
Hiroshima Math. J.

33 (2003), 253–295

On a nonlinear di¤usion system with

resource-consumer interaction

E. Feireisl, D. Hilhorst, M. Mimura and R. Weidenfeld

(Received October 17, 2002)

(Revised January 16, 2003)

Abstract. This article is devoted to the study of a resource-consumer type reaction-

di¤usion system arising in chemistry, biology and in other applied sciences. We prove

that the problem is well-posed and describe the large time behavior of the solutions.

A key ingredient is to obtain a uniform in time Ly-bound for the solutions. We also

present numerical simulations describing the transient behavior of the solution which

show very unstable interfaces.

1. Introduction

Among a lot of reaction-di¤usion (RD) equations, a class of RD equations

with consumer and resource interaction have been thoroughly investigated by

many authors. A typical but suggestive example is the following two com-

ponent system where u and v act as a consumer and its resource, respectively:

ut ¼ duDuþ umv;

vt ¼ dvDv� umv;

�
ð1:1Þ

where du and dv are the di¤usion coe‰cients of u and v and m is a positive

integer. The main results concern the well-posedness of the parabolic prob-

lems, Ly-bounds on solutions which do not depend on time and their

asymptotic behavior ([Ali, Mas, HaYo, Hos, Kan] for instance). A charac-

teristics of this system under the zero-flux boundary condition is that the spatial

average of uþ v is conserved in time. It is shown that

limt!yðuðtÞ; vðtÞÞ ¼ ðhuð0Þ þ vð0Þi; 0Þ;

where h f i is the spatial average of f .

In view of the result on the asymptotic behavior of the solutions above,

one used to believe that resource-consumer systems without feeding process

such as (1.1) are not interesting from the pattern formation viewpoint.

However, recent numerical simulations have revealed that it is not necessarily
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true, that is, solutions of (1.1) may exhibit spatio-temporal patterns in tran-

sient time [HiMiWe]. This suggests that resource-consumer systems should be

revisited from the pattern formation viewpoint.

From the mathematical modelling viewpoint, one encounters several

resource-consumer systems in the fields of biology and chemistry. An example

is bacterial growth in biology. One easily notices that bacteria and nutrients

obviously correspond to a consumer and its (finite) resource. The resulting

model [Kit] is

ut ¼ duDðukÞ þ uv� au;

vt ¼ dvDv� uv;

wt ¼ au;

8<
: ð1:2Þ

where u and w are the densities of active and inactive bacteria respectively, and

v is the concentration of nutrients, k ð>1Þ is a positive integer, a is the

conversion rate of u into w. The first two equations of (1.2) with a ¼ 0

coincide with (1.1) with m ¼ 1 except for the di¤usion term for u. From

experimental requirements, we may take k ¼ 1 (linear di¤usion) in (1.2) when

the medium (agar) is soft, while when it is hard, we may say that k ¼ 2 (nonlinear

degenerate di¤usion) is plausible. It is obvious that the first two equations are

closed for u and v and that w can be obtained by solving them. Biologically

the total bacterial density, which is given by

uðx; tÞ þ wðx; tÞ ¼ uðx; tÞ þ a

ð t
0

uðx; sÞds;

is an important parameter.

Another model involves the following autocatalytic reactions for the inter-

mediate component U and the reactant V

mU þ V ! ðmþ 1ÞU
nU ! P:

�

If these processes happen in a porous medium, a suitable model can be given

by

ut ¼ duDðukÞ þ umv� aun

vt ¼ dvDðvlÞ � umv:

�
ð1:3Þ

When m ¼ n ¼ 1 and k ¼ l ¼ 1, (1.3) is a familiar system in epidemics where u

and v are the densities of susceptible and infective species, respectively. When

m ¼ 2, n ¼ 1 and k ¼ l ¼ 1, (1.3) is called the Gray-Scott model in chemistry.

A special case for (1.2), (1.3) is the scalar equation

ut ¼ DðukÞ; ð1:4Þ
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which is called the porous medium equation for k > 1 (see for instance [Pel]).

This equation has been fully investigated.

Let us present some numerical simulations of (1.2) under the following

initial and boundary conditions in a bounded domain W in R2

ðuðx; 0Þ; vðx; 0ÞÞ ¼ ðu0ðxÞ; v0Þ for x A W; ð1:5Þ

where u0ðxÞ is an approximation of the Dirac measure at one point, v0 is a

positive constant and

qu

qn
¼ qv

qn
¼ 0 on qW� ð0;TÞ; ð1:6Þ

where n is the outer normal vector to the boundary qW.

The first case deals with k ¼ 1 (linear di¤usion). The resulting patterns

of u and uþ w are shown in Fig. 1.1; u generates an expanding ring and the

corresponding w is an expanding disc. After a large time, the ring pattern of

u disappears, while w occupies the whole domain so that it becomes spatially

constant. This indicates that there does not develop any pattern asymptoti-

cally. The second case is that where k ¼ 2. As in Fig. 1.2, for suitable values

of du; dv and v0, the ring pattern of u breaks into several spots, each of which

splits into smaller spots repeatedly and eventually all the spots fade away.

However, the sum uþ w surprisingly forms very complex patterns asymptoti-

cally. These numerical results clearly indicate that the e¤ect of nonlinear

di¤usion creates spatio-temporal patterns in consumer-resource systems.

Motivated by the above results, we consider the following nonlinear

diffusion system with resource-consumer interaction:

ut ¼ DðukÞ þ umv� aðu; vÞun in QT :¼ W� ð0;TÞ
vt ¼ dDðvlÞ � umv in QT

�
ð1:7Þ

where k; l;m and n are positive integers, d is a positive constant and aðu; vÞ is a
strictly positive function of u and v. W is a smooth domain of RN and T > 0.

We associate to the system (1.7) the boundary and initial conditions

qu

qn
¼ qv

qn
¼ 0 on qW� ð0;TÞ; ð1:8Þ

ðuðx; 0Þ; vðx; 0ÞÞ ¼ ðu0ðxÞ; v0ðxÞÞ for all x A W: ð1:9Þ

The organization of this paper is as follows: In Section 2, we state the

main results. In Section 3, we define the notion of weak solutions of the

initial-boundary problem (1.7)–(1.9) (we refer to it as Problem ðPÞ hereafter)

and present a sequence of related uniformly parabolic problem ðP"Þ and denote
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their solution by ðu"; v"Þ. In Section 4, we state some auxiliary results which

are useful in the sequel. We present in Section 5 Lp-bounds (with p arbitrary)

for the function u" which depend neither on " nor on time. In Section 6, we

prove an Ly-bound for u" uniformly in time. Then the existence, uniqueness

and continuity of the weak solution of Problem ðPÞ follow in Section 7.

Finally we describe in Section 8 the large time behavior of the solution of

Problem ðPÞ: there exists a pair of nonnegative constants ðuy; vyÞ such that

t = 0.0 u u+w

t = 60.0 u u+w

t = 120.0 u u+w

t = 180.0 u u+w

Fig. 1.1. Time evolution of solutions to (1.3), (1.5) and (1.6) where du ¼ 0:01, dv ¼ 1:0, k ¼ l ¼ 1,

m ¼ n ¼ 1, a ¼ 0:15 and v0 ¼ 1:0.
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ðu; vÞðtÞ tends to ðuy; vyÞ as t ! y. The case that a ¼ 0 is also discussed in a

similar way.

2. Main results

We suppose that the following hypothesis holds:

H0 : u0; v0 A CðWÞ; 0a u0; v0 aM;

for some constant M > 0,

Ha: a is a stricly positive locally Lipschitz continuous function on Rþ � Rþ

or a ¼ 0, and

1am <
k þ 2=N if Nb 3;

k þ 1 if N ¼ 1; 2:

�

The definition of weak solutions of Problem ðPÞ is stated in Definition 3.1

in Section 3. The results are, in the case that a0 0;

t = 0.0 u u+w

t = 200.0 u u+w

t = 400.0 u u+w

t = 600.0 u u+w

t = 1200.0 u u+w

t = 2000.0 u u+w

Fig. 1.2. Time evolution of solutions to (1.3), (1.5) and (1.6) where the parameters are the same

ones as in Fig. 1.1 except for k ¼ 2.
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( i ) Problem ðPÞ admits a unique weak solution ðu; vÞ satisfying

0a uðx; tÞaC0; and 0a vðx; tÞaM for all ðx; tÞ A W� ð0;TÞ;

for some constant C0 > 0.

(ii) There exists a constant vy such that

lim
t!y

ðuðtÞ; vðtÞÞ ¼ ð0; vyÞ uniformly in W:

Furthermore, if 1am < n, vy ¼ 0, while, if 1a nam then vy > 0. Espe-

cially if m ¼ n, then vy a að0; vyÞ.
If we consider the third equation for the unknown w in addition to (1.7)

wt ¼ aðu; vÞun in W� ð0;TÞ; ð2:1Þ

with

wðx; 0Þ ¼ 0 for all x A W;

then we find that there exists wyðxÞ such that

lim
t!y

wðx; tÞ ¼ wyðxÞ uniformly in W:

For the special case that a ¼ 0, we can also obtain a similar result as (i)

and (ii) 0 ðuðtÞ; vðtÞÞ tends to ðhu0 þ v0i; 0Þ uniformly in W as t ! y.

3. A sequence of approximate problems

Since in general a solution of Problem ðPÞ is not smooth, we define a weak

solution as follows

Definition 3.1. We say that ðu; vÞ is a weak solution of Problem ðPÞ on

½0;T �, if it satisfies:

( i ) u; v A CðQT Þ and u; vb 0,

(ii) For all j A C2;1ðQTÞ such that
qj

qn
¼ 0 on qW� ½0;T �, we have for all

t A ½0;T �:
ð
W

uðtÞjðtÞ ¼
ð
W

u0jð0Þ þ
ð t
0

ð
W

ðukDjþ ujt þ ðumv� aðu; vÞunÞjÞ; ð3:1Þ

ð
W

vðtÞjðtÞ ¼
ð
W

v0jð0Þ þ
ð t
0

ð
W

ðdvlDjþ vjt � umvjÞ: ð3:2Þ

In order to prove the existence of a solution of Problem ðPÞ, we introduce

the sequence of approximate problems ðP"Þ
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ðP"Þ

ut ¼ Df"ðuÞ þ umv� aðu; vÞun � "umþ1 in QT ;

vt ¼ dDc"ðvÞ � umv in QT ;

q

qn
f"ðuÞ ¼

q

qn
c"ðvÞ ¼ 0 on qW� ð0;TÞ;

uðx; 0Þ ¼ u"0ðxÞ vðx; 0Þ ¼ v"0ðxÞ for all x A W;

8>>>>>><
>>>>>>:

where f"ðsÞ :¼ ðsþ "Þk � "k, c"ðsÞ :¼ ðsþ "Þ l � " l and u"0 (resp. v"0) is a smooth

approximation of u0 (resp. v0) such that ku"0kLyðWÞ; kv"0kLyðWÞ aM,

q

qn
f"ðu"0Þ ¼

q

qn
c"ðv"0Þ ¼ 0 on qW;

and

lim
"!0

ðku"0 � u0kLyðWÞ þ kv"0 � v0kLyðWÞÞ ¼ 0:

We prove below the following result.

