Subgroups of $\pi_{*}\left(L_{2} T(1)\right)$ at the prime two

Ippei Ichigi and Katsumi Shimomura

(Received February 17, 2003)
(Revised June 2, 2003)

Abstract

Let $T(1)$ be the Ravenel spectrum whose $B P_{*}$-homology is $B P_{*}\left[t_{1}\right](\subset$ $B P_{*}(B P)$), and let L_{2} denote the Bousfield localization functor with respect to $v_{2}^{-1} B P$. In this paper, we show that the E_{4}-term of the Adams-Novikov spectral sequence for $\pi_{*}\left(L_{2} T(1)\right)$ has horizontal vanishing line and is the E_{∞}-term. We also find subgroups of the homotopy groups $\pi_{*}\left(L_{2} T(1)\right)$.

1. Introduction

In this paper, everything is localized at the prime two. Let $B P$ denote the Brown-Peterson ring spectrum at the prime two. Then the homotopy groups $\pi_{*}(B P)$ turn to the polynomial algebra $B P_{*}=\boldsymbol{Z}_{(2)}\left[v_{1}, v_{2}, \ldots\right]$ over the Hazewinkel generators v_{i} with $\left|v_{i}\right|=2^{i+1}-2$. The Ravenel spectrum $T(1)$ is characterized by the Brown-Peterson homology as $B P_{*}(T(1))=B P_{*}\left[t_{1}\right] \subset$ $B P_{*}(B P)=B P_{*}\left[t_{1}, t_{2}, \ldots\right]$. We consider the spectrum $G=v_{2}^{-1} B P$. Let L_{2} denote the Bousfield localization functor on the stable homotopy category of spectra with respect to G. One of the methods to determine the homotopy groups $\pi_{*}\left(L_{2} T(1)\right)$ is the Adams-Novikov spectral sequence $E_{2}^{*}=H^{*} v_{2}^{-1} B P_{*}\left[t_{1}\right]$ $\Rightarrow \pi_{*}\left(L_{2} T(1)\right)$, where $H^{*}-=\operatorname{Ext}_{G_{*}(G)}^{*}\left(G_{*},-\right)$. We study the E_{2}-term by the chromatic spectral sequence $\sum_{i=0}^{2} H^{*} M_{0}^{i}\left[t_{1}\right] \Rightarrow H^{*} v_{2}^{-1} B P_{*}\left[t_{1}\right]$ and the $\bmod 2$ Bockstein spectral sequences $H^{*} M_{1}^{0}\left[t_{1}\right] \Rightarrow H^{*} M_{0}^{1}\left[t_{1}\right]$ and $H^{*} M_{1}^{1}\left[t_{1}\right] \Rightarrow$ $H^{*} M_{0}^{2}\left[t_{1}\right]$. Here, $M_{0}^{0}=2^{-1} B P_{*}, M_{1}^{0}=v_{1}^{-1} B P_{*} /(2), M_{0}^{1}=v_{1}^{-1} B P_{*} /\left(2^{\infty}\right), M_{1}^{1}=$ $v_{2}^{-1} B P_{*} /\left(2, v_{1}^{\infty}\right)$ and $M_{0}^{2}=v_{2}^{-1} B P_{*} /\left(2^{\infty}, v_{1}^{\infty}\right)$. The modules $H^{*} M_{0}^{0}\left[t_{1}\right]$ and $H^{*} M_{1}^{0}\left[t_{1}\right]$ are given by Ravenel in [7]. In [5], Mahowald and the second author determined $H^{*} M_{2}^{0}\left[t_{1}\right]$ as the tensor product of the polynomial algebra $K(2)_{*}\left[v_{3}, h_{20}\right]$ and the exterior algebra $\Lambda\left(h_{21}, h_{30}, h_{31}, \rho_{2}\right)$, where $K(2)_{*}=$ $\boldsymbol{Z} / 2\left[v_{2}^{ \pm 1}\right]$. In [8], the second author determined $H^{*} M_{1}^{1}\left[t_{1}\right]$ by the v_{1}-Bockstein spectral sequence $H^{*} M_{2}^{0}\left[t_{1}\right] \Rightarrow H^{*} M_{1}^{1}\left[t_{1}\right]$ to be the tensor product of $\Lambda\left(\rho_{2}\right)$ and the direct sum of modules A_{i} :

2000 Mathematics Subject Classification. Primary 55Q99, Secondary 55Q45, 55Q51.
Key words and phrases. Homotopy groups, Ravenel spectrum, Bousfield localization, AdamsNovikov spectral sequence.

$$
\begin{aligned}
& A_{0}=\left(v_{1}^{-1} K / K \oplus \sum_{n>1} x_{n} K /\left(v_{1}^{a_{n}}\right)\left[x_{n+1}\right] \otimes \Lambda\left(g_{n+1}\right)\right) \otimes \Lambda\left(\widetilde{h_{20}}\right) \\
& A_{1}=v_{3}^{2} K /\left(v_{1}^{2}\right)\left[x_{2}\right] \otimes \Lambda\left(h_{30}, h_{31}\right) \quad \text { and } \\
& A_{2}=v_{3} K(2)_{*}\left[v_{3}^{2}, h_{20}\right] \otimes \Lambda\left(h_{21}, h_{30}, h_{31}\right) .
\end{aligned}
$$

Here $K=\boldsymbol{Z} / 2\left[v_{1}, v_{2}^{ \pm 1}\right], a_{n}$ denotes the integer $2^{n}+\frac{2}{3}\left(2^{n}-2^{\varepsilon(n)}\right)$ for $\varepsilon(n)=$ $\left(1-(-1)^{n}\right) / 2$, and the elements $x_{n}, g_{n}, h_{i j}$ and $\widetilde{h_{20}}$ denote the cohomology classes represented by the cocycles of the cobar complex $\Omega_{G_{*}(G)}^{*} G_{*}\left[t_{1}\right] /\left(2, v_{1}^{j}\right)$ for a suitable $j>0$, whose leading terms are $v_{3}^{2^{n}}, v_{3}^{4\left(2^{n-2}-2^{\varepsilon(n)}\right) / 3} t_{3}^{2^{\varepsilon(n)}}, t_{i}^{2^{j}}$ and $v_{3}^{2} t_{2}$, respectively. Consider the submodule

$$
A_{21}=v_{3} K_{*}^{2}\left[v_{3}^{2}\right] \otimes \Lambda\left(h_{21}, h_{30}, h_{31}\right) \subset A_{2}
$$

and put $A_{2}^{0}=A_{2} / A_{21}$ as a module. We see that there is a submodule

$$
\tilde{A_{2}}=v_{2} v_{3} K_{*}^{2}\left[v_{3}^{2}, h_{20}\right] \otimes \Lambda\left(h_{21}, h_{30}, h_{31}\right)
$$

