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Abstract. We investigate generalized solutions of nonlinear di¤usion equations

and linear hyperbolic equations with discontinuous coe‰cients in the framework of

Colombeau’s algebra of generalized functions. Under Egorov’s formulation, we obtain

results on existence and uniqueness of generalized solutions, which are shown to be

consistent with classical solutions. The example of a linear hyperbolic equation given

by Hurd and Sattinger [8] has no distributional solutions in Schwartz’s sense, but has

the unique generalized solution. We study what distribution is associated with it,

namely, how it behaves on the level of information of distribution theory.

1. Introduction

In 1982, Colombeau introduced an algebra G of generalized functions to

deal with the multiplication problem for distributions, see Colombeau [3, 4].

This algebra G is a di¤erential algebra which contains the space D 0 of dis-

tributions. Furthermore, nonlinear operations more general than the multi-

plication make sense in the algebra G (cf. Section 2). Therefore the algebra G

is a very convenient one to find and study solutions of nonlinear di¤erential

equations with singular data and coe‰cients.

In this paper we will study generalized solutions of the Cauchy problems

ut ¼ Dxuþ a � ‘x f ðuÞ þ gðuÞ; 0 < t < T ; x A Rd ;

ujt¼0 ¼ u0; x A Rd

(
ð1:1Þ

and

ut ¼ a � ‘xðb1ðt; xÞuÞ þ b2ðt; xÞu; �T < t < T ; x A Rd ;

ujt¼0 ¼ u0; x A Rd

(
ð1:2Þ

in the framework of generalized functions introduced by Colombeau. We seek

solutions in the algebras Gs;gð½0;T � � RdÞ and Gs;gð½�T ;T � � RdÞ of generalized
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functions which will be defined in Section 2 below. We mention that Gs;gðRdÞ
contains the space D 0

LyðRdÞ of bounded distributions.

Generalized solutions of various di¤erential equations in Colombeau’s

algebra have been studied until now. Generalized solutions of problems like

(1.1) have been studied in [2, 11]. It was proved there that there exists a

unique generalized solution. Furthermore, the generalized solution was shown

to be consistent with the classical solution. However, it is known that there

exist linear partial di¤erential equations whose generalized solutions fail to exist

or are not unique. For instance, see Colombeau, Heibig and Oberguggen-

berger [6]. We mention that generalized solutions of problem (1.2) may not

be unique in Gs;gð½�T ;T � � RdÞ from [6]. Hence, in order to obtain a unique

solution to such problems, we have to change the formulation of di¤erential

equations in Colombeau’s algebra. Of course, problems which have a unique

solution under the usual formulation should also have it under the new

formulation. Furthermore, coherence with the classical solutions should be

obtained if they exist. As such an attempt, Egorov [7] used the di¤erence

operators in place of the usual di¤erentiations with respect to the space variable

x for formulating evolution systems in an algebra of generalized functions

of Colombeau’s type defined by him. This means that if we consider a given

di¤erential equation as an equation on the algebra of generalized functions,

then we have degrees of freedom of di¤erence approximations of the di¤erential

equation. Although Egorov there proved results concerning existence and

uniqueness of a generalized solution of the Cauchy problem for evolution

systems, he did not discuss coherence with the classical solution in detail. We

will also use the di¤erence operators for formulating the above Cauchy

problems in the algebra Gs;g. Concerning problem (1.1) with the di¤erence

operators, we will study generalized solutions under weaker conditions than the

ones he imposed for nonlinear terms to obtain the global existence in the case

of nonlinear evolution systems. Furthermore, we will study how the gener-

alized solutions in Egorov’s formulation of problems (1.1) and (1.2) are related

to the classical solutions, respectively. The formulation of the above Cauchy

problems in Gs;g will be given by using this method in Sections 3 and 4.

Problems other than the ones (1.1) and (1.2) remain to be unsolved.

It is well known (Hurd and Sattinger [8]) that problem (1.2) with b1 ¼ H,

b2 ¼ 0 and u0 ¼ 1, namely, the problem

ut ¼ ðHðxÞuÞx; �T < t < T ; x A R;

ujt¼0 ¼ 1; x A R;

�
ð1:3Þ

where H is the Heaviside function, fails to have a distributional solution on

ð0;T Þ � R. Oberguggenberger [9] used the algebra G introduced by Colom-
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beau which is wider than Gs;g, and proved that for each T > 0, there exists

a unique generalized solution V A Gð½�T ;T � � RÞ of problem (1.3) with the

usual di¤erentiation, which is associated with 1þ tdðxÞ on ð0;T Þ � R. Here

d is the delta function. This means that to problem (1.3) having no dis-

tributional solution, we can give a unique solution in the Colombeau algebra

Gð½�T ;T � � RÞ, which behaves like 1þ tdðxÞ in ð0;T Þ � R on the level of

information of distribution theory. In Section 4, we will study the distribution

in Schwartz’s sense with which the generalized solution U A Gs;gð½�T ;T � � RÞ
in Egorov’s formulation of problem (1.3) is associated, namely, how U behaves

on the level of information of distribution theory.

The first purpose of this paper is to show the existence and uniqueness of

generalized solutions in Egorov’s formulation of the above Cauchy problems

(1.1) and (1.2) in Colombeau’s algebra Gs;g, which are consistent with the

classical solutions. The second is to show that the generalized solution U A
Gs;gð½�T ;T � � RÞ in Egorov’s formulation of the Cauchy problem (1.3) is

associated with 1þ tdðxÞ on ð0;T Þ � R.

This paper is organized as follows: First we recall the definition and

properties of the Colombeau algebra Gs;gðWÞ and define di¤erence operators on

Gs;g in Section 2. In Section 3, by using suitable di¤erence operators, we give

our formulation of problem (1.1) and prove results concerning existence and

uniqueness of its generalized solution U A Gs;gð½0;T � � RdÞ (Theorems 3.2 and

3.4). Next, we study how the generalized solutions are related to the classical

solutions, if the initial data belong to W 2;1ðRdÞVC2
BðRdÞ. In fact, we obtain

that the generalized solution is associated with the unique classical solution

(Theorem 3.7). Section 4 is devoted to the study of a generalized solution

of problem (1.2). By a similar way to Section 3, we give our formulation of

problem (1.2) and prove results concerning existence and uniqueness of its

generalized solution U A Gs;gð½�T ;T � � RdÞ (Theorem 4.2). Furthermore, we

prove that the generalized solution is associated with the unique weak solution

if b1 is globally Lipschitz continuous, if b2 is equal to zero and if u0 belongs to

L2ðRdÞ, by using suitable di¤erence operators (Theorem 4.4). In particular, in

the case of problem (1.3), we obtain that its generalized solution U is associated

with 1þ tdðxÞ on ð0;T Þ � R, namely, U behaves like 1þ tdðxÞ in ð0;T Þ � R on

the level of information of distribution theory (Theorem 4.6).