Theorem 3.2. There exists a unique classical solution pair ðu"; v"Þ of

Problem ðP"Þ.

Proof. We define K :¼ fw A CðQTÞ; 0awaMg and suppose that

v" A K . Since Problem ðP"
u Þ defined by

ðP"
u Þ

ut ¼ Df"ðuÞ þ umv" � aðu; v"Þun � "umþ1 in W� ð0;TÞ;
q

qn
f"ðuÞ ¼ 0 on qW� ð0;TÞ;

uðx; 0Þ ¼ u"0ðxÞ for x A W;

8>>><
>>>:

is uniformly parabolic, it possesses a unique classical solution u" (see [LSU,

Chapter 5, Theorem 7.4]), and it follows from the standard comparison principle

that 0a u" aM=". Furthermore we have the following stability property: if

u"1 and u"2 are two solutions of Problem ðP"
u Þ corresponding to v"1 and v"2 and the

initial functions u"1;0; u
"
2;0, it follows as in [ACP, Corollary 11] that

ku"1ðtÞ � u"2ðtÞkL1ðWÞ a ku"1;0 � u"2;0kL1ðWÞ þ
ð t
0

kðu"1Þ
m
v"1 � aðu"1; v"1Þðu"1Þ

n

� "ðu"1Þ
mþ1 � ðu"2Þ

m
v"2 þ aðu"2; v"2Þðu"2Þ

n

þ "ðu"2Þ
mþ1kL1ðWÞðsÞds;

so that there exists a positive constant C which depends on ku"1kLyðQT Þ
;

ku"2kLyðQT Þ
and on the data M;m; n and a such that
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ku"1ðtÞ � u"2ðtÞkL1ðWÞ aC

�
ku"1;0 � u"2;0kL1ðWÞ þ

ð t
0

ku"1 � u"2kL1ðWÞðsÞds

þ
ð t
0

kv"1 � v"2kL1ðWÞðsÞds
�

ð3:3Þ

aC

�
ku"1;0 � u"2;0kL1ðWÞ þ

ð t
0

ku"1 � u"2kL1ðWÞðsÞds

þ
ðT
0

kv"1 � v"2kL1ðWÞðsÞds
�
: ð3:4Þ

Then Gronwall’s Lemma implies thatðT
0

ku"1 � u"2kL1ðWÞðsÞdsa eCT ku"1;0 � u"2;0kL1ðWÞ þ
ðT
0

kv"1 � v"2kL1ðWÞðsÞds
� �

: ð3:5Þ

Moreover, if u" is a solution of Problem ðP"
u Þ, there exists a unique classical

solution v̂v" of the problem

ðP"
v Þ

vt ¼ dDc"ðvÞ � ðu"Þmv in W� ð0;TÞ;
q

qn
c"ðvÞ ¼ 0 on qW� ð0;TÞ;

vðx; 0Þ ¼ v"0ðxÞ for x A W:

8>>><
>>>:

By the standard comparison principle, we have that

0a v̂v" aM:

Moreover if u"1 and u"2 are two given functions and v̂v"1; v̂v
"
2 the corresponding

solutions with initial functions v̂v"1;0; v̂v
"
2;0, we have that

kv̂v"1ðtÞ � v̂v"2ðtÞkL1ðWÞ aC

�
kv̂v"1;0 � v̂v"2;0kL1ðWÞ þ

ð t
0

kv̂v"1 � v̂v"2kL1ðWÞðsÞds

þ
ð t
0

ku"1 � u"2kL1ðWÞðsÞds
�
; ð3:6Þ

where C ¼ Cðku"1kLyðQT Þ
; ku"2kLyðQT Þ

Þ is a positive constant, which by Gron-

wall’s Lemma implies thatðT
0

kv̂v"1 � v̂v"2kL1ðWÞðsÞdsa eCT kv̂v"1;0 � v̂v"2;0kL1ðWÞ þ
ðT
0

ku"1 � u"2kL1ðWÞðsÞds
� �

: ð3:7Þ

Therefore, we have defined a map F : v" 7! v̂v" from K into itself. Let

v"1; v
"
2 A K . We remark that we take u"1ð0Þ ¼ u"2ð0Þ ¼ u"0 and v̂v"1ð0Þ ¼ v̂v"2ð0Þ ¼ v"0

in the problems ðP"
u Þ and ðP"

v Þ when we define F. We deduce from the
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inequalities (3.5) and (3.7) that there exists a constant C ¼ Cðku"1kLyðQT Þ
;

ku"2kLyðQT Þ
Þ such that for all v"1; v

"
2 A K we haveðT

0

kFðv"1Þ �Fðv"2ÞkL1ðWÞðsÞds ¼
ðT
0

kv̂v"1 � v̂v"2kL1ðWÞðsÞds ð3:8Þ

a e2CT
ðT
0

kv"1 � v"2kL1ðWÞðsÞds: ð3:9Þ

Thus F is continuous in the L1ðQTÞ norm. Furthermore, if fv"j g is a sequence

of functions in K , a result of DiBenedetto [DiB] insures that the sequence

fFðv"j Þg is precompact in CðQT Þ. Suppose that v"j ! v" as j ! y in CðQT Þ,
we deduce from the inequality (3.9) that Fðv"j Þ ! Fðv"Þ in L1ðQT Þ as j ! y
and thus in CðQT Þ. Thus the mapping F : v" 7! v̂v" is continuous and compact

for the CðQTÞ topology from the closed convex set K into itself. We deduce

from Schauder fixed point theorem (see [Sma, Theorem 4.1.1]) that there exists

a function v" A K such that v" ¼ v̂v". This proves the existence of a solution of

Problem ðP"Þ. Also, if ðu"1; v"1Þ and ðu"2; v"2Þ are two solution pairs, adding up

(3.3) and (3.6) gives

ku"1ðtÞ � u"2ðtÞkL1ðWÞ þ kv"1ðtÞ � v"2ðtÞkL1ðWÞ

aC

�
ku"1ð0Þ � u"2ð0ÞkL1ðWÞ þ kv"1ð0Þ � v"2ð0ÞkL1ðWÞ

þ
ð t
0

ðku"1ðsÞ � u"2ðsÞkL1ðWÞ þ kv"1ðsÞ � v"2ðsÞkL1ðWÞÞds
�

for all t A ½0;T �, where C ¼ Cðku"1kLyðQT Þ
; ku"2kLyðQT Þ

Þ. Then Gronwall’s

Lemma implies that

ku"1ðtÞ � u"2ðtÞkL1ðWÞ þ kv"1ðtÞ � v"2ðtÞkL1ðWÞ

aCeCt½ku"1ð0Þ � u"2ð0ÞkL1ðWÞ þ kv"1ð0Þ � v"2ð0ÞkL1ðWÞ�; ð3:10Þ

for all t A ½0;T �. The uniqueness of the solution of Problem ðP"Þ follows from

(3.10). r

Next we present some bounds for solution pairs ðu"; v"Þ of Problem ðP"Þ.

Lemma 3.3. Let ðu"; v"Þ be the solution of Problem ðP"Þ, there exists a

positive constant C1 which does not depend on " nor on T such that

( i ) 0a u" aM=", 0a v" aM;

( ii ) kðu"Þmv"kL1ð0;T ;L1ðWÞÞ aC1;

(iii) ku"kLyð0;T ;L1ðWÞÞ aC1;

(iv) kaðu"; v"Þðu"ÞnkL1ð0;T ;L1ðWÞÞ aC1.
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Proof. (i) follows from the standard comparison principle. (ii) follows

from ð t
0

ð
W

ðu"Þmv" ¼
ð
W

v"0 �
ð
W

v"ðtÞaMjWj; ð3:11Þ

for all t A ½0;T �. Integrating the first equation we deduce thatð
W

u"ðtÞ þ
ð t
0

ð
W

aðu"; v"Þðu"Þn a
ð
W

u"0 þ
ð t
0

ð
W

ðu"Þmv"; ð3:12Þ

for all t A ½0;T �, so that (iii) and (iv) follow. r

In the following sections, we will prove a bound for u" uniform in " and in

time.

4. Auxiliary results

In this section we present some preliminary results which will be useful in

the following.

Lemma 4.1. (i) If Nb 3 there exists a constant c0 ¼ c0ðWÞ such that for all

ab 1 and z A H 1ðWÞð
W

jzj2
?

� �2=2?

a c0

ð
W

j‘zj2dxþ 2

jWj

ð
W

jzj2=adx
� �a� �

; ð4:1Þ

with 2? :¼ 2N

N � 2
;

( ii ) If N ¼ 1; 2 and qb 1 is arbitrary there exists a constant c0 ¼ c0ðq;WÞ such
that for all ab 1 and z A H 1ðWÞð

W

jzjq
� �2=q

a c0

ð
W

j‘zj2dxþ 2

jWj

ð
W

jzj2=adx
� �a� �

; ð4:2Þ

(iii) In addition, if N ¼ 1 there exists a constant c0 ¼ c0ðWÞ such that for all

ab 1 and z A H 1ðWÞ

ðsupjzjÞ2 a c0

ð
W

j‘zj2dxþ 2

jWj

ð
W

jzj2=adx
� �a� �

: ð4:3Þ

We refer to the Appendix for the proof of Lemma 4.1.

Lemma 4.2 (Young’s inequalities). Let r A ð0; 1Þ and h > 0 be arbitrary.