of $H^{*} M_{0}^{2}\left[t_{1}\right]$, where $K_{*}^{2}=\boldsymbol{Z} / 2\left[v_{2}^{ \pm 2}\right]$ and $x \in \widetilde{A_{2}}$ is considered to be $x / 2 v_{1} \in$ $H^{*} M_{0}^{2}\left[t_{1}\right]$. Then we show that the $\operatorname{map} \varphi: H^{*} M_{1}^{1}\left[t_{1}\right] \rightarrow H^{*} M_{0}^{2}\left[t_{1}\right]$ given by $\varphi(x)=x / 2$ is restricted to $\varphi: A_{2}^{0} \rightarrow \widetilde{A_{2}}$ and then the sequence $0 \rightarrow\left(\widetilde{A_{2}}\right)^{s-1} \xrightarrow{\delta}$ $\left(A_{2}^{0}\right)^{s} \xrightarrow{\varphi}\left(\tilde{A_{2}}\right)^{s} \rightarrow 0$ for each $s>3$ is exact, where $(M)^{s}$ denotes the submodule of M consisting of elements of cohomology dimension s, and δ is the connecting homomorphism associated to the short exact sequence $0 \rightarrow M_{1}^{1}\left[t_{1}\right] \rightarrow$ $M_{0}^{2}\left[t_{1}\right] \rightarrow M_{0}^{2}\left[t_{1}\right] \rightarrow 0$. This shows our first result.

TheOrem 1.1. $\quad H^{s} M_{0}^{2}\left[t_{1}\right]$ is isomorphic to $\left(\tilde{A_{2}} \otimes \Lambda\left(\rho_{2}\right)\right)^{s}$ for $s>4$.
Furthermore, we show that the mod 2 Bockstein spectral sequence splits (see Lemma 3.6). A summand of the spectral sequence is $A_{2}^{0} \Rightarrow \widetilde{A_{2}}$. It seems very complicated to determine the other parts $\boldsymbol{A}_{1}=\left(A_{0} \oplus A_{1} \oplus A_{21}\right) \otimes \Lambda\left(\rho_{2}\right)$ $\Rightarrow \widetilde{\boldsymbol{A}_{1}}$ (cf. [6], [2], [9]).

Let W be the spectrum such that $B P_{*}\left(L_{2} W\right)=M_{0}^{2}$. Indeed, W is the cofiber of the localization map $V \rightarrow L_{1} V$, where V is the cofiber of the localization map $S^{0} \rightarrow S \boldsymbol{Q}$. Then $H^{*} M_{0}^{2}\left[t_{1}\right]$ is isomorphic to the E_{2}-term of the Adams-Novikov spectral sequence for $\pi_{*}\left(L_{2} W \wedge T(1)\right)$. We consider the submodule

$$
\widetilde{A_{21}}=v_{3}^{3} K_{*}^{2}\left[v_{3}^{4}\right] \otimes \Lambda\left(h_{30}, h_{31}\right) \subset H^{*} M_{0}^{2}\left[t_{1}\right]
$$

and see that $\widetilde{\boldsymbol{A}_{21}} \otimes \Lambda\left(\rho_{2}\right) \subset \widetilde{\boldsymbol{A}_{1}}$ (see Corollary 4.4). We write $\widetilde{\boldsymbol{A}_{1}}{ }^{0}=$ $\widetilde{\boldsymbol{A}_{1}} /\left(\widetilde{\boldsymbol{A}_{21}} \otimes \Lambda\left(\rho_{2}\right)\right)$ as a module. We compute the differentials of the AdamsNovikov spectral sequence on $\widetilde{A_{2}}$ and $\widetilde{A_{21}}$, and then show that the differentials on ${\widetilde{\boldsymbol{A}_{1}}}^{0}$ are zero after a modification of $\widetilde{\boldsymbol{A}_{1}}{ }^{0}$ (see Corollary 4.8).

Theorem 1.2. The Adams-Novikov E_{∞}-term for the homotopy groups $\pi_{*}\left(L_{2} T(1) \wedge W\right)$ is isomorphic to the direct sum of $\widetilde{\boldsymbol{A}_{1}}{ }^{0}$ and $\widehat{A_{2}} \otimes \Lambda\left(\rho_{2}\right)$, where

$$
\widehat{A_{2}}=v_{2} v_{3} K_{*}^{2}\left[v_{3}^{4}\right] \otimes \Lambda\left(h_{20}, h_{21}, h_{30}, h_{31}\right) \oplus v_{2} v_{3} h_{20}^{2} K_{*}^{2}\left[v_{3}^{4}\right] \otimes \Lambda\left(h_{30}, h_{31}\right)
$$

Note that we do not determine the structure of $\tilde{\boldsymbol{A}_{1}}{ }^{0}$ of the theorem, though we know that the Adams-Novikov differentials are trivial on it.

By the definition of W, we have the composite $\eta: W \rightarrow \Sigma V \rightarrow S^{2}$, which induces the composite of connecting homomorphisms $\eta_{*}: H^{s} M_{0}^{2}\left[t_{1}\right] \rightarrow$ $H^{s+1} v_{2}^{-1} B P_{*} /\left(2^{\infty}\right)\left[t_{1}\right] \rightarrow H^{s+2} v_{2}^{-1} B P_{*}\left[t_{1}\right]$ in the long exact sequences

$$
\begin{aligned}
& H^{s} M_{0}^{1}\left[t_{1}\right] \rightarrow H^{s} M_{0}^{2}\left[t_{1}\right] \stackrel{\delta}{\rightarrow} H^{s+1} v_{2}^{-1} B P_{*} /\left(2^{\infty}\right)\left[t_{1}\right] \rightarrow H^{s+1} M_{0}^{1}\left[t_{1}\right] \quad \text { and } \\
& H^{s} M_{0}^{0}\left[t_{1}\right] \rightarrow H^{s} v_{2}^{-1} B P_{*} /\left(2^{\infty}\right)\left[t_{1}\right] \stackrel{\delta}{\rightarrow} H^{s+1} v_{2}^{-1} B P_{*}\left[t_{1}\right] \rightarrow H^{s+1} M_{0}^{0}\left[t_{1}\right]
\end{aligned}
$$

Since we see that both of $H^{s} M_{0}^{0}\left[t_{1}\right]$ and $H^{s} M_{0}^{1}\left[t_{1}\right]$ are zero for $s>0$ (Theorem 2.5), we see that the connecting homomorphisms are isomorphisms for $s>0$, and so is η_{*}. In Proposition 4.7, we show that the E_{4}-term is the E_{∞}-term. Since η_{*} is a map of spectral sequences, we have the results on $\pi_{*}\left(L_{2} T(1)\right)$.

Corollary 1.3. The Adams-Novikov spectral sequence converging to the homotopy groups $\pi_{*}\left(L_{2} T(1)\right)$ collapses from the E_{4}-term.