2. Colombeau’s theory

2.1. Colombeau’s generalized functions

We briefly recall the definition and properties of a modified version of the

Colombeau algebra of generalized functions [3, 4].
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Notation 2.1. Let W be a nonempty open subset of Rd and let W be its

closure. We denote by DLyðWÞ the algebra of restrictions to W of real valued

and bounded smooth functions on Rd , all whose derivatives are bounded. Let

Es;g½W� be the algebra of all maps from the interval ð0; 1� into DLyðWÞ. We

denote by EM; s;g½W� the subset of Es;g½W� composed of all Rðe; xÞ with the

property that for all a A Nd
0 , there exist N A N, c > 0 and h > 0 such that

sup
x AW

jDa
xRðe; xÞj < ce�N for all 0 < e < h:

We denote by Ns;g½W� the subset of Es;g½W� composed of all Rðe; xÞ with the

property that for all a A Nd
0 and q A N, there exist c > 0 and h > 0 such that

sup
x AW

jDa
xRðe; xÞj < ceq for all 0 < e < h:

The algebra Gs;gðWÞ of generalized functions is defined by the quotient algebra

Gs;gðWÞ ¼ EM; s;g½W�=Ns;g½W�;

where the subscripts ‘‘s’’ and ‘‘g’’ stand for ‘‘simplified’’ and ‘‘global’’,

respectively.

We denote by fu eðxÞge A ð0;1� or simply ueðxÞ a representative of a gen-

eralized function U A Gs;gðWÞ. Then, for generalized functions U ;V A Gs;gðWÞ
and any a A Nd

0 , the product UV is defined by the class of fueðxÞveðxÞge A ð0;1�
and the partial derivative Da

xU by the class of fDa
xu

eðxÞge A ð0;1�. Also, for

a generalized function U A Gs;gð½0;T � � RdÞ, its restriction U jt¼0 to ft ¼ 0g
is defined by the class of fueð0; xÞge A ð0;1�. For a generalized function U A
Gs;gð½�T ;T � � RdÞ, we can similarly define U jt¼0.

In the algebra Gs;g, we can also define nonlinear operations more general

than the multiplication. To see this, we introduce the following notion.

Definition 2.2. We say that a function f A CyðRdÞ is slowly increasing

at infinity if for every a A Nd
0 there exist c > 0 and r A N such that, for all

x A Rd ,

jDaf ðxÞja cð1þ jxjÞ r:

We denote by OMðRdÞ the space of slowly increasing functions at infinity.

If f A OMðRpÞ and Ui A Gs;gðRdÞ for i ¼ 1; . . . ; p, then we can define

f ðU1; . . . ;UpÞ A Gs;gðRdÞ to be the class of f f ðue
1ðxÞ; . . . ; u e

pðxÞÞge A ð0;1�. For

details see [1, 3, 4].

Definition 2.3. A generalized function U A Gs;gðWÞ is said to be asso-

ciated with a distribution w A D 0ðWÞ if it has a representative ue A EM; s;g½W� such
that
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u e ! w in D 0ðWÞ as e ! 0:

We denote by UAw if U is associated with w. We say that generalized

functions U ;V A Gs;gðWÞ are associated with each other if U � VA0. We

denote by UAV if U and V are associated with each other.

In other words, a generalized function U A Gs;gðWÞ is associated with a

distribution w if U behaves like w on the level of information of distribution

theory.

Remark 2.4. The algebra Gs;gðRdÞ contains the space D 0
LyðRdÞ of

bounded distributions as follows: Let T be an element of D 0
LyðRdÞ. Then

Rðe; xÞ ¼ T � reðxÞ can be a representative of T and the class of fRðe; xÞge A ð0;1�
is associated with T , where rðxÞ is a fixed element of DðRdÞ such thatÐ
rðxÞdx ¼ 1 and

reðxÞ ¼
1

ed
r

x

e

� �
:

In this sense, we obtain the inclusion D 0
LyðRdÞHGs;gðRdÞ.

Throughout this paper, we assume that rðxÞ satisfies the above conditions.

Definition 2.5. We say that U A Gs;gðWÞ is of bounded type if it has a

representative ue A EM; s;g½W� such that there exist c > 0 and h > 0 such that

sup
x AW

jueðxÞj < c for 0 < e < h:

It is called of logarithmic type if

sup
x AW

jueðxÞj < c log
1

e
for 0 < e < h:

We note that u A LyðRdÞ, viewed as an element of Gs;gðRdÞ, is of bounded
type. On the other hand, for any distribution T A D 0ðRdÞ there exists a gen-

eralized function U A Gs;gðRdÞ of logarithmic type which is associated with

T . Therefore, we also note that any distribution on Rd can be interpreted as

an element of logarithmic type of Gs;gðRdÞ in the sense of the association, for

details see Colombeau and Heibig [5].

2.2. Di¤erence operators

Egorov [7] used di¤erence operators in place of the usual di¤erentiations

with respect to the space variable x for formulating evolution systems in a

space of generalized functions. First we define the di¤erence operators qw;h
xi

and ðq2xiÞ
w;h on Gs;gðRdÞ for i ¼ 1; . . . ; d. The di¤erence operators with respect
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to the space variable x A Rd on Gs;gð½0;T � � RdÞ and Gs;gð½�T ;T � � RdÞ will be
defined at the end of this subsection.

Let ueðxÞ be a representative of a generalized function U A Gs;gðRdÞ and let

w be a step function on R given by

wðyÞ ¼
1

c2 � c1
; c1 a ya c2;

0; otherwise,

8<
:

where c1; c2 are constants, c1 < c2 and 0 A ½c1; c2�. Furthermore, let h be a

scaling function, i.e. h : ð0; 1� ! ð0; 1� is increasing, and hðeÞ ! 0 as e ! 0.

