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ABSTRACT. Behavior of least-energy solutions to Matukuma type equations with an
inverse square potential are discussed. The difference of the behavior of solutions are
obtained. We also consider the behavior of scaled solutions and obtain a limiting
function.

1. Introduction
This is a note on the behavior of least-energy solutions to
(1.1) Au+ K(x)u'** =0  in R”
as ¢ | 0 under the condition
K(x)e CY(R"),K(x) >0  inR",

(K) x-VK(x)+2K(x) >0,#0 onR",
‘l‘im XK (x) = ¢o > 0.

In some cases, we assume further that K(x) satisfies
(K.1) K(x) = |x|(co + a1]x| ™" + k1 (x)) on |x| > R,

with R, >0, ¢; e R, where k; satisfies k;(|x]) = O(|x|*) and x-Vk(x) =
O(|x|™) for some x> 1.
A typical example of K(x) which satisfies (K) with ¢y =1 is that
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_ 1
1+ |x*

K(x)

which is exactly the same K(x) appearing in the original Matukuma equa-
tion. Moreover, this K(x) also satisfies (K.1) with ¢; =0, since K(x)=
(= /(1 + X))
By the terminology ‘“‘least-energy” solution, we mean a positive solution to
(1.1) determined by the minimization problem
Jr [Vu*dx

1.2 S, := inf ,
(1.2) ’ ue P, u0 (J"RnK(x)MZJra dx)Z/(2+8)

where & is the space which is the completion of Cj°(R") with respect to the
norm ||V -|l,. Then a function u, which attains (1.2) is a solution to

Se

I+e _

(13) Aus + (J'R” K(x)|u8|2+£) e/(2+e) K(X)T/IC =0.
Thus, by setting

) s/

U, := Ug,

& (erl K(x)|u8|2+edx)l/(2+e) &
u, satisfies (1.1) and
(1.4) J Vi Pdx = SEHe.

Related to (1.2), we introduce the value

[r IVuldx

(1.5) S(t) = ue}@l}fﬂ w7 20702 gy 22

with 0 </ < 2. As is known by Egnell [2] or Horiuchi [5, 6], S(/) is the best
constant of the embedding

G L = {u| J x|~ |ul? dx < oo}
R)X
with p=2(n—/)/(n—2). The extremal function is

5y —(n=2)/(2~¢)
x| )

However, the pointwise limit of U(x) as /12 is
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I, x=0,

lim U(x):{0 %0

/12

which is never a minimizer for S(2). Note that S(2) = (n —2)?/4 in case of
¢ =2 in view of the Hardy inequality

_9)? 2
(n—2) J Ldx < J Vuldsx.
4 R" |x]| R"

We also note that there exists no minimizer for S(2) (see, e.g., [2]).
In this paper, we investigate the behavior of S, and solutions u, as well as
their scaled properties as ¢ | 0.

THEOREM 1.1.  Under (K), the behavior of S, is as follows:

(n—2)°
4C() ’

lim S, =
¢l0

Similar to Kabeya [7] for slowly decaying K(x) (K(x)~ |x|™" with
0 < ¢/ < 2), the behavior of the norm of a least-energy solution is obtained. In
view of the Pohozaev identity (see Lemma 2.2 of [7] or Proposition 1 of Naito
[12]) yields

(1.7) J { (” 3 2_ 5 i 8) - (;;’_Vgg(]?gc)}K(x)|u8|2+”dx —0.

Under (K), if [p. K(x)u? dx < oo (especially ue Z), then u=0 for ¢=0.
However, depending on ¢j, any least-energy solution blows up in this case.
This is different from the case where K(x) is slowly decaying as studied in [7].
One explanation is that the limiting problem for the slowly decaying case is
still a nonlinear one, while this one is a linear one. The limiting problem
(linear problem) in this case does not admit any scalings which erase ¢p. Thus
the dependence on ¢y arises.

The case for the faster decaying K(x) will be discussed in Kabeya and
Yanagida [8].

For radial solutions, the blowup or vanishing behaviors are obtained in
Theorem 2.5 of Yanagida and Yotsutani [15]. We also see more precise
behaviors of solutions than those obtained in [15].

THEOREM 1.2.  Under (K), the norms ||Vu,||, and |u.||., of any least-energy
solution u, to (1.1) blow up if 0 < ¢o < (n— 2)*/4 and vanish if ¢y > (n —2)*/4.
Moreover, in either case, u, satisfies

(n—2)°

. .
lim [V 5 = v
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Note that the blowup and vanishing are determined by the limit of S, in
Theorem 1.1.

In the “critical case” ¢y = (n — 2)?/4, we need a careful calculation and we
impose further assumptions on K(x).

THEOREM 1.3. In the case where ¢y = (n—2)*/4, suppose that (K) and
(K.1) hold.  Then the norms ||Vu,|, and ||u;||., of any least-energy solution blow

up.

Using Theorems 1.2 and 1.3, by a scaling, we see a limiting behavior of a least-
energy solution. Unfortunately, the scaling is only valid for any domain that
are the exterior of a ball centered at the origin.

THEOREM 1.4. Suppose that (K) and (K.1) hold. For any least-energy
solution u.(x) and for any R >0, let

s (x)

max u(x)
[x|>R/e

(1.8) ve(y) = with x =2
€

Then there exists a subsequence {&} such that the maximum point Qg of v
converges to Q. and vy (y) converges locally uniformly to V(y) on {ye€R"|
R < |y| < R'}, where V is a positive solution to

AV + -V =0,
(1.9) |yl

V(Q.) =1, | l‘im V(y) =0,

Yoo

with any R’ > R and some 0 < ¢ < (n—2)*/4 and 4, being the Laplacian with
respect to ).