Corollary 1.4. The homotopy groups $\pi_{*}\left(L_{2} T(1)\right)$ contain the subgroups isomorphic to $\widehat{A_{2}} \otimes \Lambda\left(\rho_{2}\right)$, which is the image of $\widehat{A_{2}} \otimes \Lambda\left(\rho_{2}\right)$ under the map $\eta_{*}: \pi_{*}\left(L_{2} T(1) \wedge W\right) \rightarrow \pi_{*}\left(L_{2} T(1)\right)$.

In the next section, we show that $H^{s} M_{0}^{1}\left[t_{1}\right]$ is zero for $s>0$ by determining it. In sections 3 and 4, we give proofs of Theorems 1.1 and 1.2, respectively. The authors would like to thank Professor Xiangjun Wang who pointed out mistakes in Lemmas 3.3 and 4.3 in a draft version of this paper.

2. $H^{*} M_{0}^{1}\left[t_{1}\right]$

Let $B P$ denote the Brown-Peterson spectrum at the prime two. Then $B P_{*}=\boldsymbol{Z}_{(2)}\left[v_{1}, v_{2}, \ldots\right]$ and $B P_{*}(B P)=B P_{*}\left[t_{1}, t_{2}, \ldots\right]$, and $\left(B P_{*}, B P_{*}(B P)\right)$ is a Hopf algebroid. Hereafter, we write

$$
H^{*} M=\operatorname{Ext}_{B P_{*}(B P)}^{*}\left(B P_{*}, M\right)
$$

for a $B P_{*}(B P)$-comodule M. Consider the $B P_{*}(B P)$-comodule $M_{1}^{0}=$ $v_{1}^{-1} B P_{*} /(2)$. Then in [7, Th. 6.1.1 and Cor. 6.5.6], it is shown that

$$
H^{*} M_{1}^{0}\left[t_{1}\right]=K(1)_{*}\left[v_{2}\right] \otimes \Lambda\left(h_{20}\right) .
$$

Here $H^{*} M$ for a $B P_{*}(B P)$-comodule M denotes $\operatorname{Ext}_{B P_{*}(B P)}^{*}\left(B P_{*}, M\right), K(1)_{*}=$
$\boldsymbol{Z} / 2\left[v_{1}^{ \pm 1}\right]$ and h_{20} is the element represented by a cocycle of the cobar complex whose leading term is t_{2}. Consider the Hopf algebroid $(A, \Gamma)=\left(B P_{*}\right.$, $\left.B P_{*}\left[t_{2}, t_{3}, \ldots\right]\right)$, whose structure maps are induced from those of $B P_{*}(B P)$ under the projection $B P_{*}(B P) \rightarrow \Gamma$. We then have the change of rings theorem

$$
H^{*} M\left[t_{1}\right]=\operatorname{Ext}_{\Gamma}^{*}(A, M)
$$

for a $B P_{*}(B P)$-comodule M.
Lemma 2.1. In the Hopf algebroid (A, Γ),

$$
\begin{aligned}
& \eta_{R}\left(v_{1}\right)=v_{1} \\
& \eta_{R}\left(v_{2}\right)=v_{2}+2 t_{2} \quad \text { and } \\
& \eta_{R}\left(v_{3}\right)=v_{3}+v_{1} t_{2}^{2}+2 t_{3}-2 v_{1} v_{2} t_{2}-2 v_{1} t_{2}^{2}-v_{1}^{4} t_{2}
\end{aligned}
$$

Proof. This is based on the Hazewinkel's and the Quillen's formulas:

$$
\begin{aligned}
& v_{n}=2 m_{n}-\sum_{i=1}^{n-1} m_{i} v_{n-i}^{2^{i}} \in \boldsymbol{Q} \otimes B P_{*}=\boldsymbol{Q}\left[m_{1}, m_{2}, \ldots\right] \quad \text { and } \\
& \eta_{R}\left(m_{n}\right)=\sum_{i=0}^{n} m_{i} t_{n-i}^{2^{i}} \in \boldsymbol{Q} \otimes B P_{*}(B P)
\end{aligned}
$$

We consider it in $\boldsymbol{Q} \otimes B P_{*}\left[t_{2}, t_{3}, \ldots\right]$. Then $\eta_{R}\left(v_{1}\right)=2 \eta_{R}\left(m_{1}\right)=2 m_{1}=v_{1}$, and $\eta_{R}\left(v_{2}\right)=2 \eta_{R}\left(m_{2}\right)-m_{1} v_{1}^{2}=2\left(m_{2}+t_{2}\right)-m_{1} v_{1}^{2}=v_{2}+2 t_{2}$. For $\eta_{R}\left(v_{3}\right)$, we compute

$$
\begin{aligned}
\eta_{R}\left(v_{3}\right) & =2\left(m_{3}+m_{1} t_{2}^{2}+t_{3}\right)-m_{1}\left(v_{2}+2 t_{2}\right)^{2}-\left(m_{2}+t_{2}\right) v_{1}^{4} \\
& =2 m_{3}+v_{1} t_{2}^{2}+2 t_{3}-m_{1} v_{2}^{2}-2 v_{1} v_{2} t_{2}-2 v_{1} t_{2}^{2}-m_{2} v_{1}^{4}-v_{1}^{4} t_{2} \\
& =v_{3}+v_{1} t_{2}^{2}+2 t_{3}-2 v_{1} v_{2} t_{2}-2 v_{1} t_{2}^{2}-v_{1}^{4} t_{2}
\end{aligned}
$$

We define $x_{1, n} \in v_{1}^{-1} A=v_{1}^{-1} B P_{*}$ by

$$
x_{1,0}=v_{2}, \quad x_{1,1}=x_{1,0}^{2}+2 v_{1}^{3} v_{2}+4 v_{1}^{-1} v_{3}, \quad \text { and } \quad x_{1, n}=x_{1, n-1}^{2}
$$

Let $d: v_{1}^{-1} A \rightarrow v_{1}^{-1} A \otimes_{A} \Gamma$ denote $\eta_{R}-\eta_{L}$. Then we have
Lemma 2.2. Let $x_{1, i}$ be the elements defined above. Then we see that $d\left(x_{1, n}\right) \equiv 2^{n+1} X_{n} t_{2} \bmod \left(2^{n+2}\right)$ for $n \geq 0$, where $X_{0}=1$ and $X_{n}=x_{1,0} x_{1,1} \ldots$ $x_{1, n-1}$ for $n>0$.

