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ABSTRACT. We investigate generalized solutions of nonlinear diffusion equations
and linear hyperbolic equations with discontinuous coefficients in the framework of
Colombeau’s algebra of generalized functions. Under Egorov’s formulation, we obtain
results on existence and uniqueness of generalized solutions, which are shown to be
consistent with classical solutions. The example of a linear hyperbolic equation given
by Hurd and Sattinger [8] has no distributional solutions in Schwartz’s sense, but has
the unique generalized solution. We study what distribution is associated with it,
namely, how it behaves on the level of information of distribution theory.

1. Introduction

In 1982, Colombeau introduced an algebra ¥ of generalized functions to
deal with the multiplication problem for distributions, see Colombeau [3, 4].
This algebra % is a differential algebra which contains the space &’ of dis-
tributions. Furthermore, nonlinear operations more general than the multi-
plication make sense in the algebra ¥ (cf. Section 2). Therefore the algebra ¥
is a very convenient one to find and study solutions of nonlinear differential
equations with singular data and coefficients.

In this paper we will study generalized solutions of the Cauchy problems

uy=Au+a-Vof(u)+gu), 0<t<T, xeR?
u‘t:() = Uo, XERd

(1.1)

and

uy=a-Vilbi(t,x)u) + ba(t,x)u, —-T<t<T, x€ RY,

1.2
ul,_o = uo, xeR? (1-2)

in the framework of generalized functions introduced by Colombeau. We seek
solutions in the algebras %, ,([0, T] x RY) and %, ,([~ T, T] x RY) of generalized
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functions which will be defined in Section 2 below. We mention that %, ,(R?)
contains the space Z;. (RY) of bounded distributions.

Generalized solutions of various differential equations in Colombeau’s
algebra have been studied until now. Generalized solutions of problems like
(1.1) have been studied in [2, 11]. It was proved there that there exists a
unique generalized solution. Furthermore, the generalized solution was shown
to be consistent with the classical solution. However, it is known that there
exist linear partial differential equations whose generalized solutions fail to exist
or are not unique. For instance, see Colombeau, Heibig and Oberguggen-
berger [6]. We mention that generalized solutions of problem (1.2) may not
be unique in %, ,([~ 7T, T] x R?) from [6]. Hence, in order to obtain a unique
solution to such problems, we have to change the formulation of differential
equations in Colombeau’s algebra. Of course, problems which have a unique
solution under the usual formulation should also have it under the new
formulation. Furthermore, coherence with the classical solutions should be
obtained if they exist. As such an attempt, Egorov [7] used the difference
operators in place of the usual differentiations with respect to the space variable
x for formulating evolution systems in an algebra of generalized functions
of Colombeau’s type defined by him. This means that if we consider a given
differential equation as an equation on the algebra of generalized functions,
then we have degrees of freedom of difference approximations of the differential
equation. Although Egorov there proved results concerning existence and
uniqueness of a generalized solution of the Cauchy problem for evolution
systems, he did not discuss coherence with the classical solution in detail. We
will also use the difference operators for formulating the above Cauchy
problems in the algebra %;,. Concerning problem (1.1) with the difference
operators, we will study generalized solutions under weaker conditions than the
ones he imposed for nonlinear terms to obtain the global existence in the case
of nonlinear evolution systems. Furthermore, we will study how the gener-
alized solutions in Egorov’s formulation of problems (1.1) and (1.2) are related
to the classical solutions, respectively. The formulation of the above Cauchy
problems in %, will be given by using this method in Sections 3 and 4.
Problems other than the ones (1.1) and (1.2) remain to be unsolved.

It is well known (Hurd and Sattinger [8]) that problem (1.2) with b; = H,
by =0 and uy = 1, namely, the problem

{u,:(H(x)u)x, —-T<t<T, xeR, (13)
ul,_o =1, xeR, '

where H is the Heaviside function, fails to have a distributional solution on
(0,7) x R. Oberguggenberger [9] used the algebra ¥ introduced by Colom-
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beau which is wider than % ,, and proved that for each T > 0, there exists
a unique generalized solution V e 4([-T,T] x R) of problem (1.3) with the
usual differentiation, which is associated with 14 zJ(x) on (0,7) x R. Here
0 is the delta function. This means that to problem (1.3) having no dis-
tributional solution, we can give a unique solution in the Colombeau algebra
9([-T,T] x R), which behaves like 1+ #(x) in (0,7) x R on the level of
information of distribution theory. In Section 4, we will study the distribution
in Schwartz’s sense with which the generalized solution U € %, ,([-T,T] x R)
in Egorov’s formulation of problem (1.3) is associated, namely, how U behaves
on the level of information of distribution theory.

The first purpose of this paper is to show the existence and uniqueness of
generalized solutions in Egorov’s formulation of the above Cauchy problems
(1.1) and (1.2) in Colombeau’s algebra ¥, which are consistent with the
classical solutions. The second is to show that the generalized solution U €
9, 4([-T,T] xR) in Egorov’s formulation of the Cauchy problem (1.3) is
associated with 1+ #(x) on (0,7) x R.

