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Abstract. It is proved that the topological entropy of a surface di¤eomorphism is

given by the growth rate of the number of periodic points of saddle type. It is also

shown that the number of periodic points with weak hyperbolicity is small.

1. Introduction

It is known by Bowen [1] that if a di¤eomorphism f : M ! M of a

compact Riemannian manifold M satisfies Axiom A, then the topological

entropy hð f Þ of f holds the following:

hð f Þ ¼ lim sup
n!y

1

n
log #Fixð f nÞ

where FixðgÞ denotes the set of fixed points of a map g and #A the cardinal

number of a set A. For a surface di¤eomorphism Katok [5] proved that the

topological entropy does not exceed the exponential growth rate of the number

of periodic points if the derivative of the map is Hölder continuous. However,

the formula above is not valid for a di¤eomorphism, in general. In fact,

Kaloshin [4] showed that the growth rate of the number of periodic points is

superexponential for a generic di¤eomorphism in a Newhouse domain of the

space of Cr di¤eomorphisms ðrb 2Þ.
In this paper, combining some known results in smooth ergodic theory

with that obtained by Bowen, we show that the topological entropy of a surface

di¤eomorphism coincides with the exponential growth rate of the number of

periodic points with strong hyperbolicity. Thus none of the numbers of sinks,

sources and non-hyperbolic peridic points has influence on the topological

entropy. Moreover, we also give an estimate of the number of periodic points

with weak hyperbolicity.
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2. Results

Let f : M ! M be a surface di¤eomorphism and Df : TM ! TM a

derivative of f . Let us fix a smooth Riemannian metric on M. For a point

x A M the numbers

lþð f ; xÞ ¼ lim sup
n!þy

1

n
logkDf nðxÞk;

l�ð f ; xÞ ¼ lim sup
n!�y

1

n
logkDf nðxÞk

are called the Lyapunov exponents along the orbit of x, or simply the Lyapunov

exponents at x, where we write Df nðxÞ ¼ Df ð f n�1xÞ � � � � �Df ðxÞ by the chain

rule.

Remark. In general, the Lyapunov exponents should be defined by using

a decomposition of the tangent space at x. See Chapter 10 of [8] or Sup-

plement of [6] for more details. Since there exist only two exponents at each

point x in the case of surface di¤eomorphisms, however, we can give it in brief

as above.

For a periodic point p of f with period n there is a number g with

0 < ga 1 such that

ge jlþð f ;pÞ
a kDf jð f iðpÞÞka g�1e jlþð f ;pÞ;

ge�jl�ð f ;pÞ
a kDf �jð f iðpÞÞka g�1e�jl�ð f ;pÞ

hold for all integers jb 0 and 0a ia n� 1. A periodic point p is of saddle

type if l�ð f ; pÞ < 0 < lþð f ; pÞ holds. For numbers a; g > 0 and an integer

nb 1 we set

HPnð f ; a; gÞ ¼ fp A Fixð f nÞ : kDfGjð f iðpÞÞkb ge ja

for all jb 0 and 0a ia n� 1g:

Then HPnð f ; a; gÞHHPnð f ; a 0; g 0Þ holds if ab a 0, gb g 0, and the set of peri-

odic points of saddle type is given by

6
a>0

6
g>0

6
y

n¼1

HPnð f ; a; gÞ:

Notice that the invariant subspaces associated with the Lyapunov ex-

ponents vary continuously on 6y
n¼1

HPnð f ; a; gÞ for any a; g > 0, and that so

do the local stable and unstable manifolds. If a periodic point contained in

6y
n¼1

HPnð f ; a; gÞ is close to one of those accumulation points, then it has a
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transversal homoclinic point for f by the inclination lemma. Applying the

Smale homoclinic theorem, furthermore, will deduce hð f Þ > 0. For details, see

Chapter 6 of [6]. Thus hð f Þ ¼ 0 implies that 6y
n¼1

HPnð f ; a; gÞ is a finite set

for all a; g > 0. For a di¤eomorphism with positive entropy we shall show the

following:

Theorem 1. For any surface di¤eomorphism f : M ! M with Hölder

continuous derivative

hð f Þ ¼ lim
g!0þ

lim sup
n!y

1

n
log #HPnð f ; a; gÞ

holds whenever 0 < a < hð f Þ.

In particular, the topological entropy is characterized by the number of

periodic points of saddle type as follows:

Corollary.

hð f Þ ¼ lim
a!0þ

lim
g!0þ

lim sup
n!y

1

n
logþ #HPnð f ; a; gÞ;

where logþ a ¼ maxð0; log aÞ.

The formula stated in Theorem 1 is independent of the choice of a. Then

it is natural to ask if the exponential growth rate of the number of periodic

points with weak hyperbolicity is strictly smaller than the topological entropy.

For a number b > 0 we define a subset of HPnð f ; a; gÞ by

HPnð f ; a; b; gÞ ¼ fp A Fixð f nÞ : ge ja
a kDfGjð f iðpÞÞka g�1e jb

for all jb 0 and 0a ia n� 1g:

Then aa lþð f ; pÞ;�l�ð f ; pÞa b holds for p A HPnð f ; a; b; gÞ, and it is obvi-

ous that

HPnð f ; a; gÞ ¼ 6
b>0

HPnð f ; a; b; gÞ ¼ HPnð f ; a; b0; gÞ

if 0 < ga 1, where b0 ¼ maxflogkDf ðxÞk; logkDf �1ðxÞk : x A Mg. Another

result of this paper is the following:

Theorem 2. For any surface di¤eomorphism f : M ! M and numbers

a; b; g > 0,

lim sup
n!y

1

n
log #HPnð f ; a; b; gÞa b

holds.
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Remark. The Hölder continuity of the derivative is not assumed in

Theorem 2.