REmMARK 1.1. In Theorem 1.2, we see that ||Vu,||, blows up or vanishes as
€] 0. By the scaling (1.8), despite the difference of the behavior of ||Vu,||,, we
can extract a special limiting function, to which the scaled solution converges.

If we scale

_ L ue(x)
Us(y) = ”ug”mv

then we only have the limiting function

= I, y=0,
V =
() {0, y #0.

Thus we have used the scaling as in Theorem 1.4 to derive a useful infor-
mation.
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If K(x) is radial and K, <0, then u, must be radial by Gidas, Ni and
Nirenberg [3]. In this case, we can take |Q.| = R without extracting a sub-
sequence and the limiting solution is a radial one since the local uniform limit
of a radial function is also radial. However, we do not know whether positive
solutions of (1.9) are necessarily radially symmetric or not.

In Section 2, we give a proof of Theorem 1.1. Fundamental Lemmas
for proofs of Theorems 1.2, 1.3 and 1.4 are given in Section 3. Proofs of
Theorems 1.2, 1.3 and 1.4 are given in Section 4. In Section 5, we give a
proof of Lemma 2.1 for the sake of the reader’s convenience as an appendix.

2. Proof of Theorem 1.1

First we note that S(/) is expressed in terms of the gamma functions and
the exact value is obtained in Lemma 3.1 of Horiuchi [6] and Theorem 1.1 of
Catrina and Wang [1]. The continuity of S(/) at / =2 is shown also in [1].
We summarize their results as below. We remark that they studied wider class
of the weighted Sobolev type embeddings.

LemmA 2.1 (Horiuchi [6], Catrina and Wang [1]). The explicit form of
S(¢) is given by

@=0)/tn=t) _
S(t)=(n-2)*

n— N\ V"IN (g — N\ 2O
r r
Gy {1

for £ <2 and S(¢) — (n—2)*/4 = S(2) as / 1 2, where w, is the surface area of
the unit sphere in R”".

For the sake of self-containedness, we will give a proof in the Appendix.

The following is the estimate of the supremum norm, which will be useful
for the uniform estimate. The estimate is essentially due to Lemma B.3 of
Struwe [13] (see also Lemma 7 of Han [4]).

LEMMA 2.2.  For any classical solution u, € 9 to (1.1), there exists a con-
stant C, = C(||Vuy||5) > 0 such that |ju||, < C.||Vuell,.

ProoF. We regard (1.1) as
Au, + (K(x)ul)u, = 0.

Since K(x) e L*(R") and since ¢ > 0 is small, we see that K(x)u’ e L*(B(Q,,1))
with « > n/2. Then as in Lemma B.3 (pp. 244-245) of [13] or as in Lemma 7
of [4], we have
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@) a1 < C( K (o2 Vi

where C depends on L*norm of K(x)u?, o and n. For L*-norm of K(x)uf, by
the Holder and Sobolev inequalities, for sufficiently small & > 0, we have

J (K (x)u?)dx
B(Q:,1)

&

< HKH;;J u dx
B(Q.,1)

(n—2)ear/(2n)
< KIS [BQu PO ([ gl g
B(Q:,1)

< ClIK]%[B(Q, DI IV 5

where C is a constant independent of &. Since u, € Z by assumption, we have
the desired estimate (The dependence of C, on ¢ comes from the ¢-dependence
of |[Vu.||, and note that o and n are independent of ¢). O

Using Lemma 2.2, we prove Theorem 1.1.

Proor oF THEOREM 1.1. Before proving the equality, we easily see that S,
is uniformly bounded. Then as in the proof of Lemma 2.4 in Kabeya [7], we
prove

1 1
liminf S, > —S(2) and limsup S, < —S(2).
el0 C £l0 o

First we prove liminf,o S, > (o) 'S(2). Let u,(x) be a function which attains
S, with [p. K(x)u2™® dx =1 and let v,(y) = u;(x) with x =y/e. Then, u, is a
solution to

Au, + S K (x)u! T =0

and we have

1
2 2
Jgo s = [ Wty =

and

1 1
J K(x)u>™ dx = San K(Z) v dy =1,

rr &2 \e

where V, V, denote the gradient with respect to x and y, respectively. Hence
we get
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Jr Vicua, | 2dx

(e K(eJuze )/

e [ Vv, Pdy

y 2/(2+¢)
g=21=2)/(2+2) ( jR,,K< ) vt dy>

Jrr |V)/'U6|2dy

1 y 2/(2+e) 2¢/(2+¢) *
6(77*2)3/(24’8) (J‘ n 8—2K <E> Urz dy) (I%%X Ué:)

By Lemma 2.2 and since ||Vi,||, = S}/ is uniformly bounded, we see that the
right-hand side of (2.1) for K(x) replaced by S,K(x) is uniformly bounded.
Hence, in view of |ul|, = |lv.l|l,,, we have limsup, ,(maxg- p,) 2/ < 1.
Thus, taking a limit infimum, we obtain

[gr V| *dy 1 (-2

liminf S, > liminf e > —S(2) =
el0 0 ¢y [qu |y v2dy <o 4co

22) S, =

in view of

1 y -2
i (1) = o™
where the convergence is locally uniformly in R"\{0} by (K), and the Hardy
inequality.

To prove limsup,, S, < (1/¢)S(2), we set w(x)= x|~ (1x]).
Here, ¢,(=0)e Cy((0,00)) satisfies supp ¢, = [1,2¢7!], max) ) 9 =1,
supp ¢’ = [1,2]U[e7", 271, ¢,(x) =f(x) on [1,2] such that f e C*(0, x), ful-
fils £(1) =0, £(x) >0 in (1,2] and £(2) = 1, and g,(x) = g(ex) on [+, 2¢71,
where g(x) e C*(0,00) satisfies g(1) =1, g(x) >0 in [1,2) and ¢(2) = 0.

