cases} v_{2}v_{3}^{2^{n}s-3}h_{20}^{3}h_{30}h_{31}/2v_{1} & n \text{ is even} \\ v_{2}v_{3}^{2^{n}s-3}h_{20}^{2}h_{21}h_{30}h_{31}/2v_{1} & n \text{ is odd}, \end{cases}$$

$$d_{3}(v_{2}x_{n}^{s}\widetilde{h_{20}}/2v_{1}^{a_{n}}) = \begin{cases} v_{2}v_{3}^{2^{n}(s-1)+8(2^{n-3}-1)/3+1}h_{20}^{2}h_{21}h_{31}/2v_{1} & n \text{ is even} \\ v_{2}v_{3}^{2^{n}(s-1)+8(2^{n-3}-1)/3+1}h_{20}^{2}h_{30}/2v_{1} & n \text{ is odd} \end{cases}$$

$$d_{3}(v_{2}x_{n}^{s}\widetilde{h_{20}}/2v_{1}^{a_{n}}) = \begin{cases} v_{2}v_{3}^{2^{n}s-3}h_{20}^{2}h_{21}h_{30}h_{31}/2v_{1} & n \text{ is even} \\ v_{2}v_{3}^{2^{n}s-3}h_{20}^{2}h_{21}h_{30}h_{31}/2v_{1} & n \text{ is even} \end{cases}$$

$$d_{3}(v_{2}x_{n}^{s}g_{n+1}\widetilde{h_{20}}/2v_{1}^{a_{n}}) = \begin{cases} v_{2}v_{3}^{2^{n}s-3}h_{20}^{2}h_{21}h_{30}h_{31}/2v_{1} & n \text{ is even} \\ v_{2}v_{3}^{2^{n}s-3}h_{20}^{2}h_{30}h_{31}/2v_{1} & n \text{ is odd} \end{cases}$$

for positive integers s and n with n > 1. Here the equations are all up to sign.

PROOF. Note that $v_3xh_{20}^3/2v_1 = v_2v_3xh_{21}h_{20}^2/2v_1$ in $E_3^*(W \wedge T(1))$, since $\delta(v_2v_3xh_{20}^2/2v_1) = v_3xh_{20}^3/v_1 + v_2v_3xh_{21}h_{20}^2/v_1$ by Lemma 3.3. In the same manner as this, we have the relations $v_3^{2^n(s-1)+4(2^{n-2}-2^{e(n)})/3+1}h_{20}^2h_{21}h_{3e(n)}/2v_1$ and $v_3^{2^ns-3}h_{20}^2h_{21}h_{30}h_{31}/2v_1 = v_2v_3^{2^ns-3}h_{20}^3h_{30}h_{31}/2v_1$, since $h_{21}^2 = h_{20}^2$. Then the differentials in (4.1) and (4.2) of the form $d_3(x) = y$ (resp. $d_3(x) = v_2y$) yield differentials $d_3(x/2) = v_2z/2$ and $d_3(v_2x/2) = v_2y/2$ (resp. $d_3(x/2) = v_2y/2$ and $d_3(v_2x/2) = v_2z/2$) of $E_3^*(W \wedge T(1))$, where z is an element such that $\delta(w) = y - z \in H^*M_1^1[t_1]$ for an element w of $H^*M_0^2[t_1]$.

COROLLARY 4.4. The module $\widetilde{A_{21}}$ given in Introduction is a submodule of $H^*M_0^2[t_1]$. In other words, the map sending an element $x \in \widetilde{A_{21}}$ to $x/2v_1 \in H^*M_0^2[t_1]$ is a monomorphism.

PROOF. It suffices to show that $x/2v_1 \neq 0 \in H^*M_0^2[t_1]$ for $x \in A_{21}$. The first equation of Lemma 4.3 shows $d_3(x/2v_1) \neq 0$.

COROLLARY 4.5. After a suitable modification of $\widetilde{A_1}^0$, the $v_2^{-1}BP$ based Adams differentials d_3 originating in $\widetilde{A_1}^0$ are all zero.

PROOF. The only non-trivial differentials originating in $\widetilde{A_1}^0$ are given in Lemma 4.3, and their targets are all in the image of d_3 originating in $(\widetilde{A_2} \oplus \widetilde{A_{21}}) \otimes \Lambda(\rho_2)$.

REMARK. This modification of $\widetilde{A_1}^0$ does not change the additive structure of $\widetilde{A_1}^0$ nor the E_2 -term $H^*M_0^2[t_1]$. In fact, each generator $x \in \widetilde{A_1}^0$ is just replaced by x + y for some $y \in (\widetilde{A_2} \oplus \widetilde{A_{21}}) \otimes \Lambda(\rho_2)$.