This paper is organized as follows: First we recall the definition and
properties of the Colombeau algebra gyﬁg(.@) and define difference operators on
%, , in Section 2. In Section 3, by using suitable difference operators, we give
our formulation of problem (1.1) and prove results concerning existence and
uniqueness of its generalized solution U € %, ,([0, T] x R?) (Theorems 3.2 and
3.4). Next, we study how the generalized solutions are related to the classical
solutions, if the initial data belong to W?>!(RY)N C3(RY). In fact, we obtain
that the generalized solution is associated with the unique classical solution
(Theorem 3.7). Section 4 is devoted to the study of a generalized solution
of problem (1.2). By a similar way to Section 3, we give our formulation of
problem (1.2) and prove results concerning existence and uniqueness of its
generalized solution U € %, ,([~T,T] x R?) (Theorem 4.2). Furthermore, we
prove that the generalized solution is associated with the unique weak solution
if by is globally Lipschitz continuous, if b, is equal to zero and if uy belongs to
L*(RY), by using suitable difference operators (Theorem 4.4). In particular, in
the case of problem (1.3), we obtain that its generalized solution U is associated
with 1 4 #9(x) on (0,T) x R, namely, U behaves like 1 + #5(x) in (0,7) x R on
the level of information of distribution theory (Theorem 4.6).

2. Colombeau’s theory

2.1. Colombeau’s generalized functions

We briefly recall the definition and properties of a modified version of the
Colombeau algebra of generalized functions [3, 4].
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NoTATION 2.1. Let Q be a nonempty open subset of RY and let Q be its
closure. We denote by &, (Q) the algebra of restrictions to € of real valued
and bounded smooth functions on R?, all whose derivatives are bounded. Let
& 41Q) be the algebra of all maps from the interval (0,1] into Z,~(Q). We
denote by &u s 4[Q] the subset of & ,[Q] composed of all R(e,x) with the
property that for all e N§, there exist N €N, ¢ >0 and # >0 such that

N

sup |DIR(e, x)| < ce” for all 0 <e<n.

xeQ
We denote by .4; ,[Q] the subset of & ,[Q] composed of all R(e,x) with the
property that for all xe N and ¢ e N, there exist ¢ >0 and # > 0 such that

sup |[DyR(e, x)| < ce? for all 0 <e <.
XG.{}

The algebra 9, 4(Q) of generalized functions is defined by the quotient algebra
G5,4(Q) = Eu,5,4[Q)/N5,[€],

G [T L]

where the subscripts “s” and “g” stand for “simplified” and “global”,
respectively.

We denote by {u“"(x)}_ (0,1 or simply u*(x) a representative of a gen-
eralized function U € %, ,(2). Then, for generalized functions U,V € ¥, ,(£2)
and any o e N§, the product UV is defined by the class of {u®(x)v®(x)},. ©.1]
and the partial derivative DyU by the class of {Du(x)},.( - Also, for
a generalized function U € %, ,([0, T] x RY), its restriction U|,_, to {t=0}
is defined by the class of {u®(0,x)},c( . For a generalized function U e
4, ([T, T] x RY), we can similarly define U|,_,.

In the algebra %, ,, we can also define nonlinear operations more general
than the multiplication. To see this, we introduce the following notion.

EE

DeriNITION 2.2. We say that a function f € C"”‘(Rd) is slowly increasing
at infinity if for every cxeNg there exist ¢ > 0 and re N such that, for all
X € R‘l,

ID°f(x)] < e(1+ |x])".
We denote by Oy(R?) the space of slowly increasing functions at infinity.

If feOyR?) and U;e% 4(RY) for i=1,...,p, then we can define
f(U,...,U,) e% 4RY) to be the class of {f(ui(x), ... uy(x))},c 0,0 For
details see [1, 3, 4].

DEFINITION 2.3. A generalized function U € %, ,(Q) is said to be asso-
ciated with a distribution w € 2'(Q) if it has a representative u® € &y ; 4[Q] such
that
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u*—w in 2'(Q) as ¢ — 0.

We denote by U~w if U is associated with w. We say that generalized
functions U,V €%, ,(Q) are associated with each other if U—V ~0. We
denote by U~V if U and V' are associated with each other.

In other words, a generalized function U € %, ,(Q) is associated with a
distribution w if U behaves like w on the level of information of distribution
theory.

REMARK 2.4. The algebra %, ,(R?) contains the space Z;.(R?) of
bounded distributions as follows: Let 7 be an element of ;. (RY). Then
R(e,x) = T x p,(x) can be a representative of 7" and the class of {R(¢,x)},c (1
is associated with T, where p(x) is a fixed element of Z(R?) such that

| p(x)dx =1 and
1 [x
pe(x) = g—dﬂ(g)-

In this sense, we obtain the inclusion ;. (RY) = %, ,(R?).
Throughout this paper, we assume that p(x) satisfies the above conditions.

DEFINITION 2.5. We say that U e %, 4(Q) is of bounded type if it has a
representative u’ € & , 4[] such that there exist ¢ >0 and 5 >0 such that

sup [u(x)| < ¢ for 0 <e<y.
xeQ

It is called of logarithmic type if

sup |u®(x)] < ¢ logl for 0 <e <.
xe® &

We note that u e L*(RY), viewed as an element of %, ,(R?), is of bounded
type. On the other hand, for any distribution 7 € 2'(R?) there exists a gen-
eralized function U egw(Rd) of logarithmic type which is associated with
T. Therefore, we also note that any distribution on RY can be interpreted as
an element of logarithmic type of %g(R‘i) in the sense of the association, for
details see Colombeau and Heibig [5].