Since w' = —{(n —2)/2}r"?p, + r~"=2/2g! we have

J \Vw|dx
Rﬂ

—2 - « 2 267!
= ( 2 ) J r_l(ﬂf dr — n — 2)60)1J (ﬂgfﬂé dr + w, (J +J )r(¢£)2dr
0 . L
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The second and third terms yield

J coga)!dr:[lcof] =0
0 & 2 & 0

and

2 26! 26!
(J +J )r(¢;)2drg6+4g2j rdr =12,
1 el el

respectively. Thus we get

n—2 2 2e71 1.2
- oy, e dr+ 12w,
S, <

2.3
23) (Jgn K(x)w2*e dx)z/@“)

As for the denominator, for any # > 0, take R > 0 so large that
WK (x) = o — 7
holds for any x € R"\Bg. Then we have

J K(x)w?*¢ dx

J K(x) |x|7(n72)(2+6) /2¢sz+s dx
B, 1\B

> J x| K () | 222 dx+J K (x)|x| " gy
B,, 1\Br Br\B>

—1

2\~ (1=2)e/2 2 ‘
> (—) (co = ) J gt dr + J K(x)|x| 20502 gy
€ R Br\B»

for any ¢! > R. The second term is uniformly bounded. Since ¢? — 1
locally uniformly in (1,00) by the definition of ¢,, we see that

I Vrlg2dr
slf(r)l S B, T dr)¥/ @) o
(fR r (ps }")

Thus taking a limit supremum of (2.3) as ¢ | 0, we have

. 1 -2\’
limsup S; < <n > .
10 c—n 2
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Since S(2) = (n—2)?/4 and since # >0 is arbitrary, we obtain lim,|o S; =
(1/¢0)S(2). O

3. Fundamental properties of solutions

To prove Theorems 1.3 and 1.4, we need to estimate the location of
the maximum point of wu.(x) and |ul|, from above. First we need a
uniform a priori estimate for u, satisfying (1.4), almost identical to Lemma
2.2.

Lemma 3.1.  For any least-energy solution u, to (1.1), there exists a con-
stant C > 0 independent of ¢ such that |u.|’, < C.

Proor. The proof is almost identical to that of Lemma 2.2. In the proof
of Lemma 2.2, we just note here that

L(Q (KCu) e < UK 1B ] IVl

_ 2\
< 2C|K[%]B(Q, 1) <(n4co) )

with o > n/2 by Theorem 1.1, where C is a constant independent of ¢. Thus,
the L* norm |[|K(x)u;|l,2(gg, 1/2) 18 bounded independent of e Hence, the
constant in (2.1) is independent of &. By Theorem 1.1 and (1.4), ||Vu5 is
uniformly bounded. Thus, we have the desired estimate. O

Next, we show a decay property of u,.
LemMa 3.2. Under (K), there exists Ry >0 independent of ¢ such that
u,(x) = Gl ™" 4 hy(x)

holds on |x| > Ry with C,> 0 and a higher order term hy(x) = O(|x|""21+¢))
at infinity.

ProoF. As in Lemma 3.5 of Kabeya [7] (if K(x) is radial, the decay order
is obtained by Li and Ni [9, 11]), we deduce the decay order of u,. Using the
Green function of —4 in R”, we have

1 J K(»)u(»)'"*
n—2)a)n n |x_y|n72

(3.1) s (x) :(

By the Holder inequality, we have
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J K™ <J K™
N woyl<t |x— "2

K
) (e
yl=1\ X =yl

(n=2)(1+¢)/(2n)
% J ufn/(/FZ) dy
[x—y|=1

Since K(y) ~ |y| ™ at |y| = oo, ||lue||, is finite and since u, € 2, the right-hand
side is finite.
From now on, Ry > 0 is supposed to be large so that

(n+2—(n—-2)e)/(2n)

2n/(n+2—(n—2)e)

(32) % < |x]*K (x) < 2¢o

on |x| > Ry, and we take x so that |x| > R; := max{2Ry,Rp+ 1}, and C
denotes the generic constant independent of ¢. x may be taken even larger if
necessary.

For |x| > R, first we note that

maxy—y|<1 K(y) <C
K(x) -

with C >0 independent of x. Indeed, |x—y| <1 implies |x|]—1<|y| <
|x| + 1. Thus we have

= (x=1)
in view of (3.2) for |x| > R;. Again from (3.2), there holds

K(y) <

€o
2|x|?

K(x) >

and we get

max,_, <1 K(») - 4|x|2
K(x) e

for |x| > R;. Note that the right-hand side is uniformly bounded for |x| > R;.
Thus we see that

K Wue(y 1+¢ 1 -
| K0u0) = 4, Clul K | s dy < Wl 2
yl<t |x =y

—yl<t1 |x =yl
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holds by (2.1) and Lemma 3.1 (||u.||s, is uniformly bounded). Next, we

decompose
J K(y)
pplz1 \[x = "2

2n/(n+2—(n-2)e)
) dy=hL+L+5L+1L

with
2n/(n+2—(n—2)e)
K
Il = (y212> d%
1<feyl<ld/2 \[x — ¥
2n/(n+2—(n—2)e)
K
L= <7(y )2> dy,
el/2< x—y| <2lx] \|X — V|
2n/(n+2—(n—2)e)
I — K(y) J
37 vz 2 Ix — y|"? Y
22 [y|= x| Y
2n/(n+2—(n—2)¢)
L= K(») J
47 =y 220 x— "2 Y.
ES Y

On I <|x—y| < x]/2, we see |y| > |x|/2 > Ry and get
—4n/{n+2—(n—2)c} /2 2 2 2 2 1
I < Clx| J p2n=2) (42 (=241 g
< C(|x|74n/(n+27(n72)s) + |x|7n(n72)(1+s)/(n+27(n72)s)).