Proof. For $n=0$, it follows from Lemma 2.1. For $n=1$, we obtain the equation from the computations:

$$
\begin{aligned}
d\left(v_{2}^{2}\right) & =\left(v_{2}+2 t_{2}\right)^{2}-v_{2}^{2}=4 v_{2} t_{2}+4 t_{2}^{2} \\
d\left(4 v_{1}^{-1} v_{3}\right) & \equiv 4 v_{1}^{-1}\left({\underline{v_{1}} t_{2}^{2}}_{1}+{\underline{v_{1}^{4} t_{2}}}_{2}\right) \bmod (8) \quad \text { and } \\
d\left(2 v_{1}^{3} v_{2}\right) & =\underline{4 v}_{1}^{3} t_{2}
\end{aligned}
$$

Here, the underlined terms with the same subscript cancel out.
Inductively, suppose that $d\left(x_{1, n}\right) \equiv 2^{n+1} X_{n} t_{2} \bmod \left(2^{n+2}\right)$. Then

$$
\begin{aligned}
d\left(x_{1, n}^{2}\right) & \equiv\left(x_{1, n}+2^{n+1} X_{n} t_{2}\right)^{2}-x_{1, n}^{2} \quad \bmod \left(2^{n+3}\right) \\
& \equiv 2^{n+2} x_{1, n} X_{n} t_{2} \quad \bmod \left(2^{n+3}\right)
\end{aligned}
$$

and obtain the congruence for $n+1$.
Lemma 2.3. $H^{0} M_{0}^{1}\left[t_{1}\right]$ is the tensor product of $\boldsymbol{Z}_{(2)}\left[v_{1}, v_{1}^{-1}\right]$ and the direct sum of $\boldsymbol{Q} / \boldsymbol{Z}_{(2)}$ and $\boldsymbol{Z} /\left(2^{n+1}\right)$ generated by $x_{1, n}^{s} / 2^{n+1}$ for each $n \geq 0$ and odd $s>0$.

Proof. Let B denote the module of the lemma. Then we have a sequence $H^{*} M_{1}^{0}\left[t_{1}\right] \xrightarrow{\varphi} B \xrightarrow{2} B$ fitting in the commutative diagram

Here $\varphi(x)=x / 2$. If the bottom sequence is exact, then the inclusion i is an isomorphism by [4, Remark 3.11]. To see the exactness, it suffices to show that $\operatorname{Ker} \delta \subset \operatorname{Im} 2$, which is seen by $\delta\left(x_{1, n}^{s} / 2^{n+1}\right)=v_{2}^{2^{n}(s-1)+2^{n}-1} h_{20}$ for odd $s>0$.

Corollary 2.4. The image of $\varphi: H^{1} M_{1}^{0}\left[t_{1}\right] \rightarrow H^{1} M_{0}^{1}\left[t_{1}\right]$ is zero.
Proof. Note that each integer $s \geq 0$ is expressed uniquely as $2^{n+1} t+$ $2^{n}-1$ for some $t, n \geq 0$. Therefore, each generator $v_{2}^{s} h_{20} \in H^{1} M_{1}^{0}\left[t_{1}\right]$ for $s \geq 0$ is the image of $x_{1, n}^{2 t+1} / 2^{n+1}$ under δ.

Theorem 2.5. $H^{s} M_{0}^{1}\left[t_{1}\right]=0$ for $s>0$.

3. Proof of Theorem 1.1

We will study $H^{s} M_{0}^{2}\left[t_{1}\right]$ for $s \geq 0$ by using the exact sequence

$$
\begin{equation*}
\cdots \rightarrow H^{s} M_{1}^{1}\left[t_{1}\right] \xrightarrow{\varphi} H^{s} M_{0}^{2}\left[t_{1}\right] \xrightarrow{2} H^{s} M_{0}^{2}\left[t_{1}\right] \xrightarrow{\delta} H^{s+1} M_{1}^{1}\left[t_{1}\right] \rightarrow \cdots \tag{3.1}
\end{equation*}
$$

associated to the short exact sequence

$$
\begin{equation*}
0 \rightarrow M_{1}^{1}\left[t_{1}\right] \xrightarrow{\varphi} M_{0}^{2}\left[t_{1}\right] \xrightarrow{2} M_{0}^{2}\left[t_{1}\right] \rightarrow 0 \tag{3.2}
\end{equation*}
$$

where $\varphi(x)=x / 2$. Here, $H^{*} M=\operatorname{Ext}_{B P_{*}(B P)}^{*}\left(B P_{*}, M\right)$ as before. Consider the submodules

$$
\begin{aligned}
A_{2} & =v_{3} K(2)_{*}\left[v_{3}^{2}, h_{20}\right] \otimes \Lambda\left(h_{21}, h_{30}, h_{31}\right) \quad \text { and } \\
A_{21} & =v_{3} K_{*}^{2}\left[v_{3}^{2}\right] \otimes \Lambda\left(h_{21}, h_{30}, h_{31}\right)
\end{aligned}
$$

of $H^{*} M_{1}^{1}\left[t_{1}\right]$, where $K(2)_{*}=\boldsymbol{Z} / 2\left[v_{2}^{ \pm 1}\right], K_{*}^{2}=\boldsymbol{Z} / 2\left[v_{2}^{ \pm 2}\right]$ and an element x of the modules is considered to be an element x / v_{1} of $H^{*} M_{1}^{1}\left[t_{1}\right]$. Put $A_{2}^{0}=A_{2} / A_{21}$ as a module. Then, it is shown in [8, Th. 6.13] that

$$
H^{s} M_{1}^{1}\left[t_{1}\right]=\left(A_{2}^{0} \otimes \Lambda\left(\rho_{2}\right)\right)^{s}
$$

for $s>4$ and $H^{4} M_{1}^{1}\left[t_{1}\right]=\left(A_{2}^{0} \otimes \Lambda\left(\rho_{2}\right)\right)^{4} \oplus v_{3} K_{*}^{2}\left[v_{3}^{2}\right]\left\{h_{21} h_{30} h_{31} \rho_{2}\right\}$, where $(M)^{s}$ denotes the submodule of M consisting of elements of cohomology dimension s.

The exact sequence (3.1) defines the Bockstein spectral sequence $H^{*} M_{1}^{1}\left[t_{1}\right]$ $\Rightarrow H^{*} M_{0}^{2}\left[t_{1}\right]$. The differential d_{1} is defined to be $d_{1}=\delta \varphi: H^{s} M_{1}^{1}\left[t_{1}\right] \rightarrow$ $H^{s+1} M_{1}^{1}\left[t_{1}\right]$ for the maps δ and φ in (3.1). Then we have the following lemma.