Then

( i ) arb1�r a haþ h�r=ð1�rÞb for all a; b > 0;

(ii) arBa haþ h�r=ð1�rÞB1=ð1�rÞ for all a;B > 0.
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Proof. (i) We first recall the proof of the classical Young inequality

arb1�r
a aþ b: ð4:4Þ

Set a ¼ eA, b ¼ eB. Then by the convexity of exponential function

arb1�r ¼ erAeð1�rÞB ¼ erAþð1�rÞB

a reA þ ð1� rÞeB a eA þ eB ¼ aþ b:

In turn (4.4) implies that

arb1�r ¼ ðhaÞr b

h r=ð1�rÞ

� �1�r

a haþ h�r=ð1�rÞb:

(ii) We set B ¼ b1�r. r

We recall Hölder’s inequality in a form which is used in the sequel.

Lemma 4.3 (Hölder’s inequalities). Let f be a nonnegative measurable

function on W and a > 0.

( i ) if 0 < s < 1 and b; c > 0 are such that sbþ ð1� sÞc ¼ a thenð
W

f a
a

ð
W

f b

� �s ð
W

f c

� �1�s

:

(ii) if r; s; t; b; c; d > 0 are such that rþ sþ t ¼ 1 and rbþ scþ td ¼ a thenð
W

f a
a

ð
W

f b

� �r ð
W

f c

� �s ð
W

f d

� �t
:

Proof. Let g; h be two nonnegative measurable functions and 0 < s < 1.

The Hölder inequality givesð
W

gha

ð
W

g1=s
� �s ð

W

h1=ð1�sÞ
� �1�s

:

Now let b; c be as in (i); we haveð
W

f a ¼
ð
W

f sbf ð1�sÞc
a

ð
W

f sb=s

� �s ð
W

f ð1�sÞc=ð1�sÞ
� �1�s

;

and thus ð
W

f a
a

ð
W

f b

� �s ð
W

f c

� �1�s

:

The proof of (ii) is similar and omitted. r
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5. Lp bounds for the sequence fu"g

We present below uniform in time Lp-bounds for the solution u" of

Problem ðP"
u Þ. We first prove the following property

Lemma 5.1. We have that for all t > 0, " > 0 and for all pb 1

1

pþ 1

d

dt

ð
W

ðu"Þ pþ1ðtÞ þ 4kp

ðk þ pÞ2
ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 aM

ð
W

ðu"ÞmþpðtÞ: ð5:1Þ

Proof. Multiplying by ðu"Þ pðtÞ the partial di¤erential equation in ðP"
u Þ

and integrating over W givesð
W

½u"t ðu"Þ
p�ðtÞ þ

ð
W

½�fDf"ðu"Þgðu"Þ
p�ðtÞa

ð
W

½v"ðu"Þmðu"Þ p�ðtÞ

a kv"ðtÞkLyðWÞ

ð
W

ðu"ÞmþpðtÞ

aM

ð
W

ðu"ÞmþpðtÞ:

Since ð
W

f�Df"ðu"Þðu"Þ
pgðtÞ ¼

ð
W

f�Dðð"þ u"Þk � "kÞðu"Þ pgðtÞ

¼
ð
W

fkpð"þ u"Þk�1ðu"Þ p�1j‘u"j2gðtÞ

b

ð
W

fkpðu"Þkþp�2j‘u"j2gðtÞ

b
4kp

ðk þ pÞ2
ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2;

we deduce that

1

pþ 1

d

dt

ð
W

ðu"Þ pþ1ðtÞ þ 4kp

ðk þ pÞ2
ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 aM

ð
W

ðu"ÞmþpðtÞ;

which completes the proof. r

Next we prove the following result

Lemma 5.2. For all pb 1, there exists a constant Cp independent of " and

T such that

ku"ðtÞkLyð0;T ;L pðWÞÞ aCp: ð5:2Þ
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Proof. The existence of C1 follows from Lemma 3.3 (iii). We first con-

sider the case that Nb 3 and then the cases that N ¼ 1 and N ¼ 2.

(i) The case that Nb 3. Let pb 1 be fixed and t A ð0;TÞ. By Lemma

5.1 we have that

1

pþ 1

d

dt

ð
W

ðu"Þ pþ1ðtÞ þ 4kp

ðk þ pÞ2
ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 aM

ð
W

ðu"ÞmþpðtÞ: ð5:3Þ

Furthermore Lemma 4.3 (i) yields

ð
W

ðu"ÞmþpðtÞa
ð
W

ðu"Þ2
?ðkþpÞ=2ðtÞ

� �s ð
W

u"ðtÞ
� �1�s

ð5:4Þ

with s ¼ 2ðmþ p� 1Þ
2?ðk þ pÞ � 2

. We remark that since m < k þ 2=N, r :¼ 2?s=2 < 1

which in turn implies that 0 < s < 1. In what follows we will use that

ð
W

ðu"Þ2
?ðkþpÞ=2ðtÞ

� �s
¼

ð
W

ðu"Þ2
?ðkþpÞ=2ðtÞ

� �2=2? !r
: ð5:5Þ

Let h be a positive constant which will be chosen later. We substitute (5.5)

into (5.4) and apply Young’s inequality (Lemma 4.2 (ii)) to obtain

ð
W

ðu"ÞmþpðtÞa
ð
W

ðu"Þ2
?ðkþpÞ=2ðtÞ

� �2=2?
 !r ð

W

u"ðtÞ
� �1�s

ð5:6Þ

a h

ð
W

ðu"Þ2
?ðkþpÞ=2ðtÞ

� �2=2?
þ h�r=ð1�rÞ

ð
W

u"ðtÞ
� �ð1�sÞ=ð1�rÞ

: ð5:7Þ

Moreover, applying Lemma 4.1 (i) to z ¼ ðu"ÞðkþpÞ=2ðtÞ with a ¼ k þ p gives

ð
W

ðu"Þ2
?ðkþpÞ=2ðtÞ

� �2=2?
a c0

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 þ c0
2

jWj

ð
W

u"ðtÞ
� �kþp

: ð5:8Þ

Substituting (5.8) into (5.7) gives

ð
W

ðu"ÞmþpðtÞa hc0

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 þ hc0
2

jWj

ð
W

u"ðtÞ
� �kþp

þ h�r=ð1�rÞ
ð
W

u"ðtÞ
� �ð1�sÞ=ð1�rÞ

ð5:9Þ

where h will be chosen below. Substituting inequality (5.9) into (5.3) gives
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1

pþ 1

d

dt

ð
W

ðu"Þ pþ1ðtÞ þ 4kp

ðk þ pÞ2
ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2

aMhc0

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 þMhc0
2

jWj

ð
W

u"ðtÞ
� �kþp

þMh�r=ð1�rÞ
ð
W

u"ðtÞ
� �ð1�sÞ=ð1�rÞ

:

Choosing h ¼ 2kp

Mðk þ pÞ2c0
yields

1

pþ 1

d

dt

ð
W

ðu"Þ pþ1ðtÞ þ 2kp

ðk þ pÞ2
ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2

aG1ðk; pÞ
2

jWj

ð
W

u"ðtÞ
� �kþp

þG2ðW;M; k;m; pÞ
ð
W

u"ðtÞ
� �ð1�sÞ=ð1�rÞ

: ð5:10Þ

Applying again Lemma 4.3 (i), we have that

ð
W

ðu"Þ pþ1ðtÞa
ð
W

ðu"Þ2
?ðkþpÞ=2ðtÞ

� �s 0 ð
W

u"ðtÞ
� �1�s 0

ð5:11Þ

with s 0 ¼ 2p

2?ðk þ pÞ � 2
A ð0; 1Þ. Next we substitute r 0 :¼ 2?s 0=2 < 1 into (5.11)

and apply Young’s inequality (cf. Lemma 4.2 (ii)) to deduce

ð
W

ðu"Þ pþ1ðtÞa
ð
W

ðu"Þ2
?ðkþpÞ=2ðtÞ

� �2r 0=2? ð
W

u"ðtÞ
� �1�s 0

ð5:12Þ

a h

ð
W

ðu"Þ2
?ðkþpÞ=2ðtÞ

� �2=2?

þ h�r 0=ð1�r 0Þ
ð
W

u"ðtÞ
� �ð1�s 0Þ=ð1�r 0Þ

; ð5:13Þ

where h > 0 will be chosen below. Substituting inequality (5.8) into inequality

(5.13) gives

ð
W

ðu"Þ pþ1ðtÞa hc0

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 þ hc0
2

jWj

ð
W

u"ðtÞ
� �kþp

þ h�r 0=ð1�r 0Þ
ð
W

u"ðtÞ
� �ð1�s 0Þ=ð1�r 0Þ

:
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Choosing h ¼ 2kpðpþ 1Þ
ðk þ pÞ2c0

gives

ð
W

ðu"Þ pþ1ðtÞa 2kpðpþ 1Þ
ðk þ pÞ2

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 þ G3ðk; pÞ
2

jWj

ð
W

u"ðtÞ
� �kþp

þ G4ðW; k; pÞ
ð
W

u"ðtÞ
� �ð1�s 0Þ=ð1�r 0Þ

: ð5:14Þ

In view of (5.14) and then (5.10) we obtain

d

dt

ð
W

ðu"Þ pþ1ðtÞ þ
ð
W

ðu"Þ pþ1ðtÞ

a
d

dt

ð
W

ðu"Þ pþ1ðtÞ þ 2kpðpþ 1Þ
ðk þ pÞ2

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2

þ G3
2

jWj

ð
W

u"ðtÞ
� �kþp

þ G4

ð
W

u"ðtÞ
� �ð1�s 0Þ=ð1�r 0Þ

a ðpþ 1ÞG1
2

jWj

ð
W

u"ðtÞ
� �kþp

þ ðpþ 1ÞG2

ð
W

u"ðtÞ
� �ð1�sÞ=ð1�rÞ

þ G3
2

jWj

ð
W

u"ðtÞ
� �kþp

þ G4

ð
W

u"ðtÞ
� �ð1�s 0Þ=ð1�r 0Þ

:

By Lemma 3.3 (iii),
Ð
W
u"ðtÞ is bounded independently of t and " so that

d

dt

ð
W

ðu"Þ pþ1ðtÞ þ
ð
W

ðu"Þ pþ1ðtÞaG5ðW;M; k;m; pÞ: ð5:15Þ

We deduce from Gronwall’s Lemma thatð
W

ðu"Þ pþ1ðtÞa
ð
W

ðu"0Þ
pþ1 þ G5

a jWjM pþ1 þ G5 :¼ ðCpþ1Þ pþ1

which completes the proof.