For I, we have

I < Clxl—2n(n—2)/(n+27(n—2)£) J _|_J K(y)Zn/(n+27(n72)s)dy
[yI<R Ry <|y|<3|x|

< C(lx‘—2n(n—2)/(n+2—(n—2)8) + |x‘—n(n—2)(1+a)/(n+2—(n—2)e3))7
since |x — y| < 2[x| implies |y| < 3|x|. Similarly, for I3, we get

I5 < C|x| 20D/ 2= (n=2)2) | =dn/ (142 =(n=2)e) J dy

x| <|yl<2]x|

< Clxl7n(n72)(1+£)/(n+27(n72)£).

Finally, for ;, we note that |x — y| > 2|x| with |y| > 2|x| implies |x — y| > |»|/2
(indeed, |x —y| = |y| —|x| = |y| —|»|/2). Thus we have
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—2n2/(n+2—(n—2)e) —n(n—2)(1+¢)/(n+2—(n—2)¢)
< < .
I < CJ‘H‘ZZ,X‘ || dy < Clx|
[y =>2]x|
Hence we obtain

J ( K(y)
n—2
le—yl=1 \[X — V|

= (I] + 5L+ 13 +I4)(

(n+2—(n—2)¢)/(2n)

2n/(n+2—(n—2)e)

n+2—(n—2)¢)/(2n)

< C( ™ 4 202 o 1y ),
Thus we have
(3.3) () < Cl[Vitg5|x] ™ + C[Vat | ]~ 27
— G, || min(2 (--2)(1+2)/2}
for |x| > Ry, with C, = C||Vu,l|,, again by (2.1) and Lemma 3.1 for the es-
timate of the second term.

By (3.3), we can estimate the right-hand side of (3.1) directly. We again
decompose

K u 1+e
J ”L(J;)_zdyZ.h-‘rJz-‘r.h +Js+Js

|x =yl
with
K 1+¢
Ji = L(J;)_z dy,
Iyt |x =yl
K ” 1+e
g, = (») a(z)_z dy,
1<lyl<lx/2 [x =y
K U, 1+
CC
W/2<x—yl<2x X — Y
K u l+e
4= gz |(xy)_8(|?—2 @,
20| 2 [y] > |x] Y
K(y)us(y)lﬂ
Js = rmyl 221 —\x— |n72 dy.
12l Y

Then, denoting the generic constant (may dependent on &) by C,, we have, via
the step similar to the previous one,
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i 1
I < C8|x|727mm{2,(n72)(1+s)/2}(1+s)J 4
l—yl<1 |x =y

< Cg|x|72—min{2,(n72)(1+s)/2}(1+g)7

x|/2
Jy < Cpfx| 2 min{2 (1= 2) () /2)(14) JM rdr
1

< || M2 (-2 (140214

)

J3 < Cg|x|*(n72) <J +J >K(y)u8(y)l+sdy
[YI<R Ry <|y|<3|x]

Cg(|x|—(n—2) + |x|—min{27(n—2)(1+s)/2}(1+£))’

Jy < Cplx|” 7D |x| 2 min{2 (=252} (1) J dy

20|y |x]

min{2, (n-2)(1+2)/2}(1+¢)

)

< Clx|”

J5s <G, J || i (-2 1) 2) (1)1 g

||

< C8|x|7min{2, (n=2)(1+2)/2}(1+2)

Thus we obtain
u,(x) < G x|*min{2~, (n=2)(1+¢)/2}(1+e)

for |x|>R; if min{2,(n—-2)(1+¢)/2}(1+¢)<n—-2. If min{2,(n—2)-
(14+&)/2}(1+¢) >n—2, then we are done. For fixed ¢ > 0, repeating this
process / times so that min{2, (n — 2)(1 4+ ¢)/2}(1 +¢)’ > n—2, we have

(34) ug(X) < Cg|x|—(n—2)

for |x| > R;. We should note here that the decay rate |x|7("72) is never
improved in view of the estimate in Js.

Then as in Theorem 2.4 of Li and Ni [10] (the estimate of the second order
of the expansion), we obtain

(3.5) uy(x) = Colx| ™" + hy().
with
- 1
3.6 C.:= lim |x x :7J K(x)u! ™ dx,
(3.6) Jim () = | K

and h,(x) = O(|x|""" 2% being a higher order term. Since (3.4) holds for
|x| > Ry with R; independent of & (3.5) holds also for |x| > R;. ]
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RemMARK 3.1. The reason why we have obtained the exact decay rate is
that the dominant term in the estimate of J3 is |x\_("_2) and that the iteration is
no longer effective to gain the decay rate due to this term.

C, may go to infinity as ¢ | 0 because ||Vu,|, may go to infinity and the
iteration needs more times (unbounded) as ¢ | 0.

REmMARK 3.2. Under (K) and (K.1), according to Theorem 2.16 of Li and
Ni [10], u, is expanded as follows:

C 2k, +1 Cl m.e 1 ke szé:
3.7 u(x —
( ) ( ) |x| |x|n 2 Z | | n—2)m. |x|n71 — ‘ |(n72)mc

k
ag; - X N Cyme X 1
|X|Z < m= 1| |n 2’776) <|X|2> |X|1 :

for |x| > R;, where k, is an integer such that (n — 2)ke <1 < (n—2)(k; + 1)g,
Cime Come Cime are constants (not necessarily positive), a,€R" is a
constant vector, and R,(f) is a Lipschitz continuous function near ¢t =0 with
R.(0) =0. Note that R, can be taken larger than R.. The assumption (K.1)
is needed to have the exact expansion as above. Without (K.1), it is hard to
obtain the expansion (3.7).