2.2. Difference operators

Egorov [7] used difference operators in place of the usual differentiations
with respect to the space variable x for formulating evolution systems in a
space of generalized functions. First we define the difference operators 6){;/7
and (éi)x'h on %, 4(RY) for i=1,...,d. The difference operators with respect
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to the space variable x € R on %, ,([0, T] x RY) and %, ,([~T, T] x RY) will be
defined at the end of this subsection.

Let u*(x) be a representative of a generalized function U € %, ,(R?) and let
x be a step function on R given by

1

r(y)=q a-—ca’
0, otherwise,

1 <y<a,

where c¢j,c, are constants, ¢; < ¢, and 0 € [¢c],¢;]. Furthermore, let 7 be a
scaling function, i.e. 4:(0,1] — (0,1] is increasing, and A(e) — 0 as & — 0.
Then we define

a}){(;hU = class of {(du’ >;Xh(g))(x)}%(oﬁ1],

(aii)}(«,h U = class of {(a)zc,ué >:f)(lz(a) >i.<)z/t(z,'))(x)}35(()7 1)

for i=1,...,d, where
(5,»5‘146 TX],,(@)(X) = JR (3xiu£(x1, ey Xim 1, X — Vs Xty e - - ,Xd))(h((,.)(y)dy, (21)

ey (9) = (1/h(2)x(y/h(e)) and 7(y) = x(=y). Also, let h;: (0,1] — R’ be a
function such that ith element of 4;(¢) is h(e) and the other elements are equal
to zero. Then expression (2.1) becomes

. _ui(x = aahye)) — ut(x — cihy(e))
(a)ﬁu T)(h(e))(x) - (C2 — C])h(ﬁ)

for i=1,...,d. It follows immediately that 0%"U,(82)*"Ue %, ,(R?) for
i=1,...,d. Furthermore, we obtain that a;fl_‘hUz 0y,U and (Oi)z’hUzéiiU
for i=1,...,d if Ue2,.(RY).

For a generalized function U € %, ,([0, T] x R?), aghU and (6§i)l’hU are
also defined by the classes of

{Ouu'(t,) T)fh(a)(x)}ae(o,l] and {o3u () = Xh(e) T)Zh(e)(x)}se(o,l]

for i=1,...,d, respectively. The difference operators with respect to the
space variable x € R on %, ,([~T, T] x R?) are defined in the same way.
For simplicity, throughout this paper, we put

d d
a- Vf’h — Zaiagh and Ai{,h — Z(ai)x,h
i=1

i=1

for a = (a,...,aq) € RY.
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3. Nonlinear diffusion equations

In this section, we will consider problem (1.1). By the difference operators
defined in Section 2, problem (1.1) can be rewritten as the problem

U = A2"U +a- V2" f(U) +g(U) in % ,(0,T] x RY), (3.1)
Ul,_o = Up in %, ,(R) ’

in the space of generalized functions.
DeFINITION 3.1. We say that Ue % ,([0,T] x RY) is a (generalized)

solution of problem (3.1) if it has a representative u® € &y ,4[[0, T] x R?] such
that

) @l (1) ey + 9 + NS, 0<t<T, xeR,
=1 !

& ¢ & d
u®|,_y = ug + n’, xeR

for some N°¢e ;,4[[0,T] x RY] and some n®e .4;  [RY], where uf is a rep-
resentative of Uj.

Throughout this section, we assume that y is a step function given by

(y) = I, 0<y<l,
XY= 0, otherwise.

We first prove the existence of a generalized solution of problem (3.1).

THEOREM 3.2.  Assume that h(e) satisfies the inequality 1/h(g)* < ¢ log(1/e)
Jor 0 <e<1/2 with some ¢ >0 and that f,ge€ Oy (R) satisfy the properties
f'<0, g <0 and g(0)=0. Furthermore, let all components of acR? be
nonnegative. Finally, let Uy be an element of %,g(Rd) given by the class of
{(uo * p.) (%)} e (0,1 with upe L'(ROYNL*(RY). Then for each T >0 there
exists a solution U € %, ,([0, T] x RY) of problem (3.1).