(ii) The case that N ¼ 1 or 2. By our assumption on k and m, we can

choose qb 2 such that m < k þ 1� 2=q. The proof then goes as that of the

case where Nb 3 with 2? replaced by q and with remplacing inequality (4.1) by

inequality (4.2). r

6. Ly bound for the sequence fu"g

The purpose of this section is to prove the following result:
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Theorem 6.1. There exists a positive constant C0 which does not depend

either on " nor on T such that

sup
t A ½0;T �

ku"ðtÞkLyðWÞ aC0:

We first present a technical lemma. The proof consists in similar com-

putations as those presented in the proof of Lemma 5.2. The estimates are

now sharper, since we already know by Lemma 5.2 that the sequence fu"g
is bounded in the spaces Lyð0;T ;LpðWÞÞ for all pb 1 and not only in

Lyð0;T ;L1ðWÞÞ as in the beginning of the previous section.

Lemma 6.2. There exist some positive constants c1; c2 and o which do not

depend either on " nor on T such that for all pb 1 we have for all t A ð0;TÞ

d

dt

ð
W

ðu"Þ pþ1ðtÞ þ c1

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 a c2ð1þ pÞo
ð
W

ðu"Þ pþ1ðtÞ: ð6:1Þ

Proof. Let pb 1. We recall that by Lemma 5.1

1

pþ 1

d

dt

ð
W

ðu"Þ pþ1ðtÞ þ 4kp

ðk þ pÞ2
ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 aM

ð
W

ðu"Þ pþmðtÞ: ð6:2Þ

The purpose is to decrease the power pþm of u" in the right-hand-side of (6.2)

to the power pþ 1 on the right-hand-side of (6.1). Therefore we may suppose

that m > 1.

Let q > 2ðN þ 2Þ=N be a real number to be chosen later. We define

y1 ¼ ðpþ 1Þ 1� ðm� 1Þ

2k þm� 2

q
ðk þmþ 1Þ

0
BB@

1
CCA; ð6:3Þ

y2 ¼ ðm� 1Þ 1� ðk � 1Þ

2k þm� 2

q
ðk þmþ 1Þ

0
BB@

1
CCA; ð6:4Þ

and

y3 ¼
ðm� 1Þðk þ pÞ

2k þm� 2

q
ðk þmþ 1Þ

: ð6:5Þ

Then we show that

y1; y2; y3 > 0: ð6:6Þ

Since q > 2, we have that
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2

q
ðk þmþ 1Þ < k þmþ 1a 2k þm;

and then we deduce that

2k þm� 2

q
ðk þmþ 1Þ > k � 1b 0;

which implies that y2 > 0 and that y3 > 0. Furthermore, since m < k þ 2=N

for all Nb 1, we have that

k þmþ 1a 2k þN þ 2

N
;

and thus

2k þ 1� 2

q
ðk þmþ 1Þ > 2k þ 1� 2

q
2k þN þ 2

N

� �

> 2k þ 1� N

N þ 2
2k þN þ 2

N

� �

b 2k þ 1� 2k
N

N þ 2
� 1

b 2k
2

N þ 2
> 0:

Then we have that 2k þm� 2

q
ðk þmþ 1Þ > m� 1 and y1 > 0. Next we

remark that

y1 þ y2 þ y3 ¼ pþm

and that

y1

pþ 1
þ y2

k þmþ 1
þ 2y3
qðk þ pÞ ¼ 1: ð6:7Þ

Then by Lemma 4.3 (ii)ð
W

ðu"Þmþp ¼
ð
W

ðu"Þy1ðu"Þy2ðu"Þy3 ð6:8Þ

a

ð
W

ðu"Þ pþ1

� �y1=ðpþ1Þ ð
W

ðu"Þkþmþ1

� �y2=ðkþmþ1Þ

�
ð
W

ðu"ÞqðkþpÞ=2
� �2y3=qðkþpÞ

; ð6:9Þ
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Since by Lemma 5.2, u" is bounded in each space of the form Lyð0;T ;LrðWÞÞ
uniformly on " and T , we deduce that

sup
t A ½0;T �

ð
W

ðu"ðtÞÞkþmþ1

� �y2=ðkþmþ1Þ
a g1ðW;M; k;m; qÞ;

where the constant g1 does not depend on ". Therefore, we deduce from (6.9)

thatð
W

ðu"ðtÞÞmþp
a g1

ð
W

ðu"Þ pþ1ðtÞ
� �y1=ðpþ1Þ ð

W

ðu"ÞqððkþpÞ=2ÞðtÞ
� �2y3=qðkþpÞ

: ð6:10Þ

Choosing q ¼ 2? if Nb 3 and q > 6 arbitrary in the case that N ¼ 1 or 2; so

that q > 2ðN þ 2Þ=N, we apply Lemma 4.1 to z ¼ ðu"ÞðkþpÞ=2 to obtainð
W

ðu"ÞqððkþpÞ=2ÞðtÞ
� �2=q

a c0

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 þ 2

jWj

ð
W

ðu"ÞðkþpÞ=aðtÞ
� �a� �

ð6:11Þ

where the positive constant a ¼ aðpÞb 1 will be chosen below. Next we sub-

stitute (6.11) into (6.10). We get

ð
W

ðu"ÞmþpðtÞa g1ðc0Þy3=ðkþpÞ
ð
W

ðu"Þ pþ1ðtÞ
� �y1=ðpþ1Þ�ð

W

j‘fðu"ÞðkþpÞ=2gðtÞj2

þ 2

jWj

ð
W

ðu"ÞðkþpÞ=aðtÞ
� �a�y3=ðkþpÞ

:

Writing that ðaþ bÞs a as þ bs for all a; b > 0 and s A ð0; 1Þ and noticing that

y3=ðk þ pÞ ¼ 1� y1=ðpþ 1Þ, we deduce thatð
W

ðu"ÞmþpðtÞ

a g2ðW;M; k;m; qÞ
 ð

W

ðu"Þ pþ1ðtÞ
� �y1=ðpþ1Þ ð

W

j‘fðu"ÞðkþpÞ=2gðtÞj2
� �1�y1=ðpþ1Þ

þ
ð
W

ðu"Þ pþ1ðtÞ
� �y1=ðpþ1Þ 2

jWj

ð
W

ðu"ÞðkþpÞ=aðtÞ
� �að1�y1=ðpþ1ÞÞ

!
: ð6:12Þ

Set B :¼ 1� y1=ðpþ 1Þ and remark that by equations (6.6) and (6.7) B A ð0; 1Þ
and that B does not depend on p. Then

y3

ðk þ pÞ ¼ 1� y1

pþ 1
¼ B
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and

y3 ¼ Bðk þ pÞ ¼ Bðpþ 1Þ þ m ð6:13Þ

with

m ¼ ðk � 1ÞB:

Then equation (6.12) can be rewritten as

ð
W

ðu"ÞmþpðtÞa g2

 ð
W

ðu"Þ pþ1ðtÞ
� �1�B ð

W

j‘fðu"ÞðkþpÞ=2gðtÞj2
� �B

þ
ð
W

ðu"Þ pþ1ðtÞ
� �1�B 2

jWj

ð
W

ðu"ÞðkþpÞ=aðtÞ
� �aB!

: ð6:14Þ

We set

a ¼ ðk þ pÞ Bþ m

Bðpþ 1Þ þ m
;

then in view of (6.13)

2

jWj

ð
W

ðu"ÞðkþpÞ=aðtÞ
� �aB

¼ 2

jWj

ð
W

ðu"ÞðBðpþ1ÞþmÞ=ðBþmÞðtÞ
� �ðkþpÞððBþmÞ=ðBðpþ1ÞþmÞÞB

¼ 2

jWj

ð
W

ðu"ÞðBðpþ1ÞþmÞ=ðBþmÞðtÞ
� �Bþm

¼ 2

jWj

� �Bþm ð
W

ðu"ÞBðpþ1Þ=ðBþmÞðtÞðu"Þm=ðBþmÞðtÞ
� �Bþm

:

Next we use that Bþ m does not depend on p and apply Hölder’s inequality to

deduce that

2

jWj

ð
W

ðu"ÞðkþpÞ=aðtÞ
� �aB

¼ 2

jWj

� �Bþm ð
W

ðu"ÞBðpþ1Þ=ðBþmÞðtÞðu"Þm=ðBþmÞðtÞ
� �Bþm

a g3ðW; k;m; qÞ
ð
W

ðu"Þ pþ1ðtÞ
� �B ð

W

u"ðtÞ
� �m

;

so that by Lemma 3.3 (iii)

2

jWj

ð
W

ðu"ÞðkþpÞ=aðtÞ
� �aB

a g4ðW;M; k;m; qÞ
ð
W

ðu"Þ pþ1ðtÞ
� �B

: ð6:15Þ
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Thus the second term of the right-hand-side of (6.14) can be estimate by

ð
W

ðu"Þ pþ1ðtÞ
� �1�B

2

jWj

ð
W

ðu"ÞðkþpÞ=aðtÞ
� �aB

a g4

ð
W

ðu"Þ pþ1ðtÞ: ð6:16Þ

Next we consider the first term on the right-hand-side of (6.14). We apply

Young’s inequality (Lemma 4.2 (i)) to obtain

ð
W

ðu"Þ pþ1ðtÞ
� �1�B ð

W

j‘fðu"ÞðkþpÞ=2gðtÞj2
� �B

a h�B=ð1�BÞ
ð
W

ðu"Þ pþ1ðtÞ

þ h

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2:

Setting h ¼ 2kp

Mg2ðk þ pÞ2
we have that

ð
W

ðu"Þ pþ1ðtÞ
� �1�B ð

W

j‘ðu"ÞðkþpÞ=2ðtÞj2
� �B

a Mg2
ðk þ pÞ2

2kp

 !B=ð1�BÞð
W

ðu"Þ pþ1ðtÞ

þ 2kp

Mg2ðk þ pÞ2
ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2: ð6:17Þ

Next we substitute (6.17) and (6.16) into (6.14) to deduce that

ð
W

ðu"ÞmþpðtÞa g2

0
@ Mg2

ðk þ pÞ2

2kp

 !B=ð1�BÞð
W

ðu"Þ pþ1ðtÞ

þ 2kp

Mg2ðk þ pÞ2
ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 þ g4

ð
W

ðu"Þ pþ1ðtÞ

1
A:

Therefore we have thatð
W

ðu"ÞmþpðtÞa g5ðW; k;m; qÞðpþ 1ÞB=ð1�BÞ
ð
W

ðu"Þ pþ1ðtÞ

þ 2kp

Mðk þ pÞ2
ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2;

which we substitute into (6.2) to deduce that
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d

dt

ð
W

ðu"Þ pþ1ðtÞ þ 2kpðpþ 1Þ
ðk þ pÞ2

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2

aMg5ðpþ 1Þ1=ð1�BÞ
ð
W

ðu"Þ pþ1ðtÞ;

which in turn implies the existence of positive constants c1; c2 only depending

on W; k;m;M and q such that

d

dt

ð
W

ðu"Þ pþ1ðtÞ þ c1

ð
W

j‘fðu"ÞðkþpÞ=2gðtÞj2 a c2ðpþ 1Þ1=ð1�BÞ
ð
W

ðu"Þ pþ1ðtÞ;

which completes the proof of (6.1). r

In order to complete the proof of Theorem 6.1, we recall a result due to

Alikakos [Ali, Lemma 3.2] and Nakao [Nak, Lemma 3.1].