Lemma 3.3. The differential d_{1} of the Bockstein spectral sequence acts on A_{2}^{0} as follows:

$$
d_{1}\left(v_{2}^{2 u+1} x\right)=v_{2}^{2 u} x h_{20}
$$

for an integer u and $x \in A_{2}^{0}$ with $v_{2} \nsucc x$.
Proof. Each cohomology class is represented as follows:

$$
h_{20}=\left[t_{2}\right], \quad h_{21}=\left[t_{2}^{2}\right], \quad h_{30}=\left[t_{3}\right] \quad \text { and } \quad h_{31}=\left[t_{3}^{2}\right] .
$$

For the diagonal map Δ, Quillen's formula $\Delta\left(t_{n}\right)=\Psi_{0}(n)+\sum_{k=1}^{n} m_{k}\left(\Psi_{k}(n)-\right.$ $\left.\Delta\left(t_{n-k}\right)^{p^{k}}\right)$ together with Hazewinkel's formula shows that $\Delta\left(t_{2}\right)=\Psi_{0}(2)=t_{2} \otimes$ $1+1 \otimes t_{2}$ and $\Delta\left(t_{3}\right)=\Psi_{0}(3)-v_{1} t_{2} \otimes t_{2} \equiv t_{3} \otimes 1+1 \otimes t_{3} \bmod \left(4, v_{1}\right)$, where $\Psi_{k}(l)=\sum_{i=0}^{l} t_{i}^{p^{k}} \otimes t_{l-i}^{p^{k+i}}$ and $t_{0}=1$. Thus this together with Lemma 2.1 shows that

$$
\begin{equation*}
d\left(v_{2}\right) \equiv 2 t_{2}, \quad d\left(v_{3}\right) \equiv 2 t_{3}, \quad d\left(t_{2}^{2}\right) \equiv 2 t_{2} \otimes t_{2} \quad \text { and } \quad d\left(t_{3}^{2}\right) \equiv 2 t_{3} \otimes t_{3} \tag{3.4}
\end{equation*}
$$

$\bmod \left(4, v_{1}\right)$ in $\Omega^{*} v_{2}^{-1} B P_{*}$. By the definition of the differential of the cobar complex, the element $d\left(v_{2}^{2 u+1} x / 4\right)$ of $\Omega^{*} M_{0}^{2}\left[t_{1}\right]$ is computed

$$
\begin{aligned}
d\left(v_{2}^{2 u+1} x / 4\right) & =d\left(v_{2}^{2 u+1}\right) x / 4+v_{2}^{2 u+1} d(x / 4) \\
& =v_{2}^{2 u} t_{2} x / 2+v_{2}^{2 u+1} d(x) / 4 \\
& =v_{2}^{2 u} x h_{20} / 2+v_{2}^{2 u+1} y / 2,
\end{aligned}
$$

where y is an element of $\Omega^{*} v_{2}^{-1} B P_{*} /\left(4, v_{1}^{\infty}\right)\left[t_{1}\right]$ such that $d(x)=2 y$. We see that $y \not \equiv \pm v_{2}^{-1} x h_{20} \bmod \left(4, v_{1}\right)$ by (3.4). Note here that $t_{3} \otimes t_{3}$ represents the cohomology class $h_{31}\left(v_{2}^{-1} h_{20}+v_{2}^{-2} h_{21}\right)+v_{2}^{-3} v_{3}^{2} h_{20} h_{21}$ (see [5, p. 243, (1)]).

The lemma indicates that h_{21} is redefined as

$$
h_{21}=\left[t_{2}^{2}+v_{2} t_{2}\right]
$$

and gives rise to the differential pattern on A_{2}^{0} :

0		1		2		3		4	
		$\begin{gathered} v_{2} v_{3} h_{20} \\ v_{3} h_{20} \\ v_{2} v_{3} h_{21} \end{gathered}$	$\begin{aligned} & \mapsto \\ & \mapsto \end{aligned}$	$\begin{gathered} v_{3} h_{20}^{2} \\ v_{2} v_{3} h_{20}^{2} \\ v_{3} h_{20} h_{21} \\ v_{2} v_{3} h_{20} h_{21} \end{gathered}$	\mapsto \mapsto	$\begin{gathered} v_{2} v_{3} h_{20}^{3} \\ v_{3} h_{20}^{3} \\ v_{2} v_{3} h_{20}^{2} h_{21} \\ v_{3} h_{20}^{2} h_{21} \end{gathered}$	\mapsto \mapsto	$\begin{gathered} v_{3} h_{20}^{4} \\ v_{2} v_{3} h_{20}^{4} \\ v_{3} h_{20}^{3} h_{21} \\ v_{2} v_{3} h_{20}^{3} h_{21} \end{gathered}$	\mapsto \mapsto
		$v_{2} v_{3} h_{3 i}$	\mapsto	$\begin{gathered} v_{2} v_{3} h_{20} h_{3 i} \\ v_{3} h_{20} h_{3 i} \\ v_{2} v_{3} h_{21} h_{3 i} \end{gathered}$		$\begin{gathered} v_{3} h_{20}^{2} h_{3 i} \\ v_{2} v_{3} h_{20}^{2} h_{3 i} \\ v_{3} h_{20} h_{21} h_{3 i} \\ v_{2} v_{3} h_{20} h_{21} h_{3 i} \end{gathered}$	\mapsto \mapsto	$\begin{gathered} v_{2} v_{3} h_{20}^{3} h_{3 i} \\ v_{3} h_{20}^{3} h_{3 i} \\ v_{2} v_{3} h_{20}^{2} h_{21} h_{3 i} \\ v_{3} h_{20}^{2} h_{21} h_{3 i} \end{gathered}$	\mapsto \mapsto
				$v_{2} v_{3} h_{30} h_{31}$	\mapsto	$\begin{gathered} v_{2} v_{3} h_{20} h_{30} h_{31} \\ v_{3} h_{20} h_{30} h_{31} \\ v_{2} v_{3} h_{21} h_{30} h_{31} \end{gathered}$	\mapsto \mapsto	$\begin{gathered} v_{3} h_{20}^{2} h_{30} h_{31} \\ v_{2} v_{3} h_{20}^{2} h_{30} h_{31} \\ v_{3} h_{20} h_{21} h_{30} h_{31} \\ v_{2} v_{3} h_{20} h_{21} h_{30} h_{31} \end{gathered}$	\mapsto \mapsto

in which $x \mapsto y$ denotes the $d_{1}\left(x / v_{1}\right)=y / v_{1}$ for $x / v_{1}, y / v_{1} \in A_{2}^{0}$.
Observe the long exact sequence (3.1), and note that the module $\widetilde{A_{2}}$ given in the introduction is $\operatorname{Im} \varphi$. Then the above differential pattern shows that δ is a monomorphism on $\widetilde{A_{2}}$, since $\widetilde{A_{2}}$ is generated by the elements at the tails of the arrows.