Then we define

qw;h
xi

U ¼ class of
�
ðqxi ue �

i
whðeÞÞðxÞ

�
e A ð0;1�;

ðq2xiÞ
w;h

U ¼ class of
�
ðq2xi u

e �
i
whðeÞ �

i
�wwhðeÞÞðxÞ

�
e A ð0;1�

for i ¼ 1; . . . ; d, where

ðqxiu e �
i
whðeÞÞðxÞ ¼

ð
R

qxiu
eðx1; . . . ; xi�1; xi � y; xiþ1; . . . ; xdÞwhðeÞðyÞdy; ð2:1Þ

whðeÞðyÞ ¼ ð1=hðeÞÞwðy=hðeÞÞ and �wwðyÞ ¼ wð�yÞ. Also, let hi : ð0; 1� ! Rd be a

function such that ith element of hiðeÞ is hðeÞ and the other elements are equal

to zero. Then expression (2.1) becomes

ðqxiue �
i
whðeÞÞðxÞ ¼ � ueðx� c2hiðeÞÞ � u eðx� c1hiðeÞÞ

ðc2 � c1ÞhðeÞ

for i ¼ 1; . . . ; d. It follows immediately that qw;h
xi

U ; ðq2xiÞ
w;h

U A Gs;gðRdÞ for

i ¼ 1; . . . ; d. Furthermore, we obtain that qw;h
xi

UAqxiU and ðq2xiÞ
w;h

UAq2xiU

for i ¼ 1; . . . ; d if U A D 0
LyðRdÞ.

For a generalized function U A Gs;gð½0;T � � RdÞ, qw;h
xi

U and ðq2xiÞ
w;h

U are

also defined by the classes of�
qxiu

eðt; �Þ �
i
whðeÞðxÞ

�
e A ð0;1� and

�
q2xiu

eðt; �Þ �
i
whðeÞ �

i
�wwhðeÞðxÞ

�
e A ð0;1�

for i ¼ 1; . . . ; d, respectively. The di¤erence operators with respect to the

space variable x A Rd on Gs;gð½�T ;T � � RdÞ are defined in the same way.

For simplicity, throughout this paper, we put

a � ‘w;h
x ¼

Xd
i¼1

aiq
w;h
xi

and Dw;h
x ¼

Xd
i¼1

ðq2xiÞ
w;h

for a ¼ ða1; . . . ; adÞ A Rd .
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3. Nonlinear di¤usion equations

In this section, we will consider problem (1.1). By the di¤erence operators

defined in Section 2, problem (1.1) can be rewritten as the problem

Ut ¼ Dw;h
x U þ a � ‘w;h

x f ðUÞ þ gðUÞ in Gs;gð½0;T � � RdÞ;
U jt¼0 ¼ U0 in Gs;gðRdÞ

(
ð3:1Þ

in the space of generalized functions.

Definition 3.1. We say that U A Gs;gð½0;T � � RdÞ is a (generalized )

solution of problem (3.1) if it has a representative ue A EM; s;g½½0;T � � Rd � such
that

ue
t ¼

Xd
i¼1

q2xi u
eðt; �Þ �

i
whðeÞ �

i
�wwhðeÞ

þ
Xd
i¼1

aiqxi f ðueðt; �ÞÞ �
i
whðeÞ þ gðueÞ þN e; 0 < t < T ; x A Rd ;

uejt¼0 ¼ ue
0 þ ne; x A Rd

8>>>>>>>>><
>>>>>>>>>:

for some N e A Ns;g½½0;T � � Rd � and some ne A Ns;g½Rd �, where u e
0 is a rep-

resentative of U0.

Throughout this section, we assume that w is a step function given by

wðyÞ ¼ 1; 0a ya 1;

0; otherwise.

�

We first prove the existence of a generalized solution of problem (3.1).

Theorem 3.2. Assume that hðeÞ satisfies the inequality 1=hðeÞ2 a c logð1=eÞ
for 0 < e < 1=2 with some c > 0 and that f ; g A OMðRÞ satisfy the properties

f 0 a 0, g 0 a 0 and gð0Þ ¼ 0. Furthermore, let all components of a A Rd be

nonnegative. Finally, let U0 be an element of Gs;gðRdÞ given by the class of

fðu0 � reÞðxÞge A ð0;1� with u0 A L1ðRdÞVLyðRdÞ. Then for each T > 0 there

exists a solution U A Gs;gð½0;T � � RdÞ of problem (3.1).

Proof. We use an argument similar to those in the proofs of Proposi-

tions 13.1, 13.5 in Oberguggenberger [10] and Proposition 1 in Colombeau and

Heibig [5]. We put ue
0ðxÞ ¼ ðu0 � reÞðxÞ. In order to prove the existence of

a generalized solution, it su‰ces to consider the equation
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ueðt; xÞ ¼ ue
0ðxÞ þ

Xd
i¼1

ð t
0

ueðs; x� hiðeÞÞ � 2ueðs; xÞ þ ueðs; xþ hiðeÞÞ
hðeÞ2

ds

�
Xd
i¼1

ð t
0

aif f ðueðs; x� hiðeÞÞÞ � f ðueðs; xÞÞg
hðeÞ ds

þ
ð t
0

gðueðs; xÞÞds: ð3:2Þ

Define a transformation FðueÞ by the right-hand side of equation (3.2) and fix

e A ð0; 1� arbitrarily. Let BkðT Þ ¼ fu A Cð½0;T � : Wk;1ðRdÞÞVCk
Bð½0;T � � RdÞ :

ku� ue
0ka 1g for each k A N0, where Ck

Bð½0;T � � RdÞ denotes the space of all

k-times continuously di¤erentiable functions whose derivatives are bounded,

and k � k is the norm in the space Cð½0;T � : Wk;1ðRdÞÞVCk
Bð½0;T � � RdÞ

defined by

kuk ¼ sup
0ataT

X
a AN d

0 ; jajak

kDaukL1ðRd Þ

þ kukLyð½0;T ��Rd Þ þ T
X

a AN dþ1
0

;1ajajak

kDaukLyð½0;T ��Rd Þ:

Obviously, for each k A N0, there exists T e
k > 0 such that F is a contraction

in BkðT e
kÞ. Hence the equation ue ¼ F ðueÞ has a unique solution ue A BkðT e

k Þ.
Furthermore, we can show that for any T > 0, the solution ue A CBð½0;T � � RdÞ
of equation (3.2) is unique. Hence, for k ¼ 1, we can extend the solution

u eðt; xÞ to an element of Cð½0;T e
0 � : W 1;1ðRdÞÞVC 1

Bð½0;T e
0 � � RdÞ by repeat-

ing the above method finite times and by using the fact that u e exists in

B0ðT e
0 Þ. Similarly, we can obtain a solution u e A Cð½0;T e

0 � : Wk;1ðRdÞÞV
Ck

Bð½0;T e
0 � � RdÞ for any k A N0.