ProOOF. We use an argument similar to those in the proofs of Proposi-
tions 13.1, 13.5 in Oberguggenberger [10] and Proposition 1 in Colombeau and
Heibig [5]. We put uf(x) = (uo * p,)(x). In order to prove the existence of
a generalized solution, it suffices to consider the equation
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(1, x) = uf(x) + ZJ (5, x — hi(e)) — 21:(((:),;) +ut(s, X+ hi(e))

B [[artetoor = b)) - ete D)),

i=1

+ JI g(u®(s, x))ds. (3.2)

0
Define a transformation F(u®) by the right-hand side of equation (3.2) and fix
e (0,1] arbitrarily. Let By (T) = {ue C([0,T] : W5'(RY)) N CL([0, T] x RY) :
l|u — uf|| <1} for each k e Np, where C([0, 7] x R?) denotes the space of all
k-times continuously differentiable functions whose derivatives are bounded,
and ||| is the norm in the space C([0,T]: W& (R?)NCK([0,T] x RY)
defined by
lulf = sup > D%ullpgey

OSZSToceNg,lx\gk

+ el o, ryxrety + T Z 1D ul| L (0, 7R
aeNgT 1<o| <k
Obviously, for each k € Ny, there exists 7} > 0 such that F is a contraction
in Bi(T}). Hence the equation u* = F(u®) has a unique solution u® € Bi(T}).
Furthermore, we can show that for any 7 > 0, the solution u® € Cp([0, T] x R?)
of equation (3.2) is unique. Hence, for k =1, we can extend the solution
u(t,x) to an element of C([0,7¢]: WHI(RY)) N CL([0, T¢] x RY) by repeat-
ing the above method finite times and by using the fact that u® exists in
By(T¢). Similarly, we can obtain a solution u®e C([0,T¢]: W !'(RY)N
Ck([0, T¢) x RY) for any k e No.
Next, we prove that |[[u®| . rgure) < lugll - gs). We obtain that
u®(¢,x) takes the maximum in some bounded domain of [0, 7] x RY, since
u® belongs to C([0, T¢] : WEI(R?)) N CE(0, T¢] x RY) for any keNy. We
assume that (79,x0) is a point in (0,7¢] x RY satisfying u®(ty,x0) =
SUP(, e (0, 77)«r? U (4, X). Then we see u®(1, x0) = 0. If u(0, x0) = 0, then we
can easily see that u®(z,x) <sup, _ge ui(x). We assume that u®(z,x) > 0.
Then, obviously, uf(f,xo) =0. It follows from equation (3.2) that u®(¢,x)
satisfies the equation

8ty x — hi(e)) — 2ub(t, x) + ub(t, x + hi(e))

”M
=
—

)
N

)

0 + gl (t,x).  (3.3)
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Since f,g are decreasing and ¢(0) =0, we have u/(fy,x9) <0. Hence
u?(ty,x0) = 0. Furthermore, we obtain that u®(z,x0) = u®(to, xo — hi(¢)) for
i=1,...,d from the first term of the right-hand side of equation (3.3).
Repeating this method, we have u®(t,x0) = u®(to,xo — hi(e)n) for any
neN. But it is impossible, because u® belongs to C([0, T¢]: WrI(R))N
CE([0, T{] x R?) for any keNp. This contradiction shows that u“(t,x) <
sup,..ge #4(x). For the minimum of u*(z, x), we can similarly discuss. Thus
we have

inf ui(x) <u(t,x) < sup uf(x)
XGRJ XERd

for every (¢,x) € [0, T¢] x R?.  T¢ depends only on ||uj ey 4§l weys @, f
and g. Note that 1/7; grows linearly when [uf||,ge, goes to oo and that
1o (Tg, M ety < 11y + 1 and s (Tg, ) e gy < 3o ey Henee it
turns out that the time interval of existence of a solution u(z,x) obtained by
repeating the above argument can be extended to [0,00). Thus we can obtain
the existence of a solution u‘(¢,x) for any T > 0.

Finally, we prove that the solution u® given above belongs to
Ev.sgl[0, T] x RY].  Differentiating equation (3.2) with respect to x; for i =
I,...,d and applying Gronwall’s inequality, we obtain that there exist ¢ > 0
and r e N such that

100" (2 )| L )

< [[Ox gl o rey

4d 2d max; a; ., . 1
+ + u)| 1o <R T 19 (U)o <R
(h(g)2 0 £ @O e 0, 7yxrey + 19" @) e 0,79 R1)>

t
~ J 1025, ) e e s

4d 2d max; a; r
T + + 1 )e(l 4+ [Jugll; ,
{h(g)z (P 1) e+ ) H

since f and g belong to (y(R). Therefore we obtain that there exist N € N,
¢>0 and n > 0 such that

< [|0xull o (rey €XP

1036 o g0, 7ty < €67

for i=1,...,d, for all 0 <e¢<y, from the boundedness of uy and the as-
sumption on 4. Similarly we can prove that all derivatives of u* with respect
to ¢ and x are dominated by ce™ with suitable ¢ and N. Consequently, by
defining U as the class of {u*(t,x)},.( y, the assertion is obtained. ]
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RemMARK 3.3. In Theorem 3.2, if f and ¢ are globally Lipschitz con-
tinuous, then the boundedness assumption on uy can be dropped.

Next, we prove the uniqueness of a generalized solution of problem
(3.1) under weaker conditions than the ones which are imposed to obtain the
existence.

THEOREM 3.4. Let h(e) be as in Theorem 3.2. Furthermore, let [ and
g belong to Oy(R) and let acRY. Then for each T >0 the solution U e
4, ,([0, T] x R?Y) of bounded type of problem (3.1) is unique.