Some results corresponding to Theorems 1 and 2 for the expanding peri-

odic orbits of one-dimensional maps can be found in [2, 3].

3. Proofs

We need the notion of hyperbolic set to prove the theorems. A compact

f -invariant set L is called hyperbolic for f if there exists a Df -invariant

splitting TLM ¼ Eu lEs with constants l; g > 0 such that

kDf jðxÞvkb ge jlkvk ðv A Eu
x Þ;

kDf jðxÞwka g�1e�jlkwk ðw A Es
xÞ

for all x A L and integers jb 0. In addition, L is said to be isolated if

7
y

n¼�y
f �nU ¼ L

holds for some neighborhood U of L. A hyperbolic set L of f is isolated

if and only if f has a local product structure on L. See Theorem 18.4.1 and

Proposition 6.4.21 of [6]. The following proposition obtained by Bowen is

important in our proof.

Proposition ([1], Theorem 18.5.1 of [6]). For a hyperbolic set L of f ,

lim sup
n!y

1

n
log #Fixð f njLÞa hð f jLÞ

holds. Moreover, the equality holds if L is isolated.

Proof of Theorem 2. For any numbers a; b; g > 0 we show the following:

lim sup
n!y

1

n
log #HPnð f ; a; b; gÞaminfb; hð f Þgð1Þ

that involves Theorem 2. Let

G ¼ Ga;b; g ¼ cl 6y
n¼1

HPnð f ; a; b; gÞ
� �

where clðAÞ denotes the closure of a set A. The invariant splitting TxM ¼
Eu
x lEs

x associated with the Lyapunov exponents varies continuously on
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6y
n¼1

HPnð f ; a; b; gÞ and hence it can be extended to G . Therefore G is either

an empty set or a hyperbolic set of f . In the former case, HPnð f ; a; b; gÞ is

also empty for all integers nb 1, and hence (1) holds. Otherwise, since

Fixð f njGÞ ¼ HPnð f ; a; b; gÞ

for any nb 1, by the proposition we have

lim sup
n!y

1

n
log #HPnð f ; a; b; gÞ ¼ lim sup

n!y

1

n
log #Fixð f njGÞð2Þ

a hð f jGÞ

a hð f Þ:

Then the variational principle for topological entropy, see e.g. Corollary 8.6.1

of [8], asserts that for any number e > 0 there is an f -invariant ergodic Borel

probability measure m supported on G such that

hð f jGÞb hmð f Þb hð f jGÞ � eð3Þ

where hmð f Þ denotes the metric entropy of m for f . The ergodicity of the

measure m implies that the Lyapunov exponents at x are constants for almost

everywhere and are denoted by lþm ð f Þ and l�m ð f Þ, respectively. Then by the

Ruelle inequality [7] we have

hmð f Þaminflþm ð f Þ;�l�m ð f Þg:

Since

aa lþð f ; xÞa b; aa�l�ð f ; xÞa b

holds for all x A G , we have

aa lþm ð f Þa b; aa�l�m ð f Þa b;

and then

hmð f Þa b:ð4Þ

Combining (2) with (3), (4), and letting e ! 0, we obtain (1), and hence

Theorem 2. r

Proof of Theorem 1. It follows from (1) that

lim sup
n!y

1

n
log #HPnð f ; a; gÞ ¼ lim sup

n!y

1

n
log #HPnð f ; a; b0; gÞa hð f Þ
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holds for any numbers a > 0 and g with 0 < ga 1. Thus for the proof of

Theorem 1 it remains to show that

hð f Þa lim
g!0þ

lim sup
n!y

1

n
log #HPnð f ; a; gÞð5Þ

for any a with 0 < a < hð f Þ under the assumption of the Hölder continuity of

the derivative for f . By the variational principle and the Ruelle inequality for

any number e with 0 < 2e < hð f Þ � a there is an f -invariant ergodic Borel

probability measure m such that

minflþm ð f Þ;�l�m ð f Þgb hmð f Þb hð f Þ � e > aþ e:ð6Þ

Moreover, since f has Hölder continuous derivative, by the Katok theorem [5];

see also Theorem S.5.9 of [6], there exists an isolated hyperbolic set L of f with

a Df -invariant splitting TLM ¼ Eu lEs and g0 > 0 such that

hð f jLÞb hmð f Þ � e;

kDf jðxÞvkb g0e
jðlþm ð f Þ�eÞkvk ðv A Eu

x Þ;

kDf jðxÞwka g�1
0 e jðl�m ð f ÞþeÞkwk ðw A Es

xÞ

for all x A L and integers jb 0. It follows from (6) that

Fixð f njLÞHHPnð f ; a; g0Þ

for any integer nb 1, and hence

hð f Þ � 2ea hmð f Þ � e

a hð f jLÞ

¼ lim sup
n!y

1

n
log #Fixð f njLÞ

a lim sup
n!y

1

n
log #HPnð f ; a; g0Þ

a lim
g!0þ

lim sup
n!y

1

n
log #HPnð f ; a; gÞ

by the proposition. Letting e ! 0 we obtain (5). This completes the proof of

Theorem 1. r
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