Carefully following the proof of Theorem 2.16 of [10], we can obtain the
constants Cj_ ;.

Lemma 3.3. The constant C\ . in (3.7) satisfies

n

(_l)mcs(lﬂ-)” 6’6"
(n—2)""emm! [T, (1 + Ze)

(38) C],m,s =

for m=1,2,... k.

ProoF. A proof is done by following the proof of Theorem 2.16 of [10].
So we give a sketchy proof. The essential part is to express (1.1) as

1+¢
B B CH—S |x| u
20 4 oyl C ) =
(3.9)  Au,+ |x| " (co + c1]x]T + ki (x)) |20 < G, ) =0

on |x| > R; and expand C;1|x|”_2u,, step by step.
In what follows, f; and u; . represent the remainder terms. First, we note
that the equation (1.1) is expressed as

Au, + Coeo|x| " 4 () = 0

on |x| > R;. Note that the original proof is done via the Kelvin transforma-
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tion. However, we can prove this lemma directly since we know the decay
order. Then, as in (2.22) of [10] (p. 203), we have

—(n— C<]+£) —(n— &
Uy = Cy|x| (n-2) _ € 5 €0 x| (n=2)(1+¢)
(n=2)(1+¢)e

The expression is seemingly a contradictory one since the coefficient of the
second term is apparently larger than that of the first term. However, the
second term is eventually almost cancelled out by u; . since u, is always
positive.

Next, using the expansion, we see that u, satisfies

+ uy,e-

2

(I+¢)
(3.10)  Au, + CFeco|x| 20+ Cz—Cg P 4 () = 0.
(n—=2)"(1+¢)e

Then we have via the method of the deduction of (2.22) in [10],

(1+0),
U, = Cl:|x|7(i172) o % ‘x|7(n72)7(n72)3

(n—2)%(1 +2)e
2
n C8(1+8) Cg |x|_(,1_2)(]+2£)
2(n —2)*(1 4 &)(1 + 2¢)e2

+ Uy .

Indeed, three terms from the top satisfy (3.10) with f, = 0 (calculate 4(u, — us )
as a radial function). Moreover, the “uniqueness” of the top three terms are
verified as in the proof of Theorem 2.16 of [10] (p. 203). Thus Ci», is
obtained. To obtain Cj 3., we again repeat the argument. Thus u, satisfies
(14+8)° 2
Hty + Cogely 02040 G G0 --2)0429
‘ (n—2)*(1 +¢)e
3
C‘Sl—hﬂ) 3
i . . (&) |X|7<n72)(1+36) +f5;(1/lg) 0.
2(n —2)"(1 4+ &)(1 + 2¢)¢?

Then we have

14¢)*
i+ a .
6(n—2)°(1 4 &) (1 +2¢)(1 + 3¢)e3

Inductively, we obtain the conclusion. O

Cl,&,s = -

As for the other terms in (3.7), we have the following estimate. Let us
define

C(e) == max{Cl,, max Cljm,g|}.

1<m<k,
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LemMMA 3.4. The constants in (3.7) of Cime (ke +1<m<2k+1),
Comes |0:|C3 e and R.(x) for fixed x are at most of order C(e) in .

Proor. We again consider the process of the proof of Lemma 3.3. Also
confer to the deduction of (2.22) in [10]. Tt is easy to see that (1 +¢)" <
(146" < (1461028 <201/0=2) for any sufficiently small & > 0.

For coefficients Cj ,, . with 1 <m < k,, ¢” appears in the denominator to
cancel out the previous term as mentioned in the deduction of C;, . in the
proof of Lemma 3.3. The powers in x of the terms in the coefficient Ci ,, .
(1 <m < k,) converge to —(n—2) as ¢ | 0. These terms induce the higher &
dependence.

Cime with k, +1 <m < 2k, + 1 is determined in the same way as in the
proof of Lemma 3.3. But a new ¢ power does not appear since (n— 2)(1 + me)
with &k, + 1 <m <2k, + 1 never converges to n—2 as ¢ | 0.

Co ey G, C3 me and R,(x) are determined by the terms in (3.9) which are
24me) term and ¢;]x|”" or k;(x) inductively. Indeed, when
“D0+k9) are obtained, (3.9) can be written as

products of \x|
the terms up to C1_,k8ﬁ3|x|7(

co+alx " k() (&5 Crme
Au[) + |2 Z |x|(n72)(1+m8) +f;1(7/l‘n) = 0

|x k=1

with fi being a remainder term. Thus we see that Cs ¢, @z, Cs m, 8 and R.(x)
are determined from the product of |x|™' or k,(x) with Cj. ms || T2 (Ime),
Since the powers of other terms never converge to |x|~ ("=2) " the above
process shows that the coefficients and R, cannot create the higher ¢ depen-
dence as in C(¢). To keep u, positive on |x| > Rj, they must be at most of the

order C(e). O

Using (3.7) and Lemma 3.4, we show the boundedness of the maximum
point of u,.

Lemma 3.5. Suppose that (K) and (K.1) hold. Then the maximum point
of the least-energy solution u, is uniformly bounded.

Proor. By (K.1), using the expansion (3.7), we can express u, as

C. +f1,n(x) +f2,,,(x) n (aa .x)f3.a(X) R, <| | > 1

|x|l‘l*2 |x|n72 |x|n71 |X|n | |n -1

(3.11) u(x) =

with

EON CI m,e ke CZ m,e ke C3 m,e
Sie(x) = ZW, Sre(x ):ZW7 fre(x) =1+ W

n |
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Note that fi ,(x), foe f3..(x) = (@; - x) f3..(x) and R,(x/|x|*) in terms of ¢ are
at most of the order of C(¢) by Lemma 3.4. Then we can express

C) [ G fie®) | o) | [5:(9) | Riv)
Ix|"2 | Cle)  Cle)  Cle)xl  Cle)|x]*  Cle)lx]

(3.12)  u(x) =

with R,(x) := Ry(x/|x]%).