Proor. Let U;,U, €% ,([0,T] xR?) be two solutions of problem
(3.1). For their representatives uf,u$, there exist N°e ./; ,[[0,T] x RY] and
n® e N; 4[RY] such that

ui(t, x) —ui(t,x)

= nt(x) +

1 d

h(e)* 4 J“”“W—M@D—@@x—M@»

1 J0

= 2{ui(s,x) — u5(s,x)} + {uf (s, x + hi(e)) — u5(s, x + hi(e)) }]ds

Jr ail{f (ui(s,x = hi(e))) — S (u3(s, x — hi(e))) }

0

1
P

— S (i(s, %)) = f(u3(s, x)) Hds

+ [ Hotufo0) = atusto. )} + N0

Hence uf(t,x) — u4(¢,x) satisfies the inequality

jui (1, ) — u3 (2, x)|

< [|n*]

ety + TNl e o, 7cm)

4d  2d maxi|a;| , ., ., roe
+ Wl (10, 71xr?) F 19" (W31l L= 10, 71xRe
<h(s)2 h(e) 1/( I)HL ([0, T]xR¥) llg'( 2)||L ([0, T]xRY)
t
] ) = e,

where w? is a value between u{ and uj for i=1,2. Applying Gronwall’s
inequality, we obtain that there exist ¢ > 0 and r e N such that
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[Juf — u;“L"—([O, T]xRY)

< (7l = mey + TINN o 0, 7)xr))

r Ay (PR ) (14 )
o) 4
h(e)? h(e) i=1.2 i ILL=([0, T]=R)

since f and g belong to Oy (R). Therefore, for all g € N, there exist ¢ > 0 and
n > 0 such that

- exp

lluf = w5l o o, 7yxmey < &

for all 0 < e <n, by the boundedness of u} for i =1,2 and the assumption
on 4. Similarly we can prove the same type of estimate for all derivatives
of uf — uj with respect to t and x. Hence ui —uj € N; ,[[0, T] x RY], that is,
U — U, =0 in % ,([0,T] x RY). Thus the assertion follows. O

REMARK 3.5. We note that the assertion of Theorem 3.4 does not depend
on the choices of the step function y.

REMARK 3.6. In Theorem 3.4, if f and g are globally Lipschitz con-
tinuous, then the boundedness assumption on U can be dropped.

Now we turn to a comparison between classical solutions of problem (1.1)
and generalized solutions of problem (3.1). We assume that f,g and a are as
in Theorem 3.2 and that u, belongs to W>'(R?)N C3(RY). Then, we can see
that for each 7 > 0, there exists a classical solution u e C([0,T]: W>'(R%)N
C3(RY)) of problem (1.1), by using a fixed point argument and the maximum
principle. Furthermore, we can show that it is unique by a similar way to
the proof for Theorem 7 in Oleinik [12]. On the other hand, Uy, given by
the class of {(uo *p,)(x)},c(,1), defines an element of %, ,(R?).  According
to Theorems 3.2 and 3.4, problem (3.1) has a unique solution U e
%, ,([0, T] x R?) of bounded type for each T > 0, under the assumption on /(e)
stated in Theorem 3.2. As seen from the following theorem, the generalized
solution U is equal to the classical solution u in the sense of the association.

THEOREM 3.7. Assume that f,g,a and h(¢) are as in Theorem 3.2 and that
up e W' (RY) N C3RY). Let Uy be an element of %, ,(R?) given by the class
of {(uo * p,)(X) e 0,1 Furthermore, let U € G, ([0, T X RY) be the generalized
solution of bounded type of problem (3.1). Then U is associated with the unique
classical solution u e C([0,T]: W>' (RN C}(R?)) of problem (1.1).

ProoF. Let u®(f,x) be a representative of U satisfying equation (3.3).
Then it follows that
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ul(t,x) — u,(t, x)

= Zaz u® —u) X h(z) *Xh(e)

i=1

+Za6 (S W) = F (@) + L9061, )) — g(u(e, )}

+Z{0 W L) *Xh —0 u}+2a,{6 S(u *th ,f(”)}

d

Z

5 [{u (6, x — hie)) — u(t, x — hi(e))} — 2{u"(t,x) — u(t,x)}

+ {uf(t,x + hi(e)) — u(t, x + hi(e))}]

d
Z )[{f( (t,x = hi(e))) — f(u(t,x — hi(e)))}
i=1

— {1, x)) = f(u(t, x))}]
+{g(*(1,x)) — g(u(t, X))}

d d
+ Z {oqu *n(e) * Tnte) — oqu}+ Zai{ﬁx,f(u) *n(e) — O S (W)} (3.4)
i=1 i=1

Multiplying equation (3.4) by sgn(u®(t,x) — u(¢,x)) and integrating it in ¢ and
x, we have

(2, ) = u(t, )| L1 ge

< |luf — u0||L1 )t ZJ J (s, x) — u(s, x))

{sen(u(s, x + hi(e)) — u(s, x + hi(e))) — 2 sgn(u(s, x) — u(s, x))
- sen(s,x — (e) — uls, x — h(e))) s
T
_ ZJO JRdh(;){f(uS(s, x)) = f(u(s,x))}

i=1

Asgn(u’(s, x + hi(e)) — u(s, x + hi(e))) — sgn(u®(s, x) — u(s, x)) }dxds

+ZJ J ‘5 U )*;{,” -2 u‘dxds
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d
32| [ o @ — aurwlads