Theorem 6.3. Let w be a (su‰ciently smooth) function satisfying for all

t A ½0;T �

d

dt

ð
W

jwj pþ1ðtÞ þ c1

ð
W

j‘fwðkþpÞ=2gðtÞj2 a c2ð1þ pÞo
ð
W

jwj pþ1ðtÞ

for pb 1, where ob 0 is independent of p. Assume, moreover, that

kwðtÞkLyð0;T ;L pðWÞÞ aCp

and that kwð0ÞkLyðWÞ aM. Then there exists a constant C which depends only

on Cp;M;W; c1; c2 and on o such that

sup
t A ½0;T �

kwðtÞkLyðWÞ aC:

Proof of Theorem 6.1. By the lemmas 5.2 and 6.2, we can apply

Theorem 6.3, which yields the result of Theorem 6.1. r

7. Existence and uniqueness of the solution of Problem ðPÞ

In this section we prove that the sequence ðu"; v"Þ tends to the unique

solution of Problem ðPÞ as " ! 0. To that purpose, we will use a result due to

DiBenedetto [DiB]. Since " will tend to 0, we may assume that " < 1. The

main result of this section is given by

Theorem 7.1. Problem ðPÞ admits a unique weak solution ðu; vÞ.
Moreover, the pair ðu; vÞ is such that

( i ) 0a uaC0 and 0a vaM in W� ð0;yÞ;
( ii ) fuðtÞgftb0g and fvðtÞgftb0g are equicontinuous;
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(iii) Let ðu1; v1Þ and ðu2; v2Þ be two solutions of Problem ðPÞ with initial

functions ðu1;0; v1;0Þ and ðu2;0; v2;0Þ respectively; they satisfy the inequality

ku1ð: ; tÞ � u2ð: ; tÞkL1ðWÞ þ kv1ð: ; tÞ � v2ð: ; tÞkL1ðWÞ

aCeCt½ku1;0 � u2;0kL1ðWÞ þ kv1;0 � v2;0kL1ðWÞ�

for some positive constant C.

Proof. We first prove the existence. We have that

f"ðsÞ ¼ ð"þ sÞk � "k

f 0
"ðsÞ ¼ kð"þ sÞk�1

f 00
" ðsÞ ¼ kðk � 1Þð"þ sÞk�2:

so that f" is a convex continuous bijection from ½0;C0 þ 1� into

½0; ð"þ C0 þ 1Þk � "k� so that we may define b" ¼ f�1
" . Moreover, we set

bðsÞ :¼ s1=k. Since

½0; ðC0 þ 1Þk�H ½0; ð"þ C0 þ 1Þk � "k�

and since f"ðu"Þ A ½0; ðC0 þ 1Þk� for 0 < "a "0 with "0 su‰ciently small, we can

fix the interval and restrict the definition of b" to the interval ½0; ðC0 þ 1Þk�.
Then, we can easily see that b 0

" is a nonincreasing function (since f" is a convex

function) and that

0 <
1

kððC0 þ 1Þk þ 1Þðk�1Þ=k :¼ a0 a b 0
"ðsÞa b 0ðsÞ for all s A ð0; ðC0 þ 1Þk�:

Next, we prove that b" ! b uniformly on ½0; ðC0 þ 1Þk�. We remark that for

each s A ½0;C0 þ 1�, the function " 7! f"ðsÞ is nondecreasing. Then for each s A
½0; ðC0 þ 1Þk� the function " 7! b"ðsÞ is nonincreasing so that as " ! 0, fb"g">0

is a nondecreasing sequence of continuous functions tending pointwise to the

continuous function b on the compact set ½0; ðC0 þ 1Þk�. Therefore, we deduce

from Dini’s Theorem that

b"ðsÞ ! s1=k uniformly on ½0; ðC0 þ 1Þk� as " ! 0:

Setting U " ¼ f"ðu"Þ, we deduce that U " satisfies

q

qt
b"ðU "Þ ¼ DU " þ f"ðU "; v"Þ for all ðx; tÞ A QT ;

q

qn
U " ¼ 0 for all ðx; tÞ A qW� ð0;T �;

U "ðx; 0Þ ¼ f"ðu"0ðxÞÞ for all x A W;

8>>>>><
>>>>>:
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with

f"ðU "; v"Þ ¼ v"b"ðU "Þm � aðb"ðU "Þ; v"Þb"ðU "Þn � "b"ðU "Þmþ1:

We remark that f"ðU "; v"Þ is bounded independently of ". Multiplying the

equation for U " by U " and integrating over QT gives

ðT
0

ð
W

q

qt
b"ðU "Þ

� �
U " þ

ðT
0

ð
W

j‘U "j2 a f"ðC0Þ
ðT
0

ð
W

v"ðu"Þm aC1ðC0 þ 1Þk;

and, setting F"ðsÞ ¼
Ð s
0 b

0
"ðnÞn dn ðF"ðsÞb 0 as sb 0Þ, we have

ðT
0

ð
W

q

qt
b"ðU "Þ

� �
U " ¼

ðT
0

ð
W

q

qt
ðF"ðU "ÞÞ ¼

ð
W

F"ðU "ðTÞÞ �
ð
W

F"ðf"ðu"0ÞÞ

and since b 0
" b 0

ð
W

F"ðf"ðu"0ÞÞ ¼
ð
W

ð f"ðu"0Þ
0

b 0
"ðnÞn dn

a

ð
W

f"ðu"0Þ
ð f"ðu"

0
Þ

0

b 0
"ðnÞdn

a

ð
W

f"ðu"0Þu"0

aC0ðC0 þ 1ÞkjWj:

This proves that fU "g is bounded in L2ð0;T ;H 1ðWÞÞ independently of " and

T . Next we remark that since u"0 ! u0 uniformly on W, there exists a positive

function o such that oðsÞ ! 0 as s ! 0 and such that for all 0 < " < "0 we

have that

ju"0ðxÞ � u"0ðx 0Þjaoðjx� x 0jÞ for all x; x 0 A W

and thus ju0ðxÞ � u0ðx 0Þjaoðjx� x 0jÞ for all x; x 0 A W:

Then, following DiBenedetto [DiB, Theorem 6.2 and Corollary], we deduce

that fU "g is equicontinuous in QT and thus precompact in CðQT Þ. Similarly,

setting V " :¼ c"ðv"Þ, we prove that fV "g is precompact in CðQT Þ. Thus there

exist z; x A CðQTÞ and fU "jg; fV "jg such that

U "j ! z

V "j ! x

�
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uniformly in CðQT Þ as "j ! 0. Furthermore the di¤erence

ju"j � z1=kj ¼ jb"j ðU
"j Þ � z1=kj

a jb"j ðU
"j Þ � ðU "j Þ1=kj þ jðU "j Þ1=k � z1=kj;

can be made arbitrary small since b"ðsÞ ! s1=k uniformly on ½0; ðC0 þ 1Þk�
as " ! 0. A similar inequality holds for jv"j � x1=l j. Setting u ¼ z1=k and

v ¼ x1=l , we have proved that

u"j ! u

v"j ! v

�

uniformly in CðQT Þ as "j ! 0.

Let j A C2;1ðQTÞ be such that
q

qn
j ¼ 0 for ðx; tÞ A qW� ½0;T �. We have

ð
W

u"j ðtÞjðtÞ ¼
ð
W

u
"j
0 jð0Þ þ

ð t
0

ð
W

U "jDjþ u"jjtð Þ

þ
ð t
0

ð
W

ððu"j Þmv"j � aðu"j ; v"j Þðu"j Þn � "jðu"j Þmþ1Þj

and, as j ! y, we findð
W

ujðtÞ ¼
ð
W

u0jð0Þ þ
ð t
0

ð
W

ðukDjþ ujt þ ðumv� aðu; vÞunÞjÞ:

A computation similar as above shows that

ð
W

vðtÞjðtÞ ¼
ð
W

v0jð0Þ þ
ð t
0

ð
W

ðdvlDjþ vjt � umvjÞ:

Therefore ðu; vÞ is a solution of Problem ðPÞ.
In view of Lemma 3.3 and Theorem 6.1, we deduce the bounds of The-

orem 7.1 (i).

The equicontinuity of fuðtÞgtb0 and fvðtÞgtb0 follows from the proof of

existence and the remark that the modulus of continuity of u and v do not

depend on t, so that property (ii) holds.