Next, we prove that kuekLyð½0;T e
0
��Rd Þ a kue

0kLyðRd Þ. We obtain that

u eðt; xÞ takes the maximum in some bounded domain of ½0;T e
0 � � Rd , since

u e belongs to Cð½0;T e
0 � : Wk;1ðRdÞÞVCk

Bð½0;T e
0 � � RdÞ for any k A N0. We

assume that ðt0; x0Þ is a point in ð0;T e
0 � � Rd satisfying ueðt0; x0Þ ¼

supðt;xÞ A ½0;T e
0
��Rd ueðt; xÞ. Then we see ueðt0; x0Þb 0. If ueðt0; x0Þ ¼ 0, then we

can easily see that u eðt; xÞa supx ARd ue
0ðxÞ. We assume that ueðt0; x0Þ > 0.

Then, obviously, u e
t ðt0; x0Þb 0. It follows from equation (3.2) that ueðt; xÞ

satisfies the equation

ue
t ðt; xÞ ¼

Xd
i¼1

u eðt; x� hiðeÞÞ � 2ueðt; xÞ þ ueðt; xþ hiðeÞÞ
hðeÞ2

�
Xd
i¼1

aif f ðueðt; x� hiðeÞÞÞ � f ðueðt; xÞÞg
hðeÞ þ gðueðt; xÞÞ: ð3:3Þ
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Since f ; g are decreasing and gð0Þ ¼ 0, we have u e
t ðt0; x0Þa 0. Hence

u e
t ðt0; x0Þ ¼ 0. Furthermore, we obtain that ueðt0; x0Þ ¼ ueðt0; x0 � hiðeÞÞ for

i ¼ 1; . . . ; d from the first term of the right-hand side of equation (3.3).

Repeating this method, we have u eðt0; x0Þ ¼ ueðt0; x0 � hiðeÞnÞ for any

n A N. But it is impossible, because ue belongs to Cð½0;T e
0 � : Wk;1ðRdÞÞV

Ck
Bð½0;T e

0 � � RdÞ for any k A N0. This contradiction shows that ueðt; xÞa
supx ARd ue

0ðxÞ. For the minimum of ueðt; xÞ, we can similarly discuss. Thus

we have

inf
x ARd

ue
0ðxÞa ueðt; xÞa sup

x ARd

ue
0ðxÞ

for every ðt; xÞ A ½0;T e
0 � � Rd . T e

0 depends only on kue
0kL1ðRd Þ, kue

0kLyðRd Þ, a; f

and g. Note that 1=T e
0 grows linearly when kue

0kL1ðRd Þ goes to y and that

ku eðT e
0 ; �ÞkL1ðRd Þ a kue

0kL1ðRd Þ þ 1 and kueðT e
0 ; �ÞkLyðRd Þ a kue

0kLyðRd Þ. Hence it

turns out that the time interval of existence of a solution ueðt; xÞ obtained by

repeating the above argument can be extended to ½0;yÞ. Thus we can obtain

the existence of a solution ueðt; xÞ for any T > 0.

Finally, we prove that the solution ue given above belongs to

EM; s;g½½0;T � � Rd �. Di¤erentiating equation (3.2) with respect to xi for i ¼
1; . . . ; d and applying Gronwall’s inequality, we obtain that there exist c > 0

and r A N such that

kqxi ueðt; �ÞkLyðRd Þ

a kqxiue
0kLyðRd Þ

þ 4d

hðeÞ2
þ 2d maxi ai

hðeÞ k f 0ðueÞkLyð½0;T ��Rd Þ þ kg 0ðu eÞkLyð½0;T ��Rd Þ

 !

�
ð t
0

kqxiueðs; �ÞkLyðRd Þds

a kqxiue
0kLyðRd Þ exp T

4d

hðeÞ2
þ 2d maxi ai

hðeÞ þ 1

� �
cð1þ kue

0kLyðRd ÞÞ
r

( )" #
;

since f and g belong to OMðRÞ. Therefore we obtain that there exist N A N,

c > 0 and h > 0 such that

kqxiuekLyð½0;T ��Rd Þ a ce�N

for i ¼ 1; . . . ; d, for all 0 < e < h, from the boundedness of u0 and the as-

sumption on h. Similarly we can prove that all derivatives of ue with respect

to t and x are dominated by ce�N with suitable c and N. Consequently, by

defining U as the class of fueðt; xÞge A ð0;1�, the assertion is obtained. r
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Remark 3.3. In Theorem 3.2, if f and g are globally Lipschitz con-

tinuous, then the boundedness assumption on u0 can be dropped.

Next, we prove the uniqueness of a generalized solution of problem

(3.1) under weaker conditions than the ones which are imposed to obtain the

existence.

Theorem 3.4. Let hðeÞ be as in Theorem 3.2. Furthermore, let f and

g belong to OMðRÞ and let a A Rd . Then for each T > 0 the solution U A
Gs;gð½0;T � � RdÞ of bounded type of problem (3.1) is unique.

Proof. Let U1;U2 A Gs;gð½0;T � � RdÞ be two solutions of problem

(3.1). For their representatives ue
1; u

e
2, there exist N e A Ns;g½½0;T � � Rd � and

n e A Ns;g½Rd � such that

ue
1ðt; xÞ � ue

2ðt; xÞ

¼ n eðxÞ þ 1

hðeÞ2
Xd
i¼1

ð t
0

½fu e
1ðs; x� hiðeÞÞ � ue

2ðs; x� hiðeÞÞg

� 2fue
1ðs; xÞ � ue

2ðs; xÞg þ fue
1ðs; xþ hiðeÞÞ � ue

2ðs; xþ hiðeÞÞg�ds

� 1

hðeÞ
Xd
i¼1

ð t
0

ai½f f ðue
1ðs; x� hiðeÞÞÞ � f ðue

2ðs; x� hiðeÞÞÞg

� f f ðue
1ðs; xÞÞ � f ðue

2ðs; xÞÞg�ds

þ
ð t
0

½fgðue
1ðs; xÞÞ � gðue

2ðs; xÞÞg þN eðs; xÞ�ds:

Hence ue
1ðt; xÞ � ue

2ðt; xÞ satisfies the inequality

ju e
1ðt; xÞ � ue

2ðt; xÞj

a knekLyðRd Þ þ TkN ekLyð½0;T ��Rd Þ

þ 4d

hðeÞ2
þ 2d maxijaij

hðeÞ k f 0ðw e
1ÞkLyð½0;T ��Rd Þ þ kg 0ðwe

2ÞkLyð½0;T ��Rd Þ

 !