Lemma 3.5. The module $\widetilde{A_{2}}$ given in the introduction fits in the short exact sequence

$$
0 \rightarrow\left(\widetilde{A_{2}}\right)^{s-1} \xrightarrow{\delta}\left(A_{2}^{0}\right)^{s} \xrightarrow{\varphi}\left(\widetilde{A_{2}}\right)^{s} \rightarrow 0
$$

for $s>3$.
Proof of Theorem 1.1. Since $H^{s} M_{1}^{1}\left[t_{1}\right]=\left(A_{2}^{0} \otimes \Lambda\left(\rho_{2}\right)\right)^{s}$ for $s>4$, we have the commutative diagram

of exact sequences by Lemma 3.5. If we show that the images of the left δ 's agree, then the map g is an isomorphism by [4, Remark 3.11]. We denote the maps δ and φ in the top sequence by δ^{\prime} and φ^{\prime}. Then $\operatorname{Im} \delta^{\prime} \subset \operatorname{Im} \delta$. For any $x \notin \operatorname{Im} \delta^{\prime}, \varphi^{\prime}(x)=x / 2 \neq 0$ and $\delta^{\prime}(x / 2) \neq 0$, which shows $g(x / 2) \neq 0$ since $\delta^{\prime}=\delta g$. Therefore, $\varphi(x)=g\left(\varphi^{\prime}(x)\right)=g(x / 2) \neq 0$, and $x \notin \operatorname{Im} \delta$.

Lemma 3.6. The Bockstein spectral sequence $H^{*} M_{1}^{1}\left[t_{1}\right] \Rightarrow H^{*} M_{0}^{2}\left[t_{1}\right]$ splits into two spectral sequences $\boldsymbol{A}_{1}=\left(A_{0} \oplus A_{1} \oplus A_{21}\right) \otimes \Lambda\left(\rho_{2}\right) \Rightarrow \widetilde{\boldsymbol{A}_{1}}$ and $A_{2}^{0} \otimes \Lambda\left(\rho_{2}\right)$ $\Rightarrow \widetilde{A_{2}} \otimes \Lambda\left(\rho_{2}\right)$. Here, the module $\widetilde{A_{1}}$ denotes a module fitting in the long exact sequence

$$
\begin{aligned}
& 0 \rightarrow\left(\boldsymbol{A}_{1}\right)^{0} \xrightarrow{\varphi}\left(\widetilde{\boldsymbol{A}_{1}}\right)^{0} \xrightarrow{2}\left(\widetilde{\boldsymbol{A}_{1}}\right)^{0} \xrightarrow{\delta}\left(\boldsymbol{A}_{1}\right)^{1} \xrightarrow{\varphi} \cdots \\
& \stackrel{\delta}{\rightarrow}\left(\boldsymbol{A}_{1}\right)^{s} \xrightarrow{\underline{\rightarrow}}\left(\widetilde{\boldsymbol{A}_{1}}\right)^{s} \xrightarrow{2}\left(\widetilde{\boldsymbol{A}_{1}}\right)^{s} \xrightarrow{\delta}\left(\boldsymbol{A}_{1}\right)^{s+1} \xrightarrow{\varphi} \cdots .
\end{aligned}
$$

Proof. By Lemma 3.5, we have the subspectral sequence $A_{2}^{0} \otimes \Lambda\left(\rho_{2}\right) \Rightarrow$ $\widetilde{A_{2}} \otimes \Lambda\left(\rho_{2}\right)$. Furthermore, Lemma 3.5 implies that all elements of $A_{2}^{0} \otimes \Lambda\left(\rho_{2}\right)$ do not survive to the E_{2}-term of the Bockstein spectral sequence. It follows that the differential d_{r} acts on \boldsymbol{A}_{1}. Now $\widetilde{\boldsymbol{A}_{1}}$ is generated by elements \tilde{x}_{r} such that $2^{r-1} \tilde{x}_{r}=\tilde{x}_{1}=\varphi(x)$ and $\delta\left(\tilde{x}_{r}\right)$'s are linearly independent.

Remark. $\widetilde{\boldsymbol{A}_{1}}$ is not determined here. Even the 0 -dimensional part $\left(\widetilde{\boldsymbol{A}_{1}}\right)^{0}$ of it is very complicated (see. [6], [9]), though $\left(\widetilde{\boldsymbol{A}_{1}}\right)^{s}=0$ for $s>4$.

4. Proof of Theorem 1.2

Recall [8] the spectrum C such that $B P_{*}(C)=B P_{*} /\left(2, v_{1}^{\infty}\right)\left[t_{1}\right]$. Then C fits in the cofiber sequence

$$
C \xrightarrow{\varphi} W \wedge T(1) \xrightarrow{2} W \wedge T(1) \rightarrow \Sigma C,
$$

which induces the short exact sequence

$$
0 \rightarrow M_{1}^{1}\left[t_{1}\right] \xrightarrow{\varphi} M_{0}^{2}\left[t_{1}\right] \xrightarrow{2} M_{0}^{2}\left[t_{1}\right] \rightarrow 0
$$

by applying $B P_{*}\left(L_{2}-\right)$. Let $E_{r}^{s, t}(X)$ denote the E_{r}-term of the $v_{2}^{-1} B P$ based Adams spectral sequence converging to $\pi_{t-s}\left(L_{2} X\right)$. Then the E_{2}-term is $\operatorname{Ext}_{v_{2}^{-1} B P_{*}\left(v_{2}^{-1} B P\right)}^{*}\left(v_{2}^{-1} B P_{*}, v_{2}^{-1} B P_{*}(X)\right)$, which is isomorphic to $H^{*} v_{2}^{-1} B P_{*}(X)$ by the change of rings theorem of Hovey and Sadofsky [1, Th. 3.1]. Indeed, we use the modified one [3, Th. 3.3]. In our case, we consider the spectral sequences $E_{2}^{*}(C)=H^{*} M_{1}^{1}\left[t_{1}\right] \Rightarrow \pi_{*}\left(L_{2} C\right)$ and $E_{2}^{*}(W \wedge T(1))=H^{*} M_{0}^{2}\left[t_{1}\right] \Rightarrow$ $\pi_{*}\left(L_{2} W \wedge T(1)\right)$.