The proof of the uniqueness of the solution of Problem ðPÞ is completely

similar to the uniqueness proof in the proof of Theorem 3.2, since the unique-

ness result of Aronson, Crandall and Peletier [ACP, Corollary 11] holds for

parabolic degenerate equations. r

Next we give some further properties of the solution pair ðu; vÞ which will

be useful for the study of the large time behavior in Section 8.
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Theorem 7.2. (i) For all qb ðk þ 1Þ=2, the function

t 7!
ð
W

j‘uqðtÞj2 ð7:1Þ

is in L1ð0;yÞ.
(ii) For all qb ðl þ 1Þ=2 the function

t 7!
ð
W

j‘vqðtÞj2 ð7:2Þ

is in L1ð0;yÞ, and for qb 1

t 7!
ð
W

vqðtÞ is a nonincreasing map: ð7:3Þ

Proof. We recall that there exists a subsequence of ðu"; v"Þ which we still

denote by ðu"; v"Þ such that

ðu"; v"Þ ! ðu; vÞ in CðQTÞ as " ! 0:

(i) Let pb 1. Multiplying the equation for u" by ðu"Þ p and integrating

by parts gives

1

pþ 1

d

dt

ð
W

ðu"Þ pþ1 þ
ð
W

‘ðu"Þk:‘ðu"Þ p a
ð
W

ðu"Þmþp
v" aC

p
0

ð
W

ðu"Þmv":

As in the proof of Lemma 5.1, we deduce that, also using Lemma 3.3 (ii),

1

pþ 1

ð
W

ðu"Þ pþ1ðtÞ þ 4kp

ðk þ pÞ2
ð t
0

ð
W

j‘ðu"ÞðkþpÞ=2j2

aC
p
0

ð t
0

ð
W

ðu"Þmv" þ 1

pþ 1

ð
W

ðu"0Þ
p
aC; ð7:4Þ

where the constant C does not depend on t nor on e. Set q ¼ ðk þ pÞ=2. It

follows from (7.4) that the sequence f‘ðu"Þqg is bounded in L2ðW� ð0;TÞÞ.
Thus there exists a subsequence ‘ðu"j Þq and a function U A L2ðW� ð0;TÞÞ such
that

‘ðu"j Þq * U weakly in L2ðW� ð0;TÞÞ:

Let j be a smooth function satisfying
qj

qn
¼ 0 on qW� ð0;TÞ. The function u"j

satisfies the equality ðT
0

ð
W

‘ðu"j Þqj ¼ �
ðT
0

ð
W

ðu"j Þq‘j;
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in which we let "j ! 0 to deduce thatðT
0

ð
W

Uj ¼ �
ðT
0

ð
W

uq‘j:

Therefore

U ¼ ‘uq in the sense of distributions:

The function f 7!
Ð T
0

Ð
W
f 2 is weakly lower semicontinuous so that

ðT
0

ð
W

j‘uqj2 a lim inf
"!0

ðT
0

ð
W

j‘ðu"Þqj2 aC;

where the constant C does not depend on T . This proves (i).

(ii) Let pb 0. Multiplying by ðv"Þ p the partial di¤erential equation for

v" and integrating over W gives (since v" > 0)

1

pþ 1

d

dt

ð
W

ðv"Þ pþ1 þ d
4lp

ðl þ pÞ2
ð
W

j‘ðv"ÞðlþpÞ=2j2 a 0 ð7:5Þ

and

1

pþ 1

ð
W

ðv"Þ pþ1ðTÞ þ d
4lp

ðl þ pÞ2
ðT
0

ð
W

j‘ðv"ÞðlþpÞ=2j2 a 1

pþ 1

ð
W

ðv"0Þ
pþ1: ð7:6Þ

By equation (7.6) we conclude as in (i) that the function vðlþpÞ=2 satisfiesðT
0

ð
W

j‘vðlþpÞ=2j2 a lim inf
"!0

ðT
0

ð
W

j‘ðv"ÞðlþpÞ=2j2 aCðv0; l; d; pÞ; ð7:7Þ

which completes the proof of (7.2). Integrating equation (7.5) over ðt; tþ tÞ
for t > 0 and t > 0 we have thatð

W

ðv"Þ pþ1ðtþ tÞa
ð
W

ðv"Þ pþ1ðtÞ;

which in turn implies that, since v"ðtÞ ! vðtÞ uniformly in W as " ! 0,ð
W

v pþ1ðtþ tÞa
ð
W

v pþ1ðtÞ: ð7:8Þ

This completes the proof of Theorem 7.2 (ii). r

8. Large time behavior

Our first result is the following.
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Lemma 8.1. Let ðu; vÞ be the weak solution of Problem ðPÞ on W� ð0;yÞ
and suppose that aðu; vÞ satisfy Hypothesis Ha. Then

( i ) if a > 0, there exists a constant vy A 0;
1

jWj

ð
W

v0

� �
such that

ðuðtÞ; vðtÞÞ ! ð0; vyÞ uniformly in W as t ! y;

(ii) if a ¼ 0, then

ðuðtÞ; vðtÞÞ ! 1

jWj

ð
W

ðu0 þ v0Þ; 0
� �

uniformly in W as t ! y:

Proof. Since the functions u and v are bounded and since fuðtÞgtb1;

fvðtÞgtb1 are equicontinuous (cf. Theorem 7.1 (ii)), it follows from Arzola-

Ascoli’s theorem that the sequences fuðtÞgtb1; fvðtÞgtb1 are precompact in

CðWÞ.
We first prove that there exists a nonnegative constant vy such that

vðtÞ ! vy uniformly in W as t ! y: ð8:1Þ

Let qb ðl þ 1Þ=2. It follows from Theorem 7.2 (ii) that, the function t 7!Ð
W
vqðtÞ is nonincreasing and bounded from below so that it has a limit, say kq,

as t ! y. Then, Theorem 7.2 (ii) and the remark above imply that

t 7!
Ð
W
j‘vqj2 is in L1ð0;yÞ;Ð

W
vqðtÞ ! kq as t ! y;Ð

W
v2qðtÞ ! k2q as t ! y:

8><
>:

Therefore

ð
W

vqðtÞ � 1

jWj kq
����

����
2

¼
ð
W

v2qðtÞ � 2

jWj kq
ð
W

vqðtÞ þ 1

jWj k
2
q ð8:2Þ

! k2q �
1

jWj k
2
q as t ! y: ð8:3Þ

Moreover there exists a sequence tj ! y such that
Ð
W
j‘vqðtjÞj2 ! 0. The

sequence vqðtjÞ satisfies

Ð
W
j‘vqðtjÞj2 ! 0 as tj ! y;Ð

W
vqðtjÞ ! kq as tj ! y:

(

By Poincaré’s inequality we have that
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ð
W

vqðtjÞ �
1

jWj kq
����

����
2

 !1=2
a

ð
W

vqðtjÞ �
1

jWj

ð
W

vqðtjÞ
����

����
2

 !1=2

þ
ð
W

1

jWj

ð
W

vqðtjÞ �
1

jWj kq
����

����
2

 !1=2

aCðWÞ
ð
W

j‘vqðtjÞj2
� �1=2

þ jWj1=2 1

jWj

ð
W

vqðtjÞ �
1

jWj kq
����

����;
so that ð

W

vqðtjÞ �
1

jWj kq
����

����
2

 !1=2
! 0 as j ! y: ð8:4Þ

Comparing (8.3) and (8.4), we deduce that

k2q ¼
1

jWj ðkqÞ
2:

In view of (8.3) we have proved that

vqðtÞ � 1

jWj kq
����

����
L2ðWÞ

! 0 as t ! y;

and since fvqðtÞgtb1 is precompact in CðWÞ, we deduce that

vqðtÞ ! 1

jWj kq uniformly on W:

Thus

vðtÞ ! vy :¼ 1

jWj kq
� �1=q

uniformly on W: ð8:5Þ

(i) Setting j ¼ 1 in the equations (3.1) and (3.2), we deduce that

ð
W

ðuþ vÞðtÞ ¼
ð
W

ðu0 þ v0Þ �
ð t
0

ð
W

aðu; vÞun: ð8:6Þ

This implies that the map t 7!
Ð
W
ðuþ vÞ is nonincreasing and since

Ð
W
ðuþ vÞðtÞ

is bounded from below, it has a limit as t ! y. Thus there exists uy such

that
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lim
t!y

ð
W

uðtÞ ¼ uy: ð8:7Þ

Moreover, equation (8.6) implies that

aðu; vÞun A L1ðð0;yÞ;L1ðWÞÞ:

Since aðu; vÞ is continuous on the compact set ½0;C0� � ½0;M �, it has a lower

bound a� > 0. It follows that

un A L1ðð0;yÞ;L1ðWÞÞ;

and therefore, by Hölder inequality, thatð
W

u

� �n
A L1ð0;yÞ:

Therefore there exists a sequence tj ! y as j ! y such thatð
W

uðtjÞ ! 0 as j ! y; ð8:8Þ

so that uy ¼ 0. Finally we conclude that uðtÞ converges to 0 uniformly in W

as t ! y.

(ii) We first suppose that v0 ¼ 0. In that case, if z is the solution of the

porous medium equation

zt ¼ Dzk in Q

q

qn
zk ¼ 0 on qW� ð0;yÞ

zðx; 0Þ ¼ u0ðxÞ for all x A W;

8>>><
>>>:

then the pair ðzðtÞ; 0Þ is the solution of Problem ðPÞ with initial condition

ðu0; 0Þ. A result of Alikakos and Rostamian [AlRo] gives that

zðtÞ ! 1

jWj

ð
W

u0 in LpðWÞ for all p A ½1;yÞ as t ! y:

Thus since fzðtÞgtb1 is precompact in CðWÞ and we have

zðtÞ ! 1

jWj

ð
W

u0 in CðWÞ as t ! y:

Let ðu; vÞ be the weak solution of Problem ðPÞ with initial data ðu0; v0Þ, with
u0 0 0 and v0 0 0, and z be as above. We can easily see that z is a lower

solution for the equation satisfied by u so that
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ub z in Q;

which in turn implies that there exists tb 0 such that

uðtÞb zðtÞb c3 :¼
1

2jWj

ð
W

u0 for all tb t: ð8:9Þ

First we will prove that vðtÞ ! 0 uniformly on W as t ! y. Since umv is in

L1ðð0;yÞ;L1ðWÞÞ (Lemma 3.3), and from

ðc3ÞmvðtÞa umðtÞvðtÞ

for tb t, we deduce that v A L1ðð0;yÞ;L1ðWÞÞ. Thus there is a sequence ftjg
such that

lim
tj!y

ð
W

vðtjÞ ¼ 0; ð8:10Þ

which together with (8.5) implies that

vðtÞ ! 0 uniformly in W as t ! 0:

Adding up the equations (3.1) and (3.2) and setting j ¼ 1 yieldsð
W

ðuþ vÞðtÞ ¼
ð
W

ðu0 þ v0Þ

and consequently

lim
t!y

ð
W

uðtÞ ¼
ð
W

ðu0 þ v0Þ: ð8:11Þ

Next we prove that uðtÞ tends to a constant uniformly in W as t ! y. The

method which we use here is similar to the proof of (8.1). First, we show that

for each qb ðk þ 3Þ=2, there exists a constant kq such that limt!y

Ð
W
uqðtÞ ¼ kq.