Suppose that the maximum point Q; of u; (g | 0 as j— oo) tends to
infinity. We may suppose that |Q;| > R; for any j and fix xyp so that
|xo| = R;. Then we have

Ug; (Q])

3.13) 1< v )

C, flz(Q]) f2e,( ) f;3f,(Q]) Rz:/(Qj)

_(|xo|)<"—2> C " ) ' Cwol " Ciof T CwIo)
(

)

Cg fl & (XO) fZ & X ) f‘3 8/(x0) I’ée/(xo)
cle) " Cly) Ty

X0l C(gj)|xo|*  Cle)]xol

We consider the behavior of L;. Here we note that constants in the
denominator and those in the numerator are the same and that the remainder
terms /3, (0,)/(C(2)|Q)°) and R,,(0,)/(C(¢)|Q))) are negligible compared with
three terms in the numerator due to their decay properties as |Q;| — oo.

In view of (3.4), since each term has a decay order and since the absolute
value of each coefficient in (3.7) are bounded by C(¢;), the case where the
numerator goes to infinity while the denominator stays bounded is impossible.

In the case where the denominator converges to 0, if we can find suitable
point x. (|x.| > R;) independent of ¢ so that u,(x.) stay uniformly away from
zero, we can replace xy by x,.

If this is not the case, then the denominator converges locally uniformly to
0. In this case, the decay property of the expanded functions in (3.7) shows
that the numerator decays faster than the denominator.

Similarly, if the both of the denominator and the numerator go to infinity,
the decay order shows that the slower growth of the numerator. Thus, the
inequality (3.13) is violated if |Q;| — 0. We complete the proof. O

4. Proofs of Theorems 1.2, 1.3 and 1.4

Now we are in a position to prove Theorems 1.2, 1.3 and 1.4.
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Proor oF THEOREM 1.2. Since

(n—2)°
4C()

lim S, =
¢l0
by Theorem 1.1, we immediately see that

(2+¢)/
. : . —2)?
lim ||V, |3 = lim SZ+9/e = l1m{<n ) }
£l0 elo ¢ £l0 4cy

H{o, if ¢o > (n—2)%/4,
00, if0<c<(n—2)%/4

Thus we have the desired limiting behavior. Moreover, by (1.4), we have

(n—2)°

”V”z:”; = S§2+e)/2 - 4¢p

as ¢ ] 0.

Now, we consider the behavior of ||u.| . If lim,||Vu|, =0, then by
(2.1) and the proof of Lemma 3.1, we see that |ju]|, — 0 as ¢ | 0.

When lim, oV, = oo, suppose that limsup y|ju.|, < oo. Letting

U (x)
T W(y)7 X =,
[ €

we see that W, () is a solution to
Lo (Y :
4,0+ 5K (2 s 2 o
Since lim,jo e 2K(y/e) = co|y| > locally uniformly in R"\{0}, by choosing a

subsequence if necessary (still denoted by &), W, converges locally uniformly in
R"\{0} to W, where W is a solution to
¢ o
A4, W + W W =0 m R
Y

with C := ¢o lim,o||u||’, < (n— 2)?/4. The limiting equation does not have
any positive solution which is bounded near the origin unless C = 0. Thus
W =0if 0< C< (n—2)%/4. However, concerning the constant C, in (3.5),
since we have

o) = Nl ) = G202 e (2),

we obtain lim, o &"2 C, =0 in view of the local uniform convergence of W, to
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W =0. Since the boundedness of u, implies the boundedness of Vu, in view
of the equation, we have

lim |V, |3 = Ii
ip 17l = i

R™\

Vi) *dx = oo,
Bg
for any R > 0. In view of (3.5), we see that
J Vu,|*dx < CC?
R”\BR
as ¢ | 0 with C > 0. Thus we have
J Vg 2dx = o(e72"2)
R"\Bg

as ¢ | 0.
However, we have seen

(2+¢) /e
. . —-2)?
1 2 i [ —
i Vel f“( i ,

thus the growth order of ||Vu,|, is faster than ¢2"2). Hence we get a con-

tradiction for 0 < C < (n—2)*/4.
If C =0, then there is a possibility of W = 1. In this case, as in the last
part of the proof of Lemma 3.2, we have
Wo2y) o na
—22 =272 4 p(1
Wi(y) W
as ¢ | 0. This contradicts the uniform convergence of W, to 1. The case
where W =0 is proved as in 0 < C < (n—2)?/4.
Thus we have reached a contradiction for 0 < C < (n — 2)2 /4, that is, we
have proved |ju]|,, — o0 as & | 0 if 0 < ¢y < (n—2)?/4. O

0

PrROOF OF THEOREM 1.3. In this case, since lim,j||Vu.|5 =1, we need
careful calculations. Suppose that limsup,,||Vu|l, < co. Then by (2.1), we
see that ||u.||,, is bounded. Then, choosing a subsequence if necessary, we see
that u; converges to U € 9 locally uniformly in R”, where U is a nonnegative
solution to

AU+ K(x)U =0.

Note that this equation has only U =0 as a nonnegative solution by the
Pohozaev identity (1.7). Thus, the convergence does not depend on sub-
sequences. Moreover, by Lemma 3.5, the maximum point of u, is bounded.
Thus, |ju:||.,, — 0 as ¢ | 0.
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Let 9,(x) := u(x)/||ttell ... Then 0. satisfies
A, + K| 50,7 =0, o, = 1.

Suppose that |ju||, — ¢ >0 as ¢ ] 0. Then, since the maximum point is
bounded, ©, converges to a nontrivial function (along a subsequence).
However, again by the Pohozaev identity, the limiting equation has only & =0
as a solution, which is a contradiction.