For the sake of simplicity, we compute differentials by setting $v_{2}^{2}=1$. In [8, Lemma 7.4], it is shown that for any $v_{3}^{4 t+3} x / v_{1} \in E_{2}^{s, u}(C) \cap A_{2}$,

$$
\begin{equation*}
d_{3}\left(v_{3}^{4 t+3} x / v_{1}\right)=v_{3}^{4 t+1} x h_{20}^{3} / v_{1} \in E_{2}^{s+3, u+2}(C) . \tag{4.1}
\end{equation*}
$$

The other differentials on $E_{r}^{*}(C)$ are trivial except for the differentials

$$
\begin{align*}
d_{3}\left(x_{n} \widetilde{h_{20}} / v_{1}^{a_{n}}\right) & =\left\{\begin{array}{ll}
v_{3}^{2^{n}(s-1)+4\left(2^{n-2}-1\right) / 3+1} h_{20}^{2} h_{21} h_{30} / v_{1} & n \text { is even } \\
v_{2} v_{3}^{2^{n}(s-1)+8\left(2^{n-3}-1\right) / 3+1} h_{20}^{2} h_{21} h_{31} / v_{1} & n \text { is odd }
\end{array}\right. \text { and } \tag{4.2}\\
d_{3}\left(x_{n}^{s} g_{n+1} \widetilde{h_{20}} / v_{1}^{a_{n}}\right) & = \begin{cases}v_{3}^{2^{n} s-3} h_{20}^{2} h_{21} h_{30} h_{31} / v_{1} & n \text { is even } \\
v_{2} v_{3}^{2^{n} s-3} h_{20}^{2} h_{21} h_{30} h_{31} / v_{1} & n \text { is odd }\end{cases}
\end{align*}
$$

for $n \geq 2$ and odd $s>0$, and a v_{2}-multiple of them ([8, Lemmas 7.6 and 7.8]). Here h_{20} is defined as the class represented by the cocycle $\widetilde{t_{2}}$ in the congruence $d\left(v_{3}^{4}\right) \equiv 2 v_{1}^{2} \widetilde{t_{2}} \bmod (4)$, whose leading term is $v_{2}^{3} v_{3}^{2} t_{2}$.

Lemma 4.3. In the Adams-Novikov E_{3}^{*}-term for $\pi_{*}\left(L_{2} W \wedge T(1)\right)$,

$$
d_{3}\left(v_{3}^{3} x / 2 v_{1}\right)=v_{2} v_{3} x h_{21} h_{20}^{2} / 2 v_{1} \quad \text { and } \quad d_{3}\left(v_{2} v_{3}^{3} y / 2 v_{1}\right)=v_{2} v_{3} y h_{20}^{3} / 2 v_{1}
$$

for $x \in K_{*}^{2}\left[v_{3}^{4}\right] \otimes \Lambda\left(h_{30}, h_{31}\right)$ and $y \in K_{*}^{2}\left[v_{3}^{4}, h_{20}\right] \otimes \Lambda\left(h_{21}, h_{30}, h_{31}\right)$, and

$$
\left.\begin{array}{rl}
d_{3}\left(x_{n}^{s} \widetilde{h_{20}} / 2 v_{1}^{a_{n}}\right) & = \begin{cases}v_{2} v_{3}^{2^{n}(s-1)+4\left(2^{n-2}-1\right) / 3+1} h_{20}^{3} h_{30} / 2 v_{1} & n \text { is even } \\
v_{2} v_{3}^{2^{n}(s-1)+8\left(2^{n-3}-1\right) / 3+1} h_{20}^{2} h_{21} h_{31} / 2 v_{1} & n \text { is odd },\end{cases} \\
d_{3}\left(x_{n}^{s} g_{n+1} \widetilde{h_{20}} / 2 v_{1}^{a_{n}}\right) & = \begin{cases}v_{2} v_{3}^{2^{n} s-3} h_{20}^{3} h_{30} h_{31} / 2 v_{1} & n \text { is even } \\
v_{2} v_{3}^{2^{n} s-3} h_{20}^{2} h_{21} h_{30} h_{31} / 2 v_{1} & n \text { is odd, },\end{cases} \\
d_{3}\left(v_{2} x_{n}^{s} \widetilde{h_{20}} / 2 v_{1}^{a_{n}}\right) & =\left\{\begin{array}{ll}
v_{2} v_{3}^{2^{n}(s-1)+8\left(2^{n-3}-1\right) / 3+1} h_{20}^{2} h_{21} h_{31} / 2 v_{1} & n \text { is even } \\
v_{2} v_{3}^{2^{n}(s-1)+4\left(2^{n-2}-1\right) / 3+1} h_{20}^{3} h_{30} / 2 v_{1} & n \text { is odd }
\end{array}\right. \text { and }
\end{array}\right\} \begin{array}{ll}
v_{2} v_{3}^{2^{n} s-3} h_{20}^{2} h_{21} h_{30} h_{31} / 2 v_{1} & n \text { is even } \\
v_{2} v_{3}^{2^{n} s-3} h_{20}^{3} h_{30} h_{31} / 2 v_{1} & n \text { is odd }
\end{array}
$$

for positive integers s and n with $n>1$. Here the equations are all up to sign.
Proof. Note that $v_{3} x h_{20}^{3} / 2 v_{1}=v_{2} v_{3} x h_{21} h_{20}^{2} / 2 v_{1}$ in $E_{3}^{*}(W \wedge T(1))$, since $\delta\left(v_{2} v_{3} x h_{20}^{2} / 2 v_{1}\right)=v_{3} x h_{20}^{3} / v_{1}+v_{2} v_{3} x h_{21} h_{20}^{2} / v_{1}$ by Lemma 3.3. In the same manner as this, we have the relations $v_{3}^{2^{n}(s-1)+4\left(2^{n-2}-2^{\varepsilon(n)}\right) / 3+1} h_{20}^{2} h_{21} h_{3 \varepsilon(n)} / 2 v_{1}$ $=v_{2} v_{3}^{2^{n}(s-1)+4\left(2^{n-2}-2^{\varepsilon(n)}\right) / 3+1} h_{20}^{3} h_{3 \varepsilon(n)} / 2 v_{1} \quad$ and $\quad v_{3}^{2^{n} s-3} h_{20}^{2} h_{21} h_{30} h_{31} / 2 v_{1}=$ $v_{2} v_{3}^{2^{n} s-3} h_{20}^{3} h_{30} h_{31} / 2 v_{1}$, since $h_{21}^{2}=h_{20}^{2}$. Then the differentials in (4.1) and (4.2) of the form $d_{3}(x)=y$ (resp. $d_{3}(x)=v_{2} y$) yield differentials $d_{3}(x / 2)=v_{2} z / 2$ and $d_{3}\left(v_{2} x / 2\right)=v_{2} y / 2 \quad$ (resp. $d_{3}(x / 2)=v_{2} y / 2 \quad$ and $\left.\quad d_{3}\left(v_{2} x / 2\right)=v_{2} z / 2\right) \quad$ of $E_{3}^{*}(W \wedge T(1))$, where z is an element such that $\delta(w)=y-z \in H^{*} M_{1}^{1}\left[t_{1}\right]$ for an element w of $H^{*} M_{0}^{2}\left[t_{1}\right]$.

Corollary 4.4. The module $\widetilde{A_{21}}$ given in Introduction is a submodule of $H^{*} M_{0}^{2}\left[t_{1}\right]$. In other words, the map sending an element $x \in \widetilde{A_{21}}$ to $x / 2 v_{1} \in$ $H^{*} M_{0}^{2}\left[t_{1}\right]$ is a monomorphism.