THEOREM 4.6. The E_4 -term of the $v_2^{-1}BP$ based Adams spectral sequence contains $\widehat{A}_2 \otimes \Lambda(\rho_2)$, which is obtained from the subgroup $\widetilde{A}_2 \otimes \Lambda(\rho_2)$ of the E_2 -term. Here, \widehat{A}_2 is the module given in Theorem 1.2.

PROOF. The $v_2^{-1}BP$ based Adams differential d_3 makes (\tilde{A}_2, d_3) a differential module by Lemma 4.3, whose homology is

$$\widehat{A_2}' = v_2 v_3 K_*^2 [v_3^4, h_{20}] / (h_{20}^3) \otimes \Lambda(h_{21}, h_{30}, h_{31}).$$

We decompose $\widehat{A_2}'$ into the direct sum of the two modules

$$\widehat{A_{21}}' = v_2 v_3 K_*^2 [v_3^4] \otimes \Lambda(h_{20}, h_{21}, h_{30}, h_{31}) \oplus v_2 v_3 h_{20}^2 K_*^2 [v_3^4] \otimes \Lambda(h_{30}, h_{31})$$
 and

$$\widehat{A_{22}}' = v_2 v_3 h_{20}^2 h_{21} K_*^2 [v_3^4] \otimes \Lambda(h_{30}, h_{31}).$$

The first differential in Lemma 4.3 gives the isomorphism $d_3: \widetilde{A_{21}} \cong \widehat{A_{22}}'$, and we obtain the theorem by setting

$$\widehat{A}_2 = \widehat{A_{21}}'.$$

PROPOSITION 4.7. The $v_2^{-1}BP$ based Adams spectral sequence converging to $\pi_*(L_2W \wedge T(1))$ collapses from the E_4 -term. That is, $E_4^* = E_{\infty}^*$.

PROOF. Since $(\widetilde{A_1})^s = 0$ for s > 4 and $(\widehat{A_2} \otimes \Lambda(\rho_2))^s = 0$ for s > 5, we see that $E_5^s = 0$ for s > 5. Therefore, the differentials d_r are all trivial for r > 5. Suppose that $d_5(x/2^l) = y/2$ for $x/2^l \in \widetilde{A_1}$. Then $y/2 \in \widehat{A_{21}}'$, and so $\delta(y/2) \neq 0 \in E_2^6(C)$. Send the relation $d_5(x/2^l) = y/2$ by δ , and we see that $d_5(\delta(x/2^l)) = \delta(y/2) \in E_5^6(C)$. Since $E_5^6(C) = 0$ by [8, Corollary 7.9], there is

an element $z \neq 0 \in E_3^3$ such that $d_3(z) = \delta(y/2)$. Then, $\varphi_*(z)$ must be hit by $x/2^{l+1}$ under d_3 . By Lemma 4.3, there is no such differential.

From the proof of this together with Corollary 4.5, we obtain the following:

COROLLARY 4.8. The differentials d_r of the $v_2^{-1}BP$ based Adams spectral sequence for $\pi_*(L_2W \wedge T(1))$ are trivial on $\widetilde{A_1}^0 \subset E_2^*$.

References

- M. Hovey and H. Sadofsky, Invertible spectra in the E(n)-local stable homotopy category, J. London Math. Soc. 60 (1999), 284–302.
- [2] I. Ichigi, K. Shimomura and X. Wang, The homotopy groups $\pi_*(L_2M_4 \wedge T(1))$ at the prime two, preprint.
- [3] Y. Kamiya and K. Shimomura, A relation between the Picard group of the E(n)-local homotopy category and E(n)-based Adams spectral sequence, to appear in Contemp. Math.
- [4] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469–516.
- [5] M. Mahowald and K. Shimomura, The Adams-Novikov spectral sequence for the L_2 localization of a v_2 spectrum, Contemp. Math. **146** (1993), 237–250.
- [6] H. Nakai and X. Wang, $\operatorname{Ext}^0_{\Gamma(2)}(BP_*, M_0^2)$ at the prime 2, preprint.
- [7] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres (Academic Press, 1986).
- [8] K. Shimomura, The homotopy groups of the L_2 -localized Mahowald spectrum $X\langle 1 \rangle$, Forum Math. 7 (1995), 685–707.
- [9] K. Shimomura and X. Wang, On torsion groups $\pi_*(L_2T(1))$, preprint.

Ippei Ichigi and Katsumi Shimomura Department of Mathematics Faculty of Science Kochi University Kochi, 780-8520 Japan E-mail: 95sm004@math.kochi-u.ac.jp E-mail: katsumi@math.kochi-u.ac.jp