�
ð t
0

kue
1ðs; �Þ � ue

2ðs; �ÞkLyðRd Þds;

where we
i is a value between ue

1 and ue
2 for i ¼ 1; 2. Applying Gronwall’s

inequality, we obtain that there exist c > 0 and r A N such that
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kue
1 � ue

2kLyð½0;T ��Rd Þ

a ðknekLyðRd Þ þ TkN ekLyð½0;T ��Rd ÞÞ

� exp T
4d

hðeÞ2
þ 2d maxijaij

hðeÞ þ 1

� �
c 1þmax

i¼1;2
kwe

i kLyð½0;T ��Rd Þ

� �r( )" #
;

since f and g belong to OMðRÞ. Therefore, for all q A N, there exist c > 0 and

h > 0 such that

kue
1 � ue

2kLyð½0;T ��Rd Þ a ceq

for all 0 < e < h, by the boundedness of u e
i for i ¼ 1; 2 and the assumption

on h. Similarly we can prove the same type of estimate for all derivatives

of ue
1 � ue

2 with respect to t and x. Hence u e
1 � ue

2 A Ns;g½½0;T � � Rd �, that is,

U1 �U2 ¼ 0 in Gs;gð½0;T � � RdÞ. Thus the assertion follows. r

Remark 3.5. We note that the assertion of Theorem 3.4 does not depend

on the choices of the step function w.

Remark 3.6. In Theorem 3.4, if f and g are globally Lipschitz con-

tinuous, then the boundedness assumption on U can be dropped.

Now we turn to a comparison between classical solutions of problem (1.1)

and generalized solutions of problem (3.1). We assume that f ; g and a are as

in Theorem 3.2 and that u0 belongs to W 2;1ðRdÞVC2
BðRdÞ. Then, we can see

that for each T > 0, there exists a classical solution u A Cð½0;T � : W 2;1ðRdÞV
C 2

BðRdÞÞ of problem (1.1), by using a fixed point argument and the maximum

principle. Furthermore, we can show that it is unique by a similar way to

the proof for Theorem 7 in Oleı̆nik [12]. On the other hand, U0, given by

the class of fðu0 � reÞðxÞge A ð0;1�, defines an element of Gs;gðRdÞ. According

to Theorems 3.2 and 3.4, problem (3.1) has a unique solution U A
Gs;gð½0;T � � RdÞ of bounded type for each T > 0, under the assumption on hðeÞ
stated in Theorem 3.2. As seen from the following theorem, the generalized

solution U is equal to the classical solution u in the sense of the association.

Theorem 3.7. Assume that f ; g; a and hðeÞ are as in Theorem 3.2 and that

u0 A W 2;1ðRdÞVC2
BðRdÞ. Let U0 be an element of Gs;gðRdÞ given by the class

of fðu0 � reÞðxÞge A ð0;1�. Furthermore, let U A Gs;gð½0;T � � RdÞ be the generalized

solution of bounded type of problem (3.1). Then U is associated with the unique

classical solution u A Cð½0;T � : W 2;1ðRdÞVC 2
BðRdÞÞ of problem (1.1).

Proof. Let ueðt; xÞ be a representative of U satisfying equation (3.3).

Then it follows that
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u e
t ðt; xÞ � utðt; xÞ

¼
Xd
i¼1

q2xiðu
e � uÞ �

i
whðeÞ �

i
�wwhðeÞ

þ
Xd
i¼1

aiqxi
�
f ðueÞ � f ðuÞg �

i
whðeÞ þ fgðueðt; xÞÞ � gðuðt; xÞÞ

�

þ
Xd
i¼1

�
q2xi u �i whðeÞ �i �wwhðeÞ � q2xiu

�
þ
Xd
i¼1

ai
�
qxi f ðuÞ �

i
whðeÞ � qxi f ðuÞ

�

¼
Xd
i¼1

1

hðeÞ2
½fueðt; x� hiðeÞÞ � uðt; x� hiðeÞÞg � 2fu eðt; xÞ � uðt; xÞg

þ fu eðt; xþ hiðeÞÞ � uðt; xþ hiðeÞÞg�

�
Xd
i¼1

ai

hðeÞ ½f f ðu
eðt; x� hiðeÞÞÞ � f ðuðt; x� hiðeÞÞÞg

� f f ðueðt; xÞÞ � f ðuðt; xÞÞg�

þ fgðueðt; xÞÞ � gðuðt; xÞÞg

þ
Xd
i¼1

�
q2xi u �i whðeÞ �i �wwhðeÞ � q2xiu

�
þ
Xd
i¼1

ai
�
qxi f ðuÞ �

i
whðeÞ � qxi f ðuÞ

�
: ð3:4Þ

Multiplying equation (3.4) by sgnðueðt; xÞ � uðt; xÞÞ and integrating it in t and

x, we have

kueðt; �Þ � uðt; �ÞkL1ðRd Þ

a kue
0 � u0kL1ðRd Þ þ

Xd
i¼1

ð t
0

ð
Rd

1

hðeÞ2
ðueðs; xÞ � uðs; xÞÞ

� fsgnðueðs; xþ hiðeÞÞ � uðs; xþ hiðeÞÞÞ � 2 sgnðueðs; xÞ � uðs; xÞÞ

þ sgnðueðs; x� hiðeÞÞ � uðs; x� hiðeÞÞÞgdxds

�
Xd
i¼1

ð t
0

ð
Rd

ai

hðeÞ f f ðu
eðs; xÞÞ � f ðuðs; xÞÞg

� fsgnðueðs; xþ hiðeÞÞ � uðs; xþ hiðeÞÞÞ � sgnðueðs; xÞ � uðs; xÞÞgdxds

þ
Xd
i¼1

ð t
0

ð
Rd

��q2xiu �i whðeÞ �i �wwhðeÞ � q2xi u
��dxds
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þ
Xd
i¼1