Suppose that |ju||, — 0 as ¢| 0. Then, o, converges to 1 locally uni-
formly in R”. However, as in the last part of the proof of Theorem 1.2 for
0 < ¢y < (n—2)%/4, there exists large R > 0 independent of & such that

0,(2x)

(4.1) 5.0

=27("=2) 1 o(1)

for |x| > R. Hence, the local uniform convergence of ¢, to 1 is impossible.
Thus we see that lim,|g||us]|,, = c0 and lim,o||Vu,||, — co.

By Theorem 1.1, ||Vu8|\§‘g/(2+£> =S, —lasel0, ie, |[Vu5—1ase|0.
Thus the proof is complete for any case. O

Using Lemmas 3.1, 3.2 and 3.5, we prove Theorem 1.4.

PrOOF OF THEOREM 1.4. It is easy to see that v.(y) satisfies

1 Y ’ 1
A —K| = m A = .
L0:(¥) + p <8> <x>a£(/6 u,(x)) v, 0

Since maxjy> & v:(y) = 1 and since lim, o e 2K (y/e) = ¢o/|y|* locally uniformly
on {y||y| = R}, by choosing a subsequence if necessary, v.(y) converges to
V(y) locally uniformly on {y||y| > R}, where V() is a solution to

CoC«

y]?

(4.2) AV + 22y =0
with ¢, being an accumulation point of (maxys g/, #:(x))" as & | 0.

Suppose that ¢, can be taken as ¢, =0. As in the proof of Lemma
3.5, the maximum point Q, of v,(y) (Max|y > gys Ue(X) = v:(Q,)) is uniformly
bounded in view of the decay (3.5). Thus there exists yy (|»o| = R) such that
V(yo) =1. Since (4.2) yields 4V =0 in this case, V might satisfy 7 = 1.
However, by (3.5), the local uniform convergence to 1 is absurd as in (4.1)
(consider the ratio v,(2y;)/v.(y1) with sufficiently large |y;]|). Thus ¥ cannot
be a positive constant in this case. Hence ¢, must be positive.

As for the estimate of the upper bound of c., we use (2.1) and Lemma
3.1. By them, we have

l[uel, < ClIVaell
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with C > 0 independent of ¢. Combining Theorem 1.1 with (1.4), we see
that ||Vu,|; — (n—2)°/(4co) as &|0. Thus we obtain limsup,|u,|’, <

(n—2)%/(4co). Since
im 3K (2) =5,
el0 & & |y|

choosing a subsequence, we see that v.(y) converges locally uniformly in
{y|ly] = R} to V, which is a solution to

AV +—5v =0,
(4.3) 171
V(Q.) =1, lim V(y)=0,

[y|—=o0

where 0 < &< (n—2)%/4 and |Q.| > R. Note that (4.3) has a solution (at
least a radial one). Thus we obtain the desired conclusion. O

5. Appendix
Here we give a proof of Lemma 2.1 for the sake of self-containedness.

ProoF oF Lemma 2.1. Since S(/) is attained by U(x)=
(14 |x]>")"2/C1) we have

J VU dx = (n - 2)’w, r PR (1 4 ) 0 gy
R" 0

since U, = —(n — 2)(1 + |x|>~7)" " 2/C0-1 51~/ Letting r = p?/@"), we get
Jﬁ P2 (] | 220100 g
0

2

o0
_ J =3 C=0) (] 4 p2)2n0/20 g
27/,

Letting p = tan 0, we have
Jw P2 (] 4 2y 20010 g
0

/2
_ 2 J / G20 24D/Q-0)-1 g (o 20-2/2-0-1 g g0

27 )
Since the beta function B(p,q) is defined as

n/2
B(p,q) = 2J sin®? ! 0 cos®! 0 do
0
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and since B(p,q) =I'(p)I'(q)/T'(p+ q), we obtain
2)2wn3<n2/+2 n2>

2, (n
LJVUMX_ 2-7/ 2-7 21—/

5 n—2/+2\ . (n—2
_(n Z)wnf( 57 >F<2—/

2- /)F(Z(Zn_ ;)>

Similarly, we have

J x|~ Ae=0/0-2) g
R'I

0
= wnJ rn—lfl(l + rZ*/)‘z("—/)/(z_/)dr
0

200 % om-1)-)/2-0)(] 4 2y 2n-0)/(2~0)
=2-7), " (I+p7) dp

n/2
_ 2wn/J Gin2-0/C=0-1 g oo 201201 g 4p
- 0

Wy, n—«¢ n—/{
_2—/B<2—/’2—/>
w, r n—/\'\
2—/ 2—/

2(n—12) ’
(57)

) and p =tan 0 as before. Thus we obtain

|\

where r = p?/(~

[gr IVU|*dx
S(4) = 7 (-2)/(n—7)
(fr X7/ U20=0)/(1=2) ) (=2 (=

n—2/+2\ (n-2
o (55)765)

2-¢ - (2(2;1_—//))

n—/ 2(n—2)/(n—¢)
_ _ r
< w, )(ﬂ 2)/(n—¢) ( (2 _ />>
27 (F (2(}1 _ /)) >("2>/("/)
22—/
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_ 2 _Dn
=(n-2) (2 —/
n—2042 n—2
r r
)
_ 2(n=2)/(n=¢) _ 2-0)/(n=0) "
(" / r 2(n—1Y)
22—/ 22—/

Thus the first part is proved.