< |Jug — uol| ;.1 R) —i—ZJ Hazu*xh(e)*xh 62u||L, ds
i=1

d
+Zalj Ha)”/f *Xh(s axif(u)HLl(Rd)dS7
i=1

since f and g are decreasing, where uf(x) = (uo * p,)(x). Therefore we have
the inequality

sup ”ue(ta ) - M(l, ')”LI(R“)
0<t<T

d T
< lug — uoll g1 (rey + Z L ||a)2c,-uTXh(s) ’;‘5{/1(6) - 5,3,-”|}L1(Rd>ds

d
+Zazj ||a*c,f *th a»c;f(u)HLl(Rd)dS.
i=1

From the assumptions on ug,u and f, it follows that u® converges to the unique
classical solution u in Z’((0,T) x RY) as ¢ tends to 0. O

ReEMARK 3.8. For the case f' >0, we can obtain the same results as
Theorems 3.2 and 3.7 if we choose the step function y to be

1, -1<y<0,
x(y) = 0

REMARK 3.9. Theorems 3.2, 3.4 and 3.7 guarantee that fundamental
properties, which we usually expect for generalized solutions of differential
equations, also hold in Egorov’s formulation.

otherwise.

)

4. Linear hyperbolic equations with discontinuous coefficients

In this section we will consider problem (1.2). As in Section 3, problem
(1.2) can be rewritten as the problem

4.1)

U=a-V*"BU)+BU in%,(-T,T] xR?),
Ul,_o = U in %, ,(RY)

in the space of generalized functions, where B; and B, are elements of
g&’g (RdJrl).
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DeFINITION 4.1, We say that U e %, ,([-T,T] x RY) is a (generalized)
solution of problem (4.1) if it has a representative u’ € &y 5 ,[[~T, T] x R?] such
that

d

¢ = Za,-@xi(bfug)(t, ) e T biu* + N°, —T <t<T, xeR,
i=1

utl,_y = uf+n°, xeR?

for some N¢e ; ,[[~T,T] x RY] and some n* e ./; ,[R?], where uf, b¢ and b5
are representatives of Uy, By and B,, respectively.

The existence and uniqueness results of a generalized solution of problem
(4.1) are shown easily by similar arguments to Section 3. In fact, we can
obtain the following theorem:

THEOREM 4.2.  Assume that h(e) satisfies the inequality 1/h(e) < clog(1l/¢)
for 0 <e<1/2 with some ¢>0. Let acR? and let Uye % ,(R?). Fur-
thermore, let By € %, ,(R™1) be of bounded type and let B; € %, ,(R*") be
of logarithmic type. Then for each T >0 there exists a solution U €
Y, ,([=T,T] x R?) of problem (4.1) and in addition it is unique.

REMARK 4.3. As stated in Section 1, there exist coefficients B, B, and an
initial data Up such that problem (4.1) has no unique solution in the algebra
Y o([-T,T] x RY), if the difference operator a - Vf’h is replaced by the usual
differentiation a -V, see [6].

Next, we investigate the relationship between classical solutions of prob-
lem (1.2) and generalized solutions of problem (4.1). We assume that b; is
Lipschitz continuous on R and that there exist M, M, > 0 such that M; <
|bi(t,x)| < M,. Furthermore, we assume that b, = 0, a € R? and u € L*(R).
Then we see that problem (1.2) has a unique weak solution u e L*([-T, T] x
RY) for each T > 0, from Theorems 1 and 2 of Hurd and Sattinger [8]. On
the other hand, Up, B; and B, given by the classes of {(uo*p,)(xX)},c(01)s
{(b1 % p)(1,%)} e 0,1) and {(b2 % p,)(¢,X)},c(0,1)> Tespectively, define elements of
9 4. According to Theorem 4.2, problem (4.1) has a unique solution U e
4, ,([-T,T] x R?) for each T >0, under the assumption on k() stated in
Theorem 4.2. Then we obtain the following theorem:

THEOREM 4.4. Let b, =0, a e R and ug € LZ(Rd). We assume that by is
Lipschitz continuous on R and that there exist My, M, >0 such that M, <
|b1(t,x)| < M>. Let Uy, By and B, be elements of 9, which are given by the

classes Of {(uo * ps)(x)}se(o,l]) {(bl * ps)(t7 x)}se(o,l] and {(bz * ps)([’ x)}ae((),l]J
respectively.  Furthermore, we assume that a step function y is even and that h(g)
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is as in Theorem 4.2. Finally, let Ue %, ,([-T,T] x RY) be the generalized
solution of problem (4.1). Then U is associated with the unique weak solution
ue L*([-T,T] x RY) of problem (1.2).