ð t
0

ð
Rd

ai �
��qxi f ðuÞ �

i
whðeÞ � qxi f ðuÞ

��dxds

a ku e
0 � u0kL1ðRd Þ þ

Xd
i¼1

ð t
0

��q2xi u �i whðeÞ �i �wwhðeÞ � q2xiu
��
L1ðRd Þds

þ
Xd
i¼1

ai

ð t
0

��qxi f ðuÞ �
i
whðeÞ � qxi f ðuÞ

��
L1ðRd Þds;

since f and g are decreasing, where ue
0ðxÞ ¼ ðu0 � reÞðxÞ. Therefore we have

the inequality

sup
0ataT

kueðt; �Þ � uðt; �ÞkL1ðRd Þ

a kue
0 � u0kL1ðRd Þ þ

Xd
i¼1

ðT
0

��q2xi u �i whðeÞ �i �wwhðeÞ � q2xiu
��
L1ðRd Þds

þ
Xd
i¼1

ai

ðT
0

��qxi f ðuÞ �
i
whðeÞ � qxi f ðuÞ

��
L1ðRd Þds:

From the assumptions on u0; u and f , it follows that ue converges to the unique

classical solution u in D 0ðð0;T Þ � RdÞ as e tends to 0. r

Remark 3.8. For the case f 0 b 0, we can obtain the same results as

Theorems 3.2 and 3.7 if we choose the step function w to be

wðyÞ ¼ 1; �1a ya 0;

0; otherwise.

�

Remark 3.9. Theorems 3.2, 3.4 and 3.7 guarantee that fundamental

properties, which we usually expect for generalized solutions of di¤erential

equations, also hold in Egorov’s formulation.

4. Linear hyperbolic equations with discontinuous coe‰cients

In this section we will consider problem (1.2). As in Section 3, problem

(1.2) can be rewritten as the problem

Ut ¼ a � ‘w;h
x ðB1UÞ þ B2U in Gs;gð½�T ;T � � RdÞ;

U jt¼0 ¼ U0 in Gs;gðRdÞ

(
ð4:1Þ

in the space of generalized functions, where B1 and B2 are elements of

Gs;gðRdþ1Þ.
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Definition 4.1. We say that U A Gs;gð½�T ;T � � RdÞ is a (generalized )

solution of problem (4.1) if it has a representative ue A EM; s;g½½�T ;T � � Rd � such
that

ue
t ¼

Xd
i¼1

aiqxiðbe
1u

eÞðt; �Þ �
i
whðeÞ þ b e

2u
e þN e; �T < t < T ; x A Rd ;

uejt¼0 ¼ ue
0 þ ne; x A Rd

8>><
>>:

for some N e A Ns;g½½�T ;T � � Rd � and some ne A Ns;g½Rd �, where ue
0; b

e
1 and be

2

are representatives of U0;B1 and B2, respectively.

The existence and uniqueness results of a generalized solution of problem

(4.1) are shown easily by similar arguments to Section 3. In fact, we can

obtain the following theorem:

Theorem 4.2. Assume that hðeÞ satisfies the inequality 1=hðeÞa c logð1=eÞ
for 0 < e < 1=2 with some c > 0. Let a A Rd and let U0 A Gs;gðRdÞ. Fur-

thermore, let B1 A Gs;gðRdþ1Þ be of bounded type and let B2 A Gs;gðRdþ1Þ be

of logarithmic type. Then for each T > 0 there exists a solution U A
Gs;gð½�T ;T � � RdÞ of problem (4.1) and in addition it is unique.

Remark 4.3. As stated in Section 1, there exist coe‰cients B1;B2 and an

initial data U0 such that problem (4.1) has no unique solution in the algebra

Gs;gð½�T ;T � � RdÞ, if the di¤erence operator a � ‘w;h
x is replaced by the usual

di¤erentiation a � ‘x, see [6].

Next, we investigate the relationship between classical solutions of prob-

lem (1.2) and generalized solutions of problem (4.1). We assume that b1 is

Lipschitz continuous on Rdþ1 and that there exist M1;M2 > 0 such that M1 a

jb1ðt; xÞjaM2. Furthermore, we assume that b2 ¼ 0, a A Rd and u0 A L2ðRdÞ.
Then we see that problem (1.2) has a unique weak solution u A L2ð½�T ;T � �
RdÞ for each T > 0, from Theorems 1 and 2 of Hurd and Sattinger [8]. On

the other hand, U0;B1 and B2, given by the classes of fðu0 � reÞðxÞge A ð0;1�,
fðb1 � reÞðt; xÞge A ð0;1� and fðb2 � reÞðt; xÞge A ð0;1�, respectively, define elements of

Gs;g. According to Theorem 4.2, problem (4.1) has a unique solution U A
Gs;gð½�T ;T � � RdÞ for each T > 0, under the assumption on hðeÞ stated in

Theorem 4.2. Then we obtain the following theorem:

Theorem 4.4. Let b2 ¼ 0, a A Rd and u0 A L2ðRdÞ. We assume that b1 is

Lipschitz continuous on Rdþ1 and that there exist M1;M2 > 0 such that M1 a

jb1ðt; xÞjaM2. Let U0;B1 and B2 be elements of Gs;g which are given by the

classes of fðu0 � reÞðxÞge A ð0;1�, fðb1 � reÞðt; xÞge A ð0;1� and fðb2 � reÞðt; xÞge A ð0;1�,
respectively. Furthermore, we assume that a step function w is even and that hðeÞ
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is as in Theorem 4.2. Finally, let U A Gs;gð½�T ;T � � RdÞ be the generalized

solution of problem (4.1). Then U is associated with the unique weak solution

u A L2ð½�T ;T � � RdÞ of problem (1.2).