Let pb ðk þ 1Þ=2, tb 0 and r > 0; we take the duality product ððH 1Þ0;H 1Þ of

the equation for u by u p and we deduce thatð tþr

t

hut; u
piðH 1Þ 0;H 1 þ

4kp

ðk þ pÞ2
ð tþr

t

ð
W

j‘uðkþpÞ=2j2 ¼
ð tþr

t

ð
W

umþpv:

The equality (as in [Tem, Chap. III, Lemma 1.2])ð tþr

t

hut; u
piðH 1Þ 0;H 1 ¼

1

pþ 1

ð
W

u pþ1ðtþ rÞ � 1

pþ 1

ð
W

u pþ1ðtÞ; ð8:12Þ

implies that
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ð
W

u pþ1ðtþ rÞ �
ð
W

u pþ1ðtÞ

¼ ðpþ 1Þ
ð tþr

t

ð
W

umþpv� 4kpðpþ 1Þ
ðk þ pÞ2

ð tþr

t

ð
W

j‘uðkþpÞ=2j2: ð8:13Þ

Since we have that, in view of Lemma 3.3 (ii) and Theorem 7.1 (i)ðy
0

ð
W

umþpva ðC0Þ p
ðy
0

ð
W

umva ðC0Þ pC1;

and since, by Theorem 7.2,ðy
0

ð
W

j‘uðkþpÞ=2j2 < y;

it follows from equation (8.13) that the sequence f
Ð
W
u pþ1ðtÞgtbt is a Cauchy

sequence. Therefore it has a limit as t ! y. Setting q ¼ pþ 1, we have

proved that there exists kq such that

lim
t!y

ð
W

uqðtÞ ¼ kq for all qb ðk þ 3Þ=2:

Then, in view of Theorem 7.2, we have proved thatÐ
W
j‘uqj2 A L1ð0;yÞ;

limt!y

Ð
W
uqðtÞ ¼ kq;

limt!y

Ð
W
u2qðtÞ ¼ k2q;

8><
>:

for all qb ðk þ 3Þ=2. Now, as we have done for v in the beginning of this

proof, we deduce that

uqðtÞ ! 1

jWj kq in CðWÞ as t ! y:

Then, in view of equation (8.11), we have proved that

uðtÞ ! 1

jWj

ð
W

ðu0 þ v0Þ in CðWÞ;

which completes the proof. r

Next we suppose that

u0 0 0 and v0 0 0; ð8:14Þ

and that the function a is positive. We define two constants a� and aþ such

that
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0 < a� a aðr; sÞa aþ for all ðr; sÞ A ½0;C0� � ½0;M �;

and present some further characterization of the constant vy.

Theorem 8.2. The following results hold:

( i ) If 1am < n then vy ¼ 0;

( ii ) if 1a nam then vy > 0;

(iii) if m ¼ n then vy a að0; vyÞ.

To begin with, we prove the following auxiliary result.

Lemma 8.3. The functions t 7!
Ð
W
uðtÞ and t 7!

Ð
W
vðtÞ are in C1ð½0;yÞÞ and

d

dt

ð
W

uðtÞ ¼
ð
W

ðumv� aðu; vÞunÞðtÞ; ð8:15Þ

d

dt

ð
W

vðtÞ ¼ �
ð
W

ðumvÞðtÞ: ð8:16Þ

Proof. Setting j ¼ 1 in the equality (3.1) one hasð
W

uðtÞ ¼
ð
W

u0 þ
ð t
0

ð
W

ðumv� aðu; vÞunÞ;

and the result follows from the fact that the function t 7!
Ð t
0

Ð
W
ðumv� aðu; vÞunÞ

is in C1ð½0;yÞÞ. The proof of (8.16) is similar. r

Lemma 8.4. We have thatð
W

uðtÞ > 0 and

ð
W

vðtÞ > 0 for all tb 0:

Proof. By equation (8.15) we have that

d

dt

ð
W

uðtÞ ¼
ð
W

ðumv� aðu; vÞunÞðtÞ

b�aþðC0Þn�1

ð
W

uðtÞ;

which by Gronwall’s Lemma and (8.14) implies thatð
W

uðtÞb
ð
W

u0

� �
expð�aþCn�1

0 tÞ > 0:

The proof for v is similar. r

Proof of Theorem 8.2 (i). For the purpose of contradiction we suppose

that vy > 0. Then there exists T b 0 such that
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0a aþun�mðtÞa vy=4; 3vy=4a vðtÞ for all tbT ;

which in turn implies that

ðv� aþun�mÞðtÞb vy=2:

Therefore, it follows from (8.15) that

d

dt

ð
W

uðtÞ ¼
ð
W

ðumv� aðu; vÞunÞðtÞ ¼
ð
W

ðumðv� aðu; vÞun�mÞÞðtÞ

b

ð
W

ðumðv� aþun�mÞÞðtÞb vy

2

ð
W

umðtÞ

b 0:

Thus in view of Lemma 8.4 we have that

ð
W

uðtÞb
ð
W

uðTÞ > 0 for all tbT :

This contradicts the fact that uðtÞ ! 0 as t ! y. We conclude that vy ¼ 0.

r

Before proving Theorem 8.2 (ii), we suppose that mb n and we set

f ðx; tÞ :¼ ðum�nv� aðu; vÞÞðx; tÞ and we consider the problem

ðPuÞ

wt ¼ Dwk þ f ðx; tÞwn in W� ð0;TÞ;
q

qn
wk ¼ 0 on qW� ð0;TÞ;

wðx; 0Þ ¼ u0ðxÞ for x A W:

8>>><
>>>:

Next we define solutions and upper and lower solutions of Problem Pu and

present a comparison principle.

Definition 8.5. We say that u is a solution of Problem ðPuÞ in W� ½0;T ��,
if it satisfies:

( i ) u A CðW� ½0;T ��Þ and 0a uaC for a constant C;

(ii) For all j A C2;1ðW� ½O;T ��Þ such that jb 0,
qj

qn
¼ 0 on qW� ½0;T ��, we

have for all t A ½0;T ��
ð
W

uðtÞjðtÞ ¼
ð
W

u0jð0Þ þ
ð t
0

ð
W

ðukDjþ ujt þ f ðx; tÞunjÞ; ð8:17Þ

We say that u, respectively u, is a weak upper solution of Problem ðPuÞ,
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respectively a weak lower solution, if it satisfies the property (i), and the property

(ii) with equality replaced by b, respectively a, in equation (8.17).

We remark that if ðu; vÞ is the unique weak solution of Problem ðPÞ, then
u is also the unique weak solutions of Problem ðPuÞ.

Then we have

Lemma 8.6 (Comparison Theorem). If u is a upper solution and u a lower

solution of Problem ðPuÞ in ½0;T �� then

uðx; tÞb uðx; tÞ for all ðx; tÞ A W� ½O;T ��.

Proof. The proof goes as in [ACP, Theorem 12]. r

Now we prove the following lemma.

Lemma 8.7. Suppose that nam and that there exists T > 0 such that

um�nðtÞvðtÞa a�=2 for all tbT. Then

( i ) there exists a positive constant C such that for all tbT

uðtÞa C0e
�a�ðt�TÞ=2 if n ¼ 1;

Cðt� T þ 1Þ�1=ðn�1Þ
if n > 1;

�

(ii) vy > 0.

Proof. (i) The condition um�nðtÞvðtÞa a�

2
for all tbT implies in par-

ticular that

f ðx; tÞ ¼ ðum�nv� aðu; vÞÞðx; tÞa�a�=2; ð8:18Þ

since by definition, we have aðu; vÞðx; tÞb a� for all ðx; tÞ A W� ð0;yÞ. Then,

for tbT , we define

uðx; tÞ ¼ C0e
�a�ðt�TÞ=2 if n ¼ 1;

Cðt� T þ 1Þ�1=ðn�1Þ if n > 1;

�
ð8:19Þ

where

C ¼ max C0;
2

ðn� 1Þa�

� �1=ðn�1Þ
 !

: ð8:20Þ

One can easily check that we have

ut b�a�un=2:

Now, let j be as in Definition 8.5. We have that for all tbT
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ð
W

uðtÞjðtÞ �
ð
W

uðTÞjðTÞ �
ð t
T

ð
W

ðukDjþ ujt þ f ðx; tÞunjÞ

¼
ð t
T

ð
W

ðutjþ ‘uk:‘j� f ðx; tÞunjÞ

¼
ð t
T

ð
W

ðut � f ðx; tÞunÞj

b

ð t
T

ð
W

� a�

2
� f ðx; tÞ

� �
unjb 0;

where the last inequality comes from inequality (8.18). Moreover we deduce

from (8.19) and (8.20) that uðx;TÞb uðx;TÞ for all x A W, so that u is a upper

solution of Problem ðPuÞ in ½T ; t� for all tbT , and it follows from Lemma 8.6

that uðx; tÞb uðx; tÞ for all ðx; tÞ A W� ½T ;yÞ which completes this part of the

proof.

(ii) Next we prove that vy > 0. We first consider the case that n ¼ 1.

The equality (8.16) and Theorem 8.7 (i) imply that for tbT

d

dt

ð
W

vðtÞb�
ð
W

vðtÞ
� �

ðC0Þme�a�mðt�TÞ=2;

which in turn implies the inequality

ð
W

vðtÞb exp
2ðC0Þm

a�m
ðe�a�mðt�TÞ=2 � 1Þ

� �ð
W

vðTÞ: ð8:21Þ

Letting t ! y in (8.21) implies that

jWjvy ¼ lim
t!y

ð
W

vðtÞb e�2ðC0Þm=a�m
ð
W

vðTÞ > 0;

and therefore vy > 0.

If n > 1 it follows from Theorem 8.7 (i) that

d

dt

ð
W

vðtÞb�
ð
W

vðtÞ
� �

Cmðt� T þ 1Þ�m=ðn�1Þ;

so that finally

ð
W

vðtÞb exp Cm n� 1

ðm� nþ 1Þ ððt� T þ 1Þ�ðm�nþ1Þ=ðn�1Þ � 1Þ
� �ð

W

vðTÞ: ð8:22Þ
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Letting t ! y in (8.22) yields

jWjvy ¼ lim
t!y

ð
W

vðtÞb e�ðn�1Þ=ðCmðm�nþ1ÞÞ
ð
W

vðTÞ > 0

so that vy > 0. r

Proof of Theorem 8.2 (ii). First we consider the case that 1a n < m.

Since uðtÞ ! 0 as t ! y, let T be such that um�nðtÞvðtÞa a�=2 for all tbT .

Then we can apply Lemma 8.7 (ii) and conclude that vy > 0.

Next we consider the case that 1a n ¼ m; for the purpose of contradiction

we suppose that vy ¼ 0. There exists T > 0 such that um�nðtÞvðtÞa a�=2 for

all tbT . Therefore we may apply Lemma 8.7 (ii) and conclude that vy > 0.