Proor. Put uf(x) = (ug * p,)(x) and bj(¢,x) = (by = p,)(t,x). Let u’(t,x)
be a representative of U satisfying the equation

up(t,x) = D a0 (b{u) () * 21y (¥) }- (4.2)

i=1

Then, we can see that u® belongs to C([-T,T]: W52(R?)) for any k e Ny,
since u{ belongs to W"*Z(Rd) for any k€ Ny. Multiplying equation (4.2) by
bi(t,x)u’(t,x) and integrating it in ¢ and x, we have

| sty | 0.5
)

Rd

t
- J J dsb% (s, x) (' (s, x)) 2dxds = 0,
0 Jr?

since y is even. Therefore we have the inequality

M
2 2 2
[[u (1, ')”LZ(RJ) < = lugl L2(RY)

=,

1 & ! £ 2
+M||atb1'||L«~([7T7T}de) Jo [ (s, ) 2 (rey |-
By weak compactness, we can find a subsequence of {u®(z, x)},. (g ) converging
weakly in L*([-T,T] x R?). From the uniqueness of weak solutions of
problem (1.2), it follows that u® converges to the unique weak solution u in
Z'((-T,T) xRY) as ¢ tends to 0. O

REMARK 4.5. According to Theorem 4.2, problem (4.1) has a unique
generalized solution even if its coefficients are discontinuous. But, the same
does not hold for problem (1.2). This can be illustrated by the following
example: Let

0, x/t<1,
bi(t,x) = { 2, x/t>1

and let b, =0. Furthermore, let a =1. Then, it is well known ([8]) that
problem (1.2) with initial data 0 has many solutions in (0,7) x R. But,
problem (4.1) has the unique solution U =0 from Theorem 4.2, if Uy, B; and
B, are elements of ¥ , which are defined by the classes of {(uo * p,)(x)}.c(0,1)>

{(bl *ps)(tvx)}ce(o,l] and {(bz*ps)([7 x)}ne(O,l]a respectively.
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Finally, we consider the case that the coefficients in problem (1.2) are
discontinuous, more precisely, b is the Heaviside function H and b, is equal
to zero. Let a=1. Then, problem (1.2) with initial data 1 has no solution
in (0,7) xR in the sense of distributions, see [8]. But, under the same
assumptions with respect to coefficients and initial data, it is known (Ober-
guggenberger [9]) that for each T > 0, there exists a unique generalized solution
Ve¥%(—T,T] xR) of problem (4.1) with the usual differentiations, which is
associated with 1+ #6(x) on (0,7) x R. We can show that a similar result
to this one holds for a generalized solution U € %, ,([—T,T] x R) of problem
(4.1). Now we choose the step function y to be

1, -1<y<0,
= 4.3
x() { 0, otherwise (43)

and a function p to be nonnegative. As seen from the following theorem, the
generalized solution U € %, ,([—T,T] x R) of problem (4.1) is associated with
1+ t(x) on (0,T) x R.

THEOREM 4.6. Let ug=1 and let by =0. Let by be the Heaviside
Sfunction H and let a =1. Furthermore, let Uy, By and B, be elements of ¥,
which are given by the classes of {(uo *p,)(x)},c (0,1 {(b1%p,)(X)}oc0,1) and
{(b2 % p,)(1,x)} 0,15 respectively.  We assume that y is the step function given
by (4.3) and that p is nonnegative. Finally, we assume that h(e) is as in
Theorem 4.2.  Then the generalized solution U € 9, ,([-T,T] x R) of problem
(4.1) is associated with 1+ té(x) on (0,T) x R.

ProOF. Put ufj(x) = (ug * p,)(x) and bf(x) = (b1 * p,)(x). Let u®(t,x) be
a representative of U satisfying the equation

i (0,) = || (b1 = (3 = ) ) () 44
Put v%(t,x) = u®(t,x) — 1. By equation (4.4), v*(¢,x) satisfies the equation

05(1,x) = j OB — )t ()Y

+ j 0B (x — )0 (= )Y (). (4.5)

Then, we can see that v® belongs to C([-T,T]: W*KI(R)) for any ke Nj.
Hence, integrating equation (4.5) in ¢ and x, we have

J vi(t, x)dx =t
R

for each ¢ e (0, 1].
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Next, we prove that v%(z,x) =0 in {(z,x)€[0,T] x Ryx —ey >0 for all
yesupp p} and {(z,x) € [0,T] x R;x+h(e) —ey <0 for all yesuppp} for
each ¢ € (0,1]. Fix ¢ € (0,1] arbitrarily. Transforming equation (4.5), we have

61(0%) = i b5+ () = Bi()
+ % {bi(x + h(e))v®(t,x + h(e)) — bi(x)v(t, x)}. (4.6)
It follows from the definition of bf(x) that
vi(t,x) = % {v¥(t,x + h(e)) — v*(1, x)} 4.7

for xeR such that x—¢y >0 for all yesuppp. Since v® belongs to
C([~T,T]: WkI(R)) for any k e Ny, there exists a point (9, xo) in {(t,x) €
[0,T] x R;x —ey >0 for all yesupp p} such that v?(zy,xo) is the maximum
of vé(t,x) on {(£,x)e[0,T]xR;x—¢y >0 for all yesuppp}. Obviously
v(t9, x0) > 0. Furthermore, by equation (4.7), we have v/(f,xo) < 0. Hence
v(t0,x0) = 0. Again by equation (4.7), v*(t,x0) = v°(to,x0 + h(¢)). Repeat-
ing this method, we have v®(ty, xo) = v*(%, X0 + i(e)n) for all n e N. Since v*
belongs to C([~T,T]: W5!(R)) for any k e Ny, it follows that v¥(t,xo) = 0.
Hence we have v°(¢,x) <0 in {(z,x) € [0, T] x R;x — ey > 0 for all y e supp p}.
As shown below, v*(¢,x) >0 in [0,7] x R. Therefore v°(¢,x) =0 in {(z,x) €
[0,T] x R;x —ey >0 for all y e supp p}. Also, integrating equation (4.6) in ¢,
we have