Proof. Put ue
0ðxÞ ¼ ðu0 � reÞðxÞ and b e

1ðt; xÞ ¼ ðb1 � reÞðt; xÞ. Let ueðt; xÞ
be a representative of U satisfying the equation

ue
t ðt; xÞ ¼

Xd
i¼1

ai
�
qxiðbe

1u
eÞðt; �Þ �

i
whðeÞðxÞ

�
: ð4:2Þ

Then, we can see that ue belongs to Cð½�T ;T � : Wk;2ðRdÞÞ for any k A N0,

since ue
0 belongs to Wk;2ðRdÞ for any k A N0. Multiplying equation (4.2) by

b e
1ðt; xÞueðt; xÞ and integrating it in t and x, we haveð

Rd

b e
1ðt; xÞðueðt; xÞÞ2dx�

ð
Rd

be
1ð0; xÞðue

0ðxÞÞ
2
dx

�
ð t
0

ð
Rd

qsb
e
1ðs; xÞðueðs; xÞÞ2dxds ¼ 0;

since w is even. Therefore we have the inequality

kueðt; �Þk2L2ðRd Þ a
M2

M1
kue

0k
2
L2ðRd Þ

þ 1

M1
kqtbe

1kLyð½�T ;T ��Rd Þ

ð t
0

kueðs; �Þk2L2ðRd Þds

����
����:

By weak compactness, we can find a subsequence of fu eðt; xÞge A ð0;1� converging
weakly in L2ð½�T ;T � � RdÞ. From the uniqueness of weak solutions of

problem (1.2), it follows that ue converges to the unique weak solution u in

D 0ðð�T ;T Þ � RdÞ as e tends to 0. r

Remark 4.5. According to Theorem 4.2, problem (4.1) has a unique

generalized solution even if its coe‰cients are discontinuous. But, the same

does not hold for problem (1.2). This can be illustrated by the following

example: Let

b1ðt; xÞ ¼
0; x=t < 1;

�2; x=t > 1

�

and let b2 ¼ 0. Furthermore, let a ¼ 1. Then, it is well known ([8]) that

problem (1.2) with initial data 0 has many solutions in ð0;T Þ � R. But,

problem (4.1) has the unique solution U ¼ 0 from Theorem 4.2, if U0;B1 and

B2 are elements of Gs;g which are defined by the classes of fðu0 � reÞðxÞge A ð0;1�,
fðb1 � reÞðt; xÞge A ð0;1� and fðb2 � reÞðt; xÞge A ð0;1�, respectively.
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Finally, we consider the case that the coe‰cients in problem (1.2) are

discontinuous, more precisely, b1 is the Heaviside function H and b2 is equal

to zero. Let a ¼ 1. Then, problem (1.2) with initial data 1 has no solution

in ð0;T Þ � R in the sense of distributions, see [8]. But, under the same

assumptions with respect to coe‰cients and initial data, it is known (Ober-

guggenberger [9]) that for each T > 0, there exists a unique generalized solution

V A Gð½�T ;T � � RÞ of problem (4.1) with the usual di¤erentiations, which is

associated with 1þ tdðxÞ on ð0;T Þ � R. We can show that a similar result

to this one holds for a generalized solution U A Gs;gð½�T ;T � � RÞ of problem

(4.1). Now we choose the step function w to be

wðyÞ ¼ 1; �1a ya 0;

0; otherwise

�
ð4:3Þ

and a function r to be nonnegative. As seen from the following theorem, the

generalized solution U A Gs;gð½�T ;T � � RÞ of problem (4.1) is associated with

1þ tdðxÞ on ð0;T Þ � R.

Theorem 4.6. Let u0 ¼ 1 and let b2 ¼ 0. Let b1 be the Heaviside

function H and let a ¼ 1. Furthermore, let U0;B1 and B2 be elements of Gs;g

which are given by the classes of fðu0 � reÞðxÞge A ð0;1�, fðb1 � reÞðxÞge A ð0;1� and

fðb2 � reÞðt; xÞge A ð0;1�, respectively. We assume that w is the step function given

by (4.3) and that r is nonnegative. Finally, we assume that hðeÞ is as in

Theorem 4.2. Then the generalized solution U A Gs;gð½�T ;T � � RÞ of problem

(4.1) is associated with 1þ tdðxÞ on ð0;T Þ � R.

Proof. Put u e
0ðxÞ ¼ ðu0 � reÞðxÞ and be

1ðxÞ ¼ ðb1 � reÞðxÞ. Let u eðt; xÞ be

a representative of U satisfying the equation

ue
t ðt; xÞ ¼

ð
R

qxfbe
1ðx� yÞueðt; x� yÞgwhðeÞðyÞdy: ð4:4Þ

Put veðt; xÞ ¼ u eðt; xÞ � 1. By equation (4.4), v eðt; xÞ satisfies the equation

vet ðt; xÞ ¼
ð
R

qxb
e
1ðx� yÞwhðeÞðyÞdy

þ
ð
R

qxfbe
1ðx� yÞveðt; x� yÞgwhðeÞðyÞdy: ð4:5Þ

Then, we can see that ve belongs to Cð½�T ;T � : Wk;1ðRÞÞ for any k A N0.

Hence, integrating equation (4.5) in t and x, we haveð
R

v eðt; xÞdx ¼ t

for each e A ð0; 1�.
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Next, we prove that veðt; xÞ ¼ 0 in fðt; xÞ A ½0;T � � R; x� eyb 0 for all

y A supp rg and fðt; xÞ A ½0;T � � R; xþ hðeÞ � eya 0 for all y A supp rg for

each e A ð0; 1�. Fix e A ð0; 1� arbitrarily. Transforming equation (4.5), we have

vet ðt; xÞ ¼
1

hðeÞ fb
e
1ðxþ hðeÞÞ � be

1ðxÞg

þ 1

hðeÞ fb
e
1ðxþ hðeÞÞveðt; xþ hðeÞÞ � be

1ðxÞveðt; xÞg: ð4:6Þ

It follows from the definition of be
1ðxÞ that

vet ðt; xÞ ¼
1

hðeÞ fv
eðt; xþ hðeÞÞ � veðt; xÞg ð4:7Þ

for x A R such that x� eyb 0 for all y A supp r. Since ve belongs to

Cð½�T ;T � : Wk;1ðRÞÞ for any k A N0, there exists a point ðt0; x0Þ in fðt; xÞ A
½0;T � � R; x� eyb 0 for all y A supp rg such that veðt0; x0Þ is the maximum

of veðt; xÞ on fðt; xÞ A ½0;T � � R; x� eyb 0 for all y A supp rg. Obviously

v et ðt0; x0Þb 0. Furthermore, by equation (4.7), we have v et ðt0; x0Þa 0. Hence

v et ðt0; x0Þ ¼ 0. Again by equation (4.7), veðt0; x0Þ ¼ veðt0; x0 þ hðeÞÞ. Repeat-

ing this method, we have veðt0; x0Þ ¼ veðt0; x0 þ hðeÞnÞ for all n A N. Since ve

belongs to Cð½�T ;T � : Wk;1ðRÞÞ for any k A N0, it follows that veðt0; x0Þ ¼ 0.