This contradicts the hypothesis that vy ¼ 0. Therefore vy > 0. r

Proof of Theorem 8.2 (iii). For the purpose of contradiction, we suppose

that

vy > að0; vyÞ:

Since the function ðr; sÞ 7! s� aðr; sÞ is continuous, there exists h A ð0; vyÞ such

that

s� aðr; sÞb 0 for all ðr; sÞ A ½0; hÞ � ðvy � h; vy þ hÞ:

Let T be such that

uðx; tÞ < h and jvðx; tÞ � vyj < h for all ðx; tÞ A W� ½T ;yÞ:

Then for all tbT

vðx; tÞ � aðu; vÞðx; tÞb 0;

and

d

dt

ð
W

uðtÞ ¼
ð
W

ðumv� aðu; vÞunÞðtÞ

¼
ð
W

ðumðv� aðu; vÞÞÞðtÞ

b 0;

which by Lemma 8.4 implies thatð
W

uðtÞb
ð
W

uðTÞ > 0:

This contradicts the fact that uðtÞ ! 0 as t ! y. Therefore vy a að0; vyÞ.
r
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Appendix—Proof of Lemma 4.1

(i) We first consider the case that Nb 3. For the purpose of contra-

diction we suppose that for all l > 0 there exist z A H 1ðWÞ and ab 1 such that

l

ð
W

j‘zj2 þ 2

jWj

ð
W

jzj2=a
� �a� �

<

ð
W

jzj2
?

� �2=2?
: ðA:1Þ

We define a sequence flng such that ln ! y as n ! y. It follows from

equation (A.1) that there exist zn A H 1ðWÞ and an b 1 such that

ln

ð
W

j‘znj2 þ
2

jWj

ð
W

jznj2=an
� �an� �

<

ð
W

jznj2
?

� �2=2?

; ðA:2Þ

which implies in particular that zn 0 0. We divide inequality (A.2) by

kznk2L2? ðWÞ to obtainð
W

‘
zn

kznkL2? ðWÞ

�����
�����
2

þ 2

jWj

ð
W

zn

kznkL2? ðWÞ

�����
�����
2=an

0
@

1
A
an

<
1

ln
:

Setting

wn ¼
zn

kznkL2? ðWÞ
; ðA:3Þ

we deduce that ð
W

j‘wnj2 þ
2

jWj

ð
W

jwnj2=an
� �an

<
1

ln
: ðA:4Þ

It follows from (A.3) and (A.4) that

kwnkL2? ðWÞ ¼ 1;

k‘wnkL2ðWÞ ! 0 as n ! y;

(
ðA:5Þ

so that in particular there exists w A H 1ðWÞ such that as n ! y wn * w weakly

in H 1ðWÞ and wn ! w strongly in L2ðWÞ along a subsequence. It also follows

from (A.5) and the weak lower semicontinuity of z 7!
Ð
W
j‘zj2 that ‘w ¼ 0 in

L2ðWÞ. Thus there exists a constant l such that w ¼ l and wn ! l strongly in

H 1ðWÞ. Since the embedding from H 1ðWÞ into L2?ðWÞ [Bre, Corollary IX. 14]

is continuous we have that

wn ! l strongly in L2?ðWÞ as n ! y;

and therefore it follows from (A.5) that

jlj ¼ jWj�1=2?

;

and we may suppose that l > 0. Furthermore we also deduce from (A.4) that
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2

jWj

ð
W

jwnj2=andx
� �an

! 0 as n ! y: ðA:6Þ

We consider two cases:

The case that fang is bounded: Then there exists a subsequence of fang
which we denote again by fang such that an ! a A ½1;yÞ as n ! y. We haveð

W

jwnj2=an �
ð
W

l2=a
����

����a
ð
W

jwnj2=an �
ð
W

l 2=an
����

����þ
ð
W

l 2=an �
ð
W

l 2=a
����

����: ðA:7Þ

Next we bound the first term on the right-hand-side of (A.7). Let C > 0 and

s A ½0; 1�; the function r 7! jr� Cjs � rs þ Cs is nonincreasing for 0 < r < C and

nondecreasing for r > C so that for all r > 0

jrs � Csja jr� Cjs;
which in turn implies thatð

W

jwnj2=an �
ð
W

l2=an
����

����a
ð
W

j jwnj2=an � l 2=an j

a

ð
W

jw2
n � l2j1=an

a

ð
W

jw2
n � l 2j

� �1=an
jWjðan�1Þ=an

a

ð
W

jðwn � lÞðwn þ lÞj
� �1=an

jWjðan�1Þ=an

a

ð
W

ðwn � lÞ2
� �1=2 ð

W

ðwn þ lÞ2
� �1=2 !1=an

jWjðan�1Þ=an :

Since as n ! y, we have that wn ! l in L2ðWÞ, wn þ l ! 2l in L2ðWÞ and in

particular wn þ l is bounded in L2ðWÞ. Thusð
W

jwnj2=an �
ð
W

l 2=an
����

����a jWjðan�1Þ=an sup
n

ð
W

ðwn þ lÞ2
� �� �1=2an ð

W

ðwn � lÞ2
� �1=2an

:

ðA:8Þ
Since the sequence fang is bounded there exist two constants a� and aþ such

that for all n we have 1a a� a an a aþ; therefore inequality (A.8) givesð
W

jwnj2=an �
ð
W

l2=an
����

����a ðjWj þ 1Þðaþ�1Þ=aþ sup
n

ð
W

ðwn þ lÞ2
� �

þ 1

� �1=2a�

�
ð
W

ðwn � lÞ2
� �1=2aþ

;
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so that ð
W

jwnj2=an �
ð
W

l2=an
����

����! 0 as n ! y:

Moreover, we have ð
W

ðl 2=an � l2=aÞ
����

����! 0 as n ! y:

Thus we deduce from (A.7)ð
W

jwnj2=an �
ð
W

l 2=a
����

����! 0 as n ! y: ðA:9Þ

Furthermore we have

2

jWj

ð
W

jwnj2=an
� �an

� 2

jWj

ð
W

l2=a
� �a����

����
a

2

jWj

ð
W

jwnj2=an
� �an

� 2

jWj

ð
W

l 2=a
� �an����

����
þ 2

jWj

ð
W

l 2=a
� �an

� 2

jWj

ð
W

l2=a
� �a����

����: ðA:10Þ

The second term of the right-hand-side of (A.10) tends to 0 as n ! y.

Moreover, by (A.9) we can suppose that
Ð
W
jwnj2=an A ½0;

Ð
W
l2=a þ 1�. Since for

r; sb 0, we have

jran � san ja anðmaxðr; s; 1ÞÞan�1jr� sj

a aþðmaxðr; s; 1ÞÞaþ�1jr� sj;

we deduce from (A.9) that

2

jWj

ð
W

jwnj2=an
� �an

� 2

jWj

ð
W

l 2=a
� �an����

����! 0 as n ! y;

which by (A.10) implies that

2

jWj

ð
W

jwnj2=an
� �an

� 2

jWj

ð
W

l2=a
� �a����

����! 0 as n ! y: ðA:11Þ

Clearly (A.11) contradicts (A.6).

The case that fang is unbounded: Then there exists a subsequence of fang
which we denote again by fang such that an ! y as n ! y. Let m be a posi-

tive number. We have
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m mesfx; jwnðxÞ � lj > mga
ð
W

jwn � lj ! 0 as n ! y:

Note that
Ð
W
jwn � lja m2 for n large enough so that

mesfx; jwnðxÞ � lj > mga m;

for n large enough. Therefore

mesfx; jwnðxÞ � lja mgb jWj � m: ðA:12Þ

Choosing m <
l

2
, we have in view of (A.12)ð

W

jwnj2=an b
ð
fx; jwnðxÞ�ljamg

jwnj2=an

b

ð
fx; jwnðxÞ�ljamg

ðl � mÞ2=an

bmesfx; jwnðxÞ � lja mg l

2

� �2=an

b ðjWj � mÞ l

2

� �2=an
:

Thus for all m A ð0; l=2Þ we have

lim inf
n!y

2

jWj

ð
W

jwnj2=an b 2
jWj � m

jWj lim
n!y

l

2

� �2=an
¼ 2

jWj � m

jWj ;

and thus

lim inf
n!y

2

jWj

ð
W

jwnj2=an b 2: ðA:13Þ

In turn (A.13) implies that

lim inf
n!y

2

jWj

ð
W

jwnj2=an
� �an

¼ y

which contradicts (A.6). Therefore (A.4) is not satisfied so that finally (A.1) is

not satisfied either, which completes the proof of (4.1).

(ii) In the case that N ¼ 1; 2 one can prove the result as above, assuming

for the purpose of contradiction the existence of sequences ln ! y, an and zn
such that

ln

ð
W

j‘znj2 þ
2

jWj

ð
W

jznj2=an
� �an� �

<

ð
W

jznjq
� �2=q

;
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where qb 1. Setting wn ¼ znkznk�1
LqðWÞ we have

k‘wnkL2ðWÞ ! 0 as n ! y;

kwnkLqðWÞ ¼ 1

(
ðA:14Þ

and consequently we can suppose that

wn ! l ¼ constant strongly in H 1ðWÞ

along a subsequence. In view of (A.14) it follows that jlj ¼ jWj�1=q and we can

suppose that l > 0. The proof is then similar to that of (i).

(iii) If N ¼ 1, the proof is again similar. Assuming on the contrary the

existence of sequences ln ! y, an and zn such that

ln

ð
W

j‘znj2 þ
2

jWj

ð
W

jznj2=an
� �an� �

< ðsup znÞ2: ðA:15Þ

Using the notation wn ¼ znkznk�1
LyðWÞ we have that

k‘wnkL2ðWÞ ! 0 as n ! y;

kwnkLyðWÞ ¼ 1

(
ðA:16Þ

and consequently, extracting a subsequence, we can suppose that

wn ! l ¼ constant strongly in H 1ðWÞ

where jlj ¼ 1 (cf. (A.16)) and, we can suppose that l > 0. Then there exists

n0 > 0 such that wn b 1=2 for all nb n0. As in the case that Nb 3, inequality

(A.15) implies that

2

jWj

ð
W

jwnj2=an
� �an

! 0 ðA:17Þ

as n ! y. But we have that for nb n0

2

jWj

ð
W

jwnj2=an
� �an

b
2

jWj

ð
W

1

2

� �2=an !an

b 2
1

2

� �2=an !an

b 2an
1

2

� �2

b
1

2
;
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which contradicts (A.17). In turn (A.15) is not satisfied, which completes the

proof of (4.3).
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