v¥(t,x) = 7 {bi(x + h(e)) — bi(x)}

o
h(e)

t
+ L % {bi(x + h(e))vi(s, x + h(e)) — b (x)v®(s, x)}ds.
It follows from the definition of bf(x) that v®(¢,x) =0 for xeR such that
x+ h(e) —ey <0 for all yesupp p.

Finally, we prove that v®(z,x) >0 in [0,7] x R for each ¢ (0,1]. Let
Z1:([0, T] x R) denote the space of smooth functions whose derivatives belong
to L'([0, 7] x R). We consider the problem

{npf = bio Y (t, ) % fpy =9, 0<t<T, xeR,

4.
Ve ,_r =0, xeR (4.8)

for each nonnegative function g € Z((0,T) x R). Then, we can see that there
exists a solution ¥ € Z;:([0, T] x R) of problem (4.8) by solving the following
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problem (4.10). Furthermore, we can show that it is unique by Gronwall’s
inequality. Multiplying equation (4.4) by this solution (¢, x) and integrating
it in ¢ and x, we have

0= JT JR u; (¢, x)y°(t, x)dxdt

0

T
_ J JR JR ax{bi(x — y)uﬁ(z,x — y)}Xh(.g)(y)dyl//f(l, X)dXdl.

0

Integration by parts yields

0=—1] y° Oxdx—J Ju Wi (8, x)dxdt
R R
T
][ et [ v = v
Jo R
=—1 Y0 xdx—J J u® o(t, x)dxdt. 4.9)
R R

Putting ¥*(¢,x) = y*(T —t,x) and &(t,x) = (T — t,x), we have

{ Vo bt ) ¥y = — P, 0<1<T, xeR, (4.10)

P, =0, xeR

from problem (4.8). If bf(x;)=0 for some x;eR, then ¥i(t,x;)=
—®(t,x1) <0 on [0,T]. Since ¥?*,_,=0, ¥*(¢,x;) <0 on [0,7]. Further-
more, we obtain that ¥*(z,x) takes the maximum in some bounded domain
of [0,T] xR, since ¥* belongs to Z;:([0,7] x R). Assume that (£,x;) is a
point in (0,7] xR satisfying ¥*(12,x2) = sup(, yeo, 7jxr (¢, x) and that
Ye(ty,x;) > 0. Transforming the first equation of problem (4.10) and sub-
stituting (2, x2) into (¢,x), we have the equation

%S(IQ,XZ) b/i((;c;) {Y’e(lz,xZ) — y’g(lz,)CQ — /’Z(S))} = —Qp(lgﬁCz). (411)

Obviously, ¥#(f2,x2) =0, and bf(x,) >0 from the above argument and the
assumption p > 0. Hence, the left-hand side of equation (4.11) is nonnegative,
which means that @(f,,x;) = 0. Again, from equation (4.11), we obtain that
Ve (ty,x3) = W¥(t2, x — h(e)). Repeating this method, we have ¥*(fy,x;) =
Ve(ty,xs — h(e)n) for any neN, which is impossible. This contradiction
shows that P*%(¢,x) < sup,.gr P%(0,x) =0, so that the inequality y°(¢,x) <0
holds. Hence, we have
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- JR W0, x)dx

T

:JTLme@Wﬁvﬂwa“”+J

J o(t, x)dxdt
0 0 Jr

T

T JT JR(axbf * 2ey) Y (8, x)dxet + J

J o(t, x)dxdt
0 0 Jr

> JT JR o(t, x)dxdt

0

by the first equation of problem (4.8) and the assumption p > 0. Therefore, by
equation (4.9), we obtain that for any nonnegative function ¢ € 2((0,7) x R)

T

0=- JR vE(0, x)dx — J

J u®(t, x)p(t, x)dxdt
0o Jr

> JOT JR o(t, x)dxdt — JOT JR u®(t, x)p(t, x)dxdt

_ LT JR(I — (4, %)) (1, x)dxd,

which means that u®(f,x) > 1, that is, v*(£,x) >0 in [0,7] xR for each
g€ (0,1]. Consequently, we obtain that for all p € 2((0,7) x R)

T
J JR(US(Z’ x) — 19(x)) (1, x)dxdt

0

- JTJ (01, X)p(t, x) — 0°(t, %)(1, 0))dxdt
R

0

T
][ 0 x00,0) = 3(0ppte )
0 JR

T
=, | oot  pte.0)asa

0

IA

T
jo Lv*’(z, ol e o. 1y ¥ldxde

sup Yy
yesuppp

Jh(e) +¢

inf y
yesupp p

Thus the assertion follows. O

1
< ol 0.7y T m{

— 0 as ¢ — 0.
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