Hence we have veðt; xÞa 0 in fðt; xÞ A ½0;T � � R; x� eyb 0 for all y A supp rg.
As shown below, veðt; xÞb 0 in ½0;T � � R. Therefore veðt; xÞ ¼ 0 in fðt; xÞ A
½0;T � � R; x� eyb 0 for all y A supp rg. Also, integrating equation (4.6) in t,

we have

veðt; xÞ ¼ t

hðeÞ fb
e
1ðxþ hðeÞÞ � be

1ðxÞg

þ
ð t
0

1

hðeÞ fb
e
1ðxþ hðeÞÞveðs; xþ hðeÞÞ � be

1ðxÞveðs; xÞgds:

It follows from the definition of be
1ðxÞ that veðt; xÞ ¼ 0 for x A R such that

xþ hðeÞ � eya 0 for all y A supp r.

Finally, we prove that veðt; xÞb 0 in ½0;T � � R for each e A ð0; 1�. Let

DL1ð½0;T � � RÞ denote the space of smooth functions whose derivatives belong

to L1ð½0;T � � RÞ. We consider the problem

ce
t � be

1qxc
eðt; �Þ � �wwhðeÞ ¼ j; 0a taT ; x A R;

cejt¼T ¼ 0; x A R

�
ð4:8Þ

for each nonnegative function j A Dðð0;T Þ � RÞ. Then, we can see that there

exists a solution ce A DL1ð½0;T � � RÞ of problem (4.8) by solving the following
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problem (4.10). Furthermore, we can show that it is unique by Gronwall’s

inequality. Multiplying equation (4.4) by this solution ceðt; xÞ and integrating

it in t and x, we have

0 ¼
ðT
0

ð
R

ue
t ðt; xÞc

eðt; xÞdxdt

�
ðT
0

ð
R

ð
R

qxfbe
1ðx� yÞueðt; x� yÞgwhðeÞðyÞdyceðt; xÞdxdt:

Integration by parts yields

0 ¼ �
ð
R

ceð0; xÞdx�
ðT
0

ð
R

ueðt; xÞce
t ðt; xÞdxdt

þ
ðT
0

ð
R

be
1ðxÞueðt; xÞ

ð
R

ce
xðt; x� yÞ�wwhðeÞðyÞdydxdt

¼ �
ð
R

ceð0; xÞdx�
ðT
0

ð
R

ueðt; xÞjðt; xÞdxdt: ð4:9Þ

Putting Ceðt; xÞ ¼ ceðT � t; xÞ and Fðt; xÞ ¼ jðT � t; xÞ, we have

Ce
t þ be

1qxC
eðt; �Þ � �wwhðeÞ ¼ �F; 0a taT ; x A R;

Cejt¼0 ¼ 0; x A R

�
ð4:10Þ

from problem (4.8). If be
1ðx1Þ ¼ 0 for some x1 A R, then Ce

t ðt; x1Þ ¼
�Fðt; x1Þa 0 on ½0;T �. Since Cejt¼0 ¼ 0, Ceðt; x1Þa 0 on ½0;T �. Further-

more, we obtain that Ceðt; xÞ takes the maximum in some bounded domain

of ½0;T � � R, since Ce belongs to DL1ð½0;T � � RÞ. Assume that ðt2; x2Þ is a

point in ð0;T � � R satisfying Ceðt2; x2Þ ¼ supðt;xÞ A ½0;T ��R Ceðt; xÞ and that

Ceðt2; x2Þ > 0. Transforming the first equation of problem (4.10) and sub-

stituting ðt2; x2Þ into ðt; xÞ, we have the equation

Ce
t ðt2; x2Þ þ

be
1ðx2Þ
hðeÞ fCeðt2; x2Þ �Ceðt2; x2 � hðeÞÞg ¼ �Fðt2; x2Þ: ð4:11Þ

Obviously, Ce
t ðt2; x2Þb 0, and b e

1ðx2Þ > 0 from the above argument and the

assumption rb 0. Hence, the left-hand side of equation (4.11) is nonnegative,

which means that Fðt2; x2Þ ¼ 0. Again, from equation (4.11), we obtain that

Ceðt2; x2Þ ¼ Ceðt2; x2 � hðeÞÞ. Repeating this method, we have Ceðt2; x2Þ ¼
Ceðt2; x2 � hðeÞnÞ for any n A N, which is impossible. This contradiction

shows that Ceðt; xÞa supx AR Ceð0; xÞ ¼ 0, so that the inequality ceðt; xÞa 0

holds. Hence, we have
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�
ð
R

ceð0; xÞdx

¼
ðT
0

ð
R

be
1ðxÞqxc

eðt; �Þ � �wwhðeÞ dxdtþ
ðT
0

ð
R

jðt; xÞdxdt

¼ �
ðT
0

ð
R

ðqxbe
1 � whðeÞÞðxÞc

eðt; xÞdxdtþ
ðT
0

ð
R

jðt; xÞdxdt

b

ðT
0

ð
R

jðt; xÞdxdt

by the first equation of problem (4.8) and the assumption rb 0. Therefore, by

equation (4.9), we obtain that for any nonnegative function j A Dðð0;T Þ � RÞ

0 ¼ �
ð
R

ceð0; xÞdx�
ðT
0

ð
R

ueðt; xÞjðt; xÞdxdt

b

ðT
0

ð
R

jðt; xÞdxdt�
ðT
0

ð
R

ueðt; xÞjðt; xÞdxdt

¼
ðT
0

ð
R

ð1� u eðt; xÞÞjðt; xÞdxdt;

which means that ueðt; xÞb 1, that is, v eðt; xÞb 0 in ½0;T � � R for each

e A ð0; 1�. Consequently, we obtain that for all j A Dðð0;T Þ � RÞðT
0

ð
R

ðv eðt; xÞ � tdðxÞÞjðt; xÞdxdt

¼
ðT
0

ð
R

ðveðt; xÞjðt; xÞ � veðt; xÞjðt; 0ÞÞdxdt

þ
ðT
0

ð
R

ðveðt; xÞjðt; 0Þ � tdðxÞjðt; xÞÞdxdt

¼
ðT
0

ð
R

v eðt; xÞðjðt; xÞ � jðt; 0ÞÞdxdt

a

ðT
0

ð
R

veðt; xÞkjxkLyðð0;T Þ�RÞjxjdxdt

a
1

2
kjxkLyðð0;T Þ�RÞT

2 max e sup
y A supp r

y

�����
�����; hðeÞ þ e inf

y A supp r
y

����
����

( )

! 0 as e ! 0:

Thus the assertion follows. r
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