Since our aim is to let /1 2, we need the asymptotic expansion of the
gamma function. The expansion formula (Stirling’s formula, see e.g., Taylor
[14], p. 267, (A.39)) yields

I'(z) = V2rez77 V2 4 L(z),

><z/>/<n/>

near z = oo with limy ., ¢z"C"Y?L(z) =0. The formula yields

(n—20+2)/(2~£)~1/2
F<n—2/+2) — Ve~ (n=2+2)/2=0) (”_2”2> + Li(4),

2/ 2-¢

F<; — ;) =V 2re "2/2=0) (’;:;)w—z)/(z_/)_l/z + La(7),

r<’; - i) — Vo -0/C0) (’;:;)W)/(Ml/z + Ls(0),
P20 < vz eores (22%—;))”””(”“/2 L)

where L;(/) (i=1,2,3,4) are lower order terms as /1 2. Thus we have

F(” —22/; 2>F<Z - ;) = 2 20=0/Q0) (g _ 0y 4 2)n-242/2=0-12

x (1 — 2)(11—2>/(2—/)—1/2(2 _ /)1—2(71—/)/(2—/) ¥ Ls(/)

n—/ 2(n=2)/(n—=¢) 2()’1 _ /) (2—20)/(n=2)
(=) =)

— (20) @1~/ Cn=00) 22-2=0)/(2n=0)) =2-2n=2)/20)

and

1 P\FF2D Q=) (2n=0=2)[2n—0))
( ) + Ls(?)

2/

+L7(/)7

sty oy (1 = £\ 0=/ 2r=0)
— 8 —Z\n—~ —
re (_2_ /)
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where L;(/) (i=5,6,7) are lower order terms. Hence we see that

S ( wn 2-0)/(n=2)

e~20-0/(=0) (3 _ 2 4 9) DN g\ 20112y _ py1-2n=0)/2~0)

s (=1 2(n—0)/2~0)~@n—(~2)] 2(n—1)
4 —2(n—¢ -

+ Ls(¢)

: 2 1/(2—¢
_ n— 2 wy, (2—/)/(”—/) (}’l o 2/ + 2) n72/+2(n _ 2) n—2 /( )
B 2-¢ (n— /)2<n4)

x (2 — /)(2*/)/(2('1*/))(” _ {)(2’1*/*2)/(2("*/)) + Lo(2),

where Lg(/) and Lo(/) are lower order terms with lim/;» L;(4) =0 (i =38,9).
Note that

lim !
22—/

10 (I’l _ 2/ + 2)”72/4’2(” o 2)}172
g (n— )2

 lim (n=20+2)log(n—204+2)+ (n—2)log(n—2) —2(n— /) log(n — ¢)
Cm 2—/

:—1}&1{—210g(n—2/+2)—2+210g(n—/)+2}:0

by I’Hospital’s rule. Thus we have
_ n=2042,  Ayn-2)1/27)
Hm{(n 2/ +2) (n—2) } L

/12 (n— /)2(n7/>

Moreover, by lim,_, o x* =1, we see that

. _(1172)2
lim S() ="

as desired. O

= S(2)

RemarRk 5.1. Since the area of the unit sphere is given by w, =
272"2(I'(n/2))~", S(/) coincides with Sgr(p,q,o,f,n) in Lemma 3.1 of [6]
with p=2, ¢=2(n—-¢)/(n—-2), a=0, f=—-m—-2)//{2(n—¢)} and y=
n(2—-20)/{2(n—-1¢)}.

Acknowledgment

The author thanks the referee for pointing out several gaps in the original
manuscript.



(1]

(2]

(3]

[4]

[5]

(11]

(12]
(13]
(14]

(15]

Asymptotic behaviors of least-energy solutions 111

References

F. Catrina and Z.-Q. Wang, On the Cafferelli-Kohn-Nirenberg Inequalities: sharp constants,
existence (nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54
(2001), 229-258.

H. Egnell, Elliptic boundary value problems with singular coefficients and critical non-
linearities, Indiana Univ. Math. J. 38 (1989), 235-251.

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic
equations in R”, Advances in Math. Suppl. Studies 7A (1981), 369-402.

Z.-C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations
involving critical Sobolev exponent, Ann. Inst. H. Poincaré Analyse non linéaire 8 (1991),
159-174.

T. Horiuchi, The embedding theorems for weighted Sobolev spaces, J. Math. Kyoto Univ.
29 (1989), 365-403.

T. Horiuchi, Best constant in weighted Sobolev inequality with weight being powers of
distance from the origin, J. Inequal. Appl. 1 (1997), 275-292.

Y. Kabeya, Behavior of least-energy solutions to Matukuma type equations, J. Math. Soc.
Japan 54 (2002), 937-973.

Y. Kabeya and E. Yanagida, Uniqueness and profile of solutions to superlinear nonlinear
elliptic equation, in preparation.

Y. Li and W.-M. Ni, On conformal scalar curvature equations in R"”, Duke Math. J. 57
(1988), 895-924.

Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions
of semilinear elliptic equations in R” 1. asymptotic behavior, Arch. Rational Mech. Anal.
118 (1992), 195-222.

Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions
of semilinear elliptic equations in R” II. Radial symmetry, Arch. Rational Mech. Anal. 118
(1992), 223-243.

Y. Naito, Nonexistence results of positive solutions for semilinear elliptic equations in R”,
J. Math. Soc. Japan 52 (2000), 637-644.

M. Struwe, Variational Methods, 3rd ed., Springer-Verlag, Berlin, Heidelberg, New York,
2000.

M. E. Taylor, Partial Differential Equations Basic Theory, Springer-Verlag, New York,
1996.

E. Yanagida and S. Yotsutani, Global structure of positive solutions to equations of
Matukuma type, Arch. Rational Mech. Anal. 134 (1996), 199-226.

Yoshitsugu Kabeya
Department of Applied Mathematics
Faculty of Engineering
Miyazaki University
Kibana, Miyazaki, 889-2192
Japan
e-mail: kabeya@cc.miyazaki-u.ac.jp