Proof. It suffices to show that $x / 2 v_{1} \neq 0 \in H^{*} M_{0}^{2}\left[t_{1}\right]$ for $x \in \widetilde{A_{21}}$. The first equation of Lemma 4.3 shows $d_{3}\left(x / 2 v_{1}\right) \neq 0$.

Corollary 4.5. After a suitable modification of $\widetilde{\boldsymbol{A}_{1}}{ }^{0}$, the $v_{2}^{-1} B P$ based Adams differentials d_{3} originating in $\widetilde{\boldsymbol{A}_{1}}{ }^{0}$ are all zero.

Proof. The only non-trivial differentials originating in $\widetilde{\boldsymbol{A}_{1}}{ }^{0}$ are given in Lemma 4.3, and their targets are all in the image of d_{3} originating in $\left(\widetilde{A_{2}} \oplus \widetilde{A_{21}}\right) \otimes \Lambda\left(\rho_{2}\right)$.

Remark. This modification of $\widetilde{\boldsymbol{A}_{1}}{ }^{0}$ does not change the additive structure of ${\widetilde{\boldsymbol{A}_{1}}}^{0}$ nor the E_{2}-term $H^{*} M_{0}^{2}\left[t_{1}\right]$. In fact, each generator $x \in \widetilde{\boldsymbol{A}_{1}}{ }^{0}$ is just replaced by $x+y$ for some $y \in\left(\widetilde{A_{2}} \oplus \widetilde{A_{21}}\right) \otimes \Lambda\left(\rho_{2}\right)$.

Theorem 4.6. The E_{4}-term of the $v_{2}^{-1} B P$ based Adams spectral sequence contains $\widehat{A_{2}} \otimes \Lambda\left(\rho_{2}\right)$, which is obtained from the subgroup $\widetilde{A_{2}} \otimes \Lambda\left(\rho_{2}\right)$ of the E_{2}-term. Here, $\widehat{A_{2}}$ is the module given in Theorem 1.2.

Proof. The $v_{2}^{-1} B P$ based Adams differential d_{3} makes $\left(\tilde{A_{2}}, d_{3}\right)$ a differential module by Lemma 4.3, whose homology is

$$
{\widehat{A_{2}}}^{\prime}=v_{2} v_{3} K_{*}^{2}\left[v_{3}^{4}, h_{20}\right] /\left(h_{20}^{3}\right) \otimes \Lambda\left(h_{21}, h_{30}, h_{31}\right) .
$$

We decompose ${\widehat{A_{2}}}^{\prime}$ into the direct sum of the two modules

$$
\begin{aligned}
& {\widehat{A_{21}}}^{\prime}=v_{2} v_{3} K_{*}^{2}\left[v_{3}^{4}\right] \otimes \Lambda\left(h_{20}, h_{21}, h_{30}, h_{31}\right) \oplus v_{2} v_{3} h_{20}^{2} K_{*}^{2}\left[v_{3}^{4}\right] \otimes \Lambda\left(h_{30}, h_{31}\right) \quad \text { and } \\
& \widehat{A_{22}}
\end{aligned}
$$

The first differential in Lemma 4.3 gives the isomorphism $d_{3}: \widetilde{A_{21}} \cong{\widehat{A_{22}}}^{\prime}$, and we obtain the theorem by setting

$$
\widehat{A_{2}}={\widehat{A_{21}}}^{\prime}
$$

Proposition 4.7. The $v_{2}^{-1} B P$ based Adams spectral sequence converging to $\pi_{*}\left(L_{2} W \wedge T(1)\right)$ collapses from the E_{4}-term. That is, $E_{4}^{*}=E_{\infty}^{*}$.

Proof. Since $\left(\tilde{\boldsymbol{A}_{1}}\right)^{s}=0$ for $s>4$ and $\left(\widehat{\boldsymbol{A}_{2}} \otimes \Lambda\left(\rho_{2}\right)\right)^{s}=0$ for $s>5$, we see that $E_{5}^{s}=0$ for $s>5$. Therefore, the differentials d_{r} are all trivial for $r>5$. Suppose that $d_{5}\left(x / 2^{l}\right)=y / 2$ for $x / 2^{l} \in \widetilde{\boldsymbol{A}_{1}}$. Then $y / 2 \in{\widehat{A_{21}}}^{\prime}$, and so $\delta(y / 2) \neq 0 \in E_{2}^{6}(C)$. Send the relation $d_{5}\left(x / 2^{l}\right)=y / 2$ by δ, and we see that $d_{5}\left(\delta\left(x / 2^{l}\right)\right)=\delta(y / 2) \in E_{5}^{6}(C)$. Since $E_{5}^{6}(C)=0$ by [8, Corollary 7.9], there is
an element $z \neq 0 \in E_{3}^{3}$ such that $d_{3}(z)=\delta(y / 2)$. Then, $\varphi_{*}(z)$ must be hit by $x / 2^{l+1}$ under d_{3}. By Lemma 4.3, there is no such differential.

From the proof of this together with Corollary 4.5, we obtain the following:

Corollary 4.8. The differentials d_{r} of the $v_{2}^{-1} B P$ based Adams spectral sequence for $\pi_{*}\left(L_{2} W \wedge T(1)\right)$ are trivial on $\widetilde{\boldsymbol{A}_{1}}{ }^{0} \subset E_{2}^{*}$.

References

[1] M. Hovey and H. Sadofsky, Invertible spectra in the $E(n)$-local stable homotopy category, J. London Math. Soc. 60 (1999), 284-302.
[2] I. Ichigi, K. Shimomura and X. Wang, The homotopy groups $\pi_{*}\left(L_{2} M_{4} \wedge T(1)\right)$ at the prime two, preprint.
[3] Y. Kamiya and K. Shimomura, A relation between the Picard group of the $E(n)$-local homotopy category and $E(n)$-based Adams spectral sequence, to appear in Contemp. Math.
[4] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[5] M. Mahowald and K. Shimomura, The Adams-Novikov spectral sequence for the L_{2} localization of a v_{2} spectrum, Contemp. Math. 146 (1993), 237-250.
[6] H. Nakai and X. Wang, $\operatorname{Ext}_{\Gamma(2)}^{0}\left(B P_{*}, M_{0}^{2}\right)$ at the prime 2, preprint.
[7] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres (Academic Press, 1986).
[8] K. Shimomura, The homotopy groups of the L_{2}-localized Mahowald spectrum $X\langle 1\rangle$, Forum Math. 7 (1995), 685-707.
[9] K. Shimomura and X. Wang, On torsion groups $\pi_{*}\left(L_{2} T(1)\right)$, preprint.

Ippei Ichigi and Katsumi Shimomura
Department of Mathematics
Faculty of Science
Kochi University
Kochi, 780-8520
Japan
E-mail: 95sm004@math.kochi-u.ac.jp
E-mail:katsumi@math.kochi-u.ac.